Computer Engineering
Permanent URI for this collection
Browse
Browsing Computer Engineering by Author "Farag, Hany E. Z."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Applications of Utility-Scale Power to Gas Energy Storage Systems in Smart Grids(2019-03-05) Samiullah, Hemayatullah; Farag, Hany E. Z.ABSTRACT This thesis aims to develop the engineering tools required to simulate, design, and optimize the operation of utility-scale power to gas (PtG) energy storage. First, a co-simulation platform for power and gas distribution networks is developed. The co-simulation platform could help quantifying the role of PtG technology in shaping the future of power distribution systems. Using the co-simulation platform, several research studies can be carried out such as operation scheduling and planning of power and gas networks. Second, a new formulation is developed for the optimal design i.e., sizing, of PtG energy storage. The developed formulation aims at minimizing the capital and operation costs of PtG and maximizing the harvested power during periods of surplus. Third, a new mathematical formulation is proposed for the optimal production scheduling of hydrogen to supply fuel cell buses. The proposed formulation takes into account the operation requirements of both power distribution and electric bus transit networks.Item Open Access Voltage and Reactive Power Control in Islanded Microgrids(2017-07-27) El-Taweel, Nader Ashraf Abd El-Fattah; Farag, Hany E. Z.Previous studies put on view lots of advantages and concerns for islanded microgrids (IMGs), whether it is initiated for emergency, intentionally planned or permanent island system purposes. From the concerns that have not been addressed yet, such as: 1) The ability of the distributed generation (DG) units to maintain equal reactive power sharing in a distribution system; 2) The ability of the DG units to maintain acceptable voltage boundary in the entire IMG; 3) The functionality of the existing voltage and reactive power (Volt/Var) DG, this thesis analyzes the complexity of voltage regulations in droop-controlled IMGs. A new multi-agent algorithm is proposed to satisfy the reactive power sharing and the voltage regulation requirements of IMGs. Also, the operation conflicts between DG units and Volt/Var controllers, such as shunt capacitors (SCs) and load-ratio control transformer (LRT) during the IMG mode of operation, are investigated in this thesis. Further, a new local control scheme for SCs and LRTs has been proposed to mitigate their operational challenges in IMGs.