YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Radiative Transfer in the Martian Environment: In-Situ Results from the MSL Curiosity Rover and Laboratory Experimentation on Martian Regolith and Crystalline Rock Analogs

dc.contributor.advisorMoores, John
dc.creatorMoore, Casey Aaron
dc.date.accessioned2019-03-05T15:00:44Z
dc.date.available2019-03-05T15:00:44Z
dc.date.copyright2018-12-05
dc.date.issued2019-03-05
dc.date.updated2019-03-05T15:00:44Z
dc.degree.disciplineEarth & Space Science
dc.degree.levelDoctoral
dc.degree.namePhD - Doctor of Philosophy
dc.description.abstractGlobal circulation models predicted a suppressed planetary boundary layer within Gale Crater prior to the landing of the Mars Science Laboratory. Images from Mars allow the amount of suspended dust near the crater floor to be estimated numerically. The atmosphere within the crater is shown to be relatively dust free compared to the amount of dust inferred in the atmospheric column, suggesting little mixing between the upper and lower layers. The dust within the crater appears to be well mixed horizontally, implying that dust events (such as dust devils or lateral dust transport) in the northern plains of Gale Crater are rare, even during the most convective time of day. This supports the notion of a suppressed planetary boundary layer within Gale Crater. Radiative transfer modeling of the martian atmosphere benefits from this quantification of low-lying dust. This dissertation aims to expand our knowledge of the radiation environment of Mars into its surface and subsurface. The scattering of radiation through analog martian materials is an area with little research. A mini-goniometer is built to collect transmission spectra as a function of scattering angle for martian analog regoliths and crystalline rock samples. Materials show strong forward or isotropic scattering profiles through the samples. The transmission through the materials is assessed at ultraviolet and visible wavelengths. Kieserite and the majority of the rock samples exhibit an isotropic scattering profile and attenuate ultraviolet radiation significantly. Ultraviolet shielding materials are potential ecological niches for biosignatures, and this dissertation aims to guide the search for these environments on present day Mars. Studies into the habitability of martian surface analogs typically assess the amount of radiation transmitting perpendicular into a surface. This does not fully characterize the multiple surface scattering that exists within these materials. The depths at which radioresistant microorganisms can exist on present day Mars are estimated by modeling the isotropic transmission scattering profiles for kieserite and crystalline rocks under martian insolation. A depth between 2 and 10 mm into the martian subsurface is enough to attenuate ultraviolet radiation to levels suitable to terrestrial radioresistant microorganisms.
dc.identifier.urihttp://hdl.handle.net/10315/35918
dc.language.isoen
dc.rightsAuthor owns copyright, except where explicitly noted. Please contact the author directly with licensing requests.
dc.subjectGeobiology
dc.subject.keywordsMars
dc.subject.keywordsMars Science Laboratory
dc.subject.keywordsMartian dust
dc.subject.keywordsMars opacity
dc.subject.keywordsRadiative transfer
dc.subject.keywordstransmission spectroscopy
dc.subject.keywordsastrobiology
dc.subject.keywordsmartian atmosphere
dc.subject.keywordsregolith
dc.subject.keywordsendolithic environment
dc.subject.keywordshabitability
dc.subject.keywordsextremophile
dc.titleRadiative Transfer in the Martian Environment: In-Situ Results from the MSL Curiosity Rover and Laboratory Experimentation on Martian Regolith and Crystalline Rock Analogs
dc.typeElectronic Thesis or Dissertation

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Moore_Casey_A_2019_PhD.pdf
Size:
22.19 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
YorkU_ETDlicense.txt
Size:
3.39 KB
Format:
Plain Text
Description: