Show simple item record

dc.contributor.authorBender, Dylan
dc.contributor.authorBarari, Ahmad
dc.date.accessioned2018-11-06T15:37:46Z
dc.date.available2018-11-06T15:37:46Z
dc.date.issuedMay-18
dc.identifierCSME148
dc.identifier.issn978-1-77355-023-7
dc.identifier.urihttp://hdl.handle.net/10315/35269
dc.identifier.urihttp://dx.doi.org/10.25071/10315/35269
dc.description.abstractProportional-Integral-Derivative (PID) control theory is applied to the evolutionary rate of the Bi-Directional Evolutionary Structural Optimization (BESO) method to control aspects of the convergence such as the rise time, stability, and other convergence characteristics. When the PID controller is applied to the BESO topology optimization method, its behavior resembles that of a second order linear system and its response depends on whether it is an overdamped, critically damped or underdamped system. The new algorithm replaces the evolutionary rate control parameter with the three gain values of the controller, namely, the proportional gain, the integral gain and the derivative gain for further control the structure’s evolution.
dc.language.isoenen_US
dc.publisherCSME-SCGMen_US
dc.rightsThe copyright for the paper content remains with the author.
dc.subjectTopology optimization
dc.subjectAdaptive optimization
dc.subjectProportional-Integral-Derivative
dc.subjectBi-Directional Evolutionary Structural Optimization
dc.subjectPID control
dc.subjectComputational Mechanicsen_US
dc.subjectEngineering Analysis & Designen_US
dc.titleConvergence Control For Topology Optimizationen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record