YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Self-Similar Models of Quasar Outflow Shock Structures

Loading...
Thumbnail Image

Date

2024-03-16

Authors

Weiss, Erik Adam

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Supersonic winds of outflowing material are observed and/or predicted in a number of astrophysical systems; such winds may drive an expanding shock structure that shocks and pushes the ambient interstellar medium (ISM) outward. This thesis analyses, combines and expands on existing analytic self-similar models of these structures in the context of quasar accretion disk winds; we then search for the bulk acceleration (positive or negative) of low-velocity Ca II in the quasar SDSS J030000.0+004828.0 (J0300) and compare our results to model predictions. We find a strong upper limit on the acceleration magnitude, yielding plausible model constraints, but the observed range of gas velocities implies that the Ca II velocity profile does not coincide with that of the shocked ISM. We conclude with a discussion of recent results regarding J0300's outflow properties and briefly investigate the possibility of pre-existing ISM cloud disruption as an explanation for the observed Ca II velocity profile.

Description

Keywords

Astrophysics, Astronomy

Citation