Content-Based Exploration of Archival Images Using Neural Networks

dc.contributor.authorAdewoye, Tobi
dc.contributor.authorHan, Xiao
dc.contributor.authorRuest, Nick
dc.contributor.authorMilligan, Ian
dc.contributor.authorFritz, Samantha
dc.contributor.authorLin, Jimmy
dc.date.accessioned2020-05-26T12:42:52Z
dc.date.available2020-05-26T12:42:52Z
dc.date.issued2020-08
dc.description.abstractWe present DAIRE (Deep Archival Image Retrieval Engine), an image exploration tool based on latent representations derived from neural networks, which allows scholars to "query" using an image of interest to rapidly find related images within a web archive. This work represents one part of our broader effort to move away from text-centric analyses of web archives and scholarly tools that are direct reflections of methods for accessing the live web. This short piece describes the implementation of our system and a case study on a subset of the GeoCities web archive.en_US
dc.description.sponsorshipThis research was supported in part by the Andrew W. Mellon Foundation and the Social Sciences and Humanities Research Council of Canada.en_US
dc.identifier.urihttps://doi.org/10.1145/3383583.3398577en_US
dc.identifier.urihttps://hdl.handle.net/10315/37504
dc.language.isoenen_US
dc.publisherACM/IEEEen_US
dc.relation.ispartofseriesJoint Conference on Digital Libraries;2020
dc.rights.articlehttps://doi.org/10.1145/3383583.3398577en_US
dc.subjectweb archivesen_US
dc.subjectimage retrievalen_US
dc.subjectneural networksen_US
dc.subjectinformation retrievalen_US
dc.subjectInformation systems~Image search
dc.subjectApplied computing~Digital libraries and archives
dc.subjectimage similarity
dc.subjectimage browsing
dc.subjectGeoCities
dc.titleContent-Based Exploration of Archival Images Using Neural Networksen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
image-search.pdf
Size:
551.07 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: