Maximal Saturated Linear Orders
dc.contributor.advisor | Steprans, Juris | |
dc.creator | Kibedi, Francisco Guillermo Justo | |
dc.date.accessioned | 2016-09-20T16:26:52Z | |
dc.date.available | 2016-09-20T16:26:52Z | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2016-09-20 | |
dc.date.updated | 2016-09-20T16:26:52Z | |
dc.degree.discipline | Mathematics & Statistics | |
dc.degree.level | Doctoral | |
dc.degree.name | PhD - Doctor of Philosophy | |
dc.description.abstract | The goal of this dissertation is to prove two theorems related to a question posed by Felix Hausdorff in 1907 regarding pantachies, which are maximal linearly ordered subsets of the space of real-valued sequences partially ordered by eventual domination. Hausdorff's question was as follows: is there a pantachie containing no gaps of order type the first uncountable cardinal? In Chapter 1, some terminology is defined, and Hausdorff's question about pantachies is explored. Some related work by other mathematicians is examined, both preceding and following Hausdorff's paper. In Chapter 2, relevant definitions and results about forcing, gaps, and saturated linear orders are collected. Chapter 3 contains the complete proof of the first theorem, namely, the consistency of the existence of a saturated Hausdorff pantachie in a model where the continuum hypothesis (CH) fails. Finally, in Chapter 4, a different method is used to prove a stronger result, namely, the consistency of the existence of a saturated Hausdorff pantachie in a model of Martin's Axiom along with the negation of CH. The appendix mentions a few related open questions and some partial answers. | |
dc.identifier.uri | http://hdl.handle.net/10315/32107 | |
dc.language.iso | en | |
dc.rights | Author owns copyright, except where explicitly noted. Please contact the author directly with licensing requests. | |
dc.subject | Theoretical mathematics | |
dc.subject.keywords | Set Theory | |
dc.subject.keywords | Cardinal | |
dc.subject.keywords | Cardinal Arithmetic | |
dc.subject.keywords | Independence | |
dc.subject.keywords | Generic | |
dc.subject.keywords | Genericity | |
dc.subject.keywords | Delta-system | |
dc.subject.keywords | Hausdorff | |
dc.subject.keywords | Felix Hausdorff | |
dc.subject.keywords | Pantachie | |
dc.subject.keywords | Maximal linear order | |
dc.subject.keywords | Maximal | |
dc.subject.keywords | Linear | |
dc.subject.keywords | Linear order | |
dc.subject.keywords | Order | |
dc.subject.keywords | Partial order | |
dc.subject.keywords | Saturated | |
dc.subject.keywords | Saturated linear order | |
dc.subject.keywords | Maximal saturated linear order | |
dc.subject.keywords | Saturation | |
dc.subject.keywords | Eventual domination | |
dc.subject.keywords | Forcing | |
dc.subject.keywords | Forcing Extension | |
dc.subject.keywords | Iterated Forcing | |
dc.subject.keywords | Finite-support iterated forcing | |
dc.subject.keywords | Gaps | |
dc.subject.keywords | Gap-filling | |
dc.subject.keywords | Pregaps | |
dc.subject.keywords | Cuts | |
dc.subject.keywords | Cut-filling | |
dc.subject.keywords | continuum | |
dc.subject.keywords | Continuum Hypothesis | |
dc.subject.keywords | Martin’s Axiom | |
dc.subject.keywords | CH | |
dc.subject.keywords | MA | |
dc.subject.keywords | Kunen | |
dc.subject.keywords | Partial Order | |
dc.subject.keywords | Countable chain condition | |
dc.subject.keywords | Ccc | |
dc.subject.keywords | Special gaps | |
dc.subject.keywords | Strong gaps | |
dc.subject.keywords | Suslin Trees | |
dc.subject.keywords | Aronszajn Trees | |
dc.subject.keywords | Paul du Bois-Reymond | |
dc.subject.keywords | Rates of convergence | |
dc.subject.keywords | Infinitesimal | |
dc.subject.keywords | Hyper-reals | |
dc.subject.keywords | Ultrapower | |
dc.subject.keywords | Ultrafilter | |
dc.subject.keywords | Ideal | |
dc.subject.keywords | Divergence | |
dc.subject.keywords | Divergence Ordering | |
dc.subject.keywords | Convergence | |
dc.subject.keywords | Almost Containment | |
dc.subject.keywords | Richard Laver | |
dc.subject.keywords | Investigations into Order Types | |
dc.subject.keywords | Universal | |
dc.subject.keywords | Universal linear order | |
dc.subject.keywords | Baumgartner | |
dc.subject.keywords | James Baumgartner | |
dc.subject.keywords | Kenneth Kunen | |
dc.subject.keywords | Woodin | |
dc.subject.keywords | Hugh Woodin | |
dc.subject.keywords | Proper Forcing Axiom | |
dc.subject.keywords | Uniform Dense | |
dc.subject.keywords | Special Trees | |
dc.subject.keywords | Specializer | |
dc.subject.keywords | Tree-Specializer | |
dc.subject.keywords | Tree-Specializing forcing | |
dc.subject.keywords | ccc-fillable | |
dc.subject.keywords | ccc-indestructible | |
dc.subject.keywords | Pre-caliber | |
dc.subject.keywords | Pre-caliber aleph 1 | |
dc.subject.keywords | Model | |
dc.subject.keywords | Ground model | |
dc.subject.keywords | Countable transitive model | |
dc.subject.keywords | ZFC | |
dc.subject.keywords | Antichain | |
dc.subject.keywords | Maximal antichain | |
dc.subject.keywords | Nice partial order | |
dc.subject.keywords | Kibedi | |
dc.subject.keywords | Francisco Kibedi | |
dc.subject.keywords | Steprans | |
dc.subject.keywords | Juris Steprans | |
dc.title | Maximal Saturated Linear Orders | |
dc.type | Electronic Thesis or Dissertation |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Kibedi_Francisco_G_2015_PhD.pdf
- Size:
- 594.47 KB
- Format:
- Adobe Portable Document Format
- Description: