On the Fourier expansion method for highly accurate computation of the Voigt/complex error function in a rapid algorithm

dc.contributor.authorAbrarov, S. M.
dc.contributor.authorQuine, B. M.
dc.date.accessioned2012-06-21T18:43:59Z
dc.date.available2012-06-21T18:43:59Z
dc.date.issued2012-06-21
dc.description.abstractIn our recent publication [1] we presented an exponential series approximation suitable for highly accurate computation of the complex error function in a rapid algorithm. In this Short Communication we describe how a simplified representation of the proposed complex error function approximation makes possible further algorithmic optimization resulting in a considerable computational acceleration without compromise on accuracy.
dc.identifier.urihttp://hdl.handle.net/10315/17324
dc.identifier.urihttps://arxiv.org/abs/1205.1768
dc.language.isoen
dc.subjectComplex error function
dc.subjectVoigt function
dc.subjectFaddeeva function
dc.subjectcomplex probability function
dc.subjectplasma dispersion function
dc.subjectspectral line broadening
dc.titleOn the Fourier expansion method for highly accurate computation of the Voigt/complex error function in a rapid algorithm
dc.typePreprint

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Voigt_complex_error_function.pdf
Size:
237.07 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: