Using Learning to Rank Approach to Promoting Diversity for Biomedical Information Retrieval with Wikipedia
Résumé
In most of the traditional information retrieval (IR) models, the independent
relevance assumption is taken, which assumes the relevance of a document is
independent of other documents. However, the pitfall of this is the high redundancy
and low diversity of retrieval result. This has been seen in many scenarios, especially
in biomedical IR, where the information need of one query may refer to different
aspects. Promoting diversity in IR takes the relationship between documents into
account. Unlike previous studies, we tackle this problem in the learning to rank
perspective. The main challenges are how to find salient features for biomedical data
and how to integrate dynamic features into the ranking model. To address these
challenges, Wikipedia is used to detect topics of documents for generating diversity
biased features. A combined model is proposed and studied to learn a diversified
ranking result. Experiment results show the proposed method outperforms baseline
models.
relevance assumption is taken, which assumes the relevance of a document is
independent of other documents. However, the pitfall of this is the high redundancy
and low diversity of retrieval result. This has been seen in many scenarios, especially
in biomedical IR, where the information need of one query may refer to different
aspects. Promoting diversity in IR takes the relationship between documents into
account. Unlike previous studies, we tackle this problem in the learning to rank
perspective. The main challenges are how to find salient features for biomedical data
and how to integrate dynamic features into the ranking model. To address these
challenges, Wikipedia is used to detect topics of documents for generating diversity
biased features. A combined model is proposed and studied to learn a diversified
ranking result. Experiment results show the proposed method outperforms baseline
models.