A BIM - GIS Integrated Information Model Using Semantic Web and RDF Graph Databases
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In recent years, 3D virtual indoor and outdoor urban modelling has become an essential geospatial information framework for civil and engineering applications such as emergency response, evacuation planning, and facility management. Building multi-sourced and multi-scale 3D urban models are in high demand among architects, engineers, and construction professionals to achieve these tasks and provide relevant information to decision support systems. Spatial modelling technologies such as Building Information Modelling (BIM) and Geographical Information Systems (GIS) are frequently used to meet such high demands. However, sharing data and information between these two domains is still challenging. At the same time, the semantic or syntactic strategies for inter-communication between BIM and GIS do not fully provide rich semantic and geometric information exchange of BIM into GIS or vice-versa. This research study proposes a novel approach for integrating BIM and GIS using semantic web technologies and Resources Description Framework (RDF) graph databases. The suggested solution's originality and novelty come from combining the advantages of integrating BIM and GIS models into a semantically unified data model using a semantic framework and ontology engineering approaches. The new model will be named Integrated Geospatial Information Model (IGIM). It is constructed through three stages. The first stage requires BIMRDF and GISRDF graphs generation from BIM and GIS datasets. Then graph integration from BIM and GIS semantic models creates IGIMRDF. Lastly, the information from IGIMRDF unified graph is filtered using a graph query language and graph data analytics tools. The linkage between BIMRDF and GISRDF is completed through SPARQL endpoints defined by queries using elements and entity classes with similar or complementary information from properties, relationships, and geometries from an ontology-matching process during model construction. The resulting model (or sub-model) can be managed in a graph database system and used in the backend as a data-tier serving web services feeding a front-tier domain-oriented application. A case study was designed, developed, and tested using the semantic integrated information model for validating the newly proposed solution, architecture, and performance.