YorkSpace
York University's Institutional Repository
    • English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   YorkSpace Home
  • Faculty of Graduate Studies
  • Electronic Theses and Dissertations (ETDs)
  • Computer Science and Engineering
  • View Item
  •   YorkSpace Home
  • Faculty of Graduate Studies
  • Electronic Theses and Dissertations (ETDs)
  • Computer Science and Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing Human-Building Interactions in Virtual Environments Using Crowd Simulations

Thumbnail
View/Open
Usman_Muhammad_2020_PhD.pdf (25.19Mb)
Date
2020-11-13
Author
Usman, Muhammad

Metadata
Show full item record
Abstract
This research explores the relationship between human-occupancy and environment designs by means of human behavior simulations. Predicting and analyzing user-related factors during environment designing is of vital importance. Traditional Computer-Aided Design (CAD) and Building Information Modeling (BIM) tools mostly represent geometric and semantic aspects of environment components (e.g., walls, pillars, doors, ramps, and floors). They often ignore the impact that an environment layout produces on its occupants and their movements. In recent efforts to analyze human social and spatial behaviors in buildings, researchers have started using crowd simulation techniques for dynamic analysis of urban and indoor environments. These analyses assist the designers in analyzing crowd-related factors in their designs and generating human-aware environments. This dissertation focuses on developing interactive solutions to perform spatial analytics that can quantify the dynamics of human-building interactions using crowd simulations in the virtual and built-environments. Partially, this dissertation aims to make these dynamic crowd analytics solutions available to designers either directly within mainstream environment design pipelines or as cross-platform simulation services, enabling users to seamlessly simulate, analyze, and incorporate human-centric dynamics into their design workflows.
URI
http://hdl.handle.net/10315/37969
Collections
  • Computer Science and Engineering

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
Sitemap for search engines

 

Browse

All of YorkSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
Sitemap for search engines