On the Fourier expansion method for highly accurate computation of the Voigt/complex error function in a rapid algorithm
dc.contributor.author | Abrarov, S. M. | |
dc.contributor.author | Quine, B. M. | |
dc.date.accessioned | 2012-06-21T18:43:59Z | |
dc.date.available | 2012-06-21T18:43:59Z | |
dc.date.issued | 2012-06-21 | |
dc.description.abstract | In our recent publication [1] we presented an exponential series approximation suitable for highly accurate computation of the complex error function in a rapid algorithm. In this Short Communication we describe how a simplified representation of the proposed complex error function approximation makes possible further algorithmic optimization resulting in a considerable computational acceleration without compromise on accuracy. | |
dc.identifier.uri | http://hdl.handle.net/10315/17324 | |
dc.identifier.uri | https://arxiv.org/abs/1205.1768 | |
dc.language.iso | en | |
dc.subject | Complex error function | |
dc.subject | Voigt function | |
dc.subject | Faddeeva function | |
dc.subject | complex probability function | |
dc.subject | plasma dispersion function | |
dc.subject | spectral line broadening | |
dc.title | On the Fourier expansion method for highly accurate computation of the Voigt/complex error function in a rapid algorithm | |
dc.type | Preprint |