An 8-Channel Bidirectional Neurostimulator IC with a Highly-Linear High-Dynamic-Range ADC-Direct Architecture for Simultaneous Recording and Stimulation

Loading...
Thumbnail Image

Authors

Moeinfard, Tania

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis presents the design, implementation, and validation of an 8-channel bidirectional neurostimulator IC with a highly-linear high-dynamic-range ADC-direct architecture for simultaneous recording and stimulation. Each channel hosts a novel highly-linear high-dynamic-range recording architecture capable of amplification and quantization of brains neural signals in the presence of large differential-mode and common-mode stimulation artifacts, as well as a fully-programmable 8-bit current-mode electrical stimulator. The architecture enables the possibility of a patient-specific stimulation therapy required for the next generation of implantable closed-loop neuro-stimulators used for treatment of various neurological disorders. The proposed design adopts an ADC-direct architecture employing a dual-loop SAR-assisted continuous-time delta-sigma ADC architecture for differential-mode stimulation artifacts and offset removal. The presented channel achieves a high input impedance (1.8 G at 1 kHz), 400 mV linear input signal range, 94 dB dynamic range, and consumes 4.6 W with a signal bandwidth of 5 kHz.

Description

Keywords

Biomedical Engineering

Citation