Block Systems of Ranks 3 and 4 Toroidal Hypertopes

Date

2018-11-21

Authors

Ens, Eric James Loepp

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This dissertation deals with abstract combinatorial structure of toroidal polytopes and toroidal hypertopes. Abstract polytopes are objects satisfying the main combinatorial properties of a classical (geometric) polytope. A regular toroidal polytope is an abstract polytope which can be constructed from the string affine Coxeter groups. A hypertope is a generalization of an abstract polytope, and a regular toroidal hypertope is a hypertope which can be constructed from any affine Coxeter group. In this thesis we classify the rank 4 regular toroidal hypertopes. We also seek to find all block systems on a set of (hyper)faces of toroidal polytopes and hypertopes of ranks 3 and 4 as well as the regular and chiral toroidal polytopes of ranks 3. A block system of a set X under the action of a group G is a partition of X which is invariant under the action of G.

Description

Keywords

Mathematics

Citation