Rational Agents: Prioritized Goals, Goal Dynamics, and Agent Programming Languages with Declarative Goals
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
I introduce a specification language for modeling an agent's prioritized goals and their dynamics. I use the situation calculus along with Reiter's solution to the frame problem and predicates for describing agents' knowledge as my base formalism. I further enhance this language by introducing a new sort of infinite paths. Within this language, I discuss how to systematically specify prioritized goals and how to precisely describe the effects of actions on these goals. These actions include adoption and dropping of goals and subgoals. In this framework, an agent's intentions are formally specified as the prioritized intersection of her goals. The prioritized'' qualifier above means that the specification must respect the priority ordering of goals when choosing between two incompatible goals. I ensure that the agent's intentions are always consistent with each other and with her knowledge. I investigate two variants with different commitment strategies. Agents specified using the
optimizing'' agent framework always try to optimize their intentions, while those specified in the ``committed'' agent framework will stick to their intentions even if opportunities to commit to higher priority goals arise when these goals are incompatible with their current intentions. For these, I study properties of prioritized goals and goal change. I also give a definition of subgoals, and prove properties about the goal-subgoal relationship.
As an application, I develop a model for a Simple Rational Agent Programming Language (SR-APL) with declarative goals. SR-APL is based on the ``committed agent'' variant of this rich theory, and combines elements from Belief-Desire-Intention (BDI) APLs and the situation calculus based ConGolog APL. Thus SR-APL supports prioritized goals and is grounded on a formal theory of goal change. It ensures that the agent's declarative goals and adopted plans are consistent with each other and with her knowledge. In doing this, I try to bridge the gap between agent theories and practical agent programming languages by providing a model and specification of an idealized BDI agent whose behavior is closer to what a rational agent does. I show that agents programmed in SR-APL satisfy some key rationality requirements.