Computer Engineering
Permanent URI for this collection
Browse
Browsing Computer Engineering by Author "Aboelaze, Mokhtar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Implementation Of A Novel Cooperative Protocol for Distributed Voltage Control in Active Distribution Networks(2018-08-27) Qamar, Rabbia; Aboelaze, MokhtarMicrogrids are small localized grids that help to integrate many renewable-energy sources into the main electric grid. Microgrids can also operate separately from the main electric grid during faults to enhance the customers reliability. For a successful integration of microgrids we need to control the voltage at the distributed generation units in order to achieve the required sharing of reactive power. For this purpose a multiagent based distributed control scheme is implemented in this thesis. The objective of this thesis is to design and implement a multiagent system for the microgrid that has distributed battery energy storage systems (BESS) and renewable distributed generation (DG) units. The proposed multiagent system has been designed to coordinate among distributed generation (DG) units to control voltage. Multiagent system is composed of multiple agents that communicate to solve problems. The proposed multiagent system for the control of microgrid has been implemented on Texas Instruments Tiva-C controller boards. The real time simulator Opal-RT has been used to create a microgrid model. Hardware testing is done in real time.Item Open Access RTOS Control of Hardware Processes(2017-07-28) Atiwa, Sumaia; Aboelaze, MokhtarIn this thesis, adding hardware-process support to Microcontroller Real-time Operating System Version 2 (MicroC/OS-II) is proposed. MicroC/OS-II is a hard real-time operating system (RTOS), mostly written in the C programming language. MicroC/OS-II is designed to manage limited resources within embedded systems, and it can only execute and control software processes performed in the same processor system. MicroC/OS-II has been modified in order to manage external hardware processes. These hardware processes are implemented on a Nexys 3 Spartan-6 FPGA Board. In this thesis, MicroC/OS-II is already ported to run on an EVBplus HCS12 development board with CodeWarrior Embedded Software Development Tools from Freescale Semiconductor Inc. Modifications are applied on MicroC/OS-II interrupt system to manage hardware processes, and SPI protocol and parallel interface are set up to communicate between the HCS12 trainer and the FPGA board. The work is illustrated by designing a satellite attitude controller, using variable structure control (VSC).