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Abstract— Proportional-Integral-Derivative (PID) control 

theory is applied to the evolutionary rate of the Bi-Directional 

Evolutionary Structural Optimization (BESO) method to 

control aspects of the convergence such as the rise time, 

stability, and other convergence characteristics. When the PID 

controller is applied to the BESO topology optimization 

method, its behavior resembles that of a second order linear 

system and its response depends on whether it is an 

overdamped, critically damped or underdamped system. The 

new algorithm replaces the evolutionary rate control parameter 

with the three gain values of the controller, namely, the 

proportional gain, the integral gain and the derivative gain for 

further control the structure’s evolution. 

Keywords - topology optimization; adaptive optimization; 

Proportional-Integral-Derivative; Bi-Directional Evolutionary 

Structural Optimization ; PID control 

I.  INTRODUCTION 

     Structural optimization consists of three main categories, 
which are size, shape and topology optimization.  Size 
optimization aims to find an optimal design by optimizing 
variables such as cross-sectional dimensions or thicknesses. 
Shape optimization achieves structural optimization by 
changing pre-determined boundaries. Topology optimization, 
the concern of this paper, aims to determine the best locations 
and geometries of cavities within the design domain [1]. Fig. 1 
shows a sample problem definition and resulting optimal 
structure of the Bi-Directional Evolutionary Structural 
Optimization method of topology optimization (BESO).. 
Although the resulting structure has much less material and 
weight, but it maintain the required mechanical stiffness for the 
given loading and boundary condition. Reducing weigh of the 
components is highly desired in various applications, 
particularly in design and manufacturing of automotive and 
aerospace products.  

 

Figure 1. Sample topology optimization problem definition (left) and resulting 

structure (right) 

 

     Significant developments have been seen in topology 
optimization methodologies within the last two decades [2], the 
majority of which are based of Finite Element Analysis. 
However, applications of the developed topology optimization 
methods have been very limited due (i) the limitations in 
manufacturing and inspection of the complex topologies, and 
(ii) the computational complexity of the topology optimization 
algorithms.  A successful design process needs to be conducted 
by considering the details of the manufacturing and inspection 
requirement [3]. Although the additive manufacturing 
processes are still not able to produce high surface qualities [4], 
they are highly flexible in producing the complex geometries 
resulting by the topology optimization methodologies [5]. Also. 
The advances in coordinate metrology algorithms allow 
relatively fast inspection of the complex topologies resulting by 
the topologically optimized designs [6]. 

     The computational complexity is another limiting factor in 
implementation of the topology optimization algorithms. There 
is not that much control on the convergence of these algorithms 
and their computational efficiencies are not addressed well. 
This paper will focus on the convergence control of  a typical 
topology optimization algorithm, Bi-directional Evolutionary 
Structural Optimization. BESO first introduced by [7].  The 
BESO method contains several control parameters including 
target volume fraction, penalty, minimum density, filter radius, 
mesh resolution, and the focus of this paper, the evolutionary 
rate. Traditionally, the evolutionary rate is taken to be a 
constant value, usually 1%, 2% or even as high as 4%, but 
there exists potential to use the evolutionary rate as a parameter 
of adaptive optimization in the form of a Proportional-Integral-
Derivative controller in conjunction with closed-loop feedback. 

     Feedback is a very powerful idea. Its use has often had 
revolutionary consequences with drastic improvements in 
performance [8]. The usefulness of PID controls lies in their 
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general applicability to most control systems. In particular, 
when the mathematical model of the plant is not known and 
therefore analytical design methods cannot be used, PID 
controls prove to be most useful [9]. For this paper, the 
volumetric error signal is used to control the evolutionary rate 
of the BESO algorithm. The volumetric error is calculated as 
the difference in the targeted volume fraction and the current 
iterations volume fraction which can then be integrated and 
differentiated to produce the three inputs of the PID controller. 

II. BACKGROUND 

A. Bi-directional Evolutionary Structural Optimization 

In the Bi-Directional Evolutionary Structural Optimization 
(BESO) method, the optimal topology is determined according 
to the relative ranking of the elemental sensitivity numbers. 
The sensitivity numbers of the elements are conceptualized to 
be the increase in the mean compliance, C, of a structure as a 
result of the removal of the ith element is equal to its elemental 
strain energy [1]. By this definition, the optimization problem 
is to find the most effective way to remove elements so that the 
increase in the compliance is minimal as shown in (1). 

     Minimize: 

 
 

(1) 

     Where f is the nodal DOF force vector and u is the nodal 
displacement vector, both of which has the size 
2*(nely+1)*(nelx+1) where nelx and nely are the number of 
elements in the x- and y-dimensions respectively of the finite 
element mesh. 

     The study on the effect of element removal on the stiffness 
is referred to as the sensitivity analysis. Sensitivity numbers, 
which indicate the change in the overall stiffness (strain 
energy), have been formulated using information available 
from a static finite element analysis [10]. The sensitivity 
number of the ith element is calculated as:  

 

 

(2) 

     Each iteration of the topology optimization problem is 
subject to equation (3) and (4) where V* is the prescribed 
target volume, Vi and xi are the volume and density of each 
element respectively and N is the total number of elements. 

 

 

(3) 

 
 

(4) 

The target volume for the subsequent iteration (Vi +1) or 
(V*) is determined based on the current structural volume, Vi 
the target structural volume, Vc, and the main focus of this 
paper, the evolutionary rate, ER. The subsequent target volume 
is calculated as follows: 

 

 

(5) 

Convergence Criterion: 

 

 

(6) 

The soft-kill BESO MATLAB code downloaded from the 
website www.isg.rmit.edu.au is used as a test platform for the 
methods proposed in this paper. The design domain is assumed 
to be rectangular and discretized using four node plane stress 
elements. Below, in fig. 2, a short cantilever is taken as an 
example of the resulting structure of the unmodified code (the 
graph was generated by the authors of this paper) with the input 
data being: nelx= 120, nely = 60, volfrac = 0.5, ER = 0.02, and 
rmin = 3. 

 

Figure 2: Results of a topology optimized short cantilever with 
optimization parameters: nelx = 120, nely = 60, volfrac = 0.5, ER = 0.02, rmin 
= 3, p = 3. Resulting compliance: 30.96 Nmm.  

B. PID Control of a Second Order Linear System 

     A standard Proportional-Integral-Derivative controller, or 

PID controller for short is a form of a “three-term” controller 

whose transfer function is wrtten as:  

 
 

(7) 

     The “three-term” functionalities are the proportianl term, 

the integral term, and the derivative term. The proportional 

term provides an overall control action proportional to ther 

error signal through the proportional gain factor. The integral 

term reduces steady-state errors through low-frequency 

compensation by an integrator and the derivative term 

improves the transient response through high-frequency 

compensation via a differentiator [8]. The effects of increasing 

these terms can be seen below in Table 1. Rise time refers to 

the number of iterations to reach the target volume for the first 

time, overshoot is the maximum peak value of the response 

curve (volumetric error curve) measured from target volume. 

Settling time refers the number of iterations for the response 

curve to reach and stay within a range of the final volume 

fraction. Steady state error refers to the difference between the 

final equallibrium and the target volume of the response curve. 
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Table 1. Effects of independent P, I, and D tuning [7] 

 
Closed-

Loop 

Response: 

Rise 

Time 

Overshoot Settling 

Time 

Steady 

State 

Error 

Stability 

Increasing 

KP 

Decrease Increase Small 

Increase 

Decrease Degrade 

Increasing 

KI 

Small 

Decrease 

Increase Increase Large 

Decrease 

Degrade 

Increasing 

KD 

Small 

Decrease 

Decrease Decrease Minor 

Change 

Improve 

  

      A family of unit-step response curves with various values 

of damping coefficients, ζ is shown in fig. 3. In control theory, 

a system with a damping coefficient of ζ = 0 is considered 

marginally stable and results in a sinusoidal error signal. A 

damping coefficient of 0 < ζ < 1, results in a system known as 

underdamped where the error signal exhibits a damped 

sunusoidal oscillation and at steady state, no error exists 

between input (target volume) and output (actual volume). A 

damping coefficient of ζ = 1 is considered critically damped 

(often the ideal situation) which exhibits the fastest response. 

A coefficient of ζ > 1 is known as an overdamped system and 

is sluggish in responding to any inputs. 

 

Figure 3. Unit-step response curves for a second order system with varying 

damping ratios [9] 

 

III. METHODOLOGY 

It is expected that, the smaller the value of the element 
removal ratio used, the more accurate is the final design, at the 
expense of larger computation time [10]. This philosophy is 
based on elemental removal ratio strategy considered with 
respect to the current number of elements. The motivation 
behind the applied control theory is to allow for large amounts 
of material to be removed at the beginning of the optimization 
when there exists a lot of inefficient material and for small 
amounts of material to be removed towards then end of the 
optimization as the volumetric error approaches zero. 

     The plot of volume versus iteration number can be 
generalized as a nonlinear function which starts at some 
arbitrary initial volume, then approaches and eventually 
reaches the prescribed target volume. Note that the traditional 
constant evolutionary rate results in a volume graph that 
resembles a piecewise linear function as shown in fig. 2 but the 

adaptive evolutionary rate results in a nonlinear graph as 
presented as seen in fig. 6. 

 

Figure 4. The volumetric error plot with a visualization of the volumetric error 
integral calculation (shaded grey box) and the volumetric error derivative 

(dashed line) 

     The volumetric error is calculated as the difference in the 

current structural volume and the target structural volume and 

demonstrated convergence is graphed in fig. 4. Volumetric 

Error (Ev) is calculated as: 

  (8) 

     The volumetric integral error is caluclated to be the integral 

of the volumetric error signal which may be visualized as the 

area under the volumetric error graph as demonstrated in fig. 

4. Volumetric Integral Error ( ) is calculated as: 

 
 

(9) 

     Where  denotes the current iteration number.  Note that the  

(i - (i - 1))term of (8) evaluates to 1, and therefore may be 

omitted during implementation. 

     The volumetric error derivative is calculated as the rate of 

change of the volumetric error. This can be simplified to 

represent the slope of the line passing through two adjacent 

points of the volumetric error graph as shown in the right 

graph of fig. 4. Volumetric Error Derivative ( ) is calculated 

as: 

 
 

(10) 

     Similar to (9), the (i - (i - 1)) term of equation (8) evaluates 

to 1, and therefore may be omitted during implementation. 

Evolutionary Rate (ER): 

 

 
 

(11) 

     An alternative formula may be used for the next iterations 

target volume in lieu of (5). This method allows for the 

underdamped cases where the evolution’s volume overshoots 

the target volume and returns to an equilibrium at the target 

volume. 
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  (12) 

     Tuning a proportional-integral-derivative (PID) controller 

appears to be conceptually intuitive, but can be hard in 

practice, if multiple (and often conflicting) objectives such as 

short transient and high stability are to be achieved [11]. There 

exist many suggested methods for tuning a PID controller but 

the majority of them require increasing the proportional gain 

until the system becomes unstable or marginally unstable 

which breaks down the topology optimization algorithm when 

implemented. 

 

     For tuning the PID controller, the authors suggest starting 

with a derivative gain of zero and a very small value of the 

integral gain (0.0001 < kI < 0.001) slowly increasing the 

proportional gain until just after the algorithm has reached 

similar performance (e.g. similar compliance and settling 

time) as the standard algorithm. Then, the user should start 

increasing the derivative gain to make the volume 

convergence plot resemble that of a critically damped system. 

If the system seems to take too long to converge, the user 

should increase the integral gain slightly. The authors have 

find that the controller exhibits similar performance 

characteristics for varying mesh resolutions so it is suggested 

that the tuning be carried out on a low-resolution mesh then 

applied to the applicable high-resolution mesh. 

IV. RESULTS AND DISCUSSION 

The first sample topology optimization with the PID 
controller presented in fig. 5 is to demonstrate how closely its 
volumetric convergence resembles that of the response of a 
second order linear dynamic system. With the gain tuning 
values of KP = 0.2, KD = 0.3 and KI = 0.04, it can be seen that 
at first the algorithm overshoots its target volume of 50% and 
reaches a volume fraction of 29%, then overshoots the target 
again on its way back up and reaches a volume fraction of 55% 
before eventually reaching its target and settling down. This 
behaviour resembles that of a system with a damping 
coefficient of 0.3. 

 

Figure 5. Topology optimization result with a PID tuning of kP = 0.2, kD = 0.3, 

kI = 0.04, resulting in a final compliance of 31.06 Nmm 

 

 The second sample optimization run aims to 

demonstrate similar performance to that of the standard BESO 

algorithm but with improved convergence characteristics. The 

example also uses the standard volume calculation of (5) 

instead of the new proposed volume calculation of (12) like 

the previous example. It can be seen that with a controller 

tuning of kP = 0.2, kD = 0.3, kI = 0.04, the optimization reaches 

a similar compliance within the same number of iterations. 

The volume convergence and incidentally the compliance 

make big changes at first when the volumetric error is the 

highest and small, gradual changes towards the end when the 

volumetric error is near zero. 

 
Figure 6. Topology optimization result with a PID tuning of: kP = 0.125, kD = 

0.35, kI = 0.002, resulting in a final compliance of 30.93 Nmm 

 

      The addition of the PID controller to the evolutionary rate 

of the BESO algorithm uses very little resources but provides 

the user with increased control on the algorithm’s convergence 

as well as other surprising characteristics. The authors have 

found tunings that can achieve better compliance in less 

iterations than the standard BESO algorithm but the 

convergence plot is highly unstable. The authors have also 

found tunings that seem to provide length scale invariance 

regardless of the mesh resolution chosen. These intriguing 

cases will explored further in a future publication as the goal 

of this paper was to just introduce the topic.  

     Additionally, the evolutionary rate plays the similar role as 

the move limit in mathematical programming and the step size 

in optimality criteria methods [10]. This fact could be used to 

extend the PID control of the evolutionary rate of the BESO 

method to the move limit of the SIMP or MMA methods and 

will also be explored in future publications. 

V. CONCLUSION 

    This paper presents an approach to control the convergence 

of Bi-Directional Evolutionary Structural Optimization 

algorithm. It is shown  the evolutionary rate is an effective 

control parameter for a closed-loop Proportional-Integral-

Derivative controller in the Bi-Directional Evolutionary 

Structural Optimization method. The developed methodology 

provides the user with effective control of various 

convergence characteristics of the volumetric evolution during 

the topology optimization process. 
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