YorkSpace
York University's Institutional Repository
    • English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   YorkSpace Home
  • Faculty of Graduate Studies
  • Electronic Theses and Dissertations (ETDs)
  • Earth & Space Science
  • View Item
  •   YorkSpace Home
  • Faculty of Graduate Studies
  • Electronic Theses and Dissertations (ETDs)
  • Earth & Space Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of Turbulence on Hurricane Intensity Forecast

Thumbnail
View/Open
Kurkute_Sopan_A_2014_MSc.pdf (4.790Mb)
Date
2015-08-28
Author
Kurkute, Sopan Anantha

Metadata
Show full item record
Abstract
Hurricane intensity prediction and track forecasts are very sensitive to tur- bulence within the Hurricane Boundary Layer (HBL). In the Advanced Research Weather Research and Forecasting (WRF-ARW) model the effect of the sub- grid scale (SGS) turbulence can be represented by varying the magnitude of the model grid-size (∆x) and Smagorinsky constant (Cs). The effect of turbu- lence on the hurricane intensity has been investigated by simulating Hurricane Danielle (2010) using WRF-ARW model. The properties and characteristics of the turbulence within the HBL has been investigated by a Large Eddy Simu- lation (LES) of the idealised Hurricane using WRF. The kinetic energy spectra computed for a high-resolution domain of grid-size ∆x = 62m showed that the size of the maximum energetic turbulent eddies lies between 700m-3000m and matches well with the estimated horizontal turbulence mixing length scale Lh ≈ 750m − 1500m. Defining a filter scale of ≈ 1.5km matching with the resolution of the current hurricane forecast models, the flow in the HBL was spectrally decomposed into the filter scale and sub-filter scale (SFS) motions. The SFS turbulent motions were then used for diagnosing the turbulence prop- erties within HBL. The estimated Turbulent Kinetic Energy (TKE) budget shows that shear production is the dominant mechanism for generating tur- bulence, but it is also largely balanced by the advection within the HBL. The magnitude of the gradient of the explicitly estimated SFS turbulence stress tensor is two order of magnitude larger than that of the turbulence parame- terization schemes. In general the parameterization schemes of WRF-ARW model underestimate the turbulence effects on the resolved scale within HBL.
URI
http://hdl.handle.net/10315/29962
Collections
  • Earth & Space Science

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
Sitemap for search engines

 

Browse

All of YorkSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

All items in the YorkSpace institutional repository are protected by copyright, with all rights reserved except where explicitly noted.

YorkU LogoContact Us | Send Feedback
Sitemap for search engines