Department of Psychology
Permanent URI for this collection
Browse
Browsing Department of Psychology by Subject "Accelerated rTMS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Assessing differential effects of single and accelerated low-frequency rTMS to the visual cortex on GABA and glutamate concentrations(Wiley Periodicals, LLC., 2020-09-29) Rafique, Sara; Steeves, Jennifer Kate EvelynBackground: The application of repetitive transcranial magnetic stimulation (rTMS) for therapeutic use in visual-related disorders and its underlying mechanisms in the visual cortex is under-investigated. Additionally, there is little examination of rTMS adverse effects particularly with regards to visual and cognitive function. Neural plasticity is key in rehabilitation and recovery of function; thus, effective therapeutic strategies must be capable of modulating plasticity. Glutamate and γ-aminobutyric acid (GABA)-mediated changes in the balance between excitation and inhibition are prominent features in visual cortical plasticity. Objectives and method: We investigated the effects of low-frequency (1 Hz) rTMS to the visual cortex on levels of neurotransmitters GABA and glutamate to determine the therapeutic potential of 1 Hz rTMS for visual-related disorders. Two rTMS regimes commonly used in clinical applications were investigated: participants received rTMS to the visual cortex either in a single 20-min session or five accelerated 20-min sessions (not previously investigated at the visual cortex). Proton (1H) magnetic resonance spectroscopy for in vivo quantification of GABA (assessed via GABA+) and glutamate (assessed via Glx) concentrations was performed pre- and post-rTMS. Results: GABA+ and Glx concentrations were unaltered following a single session of rTMS to the visual cortex. One day of accelerated rTMS significantly reduced GABA+ concentration for up to 24 hr, with levels returning to baseline by 1-week post-rTMS. Basic visual and cognitive function remained largely unchanged. Conclusion: Accelerated 1 Hz rTMS to the visual cortex has greater potential for approaches targeting plasticity or in cases with altered GABAergic responses in visual disorders. Notably, these results provide preliminary insight into a critical window of plasticity with accelerated rTMS (e.g., 24 hr) in which adjunct therapies may offer better functional outcome. We describe detailed procedures to enable further exploration of these protocols.Item Open Access Modulating intrinsic functional connectivity with visual cortex using low-frequency repetitive transcranial magnetic stimulation(Wiley Periodicals, LLC., 2022-01-20) Rafique, Sara; Steeves, Jennifer Kate EvelynIntroduction: Intrinsic network connectivity becomes altered in pathophysiology. Noninvasive brain stimulation can modulate pathological functional networks in an attempt to restore the inherent response. To determine its usefulness for visual-related disorders, we developed procedures investigating repetitive transcranial magnetic stimulation (rTMS) protocols targeting the visual cortex on modulating connectivity associated with the visual network and default mode network (DMN). Methods: We compared two low-frequency (1 Hz) rTMS protocols to the visual cortex (V1)—a single 20 min session and five successive 20 min sessions (accelerated/within-session rTMS)—using multi-echo resting-state functional magnetic resonance whole-brain imaging and resting-state functional connectivity (rsFC). We also explored the relationship between rsFC and rTMS-induced changes in key inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. GABA (GABA+) and glutamate (Glx) concentrations were measured in vivo using magnetic resonance spectroscopy. Results: Acute disruption with a single rTMS session caused widespread connectivity reconfiguration with nodes of interest. Changes were not evident immediately post-rTMS but were observed at 1 h post-rTMS. Accelerated sessions resulted in weak alterations in connectivity, producing a relatively homeostatic response. Changes in GABA+ and Glx concentrations with network connectivity were dependent on the rTMS protocol. Conclusions: This proof-of-concept study offers new perspectives to assess stimulation-induced neural processes involved in intrinsic functional connectivity and the potential for rTMS to modulate nodes interconnected with the visual cortex. The differential effects of single-session and accelerated rTMS on physiological markers are crucial for furthering the advancement of treatment modalities in visual cortex related disorders.