Computer Science
Permanent URI for this collection
Browse
Browsing Computer Science by Subject "Active vision"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Active Observers in a 3D World: Human Visual Behaviours for Active Vision(2022-12-14) Solbach, Markus Dieter; Tsotsos, John K.Human-like performance in computational vision systems is yet to be achieved. In fact, human-like visuospatial behaviours are not well understood – a crucial capability for any robotic system whose role is to be a real assistant. This dissertation examines human visual behaviours involved in solving a well-known visual task; The Same-Different Task. It is used as a probe to explore the space of active human observation during visual problem-solving. It asks a simple question: “are two objects the same?”. To study this question, we created a set of novel objects with known complexity to push the boundaries of the human visual system. We wanted to examine these behaviours as opposed to the static, 2D, display-driven experiments done to date. We thus needed to develop a complete infrastructure for an experimental investigation using 3D objects and active, free, human observers. We have built a novel, psychophysical experimental setup that allows for precise and synchronized gaze and head-pose tracking to analyze subjects performing the task. To the best of our knowledge, no other system provides the same characteristics. We have collected detailed, first-of-its-kind data of humans performing a visuospatial task in hundreds of experiments. We present an in-depth analysis of different metrics of humans solving this task, who demonstrated up to 100% accuracy for specific settings and that no trial used less than six fixations. We provide a complexity analysis that reveals human performance in solving this task is about O(n), where n is the size of the object. Furthermore, we discovered that our subjects used many different visuospatial strategies and showed that they are deployed dynamically. Strikingly, no learning effect was observed that affected the accuracy. With this extensive and unique data set, we addressed its computational counterpart. We used reinforcement learning to learn the three-dimensional same-different task and discovered crucial limitations which only were overcome if the task was simplified to the point of trivialization. Lastly, we formalized a set of suggestions to inform the enhancement of existing machine learning methods based on our findings from the human experiments and multiple tests we performed with modern machine learning methods.Item Open Access Active Visual Search: Investigating human strategies and how they compare to computational models(2024-03-16) Wu, Tiffany; Tsotsos, John K.Real world visual search by fully active observers has not been sufficiently investigated. Whilst the visual search paradigm has been widely used, most studies use a 2D, passive observation task, where immobile subjects search through stimuli on a screen. Computational models have similarly been compared to human performance only to the degree of 2D image search. I conduct an active search experiment in a 3D environment, measuring eye and head movements of untethered subjects during search. Results show patterns forming strategies for search, such as repeated search paths within and across subjects. Learning trends were found, but only in target present trials. Foraging models encapsulate subject location-leaving actions, whilst robotics models captured viewpoint selection behaviours. Eye movement models were less applicable to 3D search. The richness of data collected from this experiment opens many avenues of exploration, and the possibility of modelling active visual search in a more human-informed manner.