YorkSpace
    • English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   YorkSpace Home
  • Canadian Society for Mechanical Engineering (CSME) International Congress
  • CSME Conference Proceedings (May 27-30, 2018)
  • View Item
  •   YorkSpace Home
  • Canadian Society for Mechanical Engineering (CSME) International Congress
  • CSME Conference Proceedings (May 27-30, 2018)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meso-Scale Computational Modeling Of Hypervelocity Impact Damage In Advanced Materials

Thumbnail
View/Open
CSME2018_paper_232.pdf (1.097Mb)
Date
May-18
Author
Cherniaev, Aleksandr
Telichev, Igor


Metadata
Show full item record
Abstract
Modeling of hypervelocity impact (HVI) on materials and structures is often associated with high computational expenses, especially when inhomogeneous materials are involved. To reduce computational cost, complex materials are often represented in modeling as homogeneous substances with the effective properties similar to those of the real materials. Although this approach has been successfully used in modeling of HVI on different materials with complex architecture, there are applications where it may not be applicable due to significant influence of materials’ mesoscale features on resulting HVI damage. Two of such applications are considered in this study, and include simulation of HVI on sandwich panels with metallic foamcores, and composites fabricated by filament winding. In the former case, adequate modeling of the multi-shock action of the foam ligaments on hypervelocity fragment cloud propagating through the foam core requires an explicit representation of the foam geometry in numerical model. In the latter case, the meso-scale modeling is required due to experimentally observed dependence of HVI damage of the composite on the particular filament winding pattern used in its fabrication. The study presents numerical models developed for both of these applications and compares numerical results with obtained experimental data.
URI
http://hdl.handle.net/10315/35256
http://dx.doi.org/10.25071/10315/35256
Collections
  • CSME Conference Proceedings (May 27-30, 2018)

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
link to sitemap

 

Browse

All of YorkSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
link to sitemap