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Abstract

A high-precision measurement of the transition frequency between the 2S1/2, f = 0

and 2P1/2, f = 1 states in atomic hydrogen is presented. The interval is measured

by using a fast beam of hydrogen atoms and a novel method of frequency-offset

separated oscillatory fields (FOSOF), an extension of the separated-oscillatory-

fields (SOF) method.

Our result for the 2S1/2, f = 0→ 2P1/2, f = 1 interval is 909 871.7± 3.2 kHz,

which is the most precise measurement of this transition to date.

The root-mean-squared charge radius of the proton, determined from this

measurement, is rp = 0.833(10) fm, in agreement with the proton radius

determined from muonic-hydrogen spectroscopy, and 4.2 standard deviations away

from the CODATA 2014 recommended value, which is determined entirely using

electrons (using hydrogen spectroscopy and electron-proton scattering).
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1 Motivation and method

1.1 The hydrogen atom and the proton radius

The hydrogen atom is perhaps the simplest electromagnetically-interacting, stable,

bound system. Its spectrum can be precisely calculated and compared to measured

energy differences. High-precision spectroscopy of the hydrogen atom is used to

test fundamental physics.

Historically, the development of quantum mechanics was highly correlated

with advancements in understanding of the hydrogen spectrum. In 1947, Lamb

and Retherford [1] measured a frequency difference of 1000 MHz between the

2S1/2 and 2P1/2 states of atomic hydrogen (states that were expected to be

degenerate according to the Dirac theory). This frequency difference was crucial

to the emergence of quantum electrodynamics (QED) [2], the accepted framework

for the description of charged particles interacting with photons. More than sixty

years worth of experimental tests with ever-increasing precision have not found

any conclusive deviations from QED predictions. For example, precision

measurements of the electron magnetic moment [3] and the recoil frequency of

cesium-133 atoms in a matter-wave interferometer [4] lead to two most precise

determinations of the fine-structure constant1. These two determinations are

1The fine-structure constant sets the scale for the strength of the electromagnetic interaction
between elementary charged particles.
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consistent with each other.

The energy difference between the 2S1/2 and 2P1/2 states is known as the Lamb

shift. The two largest contributions to the Lamb shift are QED contributions: the

self-energy of the electron and vacuum polarization from virtual electron-positron

pairs. The third-largest contribution is due to relativistic recoil. The effect of the

proton size is the fourth-largest contribution (it contributes only 0.014% of the

Lamb shift). The proton-size contribution primarily affects S states, since there is

a significant overlap of the electron S wavefunction with the volume occupied by

the proton. The potential inside the proton is smaller than it would have been if the

proton was a point particle, and thus the binding energy of the S states becomes

less negative.

The leading-order expression [5] for the frequency shift due to the proton size is

ENS/h =
2

3

m3
r

m3
e

2α2cR∞
n3

r2
p

ň2
C

δl0, (1.1)

where me is the electron mass, mp is the proton mass, mr =
memp

me +mp

, α is the fine-

structure constant, c is the speed of light in vacuum, R∞ is the Rydberg constant,

rp is the root-mean-squared (RMS) charge radius of the proton, ňC = ~/(mec) is the

reduced Compton wavelength of the electron, n is the principal quantum number,

~ is the reduced Planck constant (h), and δ is the Kronecker delta. Experimentally

determined hydrogen-level differences, when combined with QED theory, can be

used to extract the Rydberg constant and the proton radius. The other constants

required are known with sufficient precision from other experiments.

The proton radius can also be determined from electron-proton scattering

experiments. CODATA uses both types of data to determine the recommended

value of the proton RMS charge radius [5, 6].
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0.82 0.84 0.86 0.88 0.90 0.92
Proton RMS charge radius, rp (fm)

CODATA 2014

H spectroscopy

e-p scattering

H spectroscopy

Lundeen & Pipkin

1S-3S (2018)

2S-4P (2017)

2S-2P (this work)

4.0 H

Figure 1.1: Values of the proton radius obtained from experiments. The red point is the CODATA 2014 recommended

value obtained by combining the radius extracted from the electron-proton scattering experiments (shown in green),

and spectroscopic measurements in hydrogen and deuterium (shown in blue, adjustment 12 in [5]). Two new values

obtained from hydrogen spectroscopy in 2017 and 2018 are not included in CODATA 2014, and are shown in magenta

and black, respectively. The proton radius obtained from measurements of the 2S ↔ 2P interval in muonic-hydrogen

spectroscopy is shown in brown [8]. The purple point is the recently reanalyzed hydrogen Lamb-shift measurement

performed in 1981 [9]. Note that the original value [10], used by CODATA, has a factor of 2.2 smaller uncertainty

and the extracted proton radius is smaller by 0.020 fm than the reanalyzed result. The value of the proton radius

extracted from this work [11] is enclosed in a rectangle.



1.2 The proton radius puzzle

In 2010, a new determination of the proton radius was extracted from a

measurement of the Lamb shift in muonic hydrogen [7]. The muon is

approximately 200 times heavier than the electron, and, in hydrogenic atoms, its

wavefunction has about 6 million times larger overlap with the proton. Therefore,

the muonic hydrogenic atom is conceptually a better system for a proton-size

measurement. The muonic hydrogen measurement led to the determination of the

proton radius with an order-of-magnitude smaller uncertainty than the CODATA

2010 value, and was 5.0 standard deviations away from it. This discrepancy is

now known as the proton-radius puzzle, which until the time of the current

measurement had no convincing resolution. The high-precision measurement of

the Lamb shift in ordinary hydrogen (the measurement described in this work) is

an important contribution towards resolving the puzzle.

Current determinations for the value of the proton radius are shown in Fig. 1.1.

As seen from the figure, the experimentally determined value of the proton radius

from muonic-hydrogen spectroscopy is 4.0 standard deviations away from the proton

radius obtained from earlier electronic-hydrogen spectroscopy2. The value in blue

is comprised of 15 measurements. The proton radii determined from these 15

experiments are shown in Fig. 1.2. The figure shows the majority (except one) of

the radii are within 2 standard deviations from the muonic-hydrogen value. To test

for unaccounted systematic effects, higher-precision measurements of the hydrogen

spectrum should be performed.

In 2017 and 2018, two such experiments were performed by measuring 1S→ 3S

[13] and 2S→ 4P [14] transitions, shown in black and magenta, respectively, in

2The deviation is 5.6σ if the electron-proton scattering data is included. However, the analysis
of the scattering data is complicated, and different data analysis methods yield proton radii that
agree with the muonic-hydrogen value as well [12].
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Figure 1.2: Proton radius values determined from hydrogen spectroscopy experiments. The data are obtained

from Table VII of Ref. [15]. The labels on the y axis correspond to the interval that was measured and from

which the proton radius was calculated. As in Fig. 1.1, the blue band is the weighted average of all of the proton

radius measurements obtained from hydrogen spectroscopic experiments, and the brown band is the proton radius

determined from the measurements of the n = 2 Lamb shift in muonic hydrogen.



Fig. 1.1. The former agrees with the CODATA 2014 value for the proton radius,

and the latter is consistent with the muonic-hydrogen value. This situation demands

additional high-precision hydrogen-spectroscopy experiments.

A precision measurement of the Lamb shift in ordinary hydrogen serves two

purposes. It allows the direct comparison between the muonic- and electronic-

hydrogen spectroscopy. Also, it adds an important data point to the set of the

radii determined from the transitions measured in hydrogen, which also has the

effect of testing the theory of the hydrogen atom.

1.3 The interval being measured

An energy eigenstate of hydrogen atom is denoted by

nLj, f,mf , (1.2)

where n is the principal quantum number, L is the orbital angular momentum

quantum number (represented by S, P , D, etc for the l = 0, 1, 2, . . . states), j

and f are the angular momentum quantum numbers with inclusion of the electron

spin, and of both the electron and proton spins, respectively. Finally, mf is the

quantum number proportional to the projection of the total angular momentum

along a specified axis.

Various contributions to the n = 2 Lamb shift in hydrogen, as well as of the

hyperfine correction for the 2S1/2, f = 0→ 2P1/2, f = 1 interval, are shown in Table

1.1, and the energy diagram is depicted in Fig. 1.3. The first column of Table 1.1

contains contributions to the Lamb shift calculated by using the CODATA 2014

values for the Rydberg constant and the proton RMS charge radius. Due to the

relatively large uncertainty in the proton radius, the uncertainty of 2.1 kHz in ENS

(the contribution of the proton size) limits the uncertainty in the predicted value

6



Figure 1.3: Energy levels of the n = 2 manifold in hydrogen. The energy differences (not to scale)

are specified in megahertz. The transition frequencies are calculated by assuming the value of

the proton radius from muonic-hydrogen spectroscopy. The 2S1/2, f = 0→ 2P1/2, f = 1 interval

measured is shown in blue.

for the Lamb shift. The second column uses the more precise value for the proton

radius from the CREMA collaboration3, which gives a Lamb shift that is 11.5 kHz

different from the shift in the first column.

The difference of 11.5 kHz corresponds to about 1 part in 104 of the natural

linewidth of the transition4. Determining the linecenter by mapping out the

Lorentzian lineshape to such precision poses prohibitive practical difficulties. To

overcome the limitation imposed by the natural linewidth, the well-known

technique of the separated-oscillatory-fields (SOF) could be used. This method

was employed for the previous measurement of the n = 2 Lamb shift, performed

by Lundeen and Pipkin [10, 23]. However, for measurement described here, we use

a novel extension of the SOF technique: the frequency-offset separated oscillatory

fields (FOSOF) technique [24, 25].

3Fixing the proton radius allows for calculation of the Rydberg constant from precisely
measured 1S → 2S interval [15].

4Due to the spontaneous decay rate of the 2P1/2 state to the ground state of 6.26 × 108 s−1

[22]. This gives a 1.60-ns-long lifetime for the 2P1/2 state, and the natural width of the transition
is 99.7 MHz.
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Table 1.1: Leading contributions to the energy difference (in frequency units) between the

2S1/2, f = 0 and 2P1/2, f = 1 states in hydrogen. The expressions for the contributions are

obtained from Refs. [5, 6, 15–20]. The first column uses CODATA 2014 values for the proton

charge RMS radius, and the Rydberg constant, whereas the second column uses the more precise

value of the proton radius from CREMA collaboration [8]. The numbers in parentheses are the

uncertainty in the final digits shown. The n = 2 Lamb shift, ELS , is equal to the sum of all of

the contributions less the hyperfine correction.

Correction ∆νCD(kHz) ∆νCR(kHz)c

Electron self-energy ESE 1 084 127.9(0) 1 084 127.9(0)

Hyperfine structure EHFS −147 958.1(0) −147 958.1(0)

Vacuum polarization E
(2)
VP −26 853.8(0) −26 853.8(0)

Relativistic recoil ESR 357.1(0) 357.1(0)

Proton RMS charge radiusa ENS 149.8(21) 138.3(1)

Two-photon contribution E(4) 65.4(3) 65.4(3)

Recoil (Dirac)b EM −2.2(0) −2.2(0)

Radiative recoil ERR −1.5(1) −1.5(1)

Proton self-energy ESEN 0.6(0) 0.6(0)

Three-photon contribution E(6) 0.4(1) 0.4(1)

n = 2 Lamb shift ELS 1 057 843.7(21) 1 057 832.2(3)

2S1/2, f = 0→ 2P1/2, f = 1 ELS + EHFS 909 885.7(21) 909 874.2(3)

a Spherically symmetric charge distribution is assumed. The model has negligible dependence

on the exact radial charge distribution, as long as the RMS radius is the same [21].

b This shift arises from the Dirac equation, as the consequence of including the reduced mass

term.

c Only the correction due to the size of the proton is significantly different for this column.
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Time

Figure 1.4: Single region of linearly polarized oscillating electric field of duration 2τ .

1.3.1 The method of separated oscillatory fields (SOF)

Consider a hydrogen atom in the 2S1/2, f = 0 state, at time t0 exposed to a single

region of linearly polarized radio-frequency (rf) electric field with amplitude E0

and duration 2τ (Fig. 1.4). The frequency of the field, f = ω/2π, is in the vicinity

of the frequency difference (E1 − E2)/h between the |1〉 = |2S1/2, f = 0〉 and

|2〉 = |2P1/2, f = 1,mf = 1〉 states. This system can be approximately treated as a

two-level system, with the Hamiltonian represented as

H = H0 +W (t), (1.3)

with

H0 = ~

ω1 − 1
2
iγ1 0

0 ω2 − 1
2
iγ2

 , (1.4)

and

W (t) = E0pz

 0 cos(ωt+ φ)

cos(ωt+ φ) 0

 , (1.5)

where the |i〉 state has an energy eigenvalue of ~ωi and a spontaneous transition

rate to the ground state of γi, ω = 2πf , pz =
√

3ea0 is the matrix element of the

9



z-component of the electric-dipole-moment operator, a0 is the Bohr radius, e is the

charge of the proton, and φ is the phase of the electric field.

It is useful to transform Eq. 1.3 from the Schrödinger picture to the interaction

picture. In this picture, the Hamiltonian for the system is:

WI(t) = U †0(t, t0)W (t)U0(t, t0), (1.6)

with

U0(t, t0) =

e−iω1(t−t0)e
1
2
γ1(t−t0) 0

0 e−iω2(t−t0)e
1
2
γ2(t−t0)

 . (1.7)

Therefore,

WI(t) =
1

2

e 1
2

(γ1−γ2)(t−t0) 0

0 e−
1
2

(γ1−γ2)(t−t0)

{ (1.8) 0 ei(ω1−ω2+ω)te−i[(ω1−ω2)t0−φ]

e−i(ω1−ω2+ω)tei[(ω1−ω2)t0−φ] 0

+

+

 0 ei(ω1−ω2−ω)te−i[(ω1−ω2)t0+φ]

e−i(ω1−ω2−ω)tei[(ω1−ω2)t0+φ] 0

}E0pz.

The anti-resonant terms, of the form e±i(ω1−ω2+ω)t, are oscillating at a much

higher frequency than the resonant terms, e±i(ω1−ω2−ω)t 5. In the rotating-wave

approximation (RWA) the anti-resonant terms are omitted. The Hamiltonian in

the interaction picture, with the rotating-wave approximation applied, is

W
(RWA)
I (t) =

1

2
E0pz

e 1
2

(γ1−γ2)(t−t0) 0

0 e−
1
2

(γ1−γ2)(t−t0)

 (1.9) 0 e−i(ωt+φ)ei(ω1−ω2)(t−t0)

ei(ωt+φ)e−i(ω1−ω2)(t−t0) 0

 .

5To reiterate, the assumption is that the field angular frequency, ω, is close to the resonant
angular frequency of the transition, ω1 − ω2.
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Transforming Eq. 1.9 back to the Schrödinger picture, gives

W (RWA)(t) =
1

2
E0pz

 0 e−i(ωt+φ)

ei(ωt+φ) 0

 . (1.10)

The Schrödinger equation, with the Hamiltonian H(RWA) = H0 + W (RWA)(t), can

be solved exactly, and the solution is developed in Ref. [26]. The probability for

the atom to remain in state |1〉 at time t0 + 2τ is

P (one pulse) = e−(γ1+γ2)τ | cosατ + i cos β sinατ |2, (1.11)

where

ω0 = ω1 − ω2; (1.12)

Ω = ω − ω0; (1.13)

Q =
1

2
(γ1 − γ2); (1.14)

V = −1

2

E0pz
~

; (1.15)

α = (4V 2 + (Ω + iQ)2)1/2; (1.16)

sin β = 2V/α; (1.17)

cos β = (Ω + iQ)/α. (1.18)

The spontaneous decay rate to the ground state for the 2S1/2, f = 0 state, γ1, is

almost exactly zero because of its 0.122-second-long lifetime [27], and, for the

2P1/2, f = 1 state, the spontaneous decay rate to the ground state is

γ2 = 6.26× 109 s−1 [22]. The plot of the 2S1/2, f = 0 → 2P1/2, f = 1 transition

probability in a single square region of electric field as a function of frequency for

2τ = 19.4 ns and E0 = 14 V/cm is shown in Fig. 1.5 in dashed black. The

lineshape is centered at the resonant frequency, but the resonance is quite broad.

For the method of separated oscillatory fields (SOF), instead of applying a single

pulse for duration 2τ , two pulses of equal duration τ are used, with a time interval

11
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Figure 1.5: Calculated SOF lineshape for two square pulses of the rf electric field for the case

of τ = 9.7 ns, T = 16.2 ns, and E0 = 14 V/cm. The SOF lineshape is the difference in the 2S

population obtained with the pulses driven separately in-phase (represented by P
(SOF)
0 ) and out-

of-phase (represented by P
(SOF)
π ). The lineshape obtained with a single field-interaction region

(with a duration 2τ and the same field amplitude) is shown in dashed black (and uses the axis

labeled in black at the right of the plot).
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Time

Figure 1.6: SOF pulse sequence. The pulses, spaced by the time interval T , are of equal duration

τ .
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T between the pulses, as shown in Fig. 1.6. Note that the phases of the electric

fields for the two pulses (φ1 and φ2, respectively) can be different. For the SOF

method, the probability for the atom to remain in state |1〉, after exposure to the

pulses (for a phase difference δφ = φ2 − φ1) is [26]

P
(SOF)
δφ = e−(γ1+γ2)τ−γ1T × |(cos

1

2
ατ + i cos β sin

1

2
ατ 2)− (1.19)

−e
1
2

(γ1−γ2)T−i(δφ+ΩT ) sin2 β sin2 1

2
ατ |2.

This expression can be written as

P
(SOF)
δφ = P (0) + A cos(θ + δφ), (1.20)

with the amplitude of the atomic interference given by

A = e−
1
2

(γ1+γ2)(2τ+T )| cos
1

2
ατ + i cos β sin

1

2
ατ |2| sin β sin

1

2
ατ |2, (1.21)

δφ = φ2 − φ1, (1.22)

θ = ΩT + Γ(f, τ, E0), (1.23)

Γ = 2[arg(cos
1

2
ατ + i sin

1

2
ατ)∗ + arg(sin β) + arg(sin

1

2
ατ)], (1.24)

and P (0) is the term that is independent of the phase difference between the fields,

δφ.

The interference term can be extracted by determining the difference of

probabilities for the case, when δφ = π and δφ = 0 radians:

P (SOF)
π − P (SOF)

0 = 2A cos(θ). (1.25)

This expression is plotted in blue in Fig. 1.5, and it constitutes the SOF lineshape.

The width of the SOF lineshape is smaller than that of the lineshape obtained with

a single pulse, and becomes progressively smaller for larger T . On the other hand,

the size of the signal is significantly smaller than the single-pulse lineshape.
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1.3.2 Frequency-offset separated-oscillatory-fields technique (FOSOF)

The SOF lineshape is realized by changing the phase difference, δφ, between 0 and π

radians, and determining the change in the probability for the range of frequencies,

f , or, equivalently, for the range of detunings, f − f0. If, rather than toggling δφ

between 0 and π, δφ is varied continuously (a linear increase in δφ as a function of

time), then the probability for an atom to remain in the initial state, |1〉, oscillates

sinusoidally in time.

A linear change in δφ can be achieved by slightly changing the frequency of the

rf in one of the pulses, by an amount ∆f � f0, called the offset frequency, as shown

in the upper portion of Fig. 1.7, and therefore we refer to this method as frequency-

offset separated oscillatory fields (FOSOF). The probability of remaining in state

|1〉 is obtained from the derivation in the previous section (cf. Eqs. 1.12 and 1.23):

P
(FOSOF)
∆ωt = P (0) + A cos(θ + ∆ωt+ φ2 − φ1) (1.26)

= P (0) + A cos
[
(ω − ω0)T + Γ(f, τ, E0) + ∆ωt+ φ2 − φ1

]
.

The crucial difference between the SOF technique and the new method of

frequency-offset separated oscillatory fields is the following: instead of extracting

the magnitude of the interference term for the range of frequencies (which is the

basis of the SOF technique) for each rf frequency f = ω/(2π), we determine the

phase of the probability oscillation, θ (Eq. 1.23, Fig. 1.7), with respect to the

phase difference between the fields, δφ = ∆ωt + φ2 − φ1. The phase, θ, can be

extracted from the phase difference between the product of the two fields,

oscillating at the frequency ∆f = ∆ω/2π, and the sinusoidally oscillating

interference term (cf. the bottom plot of Fig. 1.7). The phase, θ, obtained in such

a way, is called the FOSOF phase.

The FOSOF lineshape, which is the FOSOF phase measured for a range of
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Figure 1.7: Schematic representation of the FOSOF technique. The top of the figure is the

diagram of the rf pulses, experienced by a hydrogen atom in the initial state |1〉. The pulses of

rf electric field are separated by the time interval, T , and are of equal duration, τ . Unlike the

SOF pulse sequence, the pulses for the FOSOF method are frequency offset from each other by

∆f = ∆ω/2π. The fields of the two pulses are fed into a mixer that produces the beatnote of

frequency ∆f (shown as the purple dotted line on the plot), the phase of which is equal to the

phase difference φ2 − φ1 between the fields. The probability for an atom to remain in state |1〉

after the sequences of the pulses, oscillates sinusoidally at frequency ∆f (shown as the solid blue

curve). The phase difference between the probability oscillation and the beatnote is equal to the

FOSOF phase, θ, as indicated with the green arrow.
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Figure 1.8: FOSOF lineshape for the case of τ = 9.7 ns, T = 16.2 ns, and E0 = 14 V/cm (the same

parameters as for the SOF lineshape plotted in Fig. 1.5). The FOSOF phase, θ, is obtained from

the procedure described in the text and in Fig. 1.7. The FOSOF lineshape is slightly nonlinear,

with an odd (with respect to f − f0) deviation from linearity, as shown at the bottom plot of

the figure where the linear component of the lineshape has been subtracted. The nonlinearity is

contained in the term Γ(f, τ, E0) (in Eqs. 1.26 and 1.24). The resonance occurs at the FOSOF

phase θ = 0 radians, and the zero-phase-crossing of the fit to a straight line gives the correct

resonance frequency, as indicated by the black arrows. Referring to Fig. 1.7, if the beatnote is in

phase with the probability for the atom to remain in state |1〉, then the frequency, f = ω/2π is

equal to the resonant frequency, f0 = ω0/2π. The green lines correspond to the phase θ, indicated

in Fig.1.7, for a detuning of f − f0 = 10 MHz.
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frequency detunings, is plotted in Fig. 1.8. Compared to the SOF lineshape

(Fig. 1.5), the FOSOF lineshape is simpler. In particular, the very small term Γ

of Eq. 1.24 is an odd function with respect to detuning f − f0. Hence, it is

sufficient to fit the FOSOF lineshape to an odd polynomial. Moreover, Γ(f, τ, E0),

plotted at the bottom of Fig. 1.8, is sufficiently linear for the frequency range

(|f − f0| < 2 MHz) used in this work6, and therefore the FOSOF lineshape is

approximately a line:

θ = 2π(f − f0)T ′, (1.27)

where T ′ would be T in the limit of zero rf power, but is modified by the linear

contribution from Γ(f, τ, E0). Zero phase (θ = 0) occurs at the resonant frequency

f0:

fzc = f0, (1.28)

where fzc is the zero-phase-crossing frequency determined from the fit of the FOSOF

lineshape to a line. In Eq, 1.27, the slope of the line is given by

S = 2πT ′, (1.29)

and it is called the FOSOF slope.

A simplified representation of the experiment, presented in this work, is shown

in Fig. 1.9. A monoenergetic beam of hydrogen atoms, all in the state |1〉 =

|2S1/2, f = 0〉, is sent through two regions of linearly polarized radio-frequency (rf)

electric field in the FOSOF configuration. The remaining state-|1〉 population is

measured by a detector.

6In the low-power limit the FOSOF lineshape is a line – the simplest lineshape, as shown in
Appendix A.
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Figure 1.9: Schematic of the experiment. A beam of metastable hydrogen atoms, of current I,

in the state 2S1/2, f = 0, travels through two regions of rf field. The fields are in the FOSOF

configuration. The width of each interaction region is b, and the distance between the interaction

regions is D. After the fields, the remaining population of the atoms in the 2S1/2, f = 0 state is

detected.
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2 Experimental setup

2.1 Overview of the experiment

Figure 2.1 shows a schematic of the experimental setup. A Thonemann-type ion

source [28] with inductive coupling produces a high-current (50 µA) collimated beam

of protons (as discussed in Sec. 2.2), moving at about 1% of the speed of light

(approximately 3 mm/ns). The protons pass through a region containing molecular

hydrogen gas, where charge exchange occurs (as discussed in Sec. 2.3) and atomic

hydrogen (H) is formed. Of the neutral H formed, about 5% are expected to be in

the 2S1/2 metastable state [29], which has a lifetime of 0.122 s. The vast majority

of the remaining 95% of the hydrogen atoms are in the ground state, with only a

very small population in n > 2 states. A 70-cm-long section of dc electric field is

used to deflect the protons and to quench n > 2 states (as discussed in Sec. 2.4).

Radio-frequency cavities, driven at 1088 and 1147 MHz, positioned after the proton

deflector, remove the population in the metastable f = 1 hyperfine state by driving

it to the 2P1/2 state (see Figure 2.2 and Sec. 2.5 for details). (The 910-MHz cavity

is only used to control the population in the 2S1/2, f = 0 state for the study of

systematic effects, as described in Sec. 3.2.17.) The atoms then travel through two

standing-wave waveguides, which contain radio-frequency (rf) fields that can be

7To clarify, the 910-MHz cavity means the cavity is driven at 910 MHz. Similarly, the 1088-,
and 1147-MHz cavities are driven at 1088 and 1147 MHz, respectively.
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Figure 2.1: The experiment. Protons (shown in orange) with typical energy of 55 keV undergo charge exchange

with molecular hydrogen gas. The neutral beam – a mixture of ground, high-n (n > 2), and metastable hydrogen

atoms (shown in cyan) – travels through a section of dc electric field that quenches the high-n states and deflects the

remaining protons. The population in the metastable 2S1/2, f = 1 state is quenched by two sets of cavities, driven at

1088 and 1147 MHz. The 2S1/2, f = 0 atoms pass through two coherently-driven radio-frequency waveguides, with

frequencies of f + ∆f
2 in one waveguide and f − ∆f

2 in the other waveguide (with the offset frequency ∆f � f). In

the Lyman-α detector, the surviving population of metastable atoms is quenched via mixing with the fast-decaying

2P1/2 state, and emitted Lyman-α radiation is detected. The rf system for the FOSOF regions, including the

waveguides, is on a large 30-cm-diameter flange, which can be rotated in situ. The figure is adopted from [11].
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Figure 2.2: ∆mf = 0 transitions driven in the experiment. The transitions at 1088 and 1147 MHz

(shown in red and in blue) are driven to empty the population in the magnetic sublevels of the

2S1/2, f = 1 states. The main transition is indicated in green, and its frequency is determined in

the current measurement using the FOSOF technique.

tuned across the 2S1/2, f = 0 → 2P1/2, f = 1 resonance, where the method of the

frequency-offset separated oscillatory fields is performed.

The relative phase between the FOSOF field regions (Fig. 2.1) is continuously

varied by having a small (approximately 1 kHz) frequency offset (∆f) between the

two rf fields. The beatnote between the fields is formed twice, by combining the rf

fields in combiner C1 and in C2 (these are shown as part of the rf system, enclosed

in the green box, in Fig. 2.1)8.

After the FOSOF regions the metastable beam passes through another set of

quench cavities, resonant at 1088 and 1147 MHz. These cavities quench small

populations in the 2S1/2, f = 1,mf = ±1 or 2S1/2, f = 1,mf = 0 states, most of

which result from n > 2 states that decay somewhere between the two sets of

quench cavities.

8Details about the waveguides and the rf system are presented in Sec. 2.6. This section also
described the reason for having two combiners at different locations for combining the fields.
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Finally, the beam passes through a Lyman-α detector (described in Sec. 2.7)

that outputs a voltage proportional to the number of metastable atoms that make it

to the detector. This signal includes a component oscillating at the offset frequency

(∆f). The phase difference between this component and the beatnote formed by

combining the rf fields in the FOSOF regions leads to the FOSOF phase θ 9.

2.2 Proton beam

An important part of the experiment is the production of protons and the

maintenance of a stable proton beam current, since the stability is essential for

obtaining a stable detection signal at the Lyman-α detector.

A schematic of the proton source is shown in Fig. 2.3. The protons are extracted

from a Pyrex tube filled with hydrogen gas with an rf-driven plasma discharge. The

protons, along with other heavier positively charged species, are accelerated and

focused. The magnetic field of the deflecting electromagnet is adjusted to allow

only protons to pass to the rest of the experiment.

The proton source floats at a high voltage VHV (supplied by a Heinzinger

PNChp power supply), and the electronics for the production of the 500-watt,

approximately 100-MHz rf field used to ignite and maintain the plasma, the power

supplies for controlling the probe, the solenoid, and most of the ion optics are

located inside a metal enclosure maintained at VHV. An isolation transformer is

used to provide 60-Hz AC-line voltage as the power source for the power supplies.

The proton source is operated by setting the voltages applied to the probe

electrode (in the range of 0-10 kV with respect to VHV), the ion optics (in the

9The phases of the beatnotes, produced by each of the combiners, are not equivalent to the
phase difference, δφ, between the fields in the FOSOF regions. Section 2.8 discusses this important
problem.
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Figure 2.3: Schematic diagram of the proton source (top view, not to scale). The metal shield

(dashed line) and all of the components inside are floating at VHV ≈ 50 kV. The voltages shown

inside are with respect to VHV. The plasma (shown in purple) is from molecular hydrogen, which

is dissociated and ionized via application of a high-power rf fields, which are applied via the copper

rings, shown in green. An axial magnetic field of the solenoid confines the plasma. The protons

are repelled by the probe electrode, and travel through the set of einzel lenses, accelerating rings,

and the quadrupole doublet – all collectively denoted as “ion optics”. The deflecting magnet

acts as a velocity filter used to select only protons. Before the magnet there are two mutually-

orthogonal square coils (not shown) for left-right and up-down beam steering. Right after the

plasma-discharge tube there is a metallic ion extractor (its nozzle is visible right after the solenoid)

that is largely responsible for determining the initial shape and divergence of the beam.

range of 0-30 kV relative to VHV), and the rf-field-generating circuit, as well as the

electric currents flowing in the solenoid and the deflecting magnet, and, lastly, the

flow of hydrogen gas into the discharge tube.

The settings of the proton source are adjusted until a sufficiently large proton

current is created and the frequency spectrum of the Lyman-α-detector signal has

the minimum noise around the FOSOF offset frequency10: generally, no subsequent

tweaking of the proton source settings are necessary for several days.

10The offset frequency (of either 625 or 800 Hz) is chosen to avoid the AC-line harmonics, that
were often the strongest frequency components in the Lyman-α-detector signal. These harmonics
are probably due to insufficient low-pass filtering of the AC-DC power supplies used inside the
proton source enclosure.
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Figure 2.4: Diagram of the charge-exchange apparatus. The figure is not to scale. The charge-

exchange cell is a 2.75-inch ConFlat cross with welded 10-cm-long pumping restrictions with an

inner diameter of 4.8 mm, fixed inside of a 10-inch ConFlat 6-way cross which has two shorter

pumping restrictions of the same diameter. The pressure inside the cell is controlled with a mass-

flow controller. A high-pumping-speed turbo pump prevents the increase of pressure outside the

charge-exchange apparatus. Dimensions are in millimeters.

The total kinetic energy of the protons after the deflecting magnet is

approximately

Tp ≈ e(VHV + VP), (2.1)

where VP is the probe voltage, and VHV is called the nominal accelerating voltage,

with VHV > VP. For most of the experiment the nominal accelerating voltage is

set to VHV = 49.86 kV. Two other values are used: 22.17 and 16.27 kV. Note that

VHV is adjusted only when we want to deliberately change the beam speed for the

studies of the systematic effects (as described in section 3.1).
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2.3 Charge exchange

The charge-exchange cell is depicted in Fig. 2.4. It is described in detail in

Ref. [29]. At about 50 keV of kinetic energy, a proton that captures an electron

from molecular hydrogen gas has about a 5% probability to form a hydrogen atom

in the metastable state [29]. The pressure in the cell is adjusted to maximize the

number of metastable atoms produced, as measured by the Lyman-α-detector

signal (see Fig. 2.1). Referring to Fig. 2.4, the pressure inside the 10-inch ConFlat

6-way cross, but outside of the 2.75-inch ConFlat cross (the charge-exchange cell)

is maintained at 1.6µTorr.

As will be discussed in Sec. 2.5, we have experimental evidence for the presence

of small populations in the high-n states in our metastable beam, which indicates

that the charge-exchange process may have a non-negligible probability for forming

hydrogen atoms in n > 2 states. The effect of these states on the resonant frequency

obtained with the FOSOF technique, is discussed in Sec. 3.2.

2.4 Proton deflector

The space charge due to a proton beam overlapped with the neutral hydrogen beam

creates an electric field that shifts the energy difference between the 2S1/2, f = 0

and 2P1/2, f = 1 states. Assuming that the beam has a cylindrical shape and has a

uniform density, the rms electric field that the metastable atoms would experience

is

Erms =
Ip

2πvε0r
, (2.2)

where Ip is the proton current, v is the beam speed, r is the beam radius, and ε0 is

the permittivity of free space. For the protons with a kinetic energy of 50 keV, and

a beam current of 50 µA, with a diameter of 4 mm, the rms electric field would be
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Figure 2.5: The proton deflector (not to scale). All dimensions are in centimeters. Four copper

plates are symmetrically placed inside a 6-inch ConFlat nipple section. The plates in black are

grounded. The drawing on the left (a) is a frontal cross-section of the deflector, and the drawing

on the right (b) is the side view (with the grounded plates not shown). The protons are deflected

onto the copper cylindrical cup, and surviving metastable atoms pass through a 4-mm round

aperture in this cup.

about 1.5 V/cm. The DC Stark shift of the 2S1/2, f = 0 to 2P1/2, f = 1 interval is

quadratic in electric field, and is equal to11:

∆fDC = 9.9 kHz/(V/cm)2E2
eff . (2.3)

With the rms electric field of 1.5 V/cm, the frequency shift would be about 22 kHz.

Because of the magnitude of the possible DC-Stark shift from space charge

(and because the protons could charge up surfaces near the beam), it is desirable

to deflect the protons after the charge-exchange cell. This deflection is achieved

by applying an electric field, transverse to the beam axis, in the region right after

the charge-exchange cell (as shown in Fig. 2.1). The proton deflector is shown

11Taking into account the repulsion of the 2S1/2 state by the 2P1/2 and 2P3/2 states, and the
repulsion of the 2P1/2 state by the 2S1/2 state. Also, the Stark shift depends on the direction of
the electric field. For simplicity it is assumed that the electric field is parallel to the rf electric
field in the FOSOF regions.
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schematically in Fig. 2.5. The potential difference between the plates (shown in

red and blue in Fig. 2.5) is increased until the maximum current on the Faraday

cup, used to block the protons, is observed to ensure that all of the protons are

deflected12. For the nominal accelerating voltage, VHV, set to 16.27, 22.17, and

49.86 kV, the maximal current on the Faraday cup is observed when the potential

difference between the plates is set to 37.7, 82.5, and 120.0 V, respectively. The

electric field at the position of the beam due to these potential differences is 6.3,

13.8, and 20.0 V/cm, respectively.

The proton deflector was designed with a second purpose in mind: to maximally

reduce the populations in n > 2 states. The method for quenching n > 2 states is

explained in Ref. [30]. In short, when a hydrogen atom in an n > 2 state is exposed

to the electric field of the proton deflector, the lifetime of the longer-lived states

within the manifold are reduced by mixing with the shorter-lived states. Therefore,

in the electric field of the proton deflector, the unwanted populations in n > 2 states

are reduced. Unfortunately, the deflector field reduces the population in the 2S1/2

state as well. The reduction of the population in the 2S1/2 state can be minimized

by increasing the length of the proton deflector and reducing the magnitude of

its electric field. For our experiment the length of the deflector was chosen to be

70 cm. It was calculated that after the beam of atoms passes through the resulting

20-V/cm field in the proton deflector, the populations of states with 2 ≤ n ≤ 5 are

reduced by factors of 1.3 (2S state), 24 (3S state), 450 (4S state), and at least by

a factor of 1.3 (5S state).
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Figure 2.6: Pre-quench rf-cavity stack. The dimensions indicated are in millimeters. The cavities

are machined out of aluminum. (a) shows the top view, and (b) is the frontal view. For each cavity

the TE101 mode is excited with a small loop of wire which is a continuation of the inner conductor

of the coaxial cable that supplies rf waves to the cavity, shown by the dashed lines at the bottom

of panel (a). An electric field parallel to the beam axis (indicated with the cyan arrow) drives

∆m = 0 transitions. The middle cavity is used to control the population in the 2S1/2, f = 0 state.

The cavities are separated from each other by 30-mm-long 25-mm-diameter cylindrical aluminum

tubes. These tubes suppress the leakage of the rf fields between the cavities. The rf powers in

the cavities are set to drive π pulses for the appropriate ∆mf = 0 transitions shown in Fig. 2.2.

When no rf power is supplied to the 910-MHz cavity, only atoms in the 2S1/2, f = 0 state survive

the passage through the cavities. Dimension a in panel (b) is 185, 233 and 195 mm for the 910-,

1088-, and 1147-MHz cavities, respectively.
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Figure 2.7: Simplified diagram of an rf system for a quench cavity. The power output of an

rf oscillator (SynthUSBII) is controlled by adjusting the voltage applied to a voltage-controlled

attenuator. The rf oscillator frequency is set to one of 910, 1088, or 1147 MHz.

2.5 Hyperfine-state selection

In the charge-exchange cell, hydrogen atoms in the 2S1/2, f = 0 and 2S1/2, f = 1

states are formed. Population in the 2S1/2, f = 1 state could cause a systematic

shift in the resonant frequency of the 2S1/2, f = 0→ 2P1/2, f = 1,mf = 0 transition

determined using the FOSOF technique (as discussed further in Sec. 3.6). This shift

could result from ∆mf = 0 transitions between the 2S1/2, f = 1 and 2P1/2 states

that are off-resonantly driven (the transition frequencies are shown in Fig. 2.2.).

Therefore, it is important to minimize the population in the 2S1/2, f = 1 state.

To accomplish this, two pre-quench rf cavities driven at 1088 and 1147 MHz are

positioned before the FOSOF regions, as shown in Figs. 2.1 and 2.6.

A set of post-quench cavities driven at 1088 and 1147 MHz is located after the

FOSOF regions (see Fig. 2.1), and these cavities quench any small population of

2S1/2, f = 1 atoms that are created by radiative decay from high-n states. 910-

MHz cavities are included in both the pre- and post-quench regions to allow for

quenching 2S1/2, f = 0 atoms for systematic tests.

The rf systems for the quench cavities are identical, and are shown in Fig. 2.7.

12The Faraday cup is represented in Fig. 2.1 as the orange disk between the proton deflector
and the first set of the quench cavities.
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Radio-frequency powers supplied to the cavities are controlled by a set of voltage-

controlled rf attenuators. For each of the cavities, the voltage supplied to the

respective voltage-controlled rf attenuator is adjusted until the Lyman-α-detector

signal is minimized, as shown in Fig. 2.8. The minimum Lyman-α-detector signal is

an indicator that the rf powers supplied to the 910-, 1088-, and 1147-MHz cavities

are set to drive a π pulse for the 2S1/2f = 0 → 2P1/2, f = 1,mf = 0, 2S1/2, f =

1,mf = ±1 → 2P1/2, f = 1,mf = ±1, and 2S1/2, f = 1,mf = 0 → 2P1/2, f = 0

transitions, respectively (shown in Fig. 2.2).

The optimal rf power that minimizes the Lyman-α-detector signal for, for

example, the pre-quench 910-MHz cavity is realized in the following way13.

Firstly, the power input for the post-quench cavity, driven at the same frequency

of 910 MHz, is set to zero. For the other four cavities (the 1088- and 1147-MHz

cavities), the powers are set to our best estimates of the rf powers required to

drive their respective π pulses. The rf power supplied to the pre-quench 910-MHz

cavity is varied, and changes in the Lyman-α-detector signal are measured, as

shown in blue in Fig. 2.8. The obtained data is called a quench curve, from which

an optimal rf power that minimizes the Lyman-α-detector signal is determined (as

further described in Sec. 3.6.2). This optimal power is then used as the best

estimate of the rf power required to drive a π pulse for the

2S1/2f = 0→ 2P1/2f = 1,mf = 0 transition in the pre-quench 910-MHz cavity. A

similar procedure is used to determine the optimal power for each of the

pre-quench cavities. The procedure for determining the optimal power for the

post-quench regions is also similar, but in this case, the pre-quench cavity at the

same frequency is set to zero power.

This procedure is repeated again for all of the six cavities, until each of the

13The pre- and post-910-MHz cavities are not used for quenching of the 2S1/2, f = 1 state.
However, they are used for studies of systematic effects, as described in Sec. 3.2.
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Figure 2.8: Quench curves for the pre-quench cavities. The y axis is the signal from the Lyman-

α detector relative to the Lyman-α-detector signal when no rf power is supplied to the quench

cavities. The x-axis is the measured rf power supplied to the quench cavities, relative to the

power required to drive π pulse. The rf power is measured with rf power detectors attached to

bi-directional couplers (shown in Fig. 2.7).

optimal powers converge. The quench curves obtained for the pre-quench cavities,

after the optimal set of the rf powers was determined, is shown in Fig. 2.8.

The quench curves shown in Fig. 2.8 indicate that at optimal rf powers the

surviving population is not zero, but is about 0.5% of the total 2S1/2 population.

When the pre- and post-quench 910 MHz cavities are disabled, then only 6.8% of

the 2S1/2 population survives14, and therefore the 1088- and 1147-MHz cavities

reduce the 2S1/2, f = 0 population by 73% (since one would expect to have 25% of

14If only the pre-quench 1088- and 1147-MHz cavities or post-quench 1088 and 1147-MHz
cavities are set to π pulses and the rest of the cavities is de-energized, then about 26% of the
2S1/2, f = 0 population survives.
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the total 2S1/2 population to be in the 2S1/2, f = 0 state before entering the quench

cavities). The offset is 7.3% of the size of this surviving 2S1/2, f = 0 population.

The quench curves in Fig. 2.8 are acquired with a higher than typical pressure

in the experiment region (where the FOSOF regions and the quench cavities are

located). At lower pressures the offset is lower – typically the offset is about 3%

of the surviving 2S1/2, f = 0 atoms. This offset is very likely due to the presence

of high-n states in the beam. The offset and its effect on the resonant frequency is

discussed in more detail in Sec. 3.2.

2.6 FOSOF regions and radio-frequency system

The FOSOF regions are shown in Fig. 2.9. The FOSOF regions are constructed

using two radio-frequency waveguides. The waveguides have an electrical short on

one end. The design allows more than 99% of power to be coupled into the FOSOF

regions over the 900-980-MHz range. The tubes through which the atomic beam

enters and exits the waveguides complicates the profile of the radio-frequency fields,

and these electromagnetic fields are calculated in the EMPIRE software package15.

The details of the design of the waveguides are given in Ref. [31]. Only a single TE10

mode is excited, and this mode has an electric field which is polarized along the

beam axis. However, off-axis, the tubes allow for small perpendicular components

of the field.

The rf systems for the two FOSOF waveguides are symmetric (that is, the rf

system for one of the waveguides is the mirror image of the rf system for the other

waveguide), as shown in Figs. 2.1 and 2.9. The rf generator (Aeroflex IFR2026B

dual generator) for the rf system outputs two separate rf signals, frequency offset

from each other by ∆f . The rf signals are routed through the left and right arms

15This software was used in Ref.[9]
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Figure 2.9: Radio-frequency waveguides used in our experiment. The waveguides are machined

out of aluminum. The figure is not to scale. The dimensions are shown in millimeters. The beam

axis is indicated by a long dashed line, where an antinode of the electric field is located. The

separation between the waveguides is denoted by D, which can be varied. Two cylindrical stubs

(within dashed rectangular boxes), ensure an efficient coupling of the rf power from the GR-900

coaxial cable into the waveguide. The inner conductor of the coaxial cable is shown in yellow. The

width of the rectangular waveguides (the dimension into the page) is 23.0 cm. The inner diameter

of the cylindrical tubes at the ends of and in between the waveguides is chosen to suppress the

cross-talk between the waveguides and the leakage of radiation from the waveguides.
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of the rf system (green box in Fig. 2.1), respectively. The accuracy of the internal

reference clock of the rf generator is sufficient for the measurement accuracy of the

current experiment, as was verified by both a rubidium clock and a GPS clock.

Power sensors (KRYTAR 109B Schottky detectors) monitor the rf power after the

rf amplifiers (Mini-circuit ZHL-30W-252X-S+). Power readings from these power

detectors are recorded with a Keithley 2701 multimeter. All of the rf components

after the 3-dB attenuators (see green box in Fig. 2.1) are inside of a temperature-

stabilized metal enclosure.

Power combiners C1 and C2 (Mini-circuits ZAPD-2-21-3W-N+) combine rf from

the two arms of the rf system. In particular, combiner C1 combines samples of

the rf traveling into the waveguides, and combiner C2 combines samples of the

rf returning from the waveguides. Bi-directional couplers (see Fig. 2.1) (Mini-

circuits ZGBDC10-362HP+) are used to obtain the samples for C1 and C2. The

beatnote (with a frequency of ∆f) is extracted using logarithmic rf-power detectors

(Mini-Circuits ZX47-55LN+, not shown on the diagram), connected directly to the

output of C1 and C2. The phase difference between the outputs of these two power

detectors is a critically-important indicator of the path-length stability of the rf

system, as discussed in Sec. 3.8.

The two combiners provide a path for a tiny fraction of the rf power from one

rf system to leak into the other rf system. An example of such a path through

combiner C2 is shown (in blue) in Fig. 2.10. To improve the isolation between the

two rf systems, 40-dB attenuators are placed between the bi-directional couplers

and the combiners. Taking into account a 10-dB coupling of the bi-directional

couplers, and a 20-dB isolation of the power combiners, the isolation between the

rf systems for the paths though the combiners is better than 120 dB. Another path

for the rf from one system to leak into the other rf system is though a coupling
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Figure 2.10: Coupling between rf systems for the FOSOF regions. The rf systems are identical to

the ones shown in Fig. 2.1 (enclosed in the green dashed box), and the interconnections between

the rf components are shown with dashed lines. A path for the rf signal to leak from one rf system

to another (shown in blue) is through combiner C2: an rf signal returning from one of the FOSOF

regions (an example of the leakage of the rf from the right rf system into the left rf system is

shown) enters a bi-directional coupler, and a small fraction of the signal (attenuated by a total

of 50 dB) enters combiner C2. The two inputs of the combiner are not perfectly isolated from

each other – about 1% of the rf from one input is coupled into the other input. The rf coupled

into the other rf system is attenuated by another 50 dB and travels toward the FOSOF waveguide

for this rf system. Therefore, about −120 dB of the rf from one rf system is coupled into the

other. Another rf-leakage path is through the two outputs of the rf generator (shown in red). The

isolation between the outputs is measured to be better than 100 dB.
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Figure 2.11: Setup to measure the isolation between the outputs of the rf generator. Output A is

terminated with a 50 Ω terminator. An rf power detector is connected to output B. The output

of the power detected is connected to a digitizer. The rf generator outputs rf powers PA and PB

with frequencies fA and fB from outputs A and B, respectively. The two rf frequencies are offset

from each other by less than 1 kHz.

between the two rf outputs of the rf generator, as shown in red in Fig. 2.10.

The isolation between the outputs of the rf generator is measured with the setup

shown in Fig. 2.11. A 50 Ω terminator and an rf power detector are attached to

outputs A and B of the rf generator, respectively. Two outputs A and B are set to

output rf powers PA and PB with frequencies fA and fB, respectively, offset from

each other by less than 1 kHz. The power in the rf that leaks from output A to

output B, PA→B, is determined from the amplitude of the beatnote observed on the

rf power detector. The isolation is defined as PA/PA→B, and it is measured to be

better than 100 dB.

2.7 Lyman-α detector

The detector of metastable atoms is shown schematically in Figs. 2.1 and 2.12.

A large potential difference of 2 kV between two metal rings with a diameter of

2 cm, separated by 2.6 cm, mixes the 2S and 2P states. The mixture has a decay

rate (to the ground state via a Lyman-α photon) of approximately 3 × 108 s−1 or

approximately half of the spontaneous transition rate of the 2P state to the ground

36



Figure 2.12: Simplified frontal view of the Lyman-α detector. The dimensions are shown in

centimeters. In this drawing, atoms in the 2S1/2 state travel into the page (green). In pale blue is

a 9-cm-long hexagonal tube comprised of six separate precision-cut MgF2 wedges glued together

with a Henkel Loctite STYCAST 2850FT Black epoxy. Close to the inner and outer surfaces of

the hexagonal tube there are two meshes. The outer mesh is held at a potential of −400 V (shown

in blue), and the inner mesh (shown in black) is grounded to shield the atoms from this negative

potential. Two thin metal rings of a diameter of 2 cm (shown in black) are centered inside the

hexagonal tube. Only the first ring is visible and the other ring is 2.6 cm behind the first ring.

The potential difference between the rings is 2 kV. The atoms in the 2S1/2 state are quenched

between the rings causing them to emit 121-nm ultraviolet photons. About 40% of these photons

pass through the MgF2 tube and ionize an acetone molecule. The photoelectrons are accelerated

towards a copper tube that surrounds the hexagonal tube, and in the process they collide with

more acetone molecules. Amplified electron current is collected by the copper tube, which acts as

an anode.
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state. Emitted Lyman-α photons, with a wavelength of 121.6 nm, pass through a

magnesium-fluoride window16 and ionize acetone gas that acts as a gain medium17.

The produced photoelectrons are accelerated away from the window by a

repelling wire mesh (at a negative potential) that is wrapped around the

magnesium-fluoride window. The photoelectrons collide with other acetone

molecules, liberating further electrons. The electron current is detected on the

outer copper tube of Fig. 2.12, which acts as a Faraday cup and is connected to a

low-noise transimpedance amplifier (FEMTO DLPCA-200).

The gain of the detector depends on the pressure of the acetone gas, which is

controlled by a mass-flow controller18, and on the repelling voltage. Care is taken

not to exceed the breakdown voltage of the acetone gas.

2.8 Phase offsets in the FOSOF signal

To determine the FOSOF phase for an rf frequency f , the phase difference between

the electric fields in the waveguides has to be known (as was discussed in Sec. 1.3.2).

The beatnotes from combiners C1 and C2 (in Fig. 2.1) both have a frequency equal

to the offset frequency ∆f , and, in the ideal case, each would give a phase that

directly reflects the phase difference in the rf fields in the two FOSOF regions:

φbeat = φ2 − φ1. However, due to filtering effects, delays, unmatched electrical

lengths, and imperfections in the combiner systems the beat-signal phase may give

a phase offset φbeat = φ2 − φ1 + δφbeat. This phase offset, δφbeat, could be rf-

16One of a few available materials sufficiently transparent in the vacuum ultraviolet region.

17We decided not to use carbon disulphide gas, that has five times larger photoionization
efficiency than acetone gas [32], due to its toxicity.

18There is a constant flow of the acetone gas during the operation of the Lyman-α detector.
The gas is slowly pumped out with an oil free pump (Agilent SH-110 Dry Scroll Vacuum Pump)
through a small aperture.
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Figure 2.13: Experiment configurations. The atoms travel from left to right, and waveguides A

and B are placed on a rotary stage. In (a) and (b) (and similarly in (c) and (d)) the waveguides

are reversed (using the rotary stage which rotates the entire rf system – including all components

in and outside of vacuum), but the applied rf frequencies, f + ∆f
2 and f − ∆f

2 , are unchanged.

Configurations in (a) and (c), or (b) and (d) show waveguides in the same orientation, however

the frequencies are applied to the opposite waveguides.

frequency-dependent, and could be different for C1 and C2.

The Lyman-α-detector signal has a component oscillating at the offset

frequency ∆f . Ideally, the phase of this component is equal to the sum of the

FOSOF phase and the phase difference in the rf fields in the two FOSOF regions:

φdet = θ + φ2 − φ1. However, the Lyman-α detector has a limited bandwidth of

about 2 kHz19, which depends on the detector gain, and also on the gain of the

19Determined experimentally by AM-modulating the power in one of the waveguides and
observing the phase shift between the beatnote produced by combiner C1 and the Lyman-α-
detector signal oscillating at the modulation frequency.
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Figure 2.14: Extraction of the FOSOF phase. An example of experimental data is shown. In (a)

half of the offset frequency is added to the frequency of the rf signal in the rf system for waveguide

A (and half of the offset frequency is subtracted from the frequency of the rf signal supplied to

the rf system for waveguide B), yielding the phase difference θA between the detector signal and

the beatnote from one of the rf combiners. On the other hand, in (b) half of the offset frequency

is added to the frequency of the rf signal in waveguide B, resulting in θB . The combination,

θAB = 1
2 (θA − θB), which is free from phase offsets due to the frequency response at the offset

frequency, is shown in red for the 0 configuration and in blue for the π configuration (d). Half the

difference of these two curves gives the FOSOF phase θ = 1
2 (θAB(0) − θ

AB
(π) ), as shown in (c). For

this data set (acquired in less than 90 minutes), a linear fit gives an uncertainty of 2.2 kHz in the

zero-crossing frequency with χ2 = 29.1 for 39 degrees of freedom.

40



transimpedance amplifier attached to the detector. Therefore, there is an

additional phase offset δφdet that depends on the offset frequency:

φdet = θ + φ2 − φ1 + δφdet.

Therefore, the phase difference between the component of the Lyman-α-detector

signal oscillating at ∆f and the beatnote from combiners C1 and C2 is not equal

to the FOSOF phase θ, but is equal to

φdet − φbeat = θ + δφdet − δφbeat. (2.4)

A way to eliminate these phase offsets (δφbeat and δφdet) from Eq. 2.4 is to

perform two FOSOF experiments, shown in panels (a) and (b) (or (c) and (d)) of

Fig. 2.13. The entire rf system (including waveguides A and B, the cables,

combiners, power monitors, dual rf generator, and amplifiers) is rotated as a unit

(including in- and out-of-vacuum components) to move from one of these

configurations to the other. The phase of the rf field in waveguides A and B is

2π(f − ∆f
2

) + φ1 and 2π(f + ∆f
2

) + φ2, respectively, where f is the rf frequency. In

the first experiment (Fig. 2.13 (a)), the atoms travel through waveguide A and

then through waveguide B (the 0 configuration). In this case, the phase difference

between the offset-frequency (∆f) component of the Lyman-α-detector signal and

the beatnote from the combiners is given by the same expression as in Eq. 2.4:

θ(0) = φdet(0) − φbeat(0) = θ + δφdet − δφbeat. (2.5)

In the second experiment (Fig. 2.13 (b)), the order of the waveguides is reversed

(the π configuration). In this case, the component of the Lyman-α signal oscillating

at the offset frequency has the phase equal to φdet(π) = −θ+ (φ2− φ1) + δφdet, and

the expression for the phase of the beatnote from the combiners, φbeat(π), is the

same as for the first experiment. The difference between φdet(π) and φbeat(π) is equal
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to:

θ(π) = φdet(π) − φbeat(π) = −θ + δφdet − δφbeat. (2.6)

Half of the difference of the FOSOF phases acquired for the 0 and π

configurations (Eq. 2.5 and 2.6) yields a phase-offset-free phase, equal to the

FOSOF phase θ:

θ =
1

2
(θ(0) − θ(π)). (2.7)

An example of data acquired for the 0 and π configurations is shown in panel (d) of

Fig. 2.14. Panel (c) of Fig. 2.14 shows the FOSOF phase extracted from combining

the data from these two configuration using Eq. 2.7.

The waveguide reversal is performed in situ by rotating the whole rf system

(including the amplifiers, the rf generator and all of the interconnecting cables) by

180 degrees every 30-60 minutes, while ensuring that none of the rf components are

disturbed during the rotation.

This method negates the unwanted phase shifts (δφbeat and δφdet), provided

that these phase offsets stay constant for the duration of data acquisition for both

the 0 and π configurations. The stability of the phase offset (δφbeat) related to the

rf system is discussed in Sec. 3.8. As for the detector-related phase offset (δφdet),

it was determined that the detector-gain stability over the period of 30-60 minutes

was not sufficient for the accuracy of the current measurement20.

A different method is used to correct for the Lyman-α-detector phase offset at

the offset frequency at much faster time scale (about every 10 seconds). Note that

in addition to changing the orientation of the waveguides, we can also change which

rf arm has half of the offset frequency, ∆f
2

, added (see the first or the second column

of Fig. 2.13). Consider panel (a) of Fig. 2.13. Half of the offset frequency is added

20For example, we determined that the detector bandwidth is a function of the beam current
and it also depends on the pressure of the acetone gas in the detector.
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to waveguide B and subtracted from waveguide A, and the phase difference between

the offset-frequency component of the Lyman-α-detector signal and the beatnote

from the combiners is given by Eq. 2.5, which we will now denote by θB(0). In panel

(c) of Fig. 2.13, half of the offset frequency is now added and subtracted from the

opposite waveguides. In this case, the phase of the component oscillating at the

offset frequency from the Lyman-α detector is given by

φAdet(0) = −(θ + (φ2 − φ1)) + δφdet, (2.8)

while the phase of the beatnote from the combiners is:

φAbeat(0) = −(φ2 − φ1)− δφbeat. (2.9)

The phase difference between these two phases is

θA(0) = −θ + δφdet + δφbeat. (2.10)

The half-difference of the extracted phase differences, yields the phase difference:

θAB(0) =
1

2
(θB(0) − θA(0)) = θ − δφbeat, (2.11)

which is free of the offset-frequency-dependent phase offset in the Lyman-α-detector

signal. Examples of A and B data are shown in panels (a) and (b) of Fig. 2.14.

A similar procedure is used for the other orientation of the waveguides (the π

configuration) to obtain θAB(π) = −θ − δφbeat. Half the difference of θAB(0) and θAB(π)

gives the FOSOF phase θ:

θ =
1

2
(θAB(0) − θAB(π) ). (2.12)

2.9 Power calibration for the rf system

The FOSOF lineshape (Eq. 1.23) depends on the amplitude of the rf electric field

(which affects the slope of the linear fit to the FOSOF lineshape). The consequence
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Figure 2.15: Effect of the power-flatness level on the zero-phase-crossing frequency, fzc. fzc − f0

is the shift of the zero-crossing frequency from the resonant frequency f0. In both panels (a) and

(b), symmetric frequencies about f0 are used. αp (Eq. 2.14) is the total fractional linear change

in the square of the electric field amplitude across the detuning range (Eq. 2.16). In both (a)

and (b), αp = 0.1, equivalent to a 10% change in the power across the detuning range (about 5%

change in the field amplitude). In (a), the frequency detuning range is ∆range = 4 MHz, and in

(b), the electric field amplitude at f0 is E0 = 18 V cm. The frequency shift, fzc−f0 is proportional

to αp for the same δf and E0.

of this is that the lineshape obtained with imperfect power flatness across the

detuning range, ∆range, could lead to a shift in the observed FOSOF resonant

frequency. To be more specific, the power flatness can be represented as

P − P0 = P ′δf +
1

2!
P ′′δf 2 +

1

3!
P ′′′δf 3 + . . . , (2.13)

where P0 is the field power at the resonant frequency f0, P is the power at a

frequency detuning δf = f − f0.

As an example of a frequency shift due to a dependence of the rf electric field

in the FOSOF regions on the frequency detuning, we consider a case of a small

monotonic change in the power across the detuning range. For simplicity, we also

assume that in the FOSOF regions, the pulses of the rf electric field are square, as
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shown in Fig. 1.7. In this case, it is useful to define a total fractional power change

across the detuning range:

αP =
P [δfmax]− P [δfmin]

P0

, (2.14)

where P [δfmax] and P [δfmin] are the rf powers at the maximum and minimum

detunings in the detuning range ∆range, respectively. For small values of the

parameter αP , the first-order term in Eq. 2.13 is the largest contribution to the

power flatness. The power as a function of the frequency detuning can be

expressed as

P = (αP
δf

∆range

+ 1)P0. (2.15)

Eq. 2.15 can be written in terms of the square of the rf electric field amplitude, E:

E2 = (αP
δf

∆range

+ 1)E2
0 , (2.16)

with E2 ∝ P and E2
0 ∝ P0. Deviations of the zero-crossing frequency fzc from the

resonant frequency f0 for various values of αP , ∆range, and E0 are shown in Fig. 2.15

for the same T (separation between the FOSOF regions) and τ (duration of each of

the rf pulses in the FOSOF regions) as in Fig. 1.5. Fig. 2.15 indicates that the effect

of the imperfect power flatness on the deviation of the zero-phase crossing frequency

from the resonant frequency is smaller for smaller rf electric field amplitudes and

for smaller range of detunings. In our experiment, we use a frequency range of

4 MHz, and field amplitudes of up to 24 V/cm. Figure 2.15 indicates that for a

frequency range of 4 MHz and an electric field amplitude of 24 V/cm, for square

interaction regions and with a total change in the field power (varying linearly with

the frequency detuning) of αP = 10%, the zero-crossing frequency determined from

the FOSOF lineshape is shifted from the resonant frequency by about 1 kHz, which

is a significant shift. The concern is that it is possible that the coupling of the
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power output by the rf generator into the FOSOF regions may have insufficient

power flatness. Therefore, given a value of the rf electric field amplitude that

atoms experience while traversing the two FOSOF regions, we need to determine

the power output by the rf generator that corresponds to this field amplitude. Such

a correspondence between the desired set of the field amplitudes and the rf powers

output by the rf generator is determined experimentally for each of the two FOSOF

regions and for the range of frequencies (of 4 MHz) used in our experiment by

comparing the dependence of the observed Lyman-α-detector signal on the power

setting of the rf generator with simulations of the survivability of the 2S atoms

versus rf intensity in this FOSOF waveguide21.

The setup to calibrate the power for the rf system for waveguide A is shown in

part (a) of Fig. 2.16, and an example of the acquired data for power calibration is

shown in Fig. 2.17. The figure depicts the process of determining the output power

by the rf generator that corresponds to the field amplitude of 18 V/cm at a frequency

of 910 MHz in waveguide A. First, we use simulated data (surviving 2S1/2, f = 0

populations after passing through a single FOSOF region as a function of rf field

amplitude) to determine the surviving 2S1/2, f = 0 population that corresponds

to a field of 18 V/cm in the FOSOF region. We then use the experimental data

of Lyman-α-detector signal (normalized to the Lyman-α-detector signal at zero

power in waveguide A) as a function of the output power by the rf generator to

determine the output power at which the detector signal is equal to this simulated

surviving population at 18 V/cm. There are two complications to this process. The

Lyman-α-detector signal needs to be corrected for the fractional offset that was

discussed in Sec. 2.5, since this offset is not related to the 2S1/2, f = 0 population.

This corrections has an effect of shifting the rf power supplied to the FOSOF

21Details about the simulations are in Sec. 3.3.1.
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Figure 2.16: Data acquisition setups. Figure (a) is the setup for performing power calibrating for

the rf system for waveguide A. Semi-transparent portions of the figure indicate the components

that were not used in the calibration procedure. The quench cavities were set to their respective

π pulses (except the 910-MHz cavities). Figure (b) shows the setup used for the FOSOF data

acquisition. In this case the pre- and post-910-MHz cavities are not used. The waveguides are

shown in the 0 configuration with half of the offset frequency added to the frequency of the rf

wave in the left arm of the rf system (for waveguide A) and half of the offset frequency subtracted

from the frequency of the rf wave in the right arm of the rf system (for waveguide B). The power

sensors are connected to a precision multimeter (not shown).
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regions by approximately the same amount for all of the frequencies in the ±2 MHz

range around 910 MHz – the range of frequencies used in our experiment. The

frequency shift associated with our knowledge of the fractional offset is discussed

in Sec. 3.3.3. Another complication is that the power calibration procedure of

Fig. 2.17 assumes that all of the atoms travel through the FOSOF regions along

the same trajectory (along the central beam axis of the tubes on the waveguides),

but in our experiment, the beam of 2S1/2, f = 0 atoms has nonzero size. It turns

out that simulated data, such as the one in panel (a) of Fig. 2.17 differs negligibly

for atoms traveling at different distances away from the beam axis (indicated by a

dashed line that passes through the waveguides in Fig. 2.9). In particular, for the

simulated data in Fig. 2.17, for the atoms that travel 2 mm away from the beam

axis, the surviving 2S1/2, f = 0 population changes by at most 0.2%. Such a small

difference in surviving populations for atoms moving at different distances away

from the beam axis has a negligible effect on the power calibration22.

2.10 Data acquisition procedure

One of the reasons for performing this high-precision measurement of the n = 2

Lamb shift was to compare extracted proton radii from muonic and electronic

hydrogen. To have an unbiased comparison, we applied a hidden offset to all of

the frequencies output by the rf generator while acquiring spectroscopic data

using the FOSOF technique. The hidden offset was revealed to us only after all of

the FOSOF data was acquired and its analysis was completed23. The front panel

22There is still a frequency shift associated with the beam size. This shift is discussed in
Sec. 3.3.2.

23It took us six years to finally “unblind” the measurement! The hidden offset was constrained
to be within ±100 kHz, which is more than ten times the uncertainty of the Lundeen and Pipkin
measurement [10].
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Figure 2.17: Example of data used for power calibration for an rf frequency of 910 MHz. Panel (a) is the simulated

quench curve – fractional 2S1/2, f = 0 population after passing through a single FOSOF region as a function of rf

field amplitude in the FOSOF region (at 910 MHz). Panel (b) shows the experimental data of Lyman-α-detector

signal as a function of the output power by the rf generator into waveguide A (no power is supplied to waveguide B

for these data). The signal from the detector is normalized to when no power is supplied to waveguide A. Dashed

lines and arrows indicate the procedure for determining the power that needs to be output by the rf generator in

order to establish an rf field amplitude of Erf
0 = 18 V/cm in waveguide A. In particular, the dashed arrows show

that the simulations in (a) indicate that Erf
0 = (18 V/cm)2 = 324 V2/cm2 leads to a survival fraction of 0.51. In (b),

it can be seen that an observed survival fraction of 0.51 occurs at rf generator output power of 0.15 mW. A similar

procedure was used for a set of rf frequencies within the 4-MHz range of rf frequencies used.



display of the rf generator was turned off so that we could not see the actual

frequency requested from the generator. Additionally, the frequencies used were

not round numbers and were not evenly spaced, to ensure that even if we

accidentally saw the frequency reading on the front panel of the rf generator, we

would not immediately be able to determine the blind offset.

The separation between the waveguides D (Fig. 2.9) is set by two spacers, as

shown in Fig. 2.18. To change D, the waveguides are physically removed from the

vacuum chamber to replace the spacers and the copper tube between the

waveguides. After putting back the waveguides, the air is evacuated from the

system, until a pressure of approximately 0.2µTorr is reached. The voltage

applied to the plates of the proton deflector is set to deflect the protons (Sec. 2.4)

and then the settings for the proton source are adjusted, until a stable signal is

observed on the Lyman-α detector (Sec. 2.2). Afterwards, the power supplied to

the hyperfine-state-selecting cavities is set to π pulses by following the procedure

described in Sec. 2.5. Finally, a new power calibration for the two FOSOF

waveguides is performed (Sec. 2.9) following any change in D.

The phase difference between the beatnote signals from combiners C1 and C2 is

continuously monitored to help ensure that before starting to collect spectroscopic

data the rf system is stable. We wait whenever the rf power is changed before

starting data acquisition. That is, when we set the rf generator to output the power

corresponding to the new electric field amplitude (of, for example, 5 V/cm), we wait

for the temperature distribution for the overall rf system to stabilize. An example

of the change in the phase difference between the two combiners after changing the

electric field amplitude in the waveguides is shown in Fig. 2.19. In this figure, the

change of about 0.8 mrad is observed, which corresponds to a frequency shift of

about 8 kHz. This example shows the importance of having at least two locations
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Figure 2.18: Top cross-sectional view of the FOSOF waveguides. The beam axis (Fig. 2.9)

is indicated by a horizontal dashed line. The walls of the waveguides of thickness t =

0.750± 0.005 inches are shown in green. Two aluminum spacers set the separation D between the

waveguides. They have a thickness of D − 2t, and are machined to a tolerance of 0.002 inches.

Their length (the dimension into the page) matches the length of the waveguides of 445 mm

(Fig. 2.9).

(using C1 and C2) for monitoring the beatnote between the two arms of the rf

system.

The setup for the data acquisition is shown in panel (b) of Fig. 2.16. Two 2-

channel Keysight L4532A digitizers are used to simultaneously record signals from

the Lyman-α detector, combiner C1, and combiner C2. The sampling rate is set

to be much higher than the offset frequency, and the trace length is chosen such as

to prevent spectral leakage from both the AC harmonics and the offset frequency,

and also to have large enough signal-to-noise ratio in the Lyman-α-detector signal
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Figure 2.19: Drift in the phase difference between combiners C1 and C2. The electric field

amplitude in the waveguides was changed from 18 V/cm to 5 V/cm. The rf frequency was set to

910 MHz and the offset frequency is equal to 800 Hz.

for reliable phase determination24.

During the FOSOF data acquisition, the order of rf frequencies is randomized,

which are listed in Table B.225. The choice of waveguide to which half of the offset

frequency is added (i.e., the one with f + ∆f
2

) is randomized as well, with the

other waveguide having this higher frequency in the subsequent measurement. The

acquisition scheme is shown in Fig. 2.20. For this particular example, after the data

is collected for the 0 configuration the waveguides are reversed and the acquisition

is performed for the π configuration. As described in Sec. 2.8, both of these data

sets are required to determine the resonant frequency. To acquire another 0- and

24Depending on the separation between the waveguides and the electric field amplitude, the
trace length varied from 1-10 seconds. The sampling rate was usually set to 100 kilo-samples
per second. Much smaller values for the sampling rate would suffice, but we wanted to have an
opportunity to examine if there were any indications of unexpected signals at frequencies higher
than the offset frequency (none were found).

25For this measurement, FOSOF data sets are acquired with the same set of 41 rf frequencies.
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π-configuration pairs, we start with the waveguides in the π configuration, and then

rotate the waveguide to change to the 0 configuration.
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Figure 2.20: Data collection diagram arranged as a table. Each data set is acquired by cycling

through the following procedure Nr times (the first column). The rf frequency is randomly picked

out of the set of rf frequencies {fi} (the second column). Then, randomly as well, it is chosen

whether half of the offset frequency ∆f
2 is added to the frequency of the rf signal in waveguide A

or B, indicated by W(∆f) in the third column. It is shown, as an example, that at first (shown in

the first row) the signal in waveguide A has frequency f32 − ∆f
2 , and in waveguide B the field is

oscillating at frequency f32 + ∆f
2 . Traces of the signals acquired from the Lyman-α detector (VD),

combiner C1 (VC1), and combiner C2 (VC2) form the tuple of traces (VD, VC1, VC2). These traces

are acquired Nt times (the fourth column). After the set of traces is collected, half of the offset

frequency is added to the frequency of the signal in waveguide A, and another set of traces is

acquired Nt times. The process continues until the data for all of the Nf frequencies is collected.

Each tuple of traces can be uniquely labeled by a tuple of four numbers: (repeat, f,W(∆f), traces),

i.e., by the numbers in the four columns.
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3 Systematic shifts

The zero-phase-crossing frequencies, fzc, determined from FOSOF lineshapes are

subject to several systematic effects, which are discussed in this chapter. A final

list of systematic corrections applied is shown in Table 4.1.

3.1 Second-order Doppler shift

The first-order Doppler effect is expected to be very small, and will be treated in

Sec. 3.7. Due to relativistic time dilation, in a reference frame co-moving with the

atomic beam, an rf frequency seen by the atoms is higher than the frequency of the

fields in the laboratory frame. This leads to a second-order Doppler shift26:

∆SOD ≡ f ′ − f = (γ − 1)f ≈ 1

2

v2

c2
f, (3.1)

where f ′ is the frequency in the atom’s reference frame, f is the frequency in the

laboratory frame, c is the speed of light in vacuum, v is the speed of the atoms,

and γ = (1 − v2/c2)−1/2. For the atoms moving at 1% of the speed of light, the

approximation of Eq. 3.1 is justified since the v4/c4 (fourth-order Doppler shift)

26One might expect the frequency to actually decrease based on the following argument.
Consider an atom exposed to a traveling wave, perpendicular to the velocity of the atom. In
the atom’s reference frame, the rf generator is moving with some velocity ~v, and thus emission
of radiation of period T in the reference frame of an observer should be time-dilated by a factor
γ in the atom’s frame, which concludes that the frequency seen by the atom should be smaller.
However, one has to be careful about the aberration of light: the wave vector is not normal to
the velocity ~v in the atom’s frame. Details are discussed Ref. [33] (pp. 139 to 144).
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Figure 3.1: Radio-frequency pulse timing for the beam-speed measurement. The rf power for

waveguides A (red) and B (blue) (these waveguides are the two FOSOF regions shown in Figs. 2.1

and 2.9) is pulsed with the timing shown. The pulse duration δt and repetition rate frep is chosen

such that the atoms are not exposed to more than one electric field pulse while inside a single

waveguide. The delay ∆t between the pulse for waveguide A (in red) and waveguide B (in blue)

is varied and the Lyman-α-detector signal is recorded.

term would lead to a shift of less than 5 Hz. The second-order Doppler shift for

this speed is approximately 50 kHz. The speed of the atoms needs to be known

to an accuracy of about 1% to allow for an uncertainty of less than 1 kHz in the

second-order Doppler shift correction of Eq. 3.1.

In principle, the accelerating voltage (Eq. 2.1) could be used to calculate the

speed of the atoms. However, we are concerned about a possibility of significant

electric fields at the entrance aperture of the charge-exchange cell (Fig. 2.4) due

to protons colliding with the face of the aperture, and such a potential could slow

down the protons before they neutralize into hydrogen atoms.

As a result of this concern, we instead measure the speed of the atoms by pulsing

the rf power in the two waveguides (the two FOSOF regions of Figs. 2.1 and 2.9)

as shown in Fig. 3.1, and measuring the change in the Lyman-α-detector signal

detected as a function of the delay between the pulses (as shown, for example, in

Fig. 3.2). The pulsing of the rf power is realized with a SRS DG645 delay generator

and two rf switches (Mini-circuits ZASWA-2-50DRA+), one for each arm of the rf
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Figure 3.2: Example of data for the beam-speed measurement. The separation between the

waveguides (D of Fig. 2.9) is 7 cm for this data, with the nominal accelerating voltage set to

49.86 kV. The data in red is acquired for the waveguides in the 0 configuration, and for the data

in blue the waveguides are in the π configuration. The data shown is the metastable current

(measured by the Lyman-α detector) normalized to the metastable current observed for large

delays between the pulses. The data are fit to Gaussian functions. Pulse separations (∆t
(0)
max and

∆t
(π)
max) that correspond to the (normalized) maximal metastable currents are extracted from the

fits to Gaussian functions. These two fit parameters and values of the reduced chi-squared for the

two fits are shown in the last row of Table 3.1. The average of |∆t(0)
max| and |∆t(π)

max| yields a delay

time ∆t that is not influenced by time delays in the rf system.
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system27. The maximal metastable current occurs when the delay between the

pulses ∆tmax is equal to the average time it takes for hydrogen atom to travel from

one waveguide to the other. The average beam speed is

v = (b+D)/∆tmax, (3.2)

where b is the width of the waveguide (see Fig. 2.9) and D is the separation between

the waveguides (as shown in Fig. 2.9). Both b andD can be measured to an accuracy

of better than 0.01 cm, so that the relative uncertainty in b + D is much smaller

than the relative uncertainty in ∆tmax. The quantity ∆tmax is not, in general, equal

to the delay between the pulses set on the delay generator, because the two arms

of the rf system (i.e., the arms that feed waveguide A and waveguide B) are not

perfectly identical. Performing the experiment for the 0 and π configurations (i.e.,

with the two orientations of the FOSOF system), and averaging the ∆tmax from

the two orientations, cancels the time delays associated with the length mismatch

between the rf arms. As a check for systematic effects, the beam speed is measured

for several nominal accelerating voltages, defined to be equal to the floating voltage

of the proton source VHV (refer to Sec. 2.2).

27They are placed before the 30-W rf amplifiers, shown in Fig. 2.1.
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Table 3.1: Data for determining second-order Doppler shifts. D is the waveguide separation, VHV

is the nominal accelerating voltage. The third column specifies when the data set was acquired.

For each data set, we first fit the data to a Gaussian function and determine the pulse separation

(∆t
(0)
max or ∆t

(π)
max for 0 or π configurations, respectively) that corresponds to the maximal change

in the metastable current (as shown in Fig. 3.2). Then, a range of ±20- and ±30-ns pulse

separations about this pulse separation is selected, and these subsets of data are again fit to

Gaussians functions. χ2
r(0) and χ2

r(π) are the reduced chi-squared values for the fits for the data

acquired with the waveguides in the 0 and π configurations, respectively. DOF is the number of

degrees of freedom for fits to Gaussian functions.

D

(cm)

VHV

(kV)

Date

(yyyy-mm-dd)

Range

(ns)
∆t

(0)
max(ns) ∆t

(π)
max(ns) χ2

r(0) χ2
r(π) DOF

4 16.27 2018-05-25 20 34.71(8) −35.85(6) 0.9 2.8 12

4 16.27 2018-05-25 30 34.71(5) −35.82(4) 2.1 2.2 20

4 16.27 2018-05-25 All 34.68(4) −35.77(4) 2.6 3.8 77

4 22.17 2018-05-22 20 32.305(20) −29.820(13) 7.3 7.1 12

4 22.17 2018-05-22 30 32.348(16) −29.729(10) 7.4 18.9 20

4 22.17 2018-05-22 All 32.369(15) −29.743(10) 12.1 37.2 77

4 49.86 2018-05-18 20 22.68(4) −20.21(5) 13.6 2.3 12

4 49.86 2018-05-18 30 22.68(4) −20.23(4) 10.6 2.3 20

4 49.86 2018-05-18 All 22.67(4) −20.14(4) 8.5 5.1 77

5 49.86 2017-06-21 20 14.98(7) −34.550(23) 1.0 7.7 16

5 49.86 2017-06-21 30 15.11(7) −34.488(23) 3.5 25.1 26

5 49.86 2017-06-21 All 15.11(7) −34.491(23) 2.0 9.0 87

5 49.86 2018-05-10 20 25.97(5) −24.13(9) 1.9 3.2 12

5 49.86 2018-05-10 30 26.01(4) −24.00(7) 4.0 2.6 20

5 49.86 2018-05-10 All 26.02(4) −23.98(7) 4.6 2.8 77

Continued on next page

59



Table 3.1 – continued from previous page

D

(cm)

VHV

(kV)

Date

(yyyy-mm-dd)

Range

(ns)
∆t

(0)
max(ns) ∆t

(π)
max(ns) χ2

r(0) χ2
r(π) DOF

7 49.86 2017-10-23 20 20.6941(19) −41.862(8) 24.4 42.3 16

7 49.86 2017-10-23 30 20.7066(19) −41.858(8) 451.0 222.9 26

7 49.86 2017-10-23 All 20.7066(19) −41.809(8) 385.1 115.7 87

7 49.86 2018-06-27 20 31.79(6) −30.16(10) 7.9 0.4 12

7 49.86 2018-06-27 30 31.78(4) −30.09(6) 8.6 1.7 20

7 49.86 2018-06-27 All 31.91(4) −30.04(6) 6.6 3.0 77

Figure 3.2 shows an example of data for one of the experiments used for

determining beam speed (for the case of a separation D between the FOSOF

regions of 7 cm and a nominal accelerating voltage VHV of 49.86 kV). In the figure,

the metastable current as a function of the pulse separation set on the delay

generator (∆t) is shown: the data in red and blue is acquired with the FOSOF

regions in the 0 and π configurations, respectively. For each of the sets of data, to

determine the pulse separation that corresponds to the maximal metastable

current (∆t
(0)
max and ∆t

(π)
max for the 0 and π configurations, respectively), the

following analysis is performed. The metastable current for the whole range of

pulse delays (∆t ∈ [−100 ns, 100 ns] in Fig. 3.2) is fit to a Gaussian function.

However, the fit quality is poor, as indicated by large reduced chi-squared values

(χ2
r(0) and χ2

r(π)) in Table 3.1. Therefore, the uncertainty in ∆t
(0)[All]
max and ∆t

(π)[All]
max

from fits to Gaussian functions, when the whole range of data is considered,

cannot be used as a metric of a standard deviation of ∆t
(0)
max and ∆t

(π)
max. Instead,

we also fit Gaussian functions to subsets of data within the ranges of

∆t ∈ [−20 ns, 20 ns] and ∆t ∈ [−30 ns, 30 ns] about the values of ∆t
(0)[All]
max and
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Table 3.2: Pulse separations that correspond to the maximal metastable currents. The first

two columns are experimental parameters: the separation between the waveguides, D, and the

nominal accelerating voltage, VHV. Dates when data were acquired are listed in the third column.

Beam speeds are determined from Eq. 3.2 with the width of the FOSOF waveguides equal to

b = 3.000(3) cm. The beam speeds are listed in the last column.

D (cm) VHV (kV) Date (yyyy-mm-dd) ∆tmax(ns) v(cm/ns)

4 16.27 2018-05-25 35.257(10) 0.1985(4)

4 22.17 2018-05-22 31.072(35) 0.2253(7)

4 49.86 2018-05-18 21.445(7) 0.3264(7)

5 49.86 2017-06-21 24.82(5) 0.3224(21)

5 49.86 2018-05-10 25.04(5) 0.3195(14)

7 49.86 2017-10-23 31.283(5) 0.3197(5)

7 49.86 2018-06-27 31.019(24) 0.3224(7)

∆t
(π)[All]
max determined when the whole range of the data is used. From these fits, we

obtain four values of the pulse delays that correspond to the maximal metastable

current: ∆t
(0)[20]
max , ∆t

(0)[30]
max , ∆t

(π)[20]
max , and ∆t

(π)[30]
max . We define ∆t

(0)
max and ∆t

(π)
max to

be equal to ∆t
(0)[All]
max and ∆t

(π)[All]
max , respectively. The uncertainty of ∆t

(0)
max and

∆t
(π)
max is defined to be equal to the standard deviation of {∆t(0)[20]

max ,∆t
(0)[30]
max } and

{∆t(π)[20]
max ,∆t

(π)[30]
max }, respectively28. Pulse separations ∆tmax determined by

averaging ∆t
(0)
max and ∆t

(π)
max and corresponding beam speeds determined with

Eq. 3.2 are listed in Table 3.2.

Table 3.3 shows the comparison of the slopes calculated from simulated FOSOF

lineshapes (the simulations are discussed in Sec. 3.3.1) with the slopes from fits of

28This definition is a reasonable choice, because the variability of the pulse separations extracted
from the fits for different ranges of data is smaller than the fit uncertainty times the square root
of the reduced chi squared would indicate.
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the experimentally acquired FOSOF lineshapes (the slope of the FOSOF lineshape

is defined in Eq. 1.29). This data acts as an independent test of the consistency of

the measured beam speeds since the slope is approximately proportional to the time

that it takes for the atoms to go from one FOSOF waveguide to the other one (and

therefore inversely proportional to the beam speed). In all cases, the agreement

between the slopes is excellent, generally much better than the 5% uncertainty

attributed to the simulations (refer to Sec. 3.3.1). Specifically, for small electric field

amplitudes of 5 and 8 V/cm, where the AC Stark shift is small, and therefore the

simulations should be more accurate, the difference between the slopes determined

from the simulations and the experiments is at a level of 1%. The low-rf-power

FOSOF slopes confirm the measured speeds at the 1% level, and this 1% uncertainty

is reflected in the beam speeds and the corresponding second-order Doppler-effect

corrections listed in Table 3.4. The beam speeds are close to the expected beam

speeds estimated with Eq. 2.1.

3.2 Shifts due to states other than the 2S1/2, f = 0 state

The nonzero offset in the quench curves (see Fig. 2.8 and Sec. 2.5) likely indicates

the presence of other states in the atomic beam that contribute to the signal by

cascading down to the 2S state after the quench regions, or down to the 2P state

inside of the detector. It could be possible that the population in these states could

be influenced by the rf fields as they pass through the FOSOF regions due, for

example, to off-resonant transitions between states within an n manifold. If there

were such an influence, the population in these states could depend on the phase

difference between the FOSOF regions. It is then possible that the atoms in these

states could perturb the FOSOF lineshape and lead to a shift in the measured

linecenter. This concern is heightened by the fact that in [34] it is shown that an
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Table 3.3: Comparison between FOSOF slopes determined from simulations, denoted by

Ssim, and from experiments, denoted by S. The fractional uncertainty of 5% is assigned to

all of the slopes in column Ssim, which is the uncertainty for the simulations (discussed in

Sec. 3.3.4). Each value of the slope in column S represents the weighted average of all of

the slopes for the FOSOF data sets acquired for the set of experimental parameters listed

in the first three columns (waveguide separation D, nominal accelerating voltage VHV,

and electric field amplitude Erf
0 ). The last column is the fractional difference between the

slopes using the definition ∆S = S − Ssim.

D (cm) VHV (kV) Erf
0 (V/cm) S (mrad/kHz) Ssim (mrad/kHz) ∆S/Ssim

4 16.27 14 0.1053(7) 0.110(6) −0.05(5)

4 22.17 14 0.106 11(34) 0.109(5) −0.03(5)

4 49.86 5 0.091 61(27) 0.091(5) 0.01(5)

4 49.86 8 0.091 94(15) 0.091(5) 0.01(5)

4 49.86 14 0.095 44(8) 0.094(5) 0.01(5)

4 49.86 18 0.098 12(7) 0.098(5) 0.00(5)

4 49.86 24 0.110 10(11) 0.107(5) 0.03(5)

5 49.86 8 0.1102(4) 0.111(6) −0.01(5)

5 49.86 14 0.113 17(30) 0.114(6) −0.01(5)

5 49.86 18 0.117 37(24) 0.117(6) −0.00(5)

5 49.86 24 0.127 63(24) 0.127(6) 0.01(5)

6 49.86 8 0.1301(9) 0.130(7) −0.00(5)

6 49.86 14 0.1342(5) 0.133(7) 0.01(5)

6 49.86 18 0.1362(4) 0.137(7) −0.01(5)

6 49.86 24 0.1485(6) 0.146(7) 0.01(5)

7 49.86 14 0.1517(7) 0.153(8) −0.01(5)

7 49.86 18 0.1566(7) 0.156(8) 0.00(5)

7 49.86 24 0.1654(7) 0.166(8) −0.00(5)
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Table 3.4: Second-order Doppler-effect corrections. The uncertainties in the beam speeds include

a 1% uncertainty associated with how well the beam speed measurements are confirmed by the

low-rf-power FOSOF slopes (Table 3.3).

VHV (kV) v(cm/ns) ∆SOD(kHz)

16.27 0.199(2) 20.0(4)

22.17 0.225(2) 25.7(5)

49.86 0.322(3) 52.6(10)

initial population in the 3S1/2 state can cause a shift in an SOF n = 2 Lamb-shift

measurement.

The proton deflector (discussed in Sec. 2.4) already quenches a significant

fraction of the atoms in 2 < n < 5 states produced in the charge-exchange cell,

but it does not have a significant effect on the states with higher principal

quantum number n. Therefore, even with the proton deflector, we cannot

disregard the possibility of states with higher-n introducing a systematic shift to

the linecenter measurement discussed in this work.

We perform several experiments to test if other states have an effect on our

measurement of the transition frequency between the 2S1/2, f = 0 and 2P1/2, f = 1

states.

3.2.1 Controlled quench of the 2S1/2, f = 0 population

For the first test, the pre-quench cavity resonant at 910 MHz is set to a power that

reduces the population in the 2S1/2, f = 0 state by a factor α (see Table 3.5) of

between 2.0 and 13.5, thus reducing the size of the 2S1/2, f = 0 → 2P1/2, f = 1
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Table 3.5: Estimated frequency shifts from states other than the 2S1/2, f = 0 state by

toggling the rf power in the 910-MHz pre-quench cavity. All of the data sets are acquired

at the same nominal accelerating voltage of 49.86 kV. The first column is the waveguide

separation, the second column is the amplitude of the rf electric field in the FOSOF

regions, the third column is the pressure in the vicinity of the charge-exchange cell, and

the fourth column is the factor α by which the population in the 2S1/2, f = 0 state is

reduced when the 910-MHz pre-quench cavity is enabled. 〈∆φ〉 is the average observed

FOSOF phase difference (the difference between the cases of the 910 quench off and

on), and ∆
(910)(exp)
n>2 is the estimated frequency shift of the 2S1/2, f = 0 → 2P1/2, f = 1

transition due to possible presence of other states using Eq. 3.3 (the FOSOF slopes are

listed in Table 3.3). Each row represents the weighted average ofN data sets acquired with

the same experimental parameters. The reduced chi-squared of the weighted averages is

denoted by χ2
ν . The uncertainties in the shifts are expanded by

√
χ2
ν whenever χ2

ν > 1.

D (cm) Erf
0 (V/cm) PCGX (µTorr) α 〈∆φ〉(mrad) ∆

(910)(exp)
n>2 (kHz) χ2

ν N

4 8 1.6 13.5 0.8(8) 0.7(7) 1

4 18 0.2 13.3 −0.3(5) −0.2(4) 0.0 2

4 18 1.6 13.2 0.44(23) 0.37(19) 2.1 3

4 18 3.3 13.3 0.1(4) 0.1(4) 0.1 2

4 18 6.2 13.3 −0.6(4) −0.51(35) 1.0 2

5 18 1.6 3.8 −0.3(5) −1.0(16) 1.4 5

6 18 0.2 3.8 0.2(14) 0(4) 1

6 18 1.6 3.8 3.3(27) 9(7) 2.2 2

6 18 3.3 3.8 1.9(13) 5.0(35) 1

6 18 6.2 3.8 −0.2(13) −0.6(35) 1

7 24 1.6 2.0 0.5(12) 3(8) 1.7 4
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Figure 3.3: Example of the measured FOSOF phase differences from toggling the power in the

910-MHz pre-quench cavity. For this case, the waveguides are separated by D = 4 cm, and the

FOSOF driving field amplitude is set to Erf
0 = 18 V/cm. The power in the 910-MHz quench

cavity is set to remove 92.4% of the 2S1/2, f = 0 population (reducing it by a factor of 13.2). The

weighted average of the phase differences is the thin green line, with the semi-transparent band

representing one-standard-deviation uncertainty in this weighted average. For this data set, the

average phase difference (Eq. 3.3) is equal to 〈∆φ〉 = 0.95(30) mrad with the reduced chi squared

of 0.95 for 40 degrees of freedom.

transition that is being driven in the FOSOF regions29. Because of this suppression

of the intended transition, the relative effect caused by all other states is increased

by a factor of 2.0 to 13.5, and the possible frequency shift due to these states is

amplified by approximately the same factor. An example of data taken in this

manner is shown in Fig. 3.3, where the difference in the measured FOSOF phases

(the difference between having the 910 quench cavity off and on) is determined

for each rf frequency in the FOSOF regions. The shift due to the higher-n states,

29In practice, for this test we acquire FOSOF data for the two cases: when the power is sent into
the pre-quench 910-MHz-resonant cavity and when the power input for the cavity is disabled. By
switching between these two states often enough, phase offsets (that might drift over time) in the
FOSOF rf system cancel on average. Therefore, this experiment does not require the waveguide
reversal, and it can be performed overnight in either the 0 or π configurations.
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∆
(910)
n>2 , can be inferred from this phase shift:

∆
(910)
n>2 ≈ −

1

(α− 1)S
〈∆φ〉, (3.3)

where S is the slope of the FOSOF lineshape (see Table 3.3), 〈∆φ〉 is the average

phase difference observed in the measurement (see, for example, Fig. 3.3), and α

is the factor by which the population of the atoms in the 2S1/2, f = 0 state is

reduced. These frequency shifts are determined for different waveguide separations

and rf powers.

It is also expected that the distribution of hydrogen states after the charge-

exchange region is a function of the pressure of the target gas (H2) inside the charge-

exchange cell. Therefore, as the second test, the same experiment of quenching a

controlled fraction of the 2S1/2, f = 0 population is performed for three additional

charge-exchange pressures of 0.2, 3.3, and 6.2µTorr (in addition to our usual charge-

exchange pressure of 1.6µTorr).

The estimated frequency shifts for the four different charge-exchange pressures

are listed in Table 3.5. The inferred shifts in the table shows that no significant

shifts are observed, even after the pressure of the molecular hydrogen gas inside the

charge-exchange cell is varied by a factor of 30. It can be concluded that any shift

due to the presence of other states is limited to less than 1 kHz.

3.2.2 Higher-n states and the proton deflector

A third test for possible effects of higher-n states is a comparison of FOSOF data

acquired with and without the proton deflector enabled. This data is acquired for

an rf electric field amplitude of 18 V/cm and a waveguide separation of 7 cm. At this

separation, the possible frequency shift is maximized, since the FOSOF amplitude is

small for D = 7 cm (the amplitude decreases by approximately a factor of e for every
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centimeter added to the separation between the FOSOF regions), while the possible

contribution to the FOSOF amplitude due to the higher-n states does not depend

as strongly on the separation between the FOSOF regions and the rf electric field

amplitude (since lifetimes between higher-n states are long, and transition electric

dipole moments for transitions between these states are large). The difference

between the zero-crossing frequencies with the proton deflector disabled (fPDzc(off))

and enabled (fPDzc(on)) is measured to be equal to

fPDzc(off) − fPDzc(on) = 0(7) kHz, (3.4)

consistent with no shift.

With the proton deflector enabled, the population in the 3S1/2 state is reduced

by a factor of 24, while the 2S1/2 population is reduced by a factor of 1.3 (Sec. 2.4).

Therefore, the relative population of the 3S1/2 atoms is reduced by a factor of 18

and the possible shift due to these n = 3 states is (similar to Eq. 3.3)

∆
(PD)
n=3 =

0(7) kHz

18− 1
= 0.0(4) kHz. (3.5)

This shift is listed in Table 3.6.

It is also verified experimentally that the fractional offset in the quench curves

of the pre-quench and post-quench cavities is almost independent of whether

protons are deflected or not deflected: the fractional offset with and without the

proton deflector enabled is measured to be 0.37(2)% and 0.41(1)%, respectively.

Therefore, the charge exchange does not produce significant populations of the

atoms in 2 < n ≤ 5 states; otherwise we would expect most of these states to get

quenched in the proton deflector, giving us a smaller fractional offset and,

possibly, resulting in a different resonant frequency.
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3.2.3 Pressure shift

If the charge-exchange cell does not produce appreciable populations in the

2 < n ≤ 5 states, we assume that the fractional offset (shown in Fig. 2.8) is

mostly due to collisional repopulation of the higher-n states in the region between

the pre-quench cavities and the end of the Lyman-α detector from background gas

in the vacuum chamber30. This conclusion leads us to a fourth test for possible

shifts due to higher-n states. For the fourth test, the background pressure (P0) is

increased by a factor of 10 in the experimental region, where the proton deflector,

the quench cavities, the waveguides, and the Lyman-α detector are located31.

FOSOF data are acquired for D = 7 cm, VHV = 49.86 kV, and Erf
0 = 24 V/cm.

The difference between the zero-phase-crossing frequency determined with the

system at the high pressure (f
(10P0)
n>2 ), and at a typical pressure (f

(P0)
n>2 ) of

P0 = 0.2, µTorr is measured to be equal to

f
(10P0)
n>2 − f (P0)

n>2 = 7(8) kHz. (3.6)

Using this frequency difference, the estimated shift in the resonant frequency of the

2S1/2, f = 0 → 2P1/2, f = 1 transition due to the pressure in the system is equal

to32:

∆
(P )
n>2 = 0.8(9) kHz, (3.7)

which is consistent with no shift. This shift is listed in Table 3.6.

30The fractional offset is measured to be larger for higher background pressure in the volume
encompassing the quench cavities and the waveguides.

31The increase in the pressure is achieved by periodically turning on and off one of the Turbo
pumps installed in the experiment.

32The assumption is that if the pressure is increased by a factor of αP , this leads to proportional
fractional increase in the population of the higher-n states; that is, the population of each state
with n > 2 increases by the same factor αP .
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Table 3.6: Estimated pressure shift and the shift due to possible presence of higher-n

states in the atomic beam. These shifts are shown in the last column, and they are

estimated from the frequency differences listed in the second column, as explained in

Sections 3.2.2 and 3.2.3. For both of these shifts, the data are acquired with the FOSOF

regions separated by 7 cm and with the nominal accelerating voltage set to 49.86 kV.

Erf
0

(V/cm)

Measured difference

(kHz)

Estimated shift

(kHz)

Disabled proton deflector (VPD = 0 V) 18 0(7) 0.0(4)

High pressure (10P0) 24 7(8) 0.8(9)

3.2.4 Overall shift due to higher-n states

The four tests discussed above, results of which are shown in Tables 3.5 (shifts

determined by quenching a controlled fraction of the 2S1/2, f = 0 population) and

3.6 (shifts related to the background pressure in the experimental region and the

possible presence of n = 3, 4 and 5 states), indicate that there are no significant

shifts due to possible presence of the higher-n states in the atomic beam. We can

estimate the limit that can be set on an overall shift for our present measurement

due to the higher-n states. We perform such an estimation in the following way.

It is expected that the effect of higher-n states on the resonant frequency is

approximately inversely proportional to the amplitude of the FOSOF interference

signal A (Eqs. 1.26 and 1.21) and the FOSOF slope. Thus, we can estimate the

frequency shift for a particular set of experimental parameters, by scaling the

measured shifts, listed in Table 3.5, by the appropriate ratio of the interference

amplitudes and FOSOF slopes, and calculating a weighted average of these scaled

shifts. Numerical values of the interference amplitudes are determined from

simulations, which are discussed in Sec. 3.3.1. By following this procedure, the

sixth column of Table 3.7 shows the shifts calculated for all of the sets of
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Table 3.7: Estimated shifts due to other states than the 2S1/2, f = 0 state. The first

three columns are experimental parameters. Normalized amplitudes (A) are obtained

from numerical simulations. Normalized slopes (S) are obtained from linear fits to

FOSOF data. The calculated shift from toggling the rf power in the 910-MHz pre-quench

cavity is denoted by ∆
(910)
n>2 . ∆

(P )
n>2 is the estimated frequency shift due to pressure in

the experimental region. The last column (∆
(PD)
n=3 ) is the estimated shift due to n = 3

states obtained by the turning off the proton deflector. Note that for a given column the

uncertainties are correlated, since they are derived from the same data. The last row lists

the weighted average of the shifts, which are calculated by following the same procedure

as in Sec. 4.3, using the same weights as in Sec. 4.1.

D (cm) VHV (kV) Erf
0 (V/cm) A S ∆

(910)
n>2 (kHz) ∆

(P )
n>2(kHz) ∆

(PD)
n=3 (kHz)

4 16.27 14 4.8 0.64 0.8(7) 0.3(3) 0.0(2)

4 22.17 14 7.5 0.64 0.5(4) 0.2(2) 0.0(1)

4 49.86 5 6.5 0.55 0.7(6) 0.2(3) 0.0(2)

4 49.86 8 14.5 0.56 0.3(2) 0.1(1) 0.0(1)

4 49.86 14 27.8 0.58 0.2(1) 0.1(1) 0.0(0)

4 49.86 18 28.6 0.59 0.1(1) 0.0(1) 0.0(0)

4 49.86 24 18.4 0.67 0.2(2) 0.1(1) 0.0(0)

5 49.86 8 5.5 0.67 0.7(5) 0.2(3) 0.0(2)

5 49.86 14 10.6 0.68 0.4(3) 0.1(1) 0.0(1)

5 49.86 18 10.8 0.71 0.3(3) 0.1(1) 0.0(1)

5 49.86 24 7.0 0.77 0.5(4) 0.2(2) 0.0(1)

6 49.86 8 2.1 0.79 1.5(12) 0.5(6) 0.0(4)

6 49.86 14 4.0 0.81 0.8(6) 0.3(3) 0.0(2)

6 49.86 18 4.1 0.82 0.7(6) 0.2(3) 0.0(2)

6 49.86 24 2.6 0.90 1.1(8) 0.3(4) 0.0(2)

7 49.86 14 1.5 0.92 1.8(14) 0.6(7) 0.0(4)

7 49.86 18 1.6 0.95 1.7(14) 0.6(6) 0.0(4)

7 49.86 24 1.0 1.00 2.5(20) 0.8(9) 0.0(6)

Weighted average: 0.9(7) 0.30(34) 0.00(21)
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experimental parameters for which the spectroscopic data is acquired. Similar

steps are taken for estimating the shifts for all of the experimental parameters

using the data in Table 3.6, which are related to the pressure shift and the shift

due to n = 3 states estimated from the test in which the proton deflector is turned

off (shown in the two last columns of Table 3.7).

By including these estimated shifts into the final statistical analysis that is

discussed in Sec. 4.3, the weighted averages of the shifts due to the possible presence

of the higher-n states can be calculated (using the same weights as in Table 4.1).

These weighted averages are shown in the last row of Table 3.7. Each of these

three shifts is an independent determination of the shift from the higher-n states.

Therefore, the overall shift due to the higher-n states can be defined as the weighted

average of these three shifts. This weighted average is equal to

∆tot
n>2 = 0.13(17) kHz. (3.8)

This weighted average is very small and consistent with no shift, and, as a result,

we do not apply any corrections due to possible presence of states other than the

2S1/2, f = 0 state to our measurement. If one were to apply the shift in Eq. 3.8 to

the resonant frequency of the 2S1/2, f = 0→ 2P1/2, f = 1 transition quoted in this

work, it would need to be to be subtracted from the resonant frequency.

With respect to the total uncertainty of σ = 3.2 kHz for our measurement, if

we include the correction in Eq. 3.8, then it does not have a significant effect on

the final quoted result: the resonant frequency would change by 0.04σ. Also, the

uncertainty of our measurement would increase by only 0.005 kHz (0.001σ), which

is insignificant.
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3.2.5 Conclusion

We have shown that the four tests described in Sec. 3.2 indicate that, at the level

of precision of our measurement, there are no shifts associated with the possible

presence of the states other than the 2S1/2, f = 0 state. If we include this correction,

the result quoted in this work changes by only 0.04σ, with the uncertainty remaining

essentially unchanged. We choose not to include this correction into our list of

systematic corrections, shown in Table 4.2.

3.3 AC Stark shift

Since fields that drive the 2S1/2, f = 0 → 2P1/2, f = 1 transition have an anti-

rotating term (the e−i2πft term in addition to the e+i2πft term that drives the

transition), and because of the weak coupling between the 2S1/2 and 2P3/2 states,

there is a rf-power-dependent shift (an AC Stark shift) in the observed resonant

frequency of the transition.

3.3.1 FOSOF simulations

To accurately calculate the rf-power-dependent shift of the resonant frequency, the

density-matrix formalism is used for the n = 1 and 2 manifolds (including all 20

states). The time evolution of the density matrix is calculated numerically for the

entire experimental process, starting from just after the charge-exchange cell, and

ending with the Lyman-α detector. The simulation incorporates the three spacial

components of the electric field of the proton deflector, of the rf electric fields in all

of the quench cavities and the waveguides, of the electric field inside the Lyman-α

detector, and, finally, of the residual background magnetic field in the experiment.
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Table 3.8: AC Stark shifts calculated from the simulations. The first three columns

are experimental parameters. The fourth column is the AC Stark shift for the atoms

collinear with the experiment axis. The change in the AC Stark shift shift due to the

nonzero beam diameter (assuming an rms radius of 1.70 mm from the experiment axis)

∆
(r)
AC is shown in the fifth column. The sixth column lists the change in the AC Stark

shifts due to including the fractional offset observed at π pulses of the quench curves for

the pre-quench and post-quench cavities. The last column is the total AC Stark shift. It

includes a 5% fractional uncertainty associated with how well the simulations model the

actual experiment, as well as an uncertainty in the rms distance of the atoms from the

experiment axis and an uncertainty due to the offset effect of column 6.

D (cm) VHV (kV) Erf
0 (V/cm) ∆

(Erf
0 )

AC (kHz) ∆
(r)
AC (kHz) ∆

(offset)
AC (kHz) ∆AC (kHz)

4 16.27 14 23.4(12) 2.7(14) 2.5(12) 28.6(23)

4 22.17 14 28.6(14) 1.2(6) 2.6(13) 32.4(22)

4 49.86 5 3.5(2) 0.8(4) 1.2(6) 5.5(8)

4 49.86 8 10.3(5) 1.5(7) 1.8(9) 13.5(13)

4 49.86 14 35.6(18) 3.4(17) 3.9(19) 42.9(33)

4 49.86 18 64.1(32) 5.1(26) 5.8(29) 75.1(54)

4 49.86 24 132.8(66) 10.9(54) 9.2(46) 152.9(105)

5 49.86 8 7.0(4) 2.6(13) 0.3(2) 10.0(14)

5 49.86 14 28.2(14) 4.1(20) 2.1(11) 34.4(29)

5 49.86 18 52.2(26) 5.5(27) 3.9(19) 61.6(46)

5 49.86 24 111.1(56) 10.3(52) 7.3(37) 128.8(90)

6 49.86 8 6.2(3) 2.0(10) 0.1(1) 8.3(11)

6 49.86 14 24.1(12) 3.4(17) 1.6(8) 29.1(24)

6 49.86 18 44.7(22) 4.6(23) 3.1(15) 52.4(38)

6 49.86 24 96.3(48) 8.8(44) 5.8(29) 110.9(77)

7 49.86 14 22.2(11) 1.7(8) 2.3(12) 26.3(20)

7 49.86 18 40.7(20) 2.5(12) 3.6(18) 46.8(32)

7 49.86 24 85.6(43) 7.0(35) 6.0(30) 98.6(68)
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Figure 3.4: An example of the determination of the AC Stark shift from a simulated FOSOF

lineshape. The simulations described in Sec. 3.3.1 determine the signal size as a function of the

relative phase of the rf fields in the two FOSOF regions (a). The phase of the sinusoidal variation of

this signal, θ (the FOSOF phase), is plotted in (b) as a function of the frequency detuning of the rf

fields in the FOSOF regions from the resonant frequency f
(sim)
0 of the 2S1/2, f = 0→ 2P1/2, f = 1

transition used in the simulations. The resulting FOSOF lineshape is fit to a straight line. The

AC Stark shift ∆AC is the frequency detuning at which the FOSOF phase is zero. The residuals

in (c) have a smaller than 0.02-mrad deviation of the FOSOF phases from the line fit.
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These simulations are performed by A. Marsman33. Similar simulations were used

in Refs. [9, 34] and are described there.

It is important to mention that the simulations employ the same procedure as

described in Sec. 2.5 to determine the required rf power for the quench cavities for

quenching the atoms in the 2S1/2, f = 1 state. In addition, power calibrations for

the waveguides (see Sec. 2.9) are performed by using the quench curves calculated

with the same simulation model. The simulated FOSOF lineshapes are calculated

for the same frequencies as were used in the experiment. Zero-crossing frequencies

are determined in the same way as for the acquired FOSOF data.

An example of determination of the AC Stark shift from the simulations is

shown in Fig. 3.4. For the experimental parameters used in our experiment, the

determined AC Stark shifts (using the same method as described in Fig. 3.4) are

shown in the fourth column of Table 3.8. The shifts are found to be approximately

linear in (Erf
0 )2 for smaller values of Erf

0 , but for larger values of Erf
0 , where the

shifts are quite large, an additional (Erf
0 )4 term becomes significant. We assign a

5% uncertainty to all of the calculated shifts (the justification of this 5% uncertainty

is given in Sec. 3.3.4). The price we pay for this 5% uncertainty is that most of

the data acquired at high signal-to-noise ratios (for rf electric field amplitudes of

Erf
0 = 18 and 24 V/cm), has large uncertainty and therefore almost no weight in

determining the resonant frequency (as will be seen in Sec. 4.3 and Table 4.1).

3.3.2 Off-axis contribution to AC Stark shift

A complication arises from the fact that not all atoms travel collinearly with the

experiment axis (the axis that passes through the centre of the tubes at the

entrance and exit of each of the microwave regions). The off-axis atoms (1)

33York University, e-mail: amarsman@yorku.ca
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experience different driving-field amplitude in the quench cavities, which results in

incomplete quenching of the atoms in the 2S1/2, f = 1 state (although this effect

is small); (2) experience a different profile of rf field amplitude in the FOSOF

regions, which leads to slightly different AC Stark shifts; and (3) experience

different (off-axis) components of rf electric field close to and inside the cylindrical

tubes located before, in between, and after the waveguides, introducing a

probability amplitude for driving ∆mf = ±1 transitions in the waveguides. The

combined effect is complicated, since one has to consider not only the fields inside

the waveguides, but also the rf fields in the quench cavities.

The simulations show that the change in the AC Stark shift for atoms away

from the beam axis is proportional to r2, where r is the distance that the atom

is away from the experiment axis. For a beam of atoms, this shift (∆
(r)
AC) can be

written as

∆
(r)
AC ∝ r2

rms, (3.9)

with

r2
rms = R2 + 2π

∫ ∞
0

(r′)3σ(r′) dr′, (3.10)

and ∫
σ(~r′) dA = 1, (3.11)

where rrms is the root-mean-squared distance of the atoms from the experiment

axis, R is the overall radial shift of the centre of the beam from the beam axis,

σ(r) is the normalized area density of the atoms, assuming cylindrical symmetry

in the beam, and r′ is the distance from the centre of the beam. The value of

rrms was determined from a Monte-Carlo simulation, based on the geometry of the

beam collimators. Assuming R = 0, this simulation indicates that rrms for the

start, middle, and end of the FOSOF regions is 1.62 mm, 1.70 mm, and 1.79 mm,
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respectively. We therefore take as out best estimate of rrms:

rrms =

√
1

3
(1.622 + 1.702 + 1.792) = 1.70 mm. (3.12)

The changes ∆
(r)
AC in the AC Stark shift due to rrms = 1.70 mm are listed in the fifth

column of Table 3.8.

For this Monte-Carlo simulation, an initial location of the atoms over the area

of the end of the charge exchange cell (Fig. 2.4), and two angles determining the

direction of the velocity vector, were chosen from a uniform probability

distribution. Atoms in the simulation are initially placed right after the end of the

charge-exchange region to account for possibility of scatterings inside the

charge-exchange cell.

Alignment of vacuum components in the experiment is performed with the aid

of an optical telescope and a set of small apertures. Alignment of the FOSOF

waveguides is a challenge, because their axis (defined by the apertures for the

atoms to pass through) was required to be aligned with the experiment axis for

both the 0 and π configurations. This was achieved to better than 0.5 mm, giving

R = 0.0(5) mm.

Equation 3.12 suggests that the spreading of the beam within the waveguides is

larger than the stated uncertainty for the value of R, and therefore it is not correct

to use the uncertainty in the value of R as the uncertainty for rrms. The other

uncertainties are the uncertainties in the exact locations of each collimator (charge

exchange exit (Fig. 2.4) and the aperture after the proton deflector (Fig. 2.5)) and

the uncertainty as to whether the beam fills the collimators. We choose to adopt a

relatively large 50% fractional uncertainty for all of the calculated frequency shifts

due to non-zero beam diameter. The fifth column of Table 3.8 shows this 50%

uncertainty for the off-axis corrections to the AC Stark shift.
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3.3.3 Shift from the fractional offset in the quench curves

Another complication in determining the AC Stark shift comes from the offset in

the quench curves (Sec. 2.5); i.e., the fact that the measured quench curves do

not go to zero. This offset affects the power calibration procedure for the FOSOF

waveguides (described in Sec. 2.9) since the simulated quench curves are mapped to

the experimentally determined quench curves acquired for the FOSOF waveguides.

The best estimate for the fractional offset is 0.3% of the total population in the

2S1/2 state. The respective AC Stark shift corrections caused by including these

offsets in the calibrations are listed in column six of Table 3.8. Similarly to the

shift due to nonzero root-mean-squared radius of the beam, we introduce a 50-%

fractional uncertainty to the corrections associated with the offset.

3.3.4 Uncertainty in the calculated AC Stark shifts

The 5% uncertainty assigned to the AC Stark shift corrections is estimated in the

following way. Figure 4.2 shows a set of corrected linecenters determined for 18

sets of experimental parameters. These 18 linecenters exhibit excellent consistency.

Each of the plotted linecenters includes statistical and systematic uncertainties

added in quadrature. These uncertainties are shown in Table 4.1. If we include only

the statistical uncertainty, σstat, then the weighted average of the linecenters has

an unacceptably large reduced chi-squared of 3.4 with the probability of obtaining

a larger value of chi-squared of only 0.0003%, as shown in Table 3.9. With the

inclusion of the 50% fractional uncertainties in the corrections to the AC Stark shift

due to the nonzero beam diameter, σ
(r)
AC, and the fractional offset, σ

(offset)
AC , in the

quench curves, the reduced chi-squared is equal to 0.93, and the linecenters become

consistent. Based on this, one can already state that, from the statistical point of
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Table 3.9: Determination of the uncertainty in calculated AC Stark shifts. The first

three columns are the experimental parameters. f0 is the average resonant frequency

(corrected for systematic shifts), and σstat is the statistical uncertainty in f0 (these two

columns are extracted from Table 4.1). σ
(r)
AC and σ

(offset)
AC are the uncertainties in the AC

Stark shifts corrections due to the non-zero 2S1/2, f = 0 atomic beam diameter and the

fractional offset in the quench curves for the quench cavities (Table 3.8). σ
(5%)
AC is the

5% fractional uncertainty assigned to all of the calculated AC Stark shifts (∆AC in Table

3.8). σstat+r+offset =

√
σ2

stat + (σ
(r)
AC)2 + (σ

(offset)
AC )2, and σstat+5% =

√
σ2

stat + (σ
(5%)
AC )2. We

separately assign the uncertainties listed in the last three columns as the uncertainty in

f0 and calculate the weighted average of the linecenters for the three cases. The reduced

chi-squared (χ2
r) values for the weighted averages are shown in the last row.

D

(cm)

VHV

(kV)

Erf
0

(V/cm)
f0 (kHz)

σ
(r)
AC

(kHz)

σ
(offset)
AC

(kHz)

σ
(5%)
AC

(kHz)

σstat

(kHz)

σstat+r+offset

(kHz)

σstat+5%

(kHz)

4 16.27 14 909862.7 1.4 1.2 1.4 8.6 8.8 8.7

4 22.17 14 909870.2 0.6 1.3 1.6 3.9 4.1 4.2

4 49.86 5 909872.5 0.4 0.6 0.3 3.5 3.6 3.5

4 49.86 8 909875.8 0.7 0.9 0.7 2.0 2.3 2.1

4 49.86 14 909876.4 1.7 1.9 2.1 1.1 2.8 2.4

4 49.86 18 909870.4 2.6 2.9 3.8 0.8 4.0 3.8

4 49.86 24 909874.7 5.4 4.6 7.6 1.2 7.2 7.7

5 49.86 8 909872.4 1.3 0.2 0.5 4.6 4.8 4.7

5 49.86 14 909865.6 2.0 1.1 1.7 3.3 4.0 3.7

5 49.86 18 909865.0 2.7 1.9 3.1 2.5 4.2 4.0

5 49.86 24 909863.9 5.2 3.7 6.4 2.2 6.7 6.8

6 49.86 8 909868.6 1.0 0.1 0.4 8.7 8.7 8.7

6 49.86 14 909876.4 1.7 0.8 1.5 4.3 4.7 4.5

6 49.86 18 909871.6 2.3 1.5 2.6 3.7 4.6 4.5

6 49.86 24 909871.6 4.4 2.9 5.5 4.5 7.0 7.2

7 49.86 14 909874.9 0.8 1.2 1.3 5.9 6.1 6.1

7 49.86 18 909867.5 1.2 1.8 2.3 5.3 5.8 5.8

7 49.86 24 909869.1 3.5 3.0 4.9 4.8 6.7 6.9

χ2
r of weighted average: 3.4 0.93 1.0
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view, no additional uncertainty for the AC Stark shifts is needed. Nevertheless, if

we assume that the calculated AC shifts had a 5% error, then including this error

in quadrature with the statistical uncertainty (without including the uncertainties

in the corrections to the AC Stark shift due to the nonzero beam diameter and

the fractional offset in the quench curves) (listed in the last column of Table 3.9),

changes the reduced chi-squared to 1.0, as desired.

To be conservative and to be independent of the accuracy of the simulations,

we choose to include the 5% uncertainty for the calculated AC shifts.

3.4 Magnetic-field-induced shifts

A magnetic field component perpendicular to the velocity of an atom transforms

into an electric field in the atom’s reference frame, leading to a DC Stark shift of

about 90 kHz/G2 for a 50-keV beam. The experiment is surrounded by two large

mutually-perpendicular rectangular coils to cancel the transverse components of

the stray magnetic fields to better than 30 mG in the FOSOF regions, yielding a

shift of less than 0.1 kHz.

The component of the magnetic field parallel to the velocity of the atoms is

not canceled out; it has a magnitude of less than 0.15 G. To first order, this axial

component induces no Zeeman shift for the 2S1/2f = 0 and 2P1/2f = 1,mf = 0

states; and the second-order correction is small enough to be ignored [35].

We conclude that the magnetic field has negligible effect on the resonant

frequency, and this conclusion is supported by full density-matrix simulations of

the experiment, including the magnetic field.

81



3.5 Shift due to stray electric fields

As was mentioned in Sec. 2.4, a DC electric field E would cause a shift of about

9.9 kHz/(V/cm)2E2 (see Eq. 2.3 and footnote 11). In our experiment, stray DC

electric field could be created by the accumulation of charge on insulating surfaces

in the experiment region, containing the quench cavities and the FOSOF regions.

The possibility for the presence of these fields was minimal, because the beam did

not have a direct path to collide with the surfaces of the quench cavities or the

FOSOF waveguides, due to a 4-mm circular aperture (shown in Fig. 2.5) placed

before the pre-quench cavities. Also, the surfaces of the waveguides were

periodically cleaned, and the experiment operated with oil-free pumps to

minimize the presence of unintentional insulating surfaces in the experiment.

Lastly, as was described in Sec. 3.2.2, linecenters measured with the proton

deflector diverting protons and without the proton deflection were consistent: the

difference between the two linecenters was equal to 0(7) kHz.

We conclude that the DC Stark shift associated with the stray electric fields

in the FOSOF regions is insignificant at the level of the precision of the current

measurement.

3.6 Residual population in the 2S1/2f = 1 states

So far we have assumed that the pre- and post-quench cavities removed all of

the atomic population in the 2S1/2f = 1 state. In this section, frequency shifts

associated with an incomplete removal of the f = 1 states are estimated.

82



0.000 0.002 0.004 0.006 0.008 0.010
s(1, 0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
|

f=
1|

(k
Hz

)

Figure 3.5: Estimated shifts from the residual population in the 2S1/2f = 1 state. The frequency

shifts are calculated assuming square-field regions (i.e., the fields that turn on and off suddenly),

with atoms moving at 0.01c. The absolute values of the shifts are shown. Parameter s(1,0) is the

probability of each of the 2S1/2, f = 1,mf sublevels to remain in its state after passing through

the two sets of the quench cavities. The FOSOF driving-field amplitude is Erf
0 = 18 V/cm. Each

of the curves represents different separations between the fields D: the curves in blue, black, red,

and green correspond to the waveguide separations of 4, 5, 6, and 7 cm, respectively.

3.6.1 Estimate of the frequency shift

The frequency shift due to imperfect quenching can be estimated with the following

argument. The atomic current right after the proton deflector I is equal to

I = I2S
0,0 + I2S

1,1 + I2S
1,0 + I2S

1,−1, (3.13)

where I2S
f,mf

stands for the current of the atoms in the hyperfine state with the f

and mf quantum numbers. After the set of the pre-quench cavities (Fig. 2.1), the

atomic current, I ′, can be expressed as

I ′ = s(0,0)I
2S
0,0 + s(1,±1)(I

2S
1,1 + I2S

1,−1) + s(1,0)I
2S
1,0, (3.14)
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where s(0,0), s(1,±1), and s(1,0) are the fractional quenching-survival factors for the

atoms in the 2S1/2 states with f = 0,mf = 0, f = 1,mf = ±1, and f = 1,mf = 0,

respectively. Ideally, s(1,±1) = s(1,0) = 0. With the assumption that after the charge

exchange the total atomic population is equally distributed among the four states,

we can express the surviving population as

I ′ =
1

4
Is(0,0)(1 + 2

s(1,±1)

s(0,0)

+
s(1,0)

s(0,0)

), (3.15)

which means that fractionally, with respect to the surviving population in the

2S1/2f = 0 state, there are 2s(1,±1)/s(0,0) and s(1,0)/s(0,0) atoms in the

f = 1,mf = ±1 and f = 1,mf = 0 states, respectively. The action of the

post-quench cavity set is taken into account by simply squaring the respective

surviving fraction factors. Setting, for simplicity, s(1,0)=s(1,±1)
34, and using

s(0,0) = 0.26 (see Sec. 2.5 and footnote 14), the frequency shifts for a square rf

electric field profile in the FOSOF regions are plotted as the function of the

quenching efficiency factor s(1,0) (which takes into account both sets of the quench

cavities) in Fig. 3.5. These shifts are calculated by using Eq. 1.26, which is the

expression for the probability, PFOSOF
∆ωt , of an atom starting in some state to

remain in the same state after passing through two FOSOF regions. In particular,

if we have an atom which is in a mixture of the 2S1/2, f = 0 and 2S1/2, f = 1

states, and the probability for the atom to be in the 2S1/2, f = 1,mf = 0 state or

the 2S1/2.f = 1,mf = ±1 state is s(0,0)/s(1,0) times smaller than for the atom to

be found in the 2S1/2, f = 0 state, then the total probability, PFOSOF
∆ωt [tot], to

detect the atom in the 2S1/2 state after the two FOSOF regions with a square

34The assumption is that all of the cavities are equally efficient at quenching atoms in respective
mf sublevels.
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profile of the electric fields is

PFOSOF
∆ωt [tot] = PFOSOF

∆ωt [2S1/2, f = 0→ 2P1/2, f = 1,mf = 0] (3.16)

+ 2
s(1,±1)

s(0,0)

PFOSOF
∆ωt [2S1/2, f = 1,mf = ±1→ 2P1/2, f = 1,mf = ± = 1]

+
s(1,0)

s(0,0)

PFOSOF
∆ωt [2S1/2, f = 1,mf = 0→ 2P1/2, f = 0].

According to Eq. 1.26, the expression for the total probability in Eq. 3.16 can be

written as

PFOSOF
∆ωt [tot] = P

(0)
tot + Atot cos(θtot + ∆ωt+ φ2 − φ1), (3.17)

where Atot is the FOSOF amplitude, ∆ω is the frequency offset between the

frequencies of the rf fields in the FOSOF regions, φ2 − φ1 is the phase difference

between the rf fields, P
(0)
tot is a term independent of φ1 and φ2, and θtot is the

FOSOF phase. For a given value of s(1,0), the simulated FOSOF lineshape (the

FOSOF phase as a function of the frequency of the rf fields in the FOSOF regions)

is fit to a straight line, and the zero-phase-crossing frequency, fzc(s(1,0)), is

determined. The frequency shift (plotted in Fig. 3.5) is equal to fzc(s(1,0))− fzc(0),

where fzc(0) is the zero-phase-crossing frequency determined when all of the

2S1/2, f = 1 population is quenched by the quench cavities (i.e., s(1,0) = 0).

There are several effects that influence the efficiency of the removal of the

population in the 2S1/2, f = 1 state, represented by the factor s(1,0), which are

described below.

3.6.2 Uncertainty in determination of the rf powers required to drive

π pulses in the quench cavities

For a particular quench cavity, the power required to drive a π pulse is determined

by locating the rf power for which the surviving fraction is minimum. Therefore,

the rf power corresponding to the π pulse is subject to a statistical noise in the
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data, and a particular method for extracting the minimum. From quench curves,

it is calculated that in order to produce a 0.005 change in the quenching efficiency,

the voltage applied to voltage-controlled attenuators35 needs to be changed by at

least 0.1 V, which is much larger than the statistical uncertainty in the location of

the π pulse36; the exact method used to determine its location is irrelevant at this

level. For s(1,0) = 0.005 the shift is at most 0.4 kHz (see Fig. 3.5), and it can be

ignored.

3.6.3 Variation in the beam speed

The speed of the atoms is not constant for the same nominal accelerating voltage

VHV, since it depends on the exact value of the probe voltage in the proton source

(see Sec. 2.2). This voltage is periodically tuned to optimize the quality of the

FOSOF signal measured in the Lyman-α detector, thus causing π pulses to shift

slightly. The change in surviving fraction s(1,0) for a small change in accelerating

voltage ∆V is estimated by considering Rabi oscillations in a constant-amplitude

field, omitting spontaneous decay for simplicity:

∆V 2 ≈ V 2 4

π2
s(1,0), (3.18)

where V is the accelerating voltage for which the π pulse is determined. If at a

typical accelerating voltage of about V = 52 kV all of the 2S1/2, f = 1 population

was quenched by the two sets of the quench cavities (s(1,0) = 0), then a change in the

accelerating voltage of 2 kV will change the surviving fraction of the 2S1/2, f = 1

population to about s(1,0) = 0.005, leading to a frequency shift of about 0.4 kHz

for an rf field amplitude in the FOSOF regions of Erf
0 = 18 V/cm. Typically, the

35This is how the input power for the quench cavities is controlled; see Fig. 2.7.

36The statistical uncertainty is calculated by acquiring several quench curves for the same
quench cavity, and calculating the spread in the extracted π pulses.
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probe voltage is varied by a fraction of a kilovolt. For the nominal accelerating

voltages of 16.27 and 22.17 kV and for s(1,0) = 0.005, the shifts are 0.17 and 0.2 kHz

respectively for Erf
0 = 14 V/cm. This corresponds to a change in the probe voltage

of 0.9 kV for VHV = 16.27 kV and 1.0 kV for VHV = 22.17 kV. For the FOSOF data

acquired at these two accelerating voltages, the probe voltage was changed by much

less than 0.9 kV. Therefore, the variation in the beam speed has negligible effect

on the resonant frequency.

3.6.4 Hyperfine-state selection and the beam radius

As mentioned in Sec. 3.3.2, the rf powers to drive π pulses in the quench cavities

depend on the metastable-beam diameter. This effect is already incorporated into

the simulations, as discussed in Sec. 3.3.2, and therefore it is a part of correction

∆
(r)
AC in Table 3.8.

3.6.5 Shift due to the f = 1 state from experimental data

So far we have shown that according to our estimates, residual population in the

2S1/2, f = 1 state after the two sets of the quench cavities has insignificant effect

on the resonant frequency that we determine from FOSOF lineshapes. We can also

estimate the shift due to the 2S1/2, f = 1 state from the data acquired with the

910-MHz pre-quench cavity quenching a fraction of the 2S1/2, f = 0 state. Such an

experiment was discussed in Sec. 3.2.1. The expression to estimate the shift, ∆f=1,

due to 2S1/2, f = 1 state has the same functional form as in Eq. 3.3:

∆f=1 ≈ −
1

(αf=1 − 1)S
〈∆φ〉, (3.19)

however, the factor by which the population in the 2S1/2, f = 0 state is reduced,

α, in Eq. 3.3 is replaced by αf=1, which takes into account that, unlike the high-n
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Figure 3.6: Residual population in the 2S1/2 state after passing through the 910-MHz pre-quench

cavity as a function of the rf field amplitude Erf
910 in the cavity. The transitions driven in the

pre-quench cavity are indicated in Fig. 2.2. Surviving fractions for the atoms in the 2S1/2, f = 0,

2S1/2, f = 1,mf = ±1, and 2S1/2, f = 1,mf = 0 states are shown in blue, red, and black,

respectively. The surviving fractions are calculated assuming square profile of the rf field in the

cavity, and the speed of the atoms is set to 0.01c. The atoms in the 2S1/2, f = 1,mf = ±1 have

a smaller surviving fraction as a function of the rf field amplitude, compared to the atoms in the

2S1/2, f = 1,mf = 0 state. Dashed lines and arrows show the procedure for determining the

surviving fraction of the 2S1/2, f = 1,mf = ±1 population, Pf=1. Given the surviving fraction of

the 2S1/2, f = 0 state, the corresponding rf field amplitude is first determined. This amplitude is

then used to calculate Pf=1.
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Table 3.10: Estimated frequency shifts due to the residual population in the 2S1/2, f = 1

state. The shifts are determined from the data (Table 3.5) that was used to estimate

frequency shifts due to possible presence of n > 2 states by toggling the rf power in the

910-MHz pre-quench cavity (Sec. 3.2.1). The first five columns are taken from Table 3.5.

The first three columns are experimental parameters: the separation between the FOSOF

regions D, the rf field amplitude in the FOSOF regions Erf
0 , and the pressure in the charge-

exchange region PCGX. α is the factor by which the 2S1/2, f = 0 population is reduced

due the rf power in the 910-MHz pre-quench cavity. 〈∆φ〉 is the average FOSOF phase

difference between the cases of the 910 quench on and off. The procedure to determine

the surviving fractions of the 2S1/2, f = 1 state, Pf=1, is described in Sec. 3.6.5. Values

of αf=1 are calculated using Eq. 3.20. Estimated frequency shifts ∆
(exp)
f=1 are determined

using Eq. 3.19.

D (cm) Erf
0 (V/cm) PCGX (µTorr) α 〈∆φ〉(mrad) Pf=1 αf=1 ∆

(exp)
f=1 (kHz)

4 8 1.6 13.5 0.8(8) 0.79 10.6 −0.9(9)

4 18 0.2 13.3 −0.3(5) 0.79 10.5 0.3(5)

4 18 1.6 13.2 0.44(23) 0.79 10.4 −0.48(25)

4 18 3.3 13.3 0.1(4) 0.79 10.5 −0.1(5)

4 18 6.2 13.3 −0.6(4) 0.79 10.5 0.7(5)

5 18 1.6 3.8 −0.3(5) 0.86 3.3 1.3(20)

6 18 0.2 3.8 0.2(14) 0.86 3.3 −1(4)

6 18 1.6 3.8 3.3(27) 0.86 3.3 −11(9)

6 18 3.3 3.8 1.9(13) 0.86 3.3 −6(4)

6 18 6.2 3.8 −0.2(13) 0.86 3.3 1(4)

7 24 1.6 2.0 0.5(12) 0.92 1.8 −4(9)
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Table 3.11: Estimated shifts due to the 2S1/2, f = 1 state. The first three columns are

experimental parameters. Normalized slopes (S) are obtained from linear fits to FOSOF

data. Normalized ratios of FOSOF amplitudes of the 2S1/2, f = 0 and 2S1/2, f = 1 states

(Af=1) are calculated assuming square profile of the rf fields in the FOSOF regions. The

shifts due to the residual population in the 2S1/2, f = 1 state (∆f=1) are listed in the last

column. For these shifts, the uncertainties are correlated, since they are derived from the

same data. The last row lists the weighted average of the shifts, which is calculated by

following the same procedure as in Sec. 4.3, using the same weights as in Sec. 4.1.

D (cm) VHV (kV) Erf
0 (V/cm) S Af=1 ∆f=1(kHz)

4 16.27 14 0.64 1.2 −0.1(1)

4 22.17 14 0.64 1.1 −0.1(1)

4 49.86 5 0.55 1.0 −0.2(2)

4 49.86 8 0.56 1.0 −0.2(2)

4 49.86 14 0.58 1.0 −0.2(2)

4 49.86 18 0.59 1.0 −0.2(2)

4 49.86 24 0.67 1.0 −0.1(2)

5 49.86 8 0.67 1.0 −0.1(2)

5 49.86 14 0.68 1.0 −0.1(2)

5 49.86 18 0.71 1.0 −0.1(2)

5 49.86 24 0.77 1.0 −0.1(1)

6 49.86 8 0.79 1.0 −0.1(1)

6 49.86 14 0.81 1.0 −0.1(1)

6 49.86 18 0.82 1.0 −0.1(1)

6 49.86 24 0.90 1.0 −0.1(1)

7 49.86 14 0.92 1.0 −0.1(1)

7 49.86 18 0.95 1.0 −0.1(1)

7 49.86 24 1.00 1.0 −0.1(1)

Weighted average: −0.13(15)
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states, the 2S1/2, f = 1 population is reduced by the rf fields in the 910-MHz

pre-quench cavity. Therefore,

αf=1 = αPf=1, (3.20)

where Pf=1 is the probability for the atom in the 2S1/2, f = 1 state to remain in

this state after passing through the 910-MHz pre-quench cavity with an rf field

amplitude of Erf
910. Calculated values of Pf=1 as a function of Erf

910 are plotted in

Fig. 3.6, where we make the simplifying assumption that the 910-MHz pre-quench

cavity has a square profile of the rf fields. The ∆mf = 0 transitions driven in the

cavity are labeled in Fig. 2.2. As indicated in Fig 3.6, out of the atoms in the

2S1/2, f = 1 state, the rf field of the cavity quenches more of the atoms in states

with mf = ±1, which we take as our estimate of Pf=1. Column 7 of Table 3.10 lists

values for αf=1 calculated using values for α (column 4) and Pf=1 (column 6), and

shifts due to atoms in the 2S1/2 state are listed in the last column.

Similarly to the discussion in Sec. 3.2.4, it is expected that the shift due to the

2S1/2, f = 1 state is proportional to the inverse of the FOSOF slope S and the ratio

of the FOSOF amplitude due to the atoms in the 2S1/2, f = 1 state to the FOSOF

amplitude due to the atoms in the 2S1/2, f = 0 state. This ratio is denoted by

Af=1. Therefore, assuming a square profile of the rf fields in the FOSOF regions, we

can scale the shifts ∆
(exp)
f=1 listed in the last column of Table 3.10 to the same set of

experimental parameters. We choose to scale the shifts to a waveguide separation

of D = 7 cm, a nominal accelerating voltage of VHV = 49.86 kV, and an rf field

amplitude of Erf
0 = 24 V/cm. We use the weighted average of these scaled shifts to

calculate the expected shift for other 17 sets of experimental parameters. The shifts

are listed in the last column of Table 3.11. Finally, these 18 shifts are included into

the final statistical analysis that is described in Sec. 4.3. Using the same weights

as in Table 4.1, the estimated shifts due to the 2S1/2, f = 1 state are averaged, and
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the weighted average is shown in the last row of Table 3.11. The overall shift due

to the residual 2S1/2, f = 1 population is estimated to be

∆f=1 = −0.13(15) kHz. (3.21)

The shift in Eq. 3.21 is consistent with zero. Compared to the final uncertainty for

our measurement of 3.2 kHz, this shift is small. We choose to omit this correction

because it is negligible and consistent with zero.

3.7 First-order Doppler shift

The first-order Doppler shift is zero under the assumption that the losses in the

waveguides are negligible, and therefore there is no traveling-wave component inside

the FOSOF regions. That is, if there are no losses, then an equal intensity wave is

traveling in the upward direction as in the downward direction, and these together

form a standing wave. In this section, we estimate the frequency shift due to finite

conductivity of aluminum – the metal out of which the FOSOF waveguides are

machined.

3.7.1 Calculation of the field attenuation

For a rectangular waveguide of dimension a time b and of infinite length with a

single propagating TE10 mode, the resistivity of the conductor causes ohmic losses.

The amplitude of the electric field along the direction of propagation, defined by z

axis, is [36]

E(z) = E0e
−αcz, (3.22)
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where the attenuation constant, αc is

αc =
Rs

ηb

1 +
2b

a

ω2
c

ω2√
1− ω2

c

ω2

, (3.23)

where η is the impedance of free space, ωc = c
π

a
is the cut-off frequency of the

waveguide, c is the speed of light in vacuum, ω = 2πf = 2π×910 MHz is the angular

frequency of the propagating wave. The expression for the surface resistance Rs is

Rs =
1

σcδ
, (3.24)

and the skin depth is

δ =
1√

πfµ0σc
, (3.25)

where, σc ≈ 2 × 10−7/Ω m is the conductivity of the material, and µ0 is the

permeability of free space. In our case, the wave travels through the waveguide

twice (on the way up and then again on the way down). Referring to Fig. 2.9, we

have a = 23 cm, b = 3 cm, and z ≈ 1 m. Using the equations above, the

attenuation constant is approximately αc = 2× 10−3/m.

This calculation does not take into account currents on the surface of the

waveguide short (labeled in Fig. 2.9), and also it omits the apertures in the

waveguide through which the atoms pass through – locations where the current

density is larger. For a standing wave, there are also localizations of maxima and

minima of current density along the surfaces of the conductor, where the power

losses are at their local maximum and minimum, respectively. To include these

effects, we simply assume that the power losses could be as much as a factor of 10

larger. Using Eq. 3.22, the electric-field amplitude of the wave, reflected off the

short in the waveguide, could be up to 1.9% smaller than the amplitude of the

incident wave. The electric field along the experimental axis is then the sum of
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the standing wave and the traveling wave with the amplitude of E0 and κE0,

respectively, where κ < 1.9× 10−2.

3.7.2 First-order Doppler effect. Calculation of the frequency shift

The first-order Doppler shift arises when the wave vector of the traveling wave in the

waveguides is not normal to the velocity of the atoms. As shown in Fig. 3.7, there

are two ways for this to happen: when the rotation axis of the rotary stage (blue line

on the figure), on which the waveguides rest, is not normal to the experiment axis

(this angular deviation is indicated by ∆φtilt on the figure) or when the velocity

of the atoms is not parallel to the experiment axis (indicated by ∆φdev on the

figure). From the experiment geometry, the maximum angular deviation of atoms’

velocity ~v from the experiment axis is ∆φdev = 4.4 mrad (determined by the 4.8-mm

exit aperture of the charge-exchange cell and the 4.0-mm aperture of the cylindrical

Faraday cup after the proton deflector for collecting the deflected protons, separated

by 99.1 cm). This estimate is extremely conservative, as it would assume that all

atoms start at the bottom of the charge-exchange-cell exit and pass through the

top of the 4-mm collimator (or vice versa). Perpendicularity of the rotation axis of

the rotary stage to the experiment axis is determined using a surveyor’s telescope;

the maximum tilt angle is less than ∆φtilt = 1.5 mrad. The deviation of the angle

between the velocity of the atoms and the wave vector of the traveling wave in the

waveguides is σφtot =
√

4.42 + 1.52 = 4.6 mrad. In the atoms’ reference frame, the

frequency of the small-amplitude traveling wave experiences a first-order Doppler

shift of37

∆fκ = sin(σφtot)
v

c
f = ±42 kHz, (3.26)

37The second-order Doppler shift is the same for both the traveling and standing waves.
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Figure 3.7: Origin of the first-order Doppler shift. The axis of rotation of the waveguides O is not

normal to the experiment axis (shown as a solid line in black), but is tilted at angle π
2 − σφtilt

.

The wave vector ~k of the traveling wave is parallel to axis O. Waveguides A and B, and the

rotary stage on which the waveguides are resting are schematically shown with dashed lines. The

angle between velocity of the atoms ~v and the experiment axis is σφdev
. Depending on the relative

orientation of ~v and ~k, the angle between these two vectors, φtot, varies from π
2 −|σφtilt

+σφdev
| to

π
2 −|σφtilt

−σφdev
| with a mean of 〈φtot〉 = π/2 and a standard deviation of σφtot

=
√
σ2
φtilt

+ σ2
φdev

.
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Figure 3.8: Probability amplitudes for the Doppler-shifted traveling wave. Fig. A.1 shows the

probability amplitudes from the interaction with the standing wave of amplitude E0, 1/κ times

larger than that of the traveling wave. H ′′(t) is equal to W (RWA)′(t) (Eq. 3.27). An atom can

interact with the traveling wave in the first FOSOF region (H ′′21), and then with the standing

wave (H ′12) in the second region (a). Another possibility (b) is for the particle to first interact

with the standing wave (H ′21), and then to transition back to the state |2〉 via interaction with

the traveling wave (H ′′12). The diagrams follow the style of [37].

where v
c
≈ 0.01 is the ratio of the speed of the atoms to the speed of light, and

f ≈ 910 MHz is the rf frequency of the traveling wave.

The Hamiltonian in the rotating-wave approximation for the combined standing

wave and traveling wave is

H = H0 +W (RWA)(t) +W (RWA)′(t), (3.27)

with H0 and W (RWA)(t) given by Eq. 1.4 and 1.10, respectively. W (RWA)′(t) is

the Hamiltonian due to the traveling wave. It is identical to that of the standing

wave, given by W (RWA)(t), except the frequency ω is changed to ω + ∆ωκ, where

∆ωκ = 2π∆fκ is given in Eq. 3.26:

W (RWA)′(t) = κ
1

2
E0pz

 0 e−i((ω+∆ωκ)t+φi)

ei((ω+∆ωκ)t+φi) 0

 , (3.28)

In second-order time-dependent perturbation theory, in addition to the two
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probability amplitudes – the first amplitude is for an atom to traverse the FOSOF

regions while remaining in the 2S1/2, f = 0 state, and the second amplitude is

for an atom to transition to the 2P1/2, f = 1,mf = 0 state in the first FOSOF

region and then transition back to the 2S1/2, f = 0 state in the second FOSOF

region (described in Appendix A) – there are now two extra probability amplitudes

visualized in Fig. 3.8. The probability term, P
(int)(κ)
|1〉→|1〉 , describing the interference

between these two paths and the zeroth-order path is

P
(int)(κ)
|1〉→|1〉 = 2κAκ cos((Ω +

∆ωκ
2

)(T + τ) + δφ), (3.29)

with

Aκ = −2
E2

0 |pz|2

~2

sin(Ωτ/2)

Ω

sin(Ωκτ/2)

Ωκ

cos(
∆ωκ(T + 2τ)

2
); (3.30)

Ωκ = Ω + ∆ωκ. (3.31)

Comparison with Eq. A.1 reveals that the detuning Ω, is shifted by the amount

∆ωκ/2. The contribution to the total probability from the interference of the

probability amplitudes is

P
(int)
|1〉→|1〉 + P

(int)(κ)
|1〉→|1〉 , (3.32)

where the form of P
(int)
|1〉→|1〉 is given by Eq. A.1. By setting Aκ ≈ A, the frequency

difference ∆κ between the frequency determined with the FOSOF technique and

the true resonant frequency could be as large as

∆κ = k∆fκ = ±0.8 kHz, (3.33)

where the sign of the shift depends on the sign of the first-order Doppler shift ∆fk.

In other words, the frequency shift due to the first-order Doppler shift is estimated

to be 0.0(8) kHz.

The FOSOF lineshapes acquired for both the 0 and π configurations have the

first-order Doppler shifts of the same sign. Therefore, waveguide reversal does not
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negate this effect. However, our estimate is very conservative. This calculation

assumes that all of the atoms are perfectly focused and are maximally deviant from

the experiment axis. Actually, by placing a glass plate at the end of the experiment

beam line and detecting the fluorescence with a CCD camera, we confirm that

the atomic beam is not focused, and has a diameter much larger than the circular

aperture in the copper cup after the proton deflector for collecting protons (shown

in Fig. 2.5). Hence, the angular deviation of atoms’ velocity ~v from the experiment

axis is at least a factor of four smaller: ∆φdev ≈ 1 mrad, leading to a more realistic

frequency shift that could be as large as

∆κ = k∆fκ = ±0.3 kHz, (3.34)

leading to the first-order Doppler shift of 0.0(3) kHz. This shift is consistent with

zero and its uncertainty is one tenth of the total uncertainty (3.2 kHz) for the current

measurement. Even the 0.3 kHz possible shift is very likely an overestimate since

we have very conservatively multiplied the attenuation factor of the waveguides by

10 in order to account for the short and the tubes. We conclude that the first-order

Doppler shift that arises due to finite electrical conductivity of the walls of the

waveguides leads to a negligible effect on the resonant frequency.

3.8 Imperfect control of the radio-frequency system

As discussed in Sec. 2.8, the reversal of the waveguides eliminates the effects of

phase shifts caused by rf propagation delays. This cancellation is based on the

assumption that none of the rf components are disturbed in the process of the

reversal.
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Figure 3.9: Hypothetical examples of changes in the rf system that one could imagine occurring as a result of

the rotation of the rf system (i.e., changing between 0 and π configurations). Initially the waveguides are in the

0 configuration (a). The left and right arms of the rf system are driven at frequencies of f + ∆f
2 , and f − ∆f

2 ,

respectively. The phase difference between the beatnote signals from combiners C1 and C2 is monitored. In (b)

and (c), the rf system is reversed (the waveguides are in the π configuration). In (b), the length of cables above and

below the bi-directional coupler for the left rf arm is increased by ∆l1 and ∆l2, respectively. In (c), the physical

length of the cables remains the same, however, it is assumed that the rf system is not completely isolated from the

environment outside of the rf system. In particular, as an example, there is some leakage of the rf power from the

points P1 to P4, and from the diodes connected to combiners C1 and C2. This capacitive coupling between various

parts of the rf system is represented by Cij , where i and j stand for the points/components between which there is

the coupling.



3.8.1 Detection of the changes in the rf phase under the reversal

Examples of hypothetical situations for which the reversal of the rf system does

not negate rf-related phase offsets are shown in Fig. 3.9. Part (b) of the figure

illustrates a simple example in which the reversal of the system causes a mechanical

effect: the cables before and after the bi-directional coupler for the left rf arm are

stretched. Only the change in the length of the cable after the bi-directional coupler

∆l1 matters for FOSOF, since the phase of the fields in waveguide B and in the

combiners will change by the same amount. Compared to part (a) of the figure, the

phase difference between the beatnotes from combiners C1 and C2, φC2
beat−φC1

beat, is

changed by

(φC2
beat − φC1

beat)
(π) − (φC2

beat − φC1
beat)

(0) = 2
2π

λ
∆l1 (3.35)

= −2((φ2 − φ1 − φC2
beat)

(π) − (φ2 − φ1 − φC2
beat)

(0))

= 2((φ2 − φ1 − φC1
beat)

(π) − (φ2 − φ1 − φC1
beat)

(0)),

where λ is the wavelength of the radio-frequency, φ2 − φ1 is the phase difference

between the rf fields in the two FOSOF regions. Therefore, the change in the

path-length differences in the rf system can be detected by monitoring the phase

difference between the combiners for both orientations of the waveguides.

Part (c) of Fig. 3.9 illustrates a more complicated example. The system is

assumed to have some leakage of the rf power from one part of the rf system

to another. This can happen if, for instance, braided shielding on some of the

interconnecting coaxial cables is damaged, and their shielding factor is reduced. One

could imagine that this coupling could potentially change when rotating between

the 0 and π configurations if the mutual capacitances that lead to this coupling

would depend on the orientations of the waveguides. If this is the case for the

capacitances, for example, between P1 and P2, P3 and P4, P1 and P3, then the
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change in the coupling can be detected in the same way as for the case of the physical

path-length change – by monitoring the phase difference between the combiners for

both orientations of the waveguides. The shift in the zero-phase crossing frequency

due to such a coupling can be determined by looking at the difference of the zero-

phase-crossing frequencies obtained from the beatnote signal from C1 and C2.

The average difference of the zero-phase-crossing frequencies for all of the data

sets is calculated to be only 0.16 kHz. That is, the final result of our measurement

changes by less than 0.2 kHz when C1 is used to determine the beatnote phase as

compared to C2. Therefore, at the level of the precision of the experiment, there

is no systematic change in the rf system under the reversal of the types described

above.

3.8.2 Common shift in the phase difference between the combiners

Consider, however, a situation when there is a coupling between the diodes for

the combiners, and the points P3 and P4, as indicated on part (c) of Fig. 3.9,

by the capacitances CP3C2 and CP4C1. In this case, if we also make the unlikely

assumption that CP3C2 or CP4C1 vary as we rotate the system between 0 and π,

it could be possible to measure no significant phase difference change between the

beatnotes from the combiners under the reversal, but to have changes in the phase

difference between the fields in the waveguides and the combiners.

This type of coupling is a concern, because when we started monitoring the

phase difference between combiners C1 and C2, we discovered that this phase

difference could be changed by milliradians by simply positioning a metal foil near

the rf system. We could also detect the leaking rf signal on a simple multiple-loop

antenna, indicating that there was a leakage of the rf power from the system.

Considerable effort was put into minimizing the coupling between the rf system
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and the outside environment to the point when no abrupt change in the phase

difference between the signals from the combiners could be detected when the

waveguides were rotated, or the boundary conditions outside the rf system were

changed. But, unfortunately, we were not successful at understanding the exact

cause of the coupling.

3.8.3 Variation of the zero-phase-crossing frequency with the FOSOF

slope

In the previous section, we presented an example of a coupling between the left

and right arms of the rf system for the FOSOF regions. If this rf coupling is

different between the 0 and π configurations, then it will not be detected in the

phase difference between the beatnotes from combiners C1 and C2, but it will

introduce a phase shift of φ
(0)
c and φ

(π)
c for the FOSOF data acquired for the 0

and π configurations, respectively. After subtracting the FOSOF data acquired for

the two configurations of the FOSOF regions, the FOSOF lineshape will have an

additional phase factor of

∆φc =
1

2
(φ(0)

c − φ(π)
c ). (3.36)

This phase factor shifts the zero-phase-crossing frequency fzc determined from the

FOSOF lineshape from the resonant frequency f0. The frequency shift is given by

fzc − f0 = 〈∆φc〉/S, (3.37)

where S is the slope of the lineshape and, to account for the fact that ∆φc could be

rf-frequency dependent, we use 〈∆φc〉, which is the phase shift due to rf coupling

averaged over the rf frequencies.

The FOSOF slope S depends on the separation between the waveguides,

electric field amplitude, and the beam speed. It is reasonable to assume that the
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Figure 3.10: Frequency dependence on the inverse of the FOSOF slope. The linecenters (corrected for systematic

effects) are listed in Table 4.1, and the slopes are listed in Table 3.3. Data in red, purple, brown, green, and blue

corresponds to electric field strengths of 5, 8, 14, 18, and 24 V/cm, respectively. Triangles, circles, diamonds, and

squares represent waveguide separations of 4, 5, 6, and 7 cm, respectively. The data acquired at nominal accelerating

voltages of 16.27 and 22.17 kV are shown with a marker that is not filled, and with the bottom part of the marker

filled in cyan, respectively. The data are fit to a line using the least-squares method. The gray band indicates

one standard deviation of the extrapolated resonant frequency at very large separations between the waveguides.

In pale yellow is the one standard deviation of the resonant frequency for the current measurement. The reduced

chi-squared is 0.50 with 16 degrees of freedom.



possible coupling between the two arms of the rf system for the FOSOF regions is

independent of the FOSOF slope. That is, the phase 〈∆φc〉 is the same for

different separations between the waveguides D, rf field amplitudes in the FOSOF

regions Erf
0 , and beam speeds. With this assumption, we can use zero-crossing

frequencies determined for different experimental parameters to determine the

phase shift 〈∆φc〉 due to rf coupling between the left and right arms of the rf

system. The graph of the resonant frequencies obtained for different experimental

parameters (and hence different FOSOF slopes) plotted versus the inverse of the

FOSOF slope, 1/S, is shown in Fig. 3.10. This data can be fit to Eq. 3.37 (as

shown by the straight line in the plot), and the slope of the line gives

〈∆φc〉 = 0.93(84) mrad, (3.38)

which is almost consistent with having no change in the phase between the

waveguides and the combiners under the reversal. However, the extrapolated

resonant frequency at 1/S = 0 is

f0(1/S = 0) = 909 863(8) kHz. (3.39)

The large uncertainty for this extrapolation means that it cannot be used to rule

out the effect of rf coupling on the scale of the 3.2-kHz uncertainty reported for

this measurement. It is clear from Fig. 3.10 that the reason for large uncertainty is

lack of data for small 1/S values. The uncertainty could be reduced by increasing

the physical separation between the waveguides or by acquiring more data at the

largest separation of D = 7 cm. Because the signal-to-noise ratio gets significantly

worse for large D, these solutions would require many months of data acquisition.

Because of these difficulties, we need a different method to determine the value of

the change in the phase due to the waveguide reversal. This method is presented

in the next section.
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3.8.4 Direct measurement of ∆φc

Another method to determine the value of the change in the phase due to the

waveguide reversal that does not involve atoms38, is to directly measure the phase

difference between the rf in the two waveguides relative to the phase difference

measurements between combiners C1 and C2. This is achieved with the setup

shown in Fig. 3.11. The coupled power from the waveguides is fed into a third rf

combiner, and the phases of the beatnote signals from all of the three combiners

are compared for the 0 and π configurations.

Measured values of ∆φc (the phase difference measured in this third combiner

minus the average of the phase differences measured in C1 and C2) as a function

of the rf frequency for different waveguide separations and electric field

amplitudes are shown in Fig. 3.12. Their average values (the average of φc for the

different frequencies measured), 〈∆φc〉, are listed in Table 3.12. This table suggest

that larger electric field amplitudes lead to larger absolute values of 〈∆φc〉. To be

conservative, we choose the largest value in this table to assign a slope-dependent

systematic uncertainty to the linecenters, determined for each set of the

experimental parameters:

〈∆φc〉 = 0.18 mrad. (3.40)

The calculated shifts in the resonant frequency due to the rf system not being

identical for the two waveguide orientations are calculated using Eq. 3.37, and are

listed in Table 3.13. By performing the final statistical analysis that is described in

Sec. 4.3 and using the weights in Table 4.1, the correction to the resonant frequency

of the 2S1/2, f = 0 → 2P1/2, f = 1 transition measured in this work due to an rf

coupling between the left and rights arms of the rf system for the FOSOF regions

38And thus is not limited by the signal-to-noise ratio of the signal on the Lyman-α detector
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Figure 3.11: Measurement of the phase difference between the fields in the waveguides. For each of

the waveguides, a semi-rigid coaxial cable is inserted concentrically into the tubes through which

the atoms would otherwise travel. The other end of the coaxial cable is attached to the respective

arm of the rf combiner, rigidly fixed to the waveguides (not shown). Since the rf choke tube and

the outer shield of the coaxial cable now form a transmission line, the waveguides ”see” the outer

boundary conditions (walls of the vacuum chamber). To prevent this coupling, tight-fitting metal

caps are inserted at the entrances of the rf choke tubes, simultaneously acting as a mechanical

support for the coaxial cables.
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Figure 3.12: Plot of the change in the rf phase under waveguide reversal. The data were acquired for different

waveguide separations D and electric field amplitudes Erf
0 for a range of rf frequencies. The data for D = 7 cm and

Erf
0 = 18 V/cm (in red) has the largest change in the rf phase ∆φc. The data in purple, acquired for D = 4 cm and

the same field amplitude, has very similar change in the phase. The data collected for the waveguide separation of

4 cm with Erf
0 = 8 V cm (in magenta), Erf

0 = 5 V/cm (in green), and for D = 7 cm with Erf
0 = 8 V/cm (in blue) has

smaller and almost identical effect on the phase difference between the combiners and the waveguides.



Table 3.12: Average measured phase shifts, 〈∆φc〉, due to a possible rf coupling between

the two arms of the rf system for the FOSOF regions. Experimental setup to measure

these phases is shown in Fig. 3.11, and the measured phases are shown in Fig. 3.12. The

first two columns are the separation between the waveguides D and the amplitude of the

rf electric field in the FOSOF regions Erf
0 .

D (cm) Erf
0 (V/cm) 〈∆φc〉 (mrad)

4 5 -0.03

4 8 -0.01

4 18 0.18

7 8 -0.01

7 18 -0.01

is determined to be

∆(rf)
c = 0.0(15) kHz. (3.41)

An uncertainty of 1.5 kHz is therefore included in this work to account for

possible mistakes in measuring relative rf phases.
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Table 3.13: Shifts from imperfect determination of the relative phase of the rf fields in

the two FOSOF regions. For each combination of the separation between the waveguides

(D), the nominal accelerating voltage (VHV), and the electric field amplitude (Erf
0 ), the

systematic uncertainty is calculated from Eq. 3.37 by using the corresponding value of

the FOSOF slope (S) and the average value of the phase shift, 〈∆φc〉, given in Eq. 3.40.

The weighted average of these shifts is shown in the bottom row.

D (cm) VHV (kV) Erf
0 (V/cm) S (mrad/kHz) ∆

(rf)
c (kHz)

4 16.27 14 0.1050(10) 0.0(17)

4 22.17 14 0.106 28(35) 0.0(17)

4 49.86 5 0.091 50(28) 0.0(20)

4 49.86 8 0.091 75(16) 0.0(20)

4 49.86 14 0.095 50(9) 0.0(19)

4 49.86 18 0.098 31(28) 0.0(18)

4 49.86 24 0.110 47(13) 0.0(16)

5 49.86 8 0.1103(5) 0.0(16)

5 49.86 14 0.113 36(26) 0.0(16)

5 49.86 18 0.1178(4) 0.0(15)

5 49.86 24 0.128 24(26) 0.0(14)

6 49.86 8 0.1299(10) 0.0(14)

6 49.86 14 0.1343(7) 0.0(13)

6 49.86 18 0.1370(4) 0.0(13)

6 49.86 24 0.1493(6) 0.0(12)

7 49.86 14 0.1519(8) 0.0(12)

7 49.86 18 0.1572(7) 0.0(11)

7 49.86 24 0.1672(7) 0.0(11)

Weighted average: 0.0(15)
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4 Data analysis

The main data for the current measurement consist of 116 data sets39. These

116 data sets include 18 combinations of experimental parameters (D, VHV, Erf
0 ),

where, as was defined previously, D is the separation between the waveguides, VHV

is the nominal accelerating voltage, Erf
0 is the amplitude of the electric field in the

waveguides.

In this chapter, the statistical analysis performed to determine the resonant

frequency and its uncertainty is described. Consistency of the linecenters after

correction for systematic effects is discussed.

4.1 Determination of fzc

As was described in Sec. 2.8, to extract the FOSOF phase from the signals

acquired from the Lyman-α detector and the combiners, two experiments need to

be performed: one with the waveguides in the 0 configuration and one with them

in the π configuration. After the data are acquired for one configuration, the

waveguides are immediately reversed, and the data for the other configuration are

collected40. The data for each configuration are acquired with a setup shown in

panel (b) of Fig. 2.16 according to a scheme shown in Fig. 2.20. At the beginning

39Each consisting of the 0- and π-configuration pairs (cf. Sec. 2.10).

40Necessary preparations taken before starting to acquire these data are described in Sec. 2.10.

110



of the data acquisition, the rf frequency, f , output by the rf generator is randomly

selected from a list of Nf = 41 values spanning a range of ±2 MHz centered at

approximately (this must be only approximate given hidden frequency offset and

frequency jitters discussed in Sec. 2.10) 910 MHz. Next, it is randomly chosen

whether half of the frequency offset ∆f
2

is added to the frequency of the rf wave

for waveguide A and subtracted from the frequency of the rf wave for waveguide B

(such a case is shown in panel (b) of Fig. 2.16) or vice versa. (The subsequent

data point is taken with the offset added to the other waveguide.) In the diagram

shown in Fig. 2.20, W (∆f) denotes the waveguide (A or B), to which half of the

offset frequency is added. For each data point, the traces of the Lyman-α-detector

signal and of the beatnotes from the combiners C1 and C2 are recorded with two

synchronized 2-channel digitizers, and these traces are repeated Nt = 4 times.

This whole process is repeated for the whole set of the 41 rf frequencies Nr times.

For each trace (from the Lyman-α detector or the beatnote from one of the

combiners), the phase (and the amplitude) of the component of the trace at the

offset frequency is extracted using a fast Fourier transform. The phase difference

between the extracted phases from the detector trace (φW(∆f)

det(c) ) and a combiner

trace (φW(∆f)

beat(c)) is calculated (the same notation is used to denote the phases as in

Sec. 2.8, and the subscript c in the round brackets denotes the configuration of the

waveguides (0 or π)):

θW(∆f)

(c) = φW(∆f)

det(c) − φW(∆f)

beat(c). (4.1)

For the same rf frequency and W(∆f) (the waveguide to which half of the offset

frequency is added), the phase differences are averaged together to obtain 〈θA(c)〉

and 〈θB(c)〉. After averaging the phases for each rf frequency, the phase offset due to

the limited bandwidth of the Lyman-α detector (and its associated electronics) is
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canceled out by calculating (as was described in Sec. 2.8):

θAB(c) =
1

2
(〈θB(c)〉 − 〈θA(c)〉). (4.2)

After, averaged phase differences for both waveguide configurations (as shown in (d)

of Fig. 2.14) are subtracted from each other to obtain the FOSOF phase (Eq. 2.12):

θ =
1

2
(θAB(0) − θAB(π) ). (4.3)

The FOSOF phase for the 41 rf frequencies is fit to a straight line:

θ = S(f − fzc), (4.4)

where S is the FOSOF slope and fzc is the zero-phase-crossing frequency. Best

estimates of S and fzc and their associated uncertainties are determined using the

method of maximum likelihood.

From each data set we extract two zero-crossing frequencies. The first zero-

crossing frequency, f
(C1)
zc , (with the uncertainty σ

(C1)
fzc

) is determined by using the

beatnotes from combiner C1, related to the phase difference between the rf fields

in the FOSOF regions. The second frequency, f
(C2)
zc , (with the uncertainty σ

(C2)
fzc

) is

obtained by calculating the phase difference between the traces from the Lyman-α

detector and combiner C2. It is natural to use the average of f
(C1)
zc and f

(C2)
zc as

the best estimate for the zero-crossing frequency, fzc
41. The uncertainty in the

zero-crossing frequency fzc is

σfzc =
1√
2

√
(σ

(C1)
fzc

)2 + (σ
(C2)
fzc

)2. (4.5)

One could argue that the if the beatnotes from the two combiners do not yield the

same zero-crossing frequency, then it needs to be incorporated into the expression

41The motivation for this is that if the difference in the zero-crossing frequencies f
(C1)
zc and f

(C2)
zc

is due to a situation described Sec. 3.8.1 and depicted in part (b) of Fig. 3.9, then the average of
the two zero-crossing frequencies yields the correct resonant frequency.
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Figure 4.1: Distribution of the reduced chi-squared values, χ2
r. The histogram has 10 bins.

Uncertainty in the number of data sets (N), in a given bin is equal to
√
N . Fit to a Gaussian

curve gives a mean of 〈χ2
r〉 = 1.01(2), and a standard deviation of σ = 0.17(3).

for the uncertainty in Eq. 4.5. One possible choice is to add in quadrature to the

σfzc of Eq. 4.5 an additional term σC
fzc

= |f (C1)
zc − fzc| = |f (C2)

zc − fzc|, which is the

absolute value of the deviation of zero-crossing frequencies, f
(C1)
zc and f

(C2)
zc , from

their average, fzc. It was mentioned in Sec. 3.8.1 that on average the two

zero-crossing frequencies, f
(C1)
zc and f

(C2)
zc , differ by 0.16 kHz – much less than the

uncertainty of the current measurement. Therefore, it is reasonable to treat the

deviation σC
fzc

as a statistical uncertainty, justifying the addition of this term in

quadrature with σfzc . However, it is not necessary to include this additional

statistical uncertainty, because such an analysis yields the same value of the

resonant frequency and the same associated uncertainty (to 0.1 kHz), as reported

in this work.

Zero-crossing frequencies and associated reduced chi-squared values χ2
r (with

39 degrees of freedom for each data set) for the straight-line fits of all of the 116
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data sets are listed in Table B.1. A histogram of the chi-squared values, shown in

Fig. 4.1, conforms to a normal distribution (which is a good approximation of a χ2

distribution for 39 degrees of freedom) with a mean of 〈χ2
r〉 = 1.01(2), consistent

with the expected value of 1. Consequently, the uncertainties for the zero-crossing

frequencies do not need to be expanded.

4.2 Systematic corrections

A weighted average of zero-crossing frequencies is calculated for each set of the

experimental parameters. To convert a zero-crossing frequency fzc, to the

resonant frequency f0, of the 2S1/2, f = 0 → 2P1/2, f = 1 transition, three

corrections are applied: the first correction is due to the AC Stark shift (Table

3.8), the second correction arises from the second-order Doppler shift (Table 3.4),

and the third correction is related to the imperfect determination of the relative

phase of the rf fields in the two FOSOF regions (Table 3.13). The AC-shift

correction is subtracted from, and the second-order-Doppler-shift correction is

added to the zero-crossing frequencies. Resonant frequencies with associated

statistical and systematic uncertainties determined for 18 experimental

parameters are listed in Table 4.1.

4.3 Final statistical analysis: calculation of the resonant

frequency, f0

For this experiment, an uncertainty for each type of systematic correction cannot be

treated as an independent uncertainty for different experimental parameters. For

example, all of the data, acquired at a nominal accelerating voltage of 49.86 kV,

has the same correction due to the second-order Doppler shift, and therefore the
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Table 4.1: Systematic corrections, and corrected zero-crossing frequencies, f0 (and associated statistical and systematic

uncertainties) for the 18 sets of experimental parameters used for the measurement. The corrections are due to AC Stark

shift (∆AC), second-order Doppler shift (∆SOD), and imperfect determination of the relative phase of the rf fields in the two

FOSOF regions (∆
(rf)
c ). The number of averaged datasets to calculate the linecenter for each set of experimental parameters,

N , with the corresponding reduced chi-squared values, χ2
r , are included. The sum of the weights for each separation between

the waveguides, D, is set to 25%. The weights for a particular D are chosen to minimize the final uncertainty in the reported

value for the resonant frequency, disregarding the uncertainty of the ∆
(rf)
c correction (see Sec. 4.3 for details).

D (cm) VHV (kV) Erf
0 (V/cm) Weight (%) ∆AC (kHz) ∆SOD (kHz) ∆

(rf)
c (kHz) χ2

r N f0 ± σstat ± σsys (kHz)

4 16.27 14 0.5 28.6(23) 20.0(4) 0.0(17) 0.81 4 909862.7± 8.6± 2.9

4 22.17 14 3.0 32.4(22) 25.7(5) 0.0(17) 1.56 9 909870.2± 3.9± 2.8

4 49.86 5 6.3 5.5(8) 52.6(11) 0.0(20) 0.74 16 909872.5± 3.5± 2.4

4 49.86 8 15.3 13.5(13) 52.6(11) 0.0(20) 2.40 14 909875.8± 2.0± 2.6

4 49.86 14 0.0 42.9(33) 52.6(11) 0.0(19) 1.49 7 909876.4± 1.1± 4.0

4 49.86 18 0.0 75.1(54) 52.6(11) 0.0(18) 4.66 5 909870.4± 0.8± 5.8

4 49.86 24 0.0 152.9(105) 52.6(11) 0.0(16) 2.40 3 909874.7± 1.2± 10.6

5 49.86 8 10.5 10.0(14) 52.6(11) 0.0(16) 0.76 6 909872.4± 4.6± 2.4

5 49.86 14 11.1 34.4(29) 52.6(11) 0.0(16) 1.18 3 909865.6± 3.3± 3.4

5 49.86 18 3.4 61.6(46) 52.6(11) 0.0(15) 0.56 3 909865.0± 2.5± 4.9

5 49.86 24 0.0 128.8(90) 52.6(11) 0.0(14) 3.53 3 909863.9± 2.2± 9.2

6 49.86 8 4.2 8.3(11) 52.6(11) 0.0(14) 1.42 18 909868.6± 8.7± 2.1

6 49.86 14 11.7 29.1(24) 52.6(11) 0.0(13) 0.82 7 909876.4± 4.3± 2.9

6 49.86 18 9.1 52.4(38) 52.6(11) 0.0(13) 0.61 4 909871.6± 3.7± 4.2

6 49.86 24 0.0 110.9(77) 52.6(11) 0.0(12) 0.03 2 909871.6± 4.5± 7.8

7 49.86 14 11.6 26.3(20) 52.6(11) 0.0(12) 1.35 3 909874.9± 5.9± 2.5

7 49.86 18 11.1 46.8(32) 52.6(11) 0.0(11) 1.18 6 909867.5± 5.3± 3.6

7 49.86 24 2.4 98.6(68) 52.6(11) 0.0(11) 2.43 3 909869.1± 4.8± 6.9



uncertainties for this correction, applied to 16 sets of experimental parameters, are

not independent. As a second example, the uncertainty of the correction due to

the uncertainty in the determination of the relative phase of the rf fields in the two

FOSOF regions is dominated by the uncertainty in the quantity 〈∆φc〉, scaled by

respective FOSOF slope for each set of experimental parameters (see Sec. 3.8, and

Eq. 3.37), and therefore the uncertainties are correlated. Based on this discussion,

the final uncertainty, σc, for each correction c, is equal to the weighted sum of

respective uncertainties for each set of the experimental parameters:

σc =
18∑
j=1

wjσcj ; (4.6)

where j is a pointer to one of the 18 sets of the experimental parameters and wj is

the assigned weight for the jth experimental parameter set. The total sum of the

weights is set to unity:
18∑
j=1

wj = 1. (4.7)

The overall uncertainty for all systematic corrections is

σsys =

√∑
c

σ2
c . (4.8)

And the final statistical uncertainty is calculated by adding the statistical

uncertainties in quadrature with the same set of weights, {ωj}:

σstat =

√√√√ 18∑
j=1

w2
jσ

2
statj . (4.9)

The reported value for the resonant frequency is

〈f0〉 =
18∑
j=1

wjf0j , (4.10)
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Table 4.2: Summary of systematic corrections.

Weighted average (kHz)

AC shift, ∆AC 29.5± 2.3

Second-order Doppler shift, ∆SOD 51.6± 1.0

Phase error, ∆
(rf)
c 0.0± 1.5

f(2S1/2, f = 0 → 2P1/2, f = 1) 909871.7± 1.4± 2.9

with the total uncertainty equal to

σ〈f0〉 =
√
σ2

stat + σ2
sys. (4.11)

The weights are chosen to minimize the total uncertainty σ〈f0〉 subject to the

condition that a total weight of 25% is applied to each separation between the

waveguides. This condition reflects the fact that changing the separation between

the FOSOF regions is the most important test for systematic effects in this

experiment, because it simultaneously affects the FOSOF slope, the AC shift,

and, if present, effect of high-n states on the lineshape. Therefore, the results

obtained for each separation are equally important in determining the final

answer for the linecenter.

The calculated weights are listed in Table 4.142. Table 4.2 lists the frequency of

the 2S1/2, f = 0 → 2P1/2, f = 1 interval (calculated from Eq. 4.10), with weighted

averages of the corrections.

42It was mentioned in Sec. 2.10 that the analysis of the data is performed with a hidden offset
applied to all of the rf frequencies. This offset was revealed to us before we devised the method to
measure the phase between the fields in the FOSOF regions directly to estimate the correction due
to insufficiently suppressed coupling between different parts of the rf system with the environment.
As the result, the weights in Table 4.1 are calculated without including the uncertainty of the

∆
(rf)
c correction. We believe that it is not fair to recalculate the weights after revealing the hidden

offset. That is why the weights are kept unchanged. However, a new set of weights calculated with
all of the uncertainties included changes the reported value for the linecenter by a mere 0.2 kHz,
leaving the systematic and statistical uncertainties essentially unchanged.
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Figure 4.2: Linecenters for different combinations of D, VHV, Erf
0 . Part (a) is the plot of the averaged linecenters for each set of the

experimental parameters. Triangles, circles, diamonds, and squares represent a waveguide separation of 4, 5, 6, and 7 cm, respectively.

The data, acquired at a nominal accelerating voltage of 16.27 and 22.17 kV, are shown with the marker that is not filled, and with the

bottom part of the marker filled in cyan color, respectively. Part (b) is the plot of the averaged linecenters, calculated by separately

averaging the linecenters corresponding to the same separation between the waveguides (D), the same nominal accelerating voltage

(VHV), and the same electric field amplitude (Erf
0 ). The points shown in purple represent the linecenters determined by including

only a limited range of frequencies, fmax − fmin (are the difference between the maximum and minimum frequencies, respectively,

centered about 910 MHz), used in the analysis of each of the 116 datasets. The shaded region is the one standard deviation in the

resonant frequency for the current measurement.



4.4 Consistency of the linecenters

Panel (a) of Fig. 4.2 shows the plot of the resonant frequencies calculated for each set

of experimental parameters. The uncertainty for each point is calculated by adding

in quadrature the uncertainties of the individual corrections and the statistical

uncertainty (listed in the last column of Table 4.1). The linecenters for different

experimental parameters are consistent with the reported resonant frequency.

As another test for hidden systematic effects, in addition to visualizing the

distribution of the linecenters corresponding to each set of experimental parameters,

we also average the linecenters belonging separately to the same D, VHV, and Erf
0

43.

These averaged linecenters are shown in part (b) of Fig. 4.2. These linecenters also

show consistency, and deviate from the reported resonant frequency by less than

one standard deviation.

In this experiment, all of the data sets are acquired with a range of frequencies

of 4 MHz (centered about approximately 910 MHz). To test for possible dependence

of the resonant frequency on the range of frequencies, we separately include in the

analysis outlined in Sec. 4.1 only the frequencies belonging to a frequency range

of 2, 1, and 0.5 MHz. The same weights as in Table 4.1 are used to calculate

average frequencies for each of the frequency ranges, which are plotted in panel (b)

of Fig. 4.2. No dependence of the linecenters on the frequency range is observed.

Lastly, it is important to mention that the average chi-squared calculated from

columns 8 and 9 of Table 4.1 is 130, 2.3 standard deviations away from the expected

value of 98 (with a reduced chi-squared of 1.33). Examination of Table 4.1 reveals

that such a large chi-squared value is due to a single linecenter calculated for D =

4 cm, VHV = 49.86 kV, Erf
0 = 8 V/cm: its reduced chi-squared is χ2

r = 2.37 for 14

43To calculate the average, the same procedure of minimization of weights described in Sec. 4.3
is performed, but without the constraint to allocate 25% of the total weight to each of the 4
waveguide separations.
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degrees of freedom, with a probability of 0.4% to obtain a larger chi-squared value.

If the statistical uncertainty for this particular linecenter is expanded by
√

2.37,

then the average chi-squared becomes 112, 1.0 standard deviations away from the

expected value. If the analysis for calculating the weighted average of the linecenters

described in Sec. 4.3 is performed with the expanded statistical uncertainty for the

aforementioned linecenter (by calculating a new set of weights), then the final result

for the resonant frequency decreases by 0.2 kHz, and its uncertainty increases by

0.05 kHz. These changes are insignificant compared to a total uncertainty of 3.2 kHz

reported for this measurement, and we have not expanded the uncertainties.
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5 Conclusion

We performed a high-precision measurement of the frequency difference between

the 2S1/2, f = 0 and 2P1/2, f = 1 states in atomic hydrogen using a novel method

of the frequency-offset separated oscillatory fields (Sec. 1.3.2). The obtained result

(cf. Table 4.2) is

f(2S1/2, f = 0 → 2P1/2, f = 1)[this work] = 909 871.7(32) kHz,

with the 3.2-kHz uncertainty resulting from a statistical uncertainty of 1.4 kHz and

a systematic uncertainty of 2.9 kHz.

Table 5.1 lists the result of the current measurement and the previously most

precise measurement of this transition, performed in 1981 by Lundeen and Pipkin

[10], as well as the result obtained from the recent reanalysis of that experiment

[9]. The transition frequency quoted in this work is 1.7 standard deviations away

from the transition frequency reported by Lundeen and Pipkin and 1.1 standard

deviations different from the reanalysis of their measurement. Our measurement

reduces the uncertainty in the experimentally determined frequency of the

2S1/2f = 0→ 2P1/2, f = 1 transition by a factor of 2.8 and 6.2, compared to the

original and reanalyzed measurements performed by Lundeen and Pipkin,

respectively.

A careful study of systematic effects was performed (Ch. 3), and consistent

corrected linecenters (Sec. 4.4) were found for 4 separations between the FOSOF
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Table 5.1: Measurements of the frequency difference between the 2S1/2, f = 0 and

2P1/2, f = 1 states in atomic hydrogen.

f(2S1/2, f = 0 → 2P1/2, f = 1) (kHz)

This work 909871.7± 3.2

Lundeen and Pipkin (1981) [10] 909887± 9

Lundeen and Pipkin (reanalyzed, 2018) [9] 909894± 20

regions, different rf power levels in the regions, and different speeds of the

metastable beam.

The n = 2 Lamb shift can be determined from our result, by adding the

hyperfine contribution to the frequency difference between the 2S1/2, f = 0 and

2P1/2, f = 1 states, listed in Table 1.1:

f(2S1/2 → 2P1/2) = 909 871.7(32) kHz + 147 958.1(0) kHz (5.1)

= 1 057 829.8(32) kHz

The root-mean-squared charge radius of the proton can be determined from

Eq. 1.1. Using the CODATA 2014 value for the Rydberg constant [5], the result is

rp[this work] = 0.833(10) fm. (5.2)

Note that compared to proton radius determinations from transition frequencies

between states with different principal quantum numbers, this determination is

insensitive to the value of the Rydberg constant used.

Figure 1.1 shows various ways to determine the proton radius, including the

proton radius from our measurement. The CODATA 2014 recommended value for

the proton radius is:

rp[CODATA 2014] = 0.8751(61) fm. (5.3)
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Our result is 4.2 standard deviation away from this value. However, it is

consistent (within 0.8 standard deviations) with the proton radius value,

extracted from muonic-hydrogen spectroscopy:

rp[µH] = 0.840 87(39) fm. (5.4)

This experiment serves as the direct comparison of the frequencies of the

2S → 2P transitions in ordinary hydrogen and muonic hydrogen. Our

measurement suggests that both types of hydrogen yield consistent values for the

root-mean squared charge radius of the proton.

Using the value of the proton radius, determined by the CREMA collaboration

(Eq. 5.4), the predicted transition frequency between the 2S1/2, f = 0 and

2P1/2, f = 1 states is (cf. Table 1.1):

f(2S1/2, f = 0 → 2P1/2, f = 1)[predicted] = 909 874.2(3) kHz. (5.5)

Our result is consistent with the predicted value.

123



A FOSOF lineshape for a small driving-field

amplitude

The derivation of the FOSOF lineshape, presented in Sec. 1.3.2, is based on direct

solution of the Schrödinger equation. The FOSOF lineshape can also be derived

from perturbation theory (for sufficiently small rf electric field amplitudes)44. Such

a derivation permits an alternative lineshape, which is valid for small rf fields.

In this formalism, the probability amplitude for the atom in the state |1〉 to

remain in this state after passing through two temporally-separated regions of rf

field is the sum of the probability amplitudes of two “paths”, shown in Fig. A.1.

The first path has the particle passing unperturbed through both of the fields; this

is the zeroth-order contribution. For the second path the atom experiences two

transitions: in the first region the atom is transitioned to state |2〉, and in the

second regions it transitions back to state |1〉; this is the second-order term in the

44Perturbation theory is used extensively in the thesis of S. R. Lundeen, and is developed in
Appendix A of [38] with a phenomenological incorporation of the spontaneous decay.
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Figure A.1: Probability amplitudes in FOSOF. The zeroth-order (a) and the second-order (b)

contributions are shown, with H ′i,j(t) = 〈i|H ′(t)|j〉, and H ′ is equal to W (RWA)(t) (cf. Eq. 1.10).

The diagrams follow the style of [37].

series. The total probability contains an interference term between these two paths,

P
(int)
|1〉→|1〉. With the omission of the spontaneous decay, this term is equal to

P
(int)
|1〉→|1〉 = A cos(Ω(T + τ) + ∆ωt), (A.1)

where

A = −2
E2

0 |pz|2

~2

sin2(Ωτ/2)

Ω2
. (A.2)

The FOSOF lineshape is then

θ = Ω(T + τ), (A.3)

which has the slope of T + τ , equal to the slope of Eq. 1.23 in the limit of weak rf

field amplitude.
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B Data tables

Table B.1: FOSOF lineshape parameters determined from the 116 data sets. For each of these

116 data sets, the FOSOF phases were determined for the same set of 41 rf frequencies, which

are listed in Table B.2. The first three columns specify experimental parameters, which are the

separation between the waveguides D, the nominal accelerating voltage VHV, related to the speed

of the atomic beam, and the amplitude of the rf electric field in the FOSOF waveguides Erf
0 .

Determination of zero-crossing frequencies, fzc, and FOSOF slopes, S, is described in Sec. 4.1.

Reduced chi-squared values, χ2
r, of the fits of FOSOF data to a straight line are listed. The fzc

values listed are not corrected for systematic corrections, and therefore need to be corrected for

AC Stark shift, second-order Doppler shift, and phase uncertainties, as described in Chapter 3.

D (cm) VHV (kV) Erf
0 (V/cm) fzc (kHz) χ2

r S (mrad/kHz)

4 16.27 14 909 874.6(172) 1.12 0.1054(15)

4 16.27 14 909 877.0(163) 1.22 0.1078(15)

4 16.27 14 909 884.6(178) 1.12 0.1029(15)

4 16.27 14 909 848.7(173) 0.98 0.1049(15)

Continued on next page
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

4 22.17 14 909 880.1(124) 1.39 0.1061(11)

4 22.17 14 909 841.7(133) 1.39 0.1060(12)

4 22.17 14 909 881.0(122) 1.20 0.1059(11)

4 22.17 14 909 865.5(122) 0.93 0.1064(11)

4 22.17 14 909 873.1(117) 0.83 0.1043(10)

4 22.17 14 909 872.7(113) 1.13 0.1064(10)

4 22.17 14 909 879.0(111) 1.00 0.1063(10)

4 22.17 14 909 890.8(110) 1.09 0.1069(10)

4 22.17 14 909 892.6(99) 1.23 0.1065(9)

4 49.86 5 909 820.2(113) 1.16 0.0923(9)

4 49.86 5 909 811.4(114) 1.23 0.0913(8)

4 49.86 5 909 820.0(127) 1.05 0.0895(9)

4 49.86 5 909 821.3(143) 1.16 0.0946(11)

4 49.86 5 909 804.7(153) 1.19 0.0935(12)

4 49.86 5 909 814.7(141) 0.74 0.0922(11)

4 49.86 5 909 836.9(157) 1.12 0.0917(12)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

4 49.86 5 909 832.6(142) 1.24 0.0924(11)

4 49.86 5 909 816.3(149) 0.90 0.0919(11)

4 49.86 5 909 839.8(164) 1.10 0.0910(12)

4 49.86 5 909 820.5(175) 1.60 0.0917(13)

4 49.86 5 909 833.0(150) 1.02 0.0913(11)

4 49.86 5 909 822.9(146) 0.93 0.0904(11)

4 49.86 5 909 847.2(146) 1.03 0.0904(11)

4 49.86 5 909 841.9(146) 0.96 0.0907(11)

4 49.86 5 909 838.4(138) 0.85 0.0915(10)

4 49.86 8 909 817.4(81) 1.53 0.0925(6)

4 49.86 8 909 850.6(78) 0.82 0.0925(6)

4 49.86 8 909 853.9(72) 0.95 0.0927(6)

4 49.86 8 909 820.8(75) 0.74 0.0911(6)

4 49.86 8 909 836.2(74) 0.62 0.0920(6)

4 49.86 8 909 822.8(77) 0.79 0.0912(6)

4 49.86 8 909 831.8(72) 1.06 0.0922(5)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

4 49.86 8 909 850.4(73) 0.87 0.0932(6)

4 49.86 8 909 834.8(73) 0.95 0.0920(6)

4 49.86 8 909 843.7(81) 1.36 0.0917(6)

4 49.86 8 909 823.4(89) 1.40 0.0926(7)

4 49.86 8 909 842.3(45) 0.79 0.091 67(34)

4 49.86 8 909 834.4(106) 1.10 0.0909(8)

4 49.86 8 909 833.8(86) 1.11 0.0906(6)

4 49.86 14 909 867.6(33) 1.22 0.095 26(26)

4 49.86 14 909 863.1(31) 1.31 0.095 42(25)

4 49.86 14 909 871.7(31) 1.10 0.095 11(24)

4 49.86 14 909 862.1(26) 1.46 0.095 51(20)

4 49.86 14 909 865.3(26) 0.98 0.095 55(21)

4 49.86 14 909 869.3(27) 0.79 0.095 59(21)

4 49.86 14 909 868.5(27) 0.94 0.095 49(21)

4 49.86 18 909 896.5(22) 0.75 0.099 04(18)

4 49.86 18 909 894.8(25) 1.06 0.099 39(20)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

4 49.86 18 909 890.0(17) 1.37 0.097 47(14)

4 49.86 18 909 888.3(17) 0.77 0.097 51(14)

4 49.86 18 909 896.2(15) 0.88 0.098 25(12)

4 49.86 24 909 976.1(15) 1.38 0.110 04(13)

4 49.86 24 909 968.5(32) 0.83 0.110 07(29)

4 49.86 24 909 976.3(30) 1.14 0.110 38(28)

5 49.86 8 909 834.5(100) 1.02 0.1099(9)

5 49.86 8 909 839.8(105) 0.96 0.1098(10)

5 49.86 8 909 822.3(106) 0.63 0.1110(10)

5 49.86 8 909 829.7(109) 0.98 0.1101(10)

5 49.86 8 909 813.0(125) 1.00 0.1089(11)

5 49.86 8 909 839.7(164) 1.04 0.1133(15)

5 49.86 14 909 847.5(57) 0.96 0.1139(5)

5 49.86 14 909 841.3(56) 1.10 0.1125(5)

5 49.86 14 909 853.6(57) 0.90 0.1132(5)

5 49.86 18 909 874.5(44) 1.05 0.1174(4)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

5 49.86 18 909 870.6(43) 1.08 0.1172(4)

5 49.86 18 909 877.1(45) 0.82 0.1175(4)

5 49.86 24 909 948.4(38) 1.15 0.1278(4)

5 49.86 24 909 935.8(39) 1.11 0.1273(4)

5 49.86 24 909 935.9(39) 1.34 0.1278(4)

6 49.86 8 909 830.5(329) 0.97 0.1269(34)

6 49.86 8 909 821.6(371) 1.05 0.128(4)

6 49.86 8 909 884.1(363) 1.06 0.133(4)

6 49.86 8 909 735.9(375) 1.12 0.127(4)

6 49.86 8 909 839.4(307) 1.06 0.1324(33)

6 49.86 8 909 792.5(323) 0.70 0.1310(34)

6 49.86 8 909 835.1(922) 0.95 0.140(11)

6 49.86 8 909 945.2(395) 1.25 0.128(4)

6 49.86 8 909 842.5(386) 0.88 0.131(4)

6 49.86 8 909 794.2(360) 1.20 0.135(4)

6 49.86 8 909 781.0(415) 0.89 0.130(4)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

6 49.86 8 909 867.3(402) 0.91 0.129(4)

6 49.86 8 909 844.9(411) 0.86 0.136(5)

6 49.86 8 909 785.2(406) 1.11 0.120(4)

6 49.86 8 909 799.5(330) 1.06 0.1298(35)

6 49.86 8 909 808.5(354) 1.06 0.132(4)

6 49.86 8 909 829.4(337) 0.92 0.130(4)

6 49.86 8 909 826.3(324) 1.08 0.1329(35)

6 49.86 14 909 837.3(122) 0.70 0.1327(13)

6 49.86 14 909 850.5(114) 0.81 0.1326(12)

6 49.86 14 909 863.4(113) 0.64 0.1340(13)

6 49.86 14 909 853.4(151) 0.85 0.1329(17)

6 49.86 14 909 866.1(100) 0.73 0.1365(11)

6 49.86 14 909 844.9(102) 1.37 0.1333(11)

6 49.86 14 909 850.6(113) 1.18 0.1363(13)

6 49.86 18 909 879.6(101) 1.02 0.1351(11)

6 49.86 18 909 875.9(68) 0.98 0.1366(8)
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Table B.1 – continued from previous page

D (cm) VHV (kV) E0 (V/cm) fzc (kHz) χ2
r S (mrad/kHz)

6 49.86 18 909 868.1(67) 1.25 0.1358(8)

6 49.86 18 909 866.6(68) 0.93 0.1367(8)

6 49.86 24 909 930.7(62) 0.83 0.1483(8)

6 49.86 24 909 929.2(66) 1.12 0.1486(8)

7 49.86 14 909 836.5(115) 0.87 0.1520(14)

7 49.86 14 909 846.3(92) 0.69 0.1512(11)

7 49.86 14 909 861.5(104) 1.27 0.1519(13)

7 49.86 18 909 863.1(150) 0.54 0.1568(19)

7 49.86 18 909 874.6(138) 0.86 0.1553(17)

7 49.86 18 909 862.8(126) 1.49 0.1572(16)

7 49.86 18 909 878.7(126) 1.16 0.1574(16)

7 49.86 18 909 852.9(127) 0.98 0.1559(16)

7 49.86 18 909 841.6(122) 1.55 0.1567(16)

7 49.86 24 909 896.3(98) 0.87 0.1655(13)

7 49.86 24 909 919.5(96) 0.88 0.1659(13)

7 49.86 24 909 922.0(68) 1.22 0.1652(9)
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Table B.2: The set of rf frequencies used for acquiring FOSOF data sets. For each of the

116 FOSOF data sets, the FOSOF phases were determined for this set of 41 rf frequencies,

f .

Index f (Hz) Index f (Hz) Index f (Hz)

1 907939783 15 909480082 29 910881506

2 908071901 16 909505038 30 910980061

3 908140347 17 909623630 31 911130105

4 908376575 18 909731246 32 911209870

5 908468910 19 909835108 33 911275607

6 908485918 20 909875152 34 911382077

7 908656235 21 909990845 35 911455257

8 908723967 22 910169587 36 911482447

9 908881612 23 910207255 37 911703477

10 908919497 24 910301269 38 911727553

11 908959606 25 910335027 39 911858616

12 909165531 26 910573831 40 911865534

13 909177652 27 910660782 41 912085283

14 909314795 28 910705934
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