YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Dynamic Elastic Provisioning For NFV-Enabled 5G Networks Using Machine Learning

Loading...
Thumbnail Image

Date

2023-03-28

Authors

Ali, Khalid

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

5G networks are expected to support a variety of services and applications by having a more stringent latency, reliability, and bandwidth requirements compared to previous generations. To meet these requirements, Open Radio Access Networks (O-RAN) has been proposed. The O-RAN Alliance assumes O-RAN components to be Virtualized Network Functions (VNFs). Furthermore, O-RAN allows employing Machine Learning (ML) solutions to tackle challenges in resource management. However, intelligently managing resources for O-RAN can prove challenging. Network providers need to dynamically scale resources in response to incoming traffic. Elastically allocating resources provides higher flexibility, reduces OPerational EXpenditure (OPEX), and increases resource utilization. In this work, we propose and evaluate an elastic VNF orchestration framework for O-RAN. The proposed system consists of a traffic forecasting-based dynamic scaling scheme using ML, and a Reinforcement Learning (RL) based VNF placement policy. The models are evaluated based on their predictive capabilities subject to all Service-Level Agreements.

Description

Keywords

Information technology, Artificial intelligence

Citation