12C/13C kinetic isotope effects of the gas-phase reactions of isoprene, methacrolein, and methyl vinyl ketone with OH radicals

Loading...
Thumbnail Image

Date

Authors

Iannone, Richard
Koppmann, Ralf
Rudolph, Jochen

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, methacrolein (MACR), and methyl vinyl ketone (MVK) with OH radicals were studied in a 25 L reaction chamber at (298 ± 2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE experiments had natural-abundance isotopic composition thus KIE data obtained from these experiments can be directly applied to atmospheric studies of isoprene chemistry. All 13C/12C KIE values are reported as ε values, where ε = (KIE – 1) × 1000‰, and KIE = k12/k13. The following average stable-carbon KIEs were obtained: (6.56±0.12)‰ (isoprene), (6.47±0.27)‰ (MACR), and (7.58±0.47)‰ (MVK). The measured KIEs all agree within uncertainty to an inverse molecular mass (MM) dependence of OHε(‰) = (487±18)MM–1,which was derived from two previous studies [J. Geophys. Res. 2000, 105, 29329–29346; J. Phys. Chem. A 2004, 108, 11537–11544]. Upon adding the isoprene, MACR, and MVK OHε values from this study, the inverse MM dependence changes only marginally to OHε(‰) = (485±14)MM–1. The addition of these isoprene OHε values to a recently measured set of O3ε values in an analogous study [Atmos. Environ. 2008, 42, 8728–8737] allows for estimates of the average change in the 12C/13C ratio due to processing in the troposphere.

Description

Keywords

GC-IRMS, Methyl Vinyl Ketone, Methacrolein, Isoprene, Kinetic isotope effect

Citation

Atmospheric Environment; 43, 3103-3110