Measurement of the 2S1/2, f = 0 2P1/2, f = 1 Transition in Atomic Hydrogen

Loading...
Thumbnail Image

Date

2020-08-11

Authors

Bezginov, Nikita

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A high-precision measurement of the transition frequency between the 2S_1/2, f=0 and 2P_1/2, f=1 states in atomic hydrogen is presented. The interval is measured by using a fast beam of hydrogen atoms and a novel method of frequency-offset separated oscillatory fields (FOSOF), an extension of the separated-oscillatory-fields (SOF) method.

Our result for the 2S_1/2, f=0-to-2P_1/2, f=1 interval is 909871.7 kHz with the total uncertainty of 3.2 kHz, which is the most precise measurement of this transition to date.

The root-mean-squared charge radius of the proton, determined from this measurement, is r_p=0.833(10) fm, in agreement with the proton radius determined from muonic-hydrogen spectroscopy, and 4.2 standard deviations away from the CODATA 2014 recommended value, which is determined entirely using electrons (using hydrogen spectroscopy and electron-proton scattering).

Description

Keywords

Physics

Citation