BIM based Energy Consumption Estimation using Data-driven model

dc.contributor.advisorJadidi, Mojgan
dc.contributor.authorKiavarz Moghaddam, Hamid
dc.date.accessioned2024-07-18T21:29:28Z
dc.date.available2024-07-18T21:29:28Z
dc.date.copyright2024-04-30
dc.date.issued2024-07-18
dc.date.updated2024-07-18T21:29:28Z
dc.degree.disciplineEarth & Space Science
dc.degree.levelDoctoral
dc.degree.namePhD - Doctor of Philosophy
dc.description.abstractBuilding Information Modeling (BIM) is undergoing rapid technological evolution in the building construction industry. Recently, employing BIM as a building 3D digital model in Building Energy Consumption Estimation (BECE) has gained momentum because of the enriched geometric and semantic information. Indeed, indoor BECE notably depends on the semantics, geometry (building elements and shapes), and topology information of the building's elements to recognize the spaces in a building with high energy demand. However, despite extensive studies on applying the BIM and Industry Foundation Classes (IFC) as an open standard data model for BIM in BECE analysis, employing the full potential of the BIM remains poor due to its data model complexity and incompatibility with BECE data-driven algorithms. There is a significant lack of building energy modeling in using the detailed geometry, semantic, and 3D topology information in BECE data-driven models. The objective of this dissertation is to develop an innovative and comprehensive framework called space-based precise building energy consumption estimation using BIM. In this research, a framework is developed to convert the IFC model into a space-based graph, including the geometry, semantic, and topology information on the proposed graph nodes and edges. The graph is compatible with the machine learning algorithm. A graph-based classification algorithm is suggested in this research to find critical spaces in the building for energy consumption. This research proposed a prescriptive model by integrating building energy simulation with optimization techniques, using BIM data and a Genetic Algorithm (GA) to develop a prescriptive model for indoor building design. The study focuses on space-based BECE analysis, leveraging BIM interoperability to recommend optimal solutions. The proposed model employs the value engineering method to balance energy consumption, functionality, and cost, providing engineers and designers with insights to optimize building performance effectively. This approach enhances energy efficiency and offers substantial design optimization solutions, bridging the gap between energy prediction and practical application in the architectural, engineering, and construction (AEC) industry. The outcomes of this study are conducive to contemporary data-driven models in BIM and indoor BECE analysis. This provides a comprehensive perspective on both present and prospective requirements for BIM in the estimation of building energy consumption. The study integrates various sectors, including architecture, construction, machine learning, ad 3D geospatial analysis, aiming to derive comprehensive and optimal solutions. Furthermore, it underscores the necessity for future multidisciplinary research by unfolding existing gaps and limitations.
dc.identifier.urihttps://hdl.handle.net/10315/42206
dc.languageen
dc.rightsAuthor owns copyright, except where explicitly noted. Please contact the author directly with licensing requests.
dc.subjectEngineering
dc.subjectGeographic information science
dc.subjectEnergy
dc.subject.keywordsGIS
dc.subject.keywordsBIM
dc.subject.keywordsAI
dc.subject.keywordsML
dc.subject.keywordsGraph NN
dc.subject.keywordsEnergy consumption
dc.subject.keywords3D model
dc.subject.keywordsGenetic algorithm
dc.subject.keywordsOptimization
dc.titleBIM based Energy Consumption Estimation using Data-driven model
dc.typeElectronic Thesis or Dissertation

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_final.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
YorkU_ETDlicense.txt
Size:
3.39 KB
Format:
Plain Text
Description: