DSpace Repository

Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation

Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation

Show full item record

Title: Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation
Author: Abrarov, S. M.
Quine, B. M.
Abstract: We show that a Fourier expansion of the exponential multiplier yields an exponential series that can compute high-accuracy values of the complex error function in a rapid algorithm. Numerical error analysis and computational test reveal that with essentially higher accuracy it is as fast as FFT-based Weideman’s algorithm at a regular size of the input array and considerably faster at an extended size of the input array. As this exponential series approximation is based only on elementary functions, the algorithm can be implemented utilizing freely available functions from the standard libraries of most programming languages. Due to its simplicity, rapidness, high-accuracy and coverage of the entire complex plane, the algorithm is efficient and practically convenient in numerical methods related to the spectral line broadening and other applications requiring error-function evaluation over extended input arrays.
Subject: Complex error function, Voigt function, Faddeeva function, Weideman’s algorithm, Complex probability function, Plasma dispersion function, Spectral line broadening
Type: Learning Object
Rights: http://dx.doi.org/10.1016/j.amc.2011.06.072
URI: http://hdl.handle.net/10315/10172
Published: Elsevier, Applied Mathematics and Computation
Date: 2011-11-01

Files in this item



This item appears in the following Collection(s)