YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Finite element analysis of 2-D tubular braided composite based on geometrical models to study mechanical performances

Loading...
Thumbnail Image

Date

2021-11-21

Authors

Gholami, Ali
Melenka, Garrett W.

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis

Abstract

Tubular Braided Composites (TBC) have a higher strength to weight ratio than conventional materials and better mechanical properties compared to laminated composite materials. The optimization of the TBC and the introduction of new applications requires a comprehensive understanding of TBC’s behavior. One efficient way to study the behavior of TBC is using Finite Element Modeling (FEM). This paper will introduce a method for generating geometrical models with different patterns and variables. Micro Computed-Tomography (μCT) is also used for generating an actual 3-D model of a TBC. The geometrical model and the μCT models are visually compared. The geometrical model is inputted into the FEM software package and is studied in different conditions. Finally, the result of FEM is compared against experimental and analytical results.

Description

Keywords

Composite material, tubular braided composite, open-mesh braided composite, finite element analysis, tensile test, Micro-computed tomography, mechanical performances, geometrical model, periodic boundary condition, unit-cell model

Citation

A. Gholami and G. W. Melenka, “Finite element analysis of 2-D tubular braided composite based on geometrical models to study mechanical performances models to study mechanical performances,” Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–17, 2021, doi: 10.1080/15376494.2021.2001879.