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Abstract 

Equivalence testing (ET) is a framework to determine if an effect is small enough to be 

considered meaningless, wherein meaningless is expressed as an equivalence interval (EI). 

Although traditional effect sizes (ESs) are important accompaniments to ET, these measures 

exclude information about the EI. Incorporating the EI is valuable for quantifying how far the 

effect is from the EI bounds. An ES measure we propose is the proportional distance (PD) from 

an observed effect to the smallest effect that would render it meaningful. We conducted two 

Monte Carlo simulations to evaluate the PD when applied to (1) mean differences and (2) 

correlations. The coverage rate and bias of the PD were excellent within the investigated 

conditions. We also applied the PD to two recent psychological studies. These applied examples 

revealed the beneficial properties of the PD, namely its ability to supply information above and 

beyond other statistical tests and ESs.  
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Effect Sizes for Equivalence Testing:  

Incorporating the Equivalence Interval 

Equivalence testing (ET) is used to determine if an effect is small enough to be 

considered meaningless, practically insignificant, negligible, etc., where what is considered 

meaningless, etc. is determined a priori by a researcher via an equivalence interval (EI). For 

example, a researcher might investigate whether the mean difference in depression scores 

between healthy controls and those treated with cognitive behavioral therapy is negligible, where 

negligible might mean a difference less than 2 points on the associated scale. Or a researcher 

might investigate whether the correlation between depression and achievement is practically 

insignificant, where practically insignificant might mean a correlation less than .2 in magnitude. 

Although the first equivalence tests were proposed decades ago (e.g., Anderson & Hauck, 

1983; Schuirmann, 1987; Westlake, 1971), these tests were mostly used in pharmaceutical 

research for demonstrating the equivalence of brand name and generic drugs (Wellek, 2010). It 

has not been until recently that ET has garnered attention in the psychological sciences. 

Although traditional effect size (ES) measures (e.g., d, r) are meaningful as accompaniments to 

ET, these measures exclude information about the EI. Incorporating information regarding the EI 

is extremely valuable for quantifying the magnitude of an effect; more specifically, how far the 

effect is from the bounds of the EI will supply information above and beyond that provided by 

other statistical tests and ESs.  

 Therefore, the primary objective of this paper is to propose a novel ES measure for use in 

ET that incorporates the bounds of the EI. However, before proposing these new methods, we 

introduce ET, provide examples of the most common equivalence tests in psychology, and 

outline traditional ES measures that commonly accompany equivalence tests. 
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Introduction to Equivalence Testing 

The earliest instances of ET can be traced back to Wilfred Westlake in the 1970s (e.g., 

Westlake, 1971) on the equivalence of chemical reactions. Since then, ET has mostly been used 

as a statistical tool to demonstrate that the effects of similar drugs did not differ (e.g., the 

comparison between a highly marketed drug and its generic counterpart). The method was 

introduced to the social sciences by Rogers et al. (1993). In recent years, it has been gaining 

traction in the field of psychology. For example, equivalence tests have been used to test for 

gender similarities in intelligence (Ball et al., 2017), whether there are similarities between the 

usage of in-lab samples versus online samples (Briones & Benham, 2017), and, to test whether 

an intervention targeted towards children with autism was ineffective (Silva et al., 2008).  

There are numerous instances in which psychological researchers wish to show that an 

effect is negligible. For example, finding that Method A is similar to Method B can prove to be 

beneficial if one method is less costly and easier to implement than the other. This is exhibited 

by Lüdtke et al. (2018), wherein their study tested whether the depression scores of participants 

in an online intervention condition were equivalent to scores for those in a traditional 

intervention condition at post-assessment. To address such research questions (e.g., mean group 

similarity), researchers often opt to use traditional null hypothesis significance testing (NHST) 

methods (e.g., t-test). When adopting a traditional NHST procedure for assessing mean 

similarity, the goal is to NOT reject the null hypothesis (e.g., H0: µ1 = µ2). However, not 

rejecting the null hypothesis of traditional tests cannot be interpreted to mean that the effect is 

null (e.g., the result could be a Type II error). That is, no evidence of a relationship between 

groups (or any other effect) may be attributed to a lack of power, sampling error, etc. In contrast, 

with a large sample size (i.e., ample statistical power), evidence for the existence of a 
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relationship could be found, but the effect be too small to be of any value within the research 

context. Equivalence testing, on the other hand, seeks to demonstrate that the magnitude of an 

effect is too small to be considered meaningful. 

Although there are several available approaches for testing equivalence (e.g., Hauck & 

Anderson, 1983; Meyners, 2012), the most common approach to testing for equivalence is the 

two one-sided tests (TOST) procedure (Schuirmann, 1987), wherein two one-sided hypothesis 

tests are performed simultaneously to attempt to rule out the presence of an effect in either 

direction (e.g., mean difference in either direction, correlation in either direction). As introduced 

above, prior to adopting an ET, a researcher must define an appropriate EI, where the bounds of 

the equivalence interval represent the minimum meaningful effect size (MMES) (Rogers et al., 

1993). For example, when evaluating mean equivalence, an appropriate lower bound (∆L) and 

upper bound (∆U) might be EI = {∆L = 	−.2, ∆U=	 .2}. Note that equivalence boundaries need not 

be symmetrical about zero and depend on the scaling of the variables and context of the research.  

The null (H0) and alternate (H1) hypotheses are established in conjunction with the EI. 

For example, in a mean equivalence setting the null and alternate hypotheses might be H0: µ1 - µ2 

≤ ∆L | µ1 - µ2 ≥ ∆U (where | represents the or operator) and H1: ∆L < µ1 - µ2 < ∆U (Rogers et al.,  

1993), whereas in a negligible association setting the null and alternate hypotheses might be H0: 

ρ ≤ ∆L | ρ	≥ ∆U and H1: ∆L < ρ < ∆U. That is, failure to reject the composite null means that the 

effect may either be equal to or larger than the upper bound of the EI, or the effect is equal to or 

smaller than the lower bound of the EI. Rejection of the null, on the other hand, suggests that the 

effect lies between the lower and upper boundaries of the EI and is therefore not meaningful.  
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Effect of Interest 

An observed ES is compared to equivalence bounds to address the question of whether 

the magnitude of the effect is small enough to be considered meaningless. In a mean difference 

setting, the effect of interest is the raw mean difference, in a correlation setting the effect of 

interest is the sample correlation. For example, the observed ES between a group of participants 

that played a game in a desktop platform and a group of participants that played it on a tablet was 

0.42 in raw units in terms of perceived sex-based affinities (Wasserman & Rittenour, 2019). That 

is, the difference in means between these two groups was 0.42 points.   

Equivalence Intervals 

 The most crucial step in ET is the selection of an appropriate EI, which incorporates the 

MMES. It must be in the same scale as the units being analyzed and can be expressed as a 

percentage. As noted by Schuirmann (1987), the EI is determined not by a statistician but by the 

expert in their respective field. In other words, choosing the EI is a subjective decision that 

depends on the research context. Of 46 clinical equivalence tests reviewed by Le Henanff et al. 

(2006), only about 20% provided a justification for the chosen EI. Further, some EIs were too 

large to be convincing and, in turn, provide misleading results (Gøtzsche, 2006). To avoid 

potential biases introduced from publishing incentives, researchers should also consider an 

independent party to specify their EI (Campbell & Gustafson, 2018), a common research practice 

amongst clinical studies (e.g., Staszewski et al., 2001) 

In some instances, it might be easier for researchers to conceptualize the EI in 

standardized units (e.g., d = -.2 to d = .2). In this case, the researcher simply needs to convert 

from a standardized scale to raw scale in order to run the equivalence test (e.g., d * SDpooled). 
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It is also important to mention that power is sensitive to changes in the EI. That is, a 

small decrease in magnitude translates into a larger sample size necessary to achieve the same 

level of power (Walker & Nowacki, 2011). The reason being that it is harder to establish 

equivalence when the EI has a smaller critical region. For example, Wasserman and Rittenour 

(2019) used an EI of ±0.932 on a raw scale to have an 80% probability of obtaining statistical 

significance using a sample size of n = 34 per group and assuming a true effect size of zero. 

Were the EI to decrease by ¼ (±0.699), the number of participants required to obtain 80% power 

would increase by approximately 179% (n = 61 per group).  

 Generally, it is advised that the EI be specified a priori to data collection (Lakens et al., 

2018; Wellek, 2010).  However, an EI specified post-hoc does not render the equivalence test 

invalid as long as it is independent of the data and its appropriateness is justified (Campbell & 

Gustafson, 2018). 

Independent Groups Equivalence Test 

The equivalence test for two independent means, assuming equal variances, is based on 

Student’s t test, wherein H0 is rejected if 𝑡% ≤	 𝑡&': 

𝑡% =
𝑋1% − 𝑋1( − ∆)

2(𝑛% + 𝑛()[(𝑛% − 1)𝑆𝐷%
( + (𝑛( − 1)𝑆𝐷((]

𝑛%𝑛((𝑛%+𝑛( − 2)

										(1)									 

and 𝑡( ≥ 𝑡&%*' 	 where: 

𝑡( =
𝑋1% − 𝑋1( − ∆+

2(𝑛% + 𝑛()[(𝑛% − 1)𝑆𝐷%
( + (𝑛( − 1)𝑆𝐷((]

𝑛%𝑛((𝑛%+𝑛( − 2)

			.							(2)										 
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𝑋11 and 𝑋12 are the group means, n1 and n2 are the group sample sizes, SD1 and SD2 are the 

group standard deviations, and 𝑡&' is the lower tail a-level t-critical value with degrees of 

freedom (v) of n1 + n2 – 2.  

Equivalence test for correlations 

 Because the sampling distribution for Pearson’s r changes from normal to negatively 

skewed as the correlation increases, a Fisher’s r to z transformation is necessary to maintain a 

normal distribution (Lee, 2016). Further, the z transformation accounts for the bias introduced if 

one were to incorporate r into a t-statistic for equivalence testing (Goertzen & Cribbie, 2010). H0 

is rejected if 𝑍% ≤ 𝑍': 

𝑍% =

log @1 + 𝑟1 − 𝑟B
2 −	

log C
1 + r)
1 − r)

D

2
1

E𝑛,-./01 − 3

										(3) 

or 𝑍( ≥ 𝑍%*' 	where: 

𝑍( =

log @1 + 𝑟1 − 𝑟B
2 −	

log C
1 + r+
1 − r+

D

2
1

E𝑛,-./01 − 3

					,					(4) 

r+ and r) are the upper and lower bounds of the EI, 𝑍' is the lower tail critical value obtained 

from a normal distribution and 𝑛,-./01 are the paired data observations.  

TOST-based ETs can also be conducted by using confidence intervals (CIs), where the 

null is rejected if a 100(1-2𝛼)% CI lies within ∆L and ∆U. This is similar to using a 100(1-𝛼)% CI 

to determine whether the null for a traditional two-sided test was rejected or not (i.e., reject H0 if 

the CI excludes the null value). That is, if ∆L is less than or equal to the lower CI endpoint and 

∆U is greater than or equal to the upper CI endpoint, this would result in statistical equivalence. 
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On the other hand, if ∆L is greater than the lower CI endpoint or ∆U is less than the upper CI 

endpoint, this would result in statistical non-equivalence (Meyners, 2007). 

Imagine a researcher working in a mean difference context with an EI = {-.5, .5}, and a 

100(1-2𝛼)% CI of [-0.9, 0.2]. Thus, since the 100(1-2𝛼)% CI does not fall completely within the 

EI, they would not conclude that the means are equivalent.  

 Traditional Effect size Measures and their role in ET 

ESs provide the primary information regarding the magnitude and direction of a 

phenomenon that is addressed by a research question (Kelley & Preacher, 2012) and allow 

researchers to determine the practical significance of sample results (Kirk, 1996). An ES can be 

reported as unstandardized or standardized. An unstandardized ES is reported in the same units 

as the data (e.g., difference between two group means, regression coefficient), whereas a 

standardized ES is measured on a common scale that allows researchers to compare/combine 

effects across different variables, studies, etc.  

Traditionally, standardized ESs can be thought of as belonging to one of two families: 

The d family or the r family. Examples of ESs from the d family are Cohen’s d, Hedges g, and 

Glass’ Δ, all of which measure the difference between two means in standardized units. Cohen’s 

d quantifies the difference between the means of two groups in terms of the number of standard 

deviations. It can range from -∞ to +∞. Several researchers have proposed recommended cut-offs 

for interpreting the magnitude of d, with Cohen (1988) suggesting d values of 0.2, 0.5, and 0.8 as 

the reference values for small, medium and large effects (respectively). Examples of effect sizes 

from the r family are Pearson’s r and its derivatives, such as semi-partial r (popular in multiple 

regression), point-biserial r, and Spearman’s ρ. Other types of effect sizes include risk measures 

(relative risk, odds ratio and risk difference), all of which measure the probability of an outcome 
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relative to the predictor (Rosenthal, 2000). Of the ESs in the r family, the Pearson product 

moment correlation coefficient (r) is common in the behavioural sciences. For example, Farmus 

et al. (2020) found that r was the most common ES reported in social-personality research.  

However, it is important to note that what researchers interpret as meaningful varies 

greatly (Beribisky et al., 2019) and that Cohen (1988) himself clarified that his published cutoffs 

for small, medium and large effects should only be applied when no other information regarding 

the research context is available. 

It is important to note that within a traditional NHST context, an ES quantifies the extent 

to which the sample results deviate from the null hypothesis (e.g., no difference in group means 

or no association between two variables) (Cohen, 1994; Thompson, 2002). For example, if the 

null hypothesis is that the population postintervention means of the treatment and control groups 

are equal, the ES is zero if both samples do not differ (e.g., M1 = 0.40 and M2 = 0.40). On the 

other hand, the ES would be non-zero if the sample means were to differ (e.g., M1 = 0.35 and M2 

= 0.40).  

Recall that in ET, the null hypothesis considers the EI (i.e., H0: µ1 - µ2 ≤ ∆L | µ1 - µ2 ≥ 

∆U). Therefore, unlike in traditional NHST, a traditional ES cannot quantify the extent to which 

the sample results deviate from the null hypothesis because it does not take into account the EI. 

To solve this, we introduce in the following section an ES that incorporates the EI within its 

calculation. 

Incorporating EIs into ESs: The Proportional Distance 

The Proportional Distance (PD) is an ES that incorporates the EI to quantify the extent to 

which the observed effect deviates from the null hypothesis that the effect is equal to or larger 

than the upper bound of the EI, or that the effect is equal to or smaller than the lower bound of 
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the EI. In other words, the PD measures the proportional distance from the effect of interest (e.g., 

mean difference, correlation) to the bound of the equivalence interval that is the same sign as the 

effect of interest. Its generic formula is:  

𝑃𝐷 =
𝑒𝑓𝑓𝑒𝑐𝑡	
êEI2.34		ê

										(5) 

 Wherein effect is the observed effect of substantive interest (e.g., mean difference, 

correlation) and the EI2.34 is the bound of the EI that is the same sign as the observed effect. For 

example, in a mean difference context, if EI = {DL = -.20, DU = .20} and the effect is .10, then  

EI2.34 is 0.20 because the effect is positive. Incorporating these values,  PD = .10/|.20| = .50. 

Keep in mind that equivalence intervals need not be symmetrical about zero, hence the need to 

specify EI2.34. 

PD = 0 means that there is a complete absence of association. In a mean difference 

context, this represents no difference in means between the two groups being compared; M2 - M1 

= 0. In a correlational context, a PD of 0 means that there is zero relationship between the 

variables being compared (r = 0). If PD < 1 and PD > -1 (i.e., -1< PD <1), this means that the 

observed effect is within the equivalence boundaries. For example, if PD = 0.33, then an effect 

(i.e., observed mean difference or r) lies approximately 1/3 of the distance away from 0 to the 

upper bound. A PD equal to 1 or -1 means that the effect (i.e., mean difference or r) is equal to 

either the upper or lower equivalence bound, respectively. Lastly, if PD > 1 or PD < -1, then the 

effect (i.e., mean difference or r) lies outside the equivalence bounds. For example, if PD = 1.33, 

then the effect lies approximately 33% beyond the upper bound; or, 133% of the distance from 0 

to the upper equivalence bound.  
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Assuming we have a specific positive effect (i.e., mean difference > 0 or r > 0), the PD 

decreases exponentially as the magnitude of the upper bound of the EI (more specifically EI2.34) 

increases. This relationship is best represented by the exponential function 1 / O𝐸𝐼2.34O. For 

example, holding the mean difference constant at .01, the PD is equal to 1 when the EI2.34 is .01; 

PD = 1/2 when EI2.34 is .02; PD = 1/3 when EI2.34 is .03, and so on (see Figure 1). On the other 

hand, the PD has a period of rapid increase followed by slow increase as the EI2.34 increases 

when holding a negative effect constant. For example, holding the mean difference constant at -

.01, the PD is equal to -1 when the O𝐸𝐼2.34O is .01; PD = -1/2 when O𝐸𝐼2.34O is .02; PD = -1/3 

when O𝐸𝐼2.34O is .03, and so on (see Figure 2).  

 Holding the EI2.34 constant, the PD increases by a constant value as the effect (e.g., mean 

difference, correlation) increases. This directly proportional relationship can best be represented 

by the linear function 𝑓(𝑥) = 𝑥. For example, holding the EI2.34 constant at 1, the PD is equal to 

-.1 when the effect is -.1; PD = -.09 when the effect is -.09; PD = -.08 when the effect is -0.08, 

and so on. 

Advantages 

Results of the TOST procedure only inform us regarding the statistical significance of the 

proposed equivalence test. It is important to recall that p-values alone are unreliable measures for 

drawing conclusions regarding the magnitude of associations of interest (e.g., Cohen 1994; 

Cumming, 2012). The effect of interest should not be measured in such dichotomous terms, but 

rather in terms of estimation by providing information regarding the magnitude of the effect and 

EI.  

ESs with integrated EIs allow the reader to shift focus from simple identification of 

statistical equivalence toward a quantitative description of how far the observed effect is from its 
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respective EI. In other words, it would allow readers to move beyond the simple question of ‘Are 

they equivalent or not?’ to the more insightful, ‘How close is the effect to the specified 

boundaries of the EI?’ Consider a clinical researcher interested in whether treatment A and 

treatment B are equally effective in treating a certain disorder. The researcher chooses raw 

values of ∆L = 	−.5, ∆U  =	.5 for their EI in a mean difference context and obtains an observed 

effect of -.38 and a 100(1-2𝛼)% CI of [-0.48, -0.28]. Because the 100(1-2𝛼)% CI falls 

completely within the EI, the researcher concludes that the means are equivalent. However, it 

remains unknown how far the observed effect lies from the lower boundary. In this example, the 

PD is -0.76 (-.38/.5), which means that the observed effect is fairly close to the lower boundary 

(i.e., 76% of the distance away from 0 to the lower bound). Had the observed effect been -.10 the 

effect would remain statistically equivalent; however, the PD would now be -0.2, which means 

that the observed effect is relatively far from the lower boundary (i.e., 20% of the distance from 

0 to the lower bound). Although both examples are statistically equivalent, and both provide 

evidence that the difference in means is negligible, the latter PD provides even stronger evidence 

regarding the extent to which the null hypothesis is false. 

Another advantage of the PD estimate, like most other ES indices, is that it is not 

influenced by sample size. That is, ETs with different sample sizes but the same descriptive 

statistics (e.g., observed effect, EI, and standard deviations) can differ in statistical significance 

but not in their PD estimates. For example, Wasserman and Rittenour (2019) reported a non-

significant independent mean difference ET wherein one group had n = 34 participants and the 

other had n = 37. Just by adding 7 participants to the former group and 4 participants to the latter 

so that each group now has n = 41, the ET becomes significant. Yet, the proportional distance of 

the mean difference to its 𝐸𝐼2.34 never changes.  
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 It is also important to note that the PD that uses raw values and a PD that uses 

standardized measures will generally be equal in value. The reason being that both the mean 

difference and the EI need to be divided by a variance measure to be standardized; consequently, 

this variance measure is cancelled out. For example, the PD for an ET conducted by Weigold, 

Weigold and Russell (2013) on extraversion scores between participants that completed a paper-

and-pencil survey in the lab versus at home was .27. That is, the mean difference was 

approximately 27% away from 0 to the upper bound of the EI (mean difference =1.87; EIsign = 

6.916). To convert these raw values into the standardized measure, Cohen’s d, divide the effect 

and EI each by the pooled SD such that mean difference = 1.87/7.07 = .26 and EI = 6.916/7.07 = 

.978. The standardized PD (.27) will equal to the non-standardized PD.  

 In conclusion, the PD measures the proportional distance from the effect of interest (e.g., 

mean difference, correlation) to the bound of the equivalence interval with the same sign as the 

effect of interest. It has several advantageous properties, with the most important being that it 

provides additional information not captured by either the observed ES or its associated CI. In 

the following section, we further investigate the statistical properties of the PD via a Monte Carlo 

simulation.  

Confidence Interval for the PD  

We used bootstrapping procedures to resample the data and determine the bounds of the 

confidence interval for the PD. The number of bootstrap samples should be between 1000 and 

2000 (Efron & Tibshirani, 1993; Davison & Hinkley, 1997); consequently, we chose to bootstrap 

2000 samples.   

Bootstrapping methods for the creation of CIs fall into three families: pivotal, non-pivotal 

and test-inversion (Carpenter & Bithell, 2000). The pivotal family includes the most common 
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methods: basic and studentized bootstrapping. These methods are similar to the classical 

methods for the construction of CIs (Fisher et al., 2020). The non-pivotal family, on the other 

hand, uses percentiles of the bootstrapped distribution and includes the percentile, bias-corrected 

percentile and accelerated method. Lastly, the test-inversion family uses the duality between null 

hypothesis testing (NHST) and the CI to create CIs (Fisher et al., 2020). This family includes the 

test-inversion and studentized test-inversion methods. However, considering that these methods 

cannot be used on non-parametric resampling (Carpenter & Bithell, 2000), we avoided using 

them.  

Of the non-pivotal families, we used the percentile bootstrapping method to generate CIs 

at the nominal alpha levels of .05 and .10. The percentile interval is defined as: 

[	𝑄!
"	
, 𝑄#$!

"
	],     (6) 

wherein 𝑄 is the quantile of the bootstrap distribution of 𝜃V∗ at a particular alpha level, 𝛼. That is, 

the percentile method uses the 100 x (	'
(
	) and 100 x (1 −	'

(
	) percentiles of the bootstrapped 

sample as the lower and upper CI endpoints, respectively (Efron & Tibshirani, 1993).  

Monte Carlo Simulations 

Monte Carlo studies (MCS) allow researchers to evaluate the behaviour of a statistic 

through the empirical process of simulating random samples based on set population parameters 

(Mooney, 1997; Paxton et al., 2001; Ross, 2013). We conducted two MCS to evaluate the 

behavior of the PD in the context of (1) mean differences and (2) correlational research. We used 

the R package SimDesign (Chalmers & Adkins, 2020) to conduct our MCS as it avoids using 

problematic coding strategies (e.g., nested loops; see Sigal & Chalmers, 2016) and implements 

optimal coding practices including the storage of seeds, etc. (Chalmers & Adkins, 2020).  
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Mean Difference MCS 

We generated a fully-crossed simulation consisting of three population factors: total 

sample size (N), equivalence interval (EI) and population mean difference (MD). There were five 

conditions for N, specifically N = 30, 50, 100, 200 and 1000, with group sample sizes being 

equal (e.g., for N = 50, n1 = 25, n2 = 25). We investigated two EI conditions, namely EI = {-.2, 

.2} and EI = { -.4, .4}. We explored seven MD conditions (MD = -.6, -.4, -.2, 0, .2, .4, or .6), 

where a positive value indicates that the first mean is larger than the second mean, and vice 

versa. The EI values were arbitrarily chosen, given that there is no research context, with the 

mean differences chosen to be appropriate given the EI values. By combining the MD and EI 

conditions, there were 14 unique PD conditions (see Table 1). For example, when EI = {-.2, .2} 

and MD = 0, the population PD = 0, and when EI = {-.4, .4} and MD = -.4, the population PD = -

1.  

Correlational MCS 

We also created a fully-crossed simulation for our correlation MCS that included three 

population factors: N, EI, and population correlation (ρ). There were five N conditions (N = 30, 

50, 100, 200 and 1000). There were two EI conditions, EI =  {-.1, .1} and EI = {-.2, .2}. In this 

situation, there is some research to support the choice of EI values. For example, in context-free 

settings, Cohen (1988) stated that the smallest meaningful correlation magnitude was .2 and 

Beribisky et al. (2019) found the smallest meaningful correlation magnitude to be around .3.  

There were seven ρ conditions, namely ρ = -.15, -.1, -.05, 0, .05, .1, .15. Consequently, the PD 

had 14 levels (see Table 2). For example, when ρ = 0 and EI = {-.1, .1}, the population PD = 0, 

whereas when ρ = .2 and EI = {-.2, .2}, the population PD = 1.  
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 For each MCS condition, we calculated the raw and standardized bias to judge the 

proximity of the parameter estimates to the population generating parameters. Specifically, the 

raw bias is the distance between the population PD and the sample PD. The standardized bias, on 

the other hand, is the raw bias divided by the standard deviation of the parameter PDs. Good 

parameters should be close to zero to indicate that the generated estimates are neither 

systematically too low nor too high (Sigal & Chalmers, 2016). 

Confidence Interval Coverage 

We also calculated the empirical coverage rate to evaluate how well a nominal 95% and 

90% CI captured the intended statistic under repeated sampling conditions. Given minimal bias 

and skewness within the bootstrapped samples, we expect that the percentile method should 

provide good coverage rates.   

MCS Results 
 

Bias 
 

Regardless of sample size, raw and standardized biases were close to zero for both the 

correlation and mean-difference-based simulations (see Tables 3 and 4). In other words, the PD 

estimates did not substantially differ from their respective population values.  

Coverage Rates 

Mean Differences  

In sample sizes of 200 and 1000 an average of 95% and 90% of the population PD values 

fell within the estimated 95% and 90% percentile CIs, respectively (see Table 5).   

In the smaller samples of 30, 50 and 100, an average of 94%, 94% and 95% of the 

population PDs fell within the estimated 95% CIs, respectively. Likewise, an average of 88%, 

89% and 89% of the population PDs fell within the estimated 90% CIs, respectively.  



 16 

 Correlational  

 Similar to the simulation conditions on mean differences, an average of 95% and 90% of 

the population PD values fell within the estimated 95% and 90% percentile CIs (respectively) for 

sample sizes of 200 and 1000 (see Table 6).   

Among the samples of 30, 50 and 100, an average of 93%, 93% and 94% of the 

population PDs fell within the estimated 95% CIs, respectively. An average of 87%, 88% and 

89% of the population PDs fell within the estimated 90% CIs, respectively.  

Application of the PD 

In the following section, we applied the PD to two recent equivalence testing papers 

published in the psychological literature. One paper explored population mean equivalence, 

while the other paper explored a negligible association (correlation). In addition to computing the 

PD, we used the percentile bootstrapped method (2000 resamples) to construct 95% CIs.   

Mean Differences 

 Bonfils and Lysaker (2020) evaluated the equivalence of distress tolerance and emotional 

regulation in participants with schizophrenia/schizoaffective disorder (n = 55) and borderline 

personality disorder (n = 32) using the TOST approach. The authors hypothesized that people 

with schizophrenia-spectrum disorders would not differ from people with borderline personality 

disorder in terms of self-reported ability to tolerate distress (measured by a total score on the 

Distress Tolerance Scale) and emotion regulation (measured by a total score and six subscale 

scores on the Emotion Regulation Scale). 

Distress Tolerance 

The groups were statistically equivalent on the measure of the ability to tolerate distress 

(Mdiff = .03), suggesting that participants in these two groups did not differ on their reported 
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ability to tolerate distress. Given that EI = {-.43, .43}, the PD for this test is .07(.03/.43)	with a 

95% CI of [-.40, .53]. This suggests that the observed mean difference of 0.03 is approximately 

7% of the distance from 0 to the upper bound (see Figure 3). Considering that the PD is close to 

0, we can conclude that the two groups are largely similar on ability to tolerate distress. 

Furthermore, the CI bounds of the PD provide information regarding the precision of the PD 

measurement; in this case, we would not expect values for PD outside larger in magnitude than 

about .5. That is, we would not expect the true mean difference to exceed 53% of the distance 

away from 0 to the upper bound, or 40% of the distance from 0 to the lower bound.  

Emotion Regulation 

The groups were not statistically equivalent on the total scores for the emotional 

regulation measure (Mdiff = -.29). Given that EI = {-.34, .34}, the PD for this test is -.85 (-.29/|-

.34|) with a 95% CI of [-1.37, -.30]. This suggests that the observed mean difference of -.29 is at 

approximately 85% of the distance away from 0 to the lower bound (see Figure 4). Given that the 

PD is close to -1, we can conclude that, after considering the EI, the two groups’ scores show a 

much large amount of dissimilarity relative to that for distress. Furthermore, we would expect 

values for the PD to range from -1.37 to -.30. That is, the true mean difference may lie anywhere 

between 30% and 137% of the distance from 0 to the lower bound; whether the true mean 

difference lies beyond or within the equivalence bounds is uncertain.  

Correlation 

Edwards and Schatschneider (2020) conducted several equivalence tests to investigate the 

relationship between the magnocellular visual system and reading ability to test previous 

research suggestions that dyslexia may be associated with deficits in the magnocellular pathway, 

specialized in visual information. Magnocellular performance was measured using flicker 
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detection (FD) and coherent motion (CM) tasks. Reading ability, on the other hand, was 

measured via rapid automatic naming (RAN); isolated naming (IN); oral reading fluency (ORF); 

and silent reading fluency (SRF). Total scores were obtained for magnocellular performance and 

reading ability. 

FD vs SRF 

Among a sample of undergraduate students (n = 82), the scores in both tasks were 

statistically equivalent (r = .12), suggesting that the correlation between magnocellular 

performance and reading ability was negligible. Given that EI = {-.3, .3}, the PD for this test is 

.39 (.12/|.3|) with a 95% CI of [-.13, .94]. This suggests that the observed correlation of .12 is at 

approximately 39% of the distance away from 0 to the lower bound (see Figure 5). Considering 

that the PD is close to .5, we can conclude that magnocellular performance and reading ability, 

as measured by FD and SRF (respectively), are somewhat similar. Furthermore, it can be 

assumed that the true PD does not exceed 94% of the distance away from 0 to the upper bound or 

13% of the distance to the lower bound.  

Discussion 

The primary objective of this paper was to propose a novel ES measure for use in ET that 

incorporated the width of the EI. The PD fulfilled this objective in measuring the proportional 

distance from the effect of interest (e.g., mean difference, correlation) to the bound of the 

equivalence interval with the same sign as the effect of interest. The present study successfully 

investigated the statistical properties of the PD, including its CI coverage and bias via MCS. We 

also applied the PD to two recent equivalence testing psychological papers that explored 

population mean equivalence and negligible association (correlation). A number of important 

findings emerged.  
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Firstly, the raw bias and standardized bias were both near 0 in both the mean difference 

and correlation MCS. This suggests that the average computed PD is very close to the population 

PD, an attractive property of any estimator. Further, at sample sizes of 200 and above, the 

coverage rate is extremely accurate (i.e., identical to the nominal rate up to two decimal places). 

When sample sizes were less than 200, CIs were slightly conservative. The overall simulation 

results suggest that the PD provides an unbiased estimation on how far the effect is from the EI, 

with CI coverage close to the targeted nominal alpha levels.  

The applied examples revealed the beneficial properties of the PD, namely its ability to 

supply information above and beyond that of other statistical tests and ESs. For example, 

researchers can have greater confidence that participants with schizophrenia/schizoaffective 

disorder and borderline personality disorder did not differ on their reported ability to tolerate 

distress because the PD was close to zero and the bounds of the bootstrapped confidence interval 

did not exceed a magnitude of .53. On the other hand, the magnitude of the true mean difference 

on emotion regulation appears larger, with the bounds of the confidence interval extending as far 

as 137% of the distance from 0 to the lower bound.  

Limitations 

 A limitation of the Monte Carlo simulations was that we were only able to run a subset of 

all potential conditions. For example, we limited our EI population factor to EI = {-.2, .2} and EI 

= { -.4, .4} within the mean difference research context. However, this is an expected 

consequence of any simulation as it is not feasible to incorporate all possible conditions. Instead, 

we made an informed decision on which conditions to include according to what is relatively 

typical in equivalence testing within the psychological literature. Furthermore, there is little 
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reason to believe that changing the population factors could substantially affect the performance 

of the proportional distance measure.  

 An additional limitation was that we only investigated the proportional distance within a 

mean difference and correlation-based research context. We encourage researchers to apply and 

explore its statistical properties within numerous frameworks (e.g., multiple regression, etc.).  

Conclusion 

Similar to traditional ESs under the NHST framework, the PD quantifies the extent to 

which the sample results deviate from the null hypothesis (i.e., H0: µ1 - µ2 ≤ ∆L | µ1 - µ2 ≥ ∆U). 

More specifically, the PD provides information regarding how far the observed effect falls from 

an effect size of 0 to the bounds of the EI. Estimated CIs provide further information regarding 

the precision associated with the PD measurement. 

We encourage researchers to calculate the PD to supplement their tests of statistical 

equivalence and traditional ESs with information that incorporates the respective EI. We also 

encourage researchers to estimate and interpret the associated CIs. It is important to highlight 

that the PD falls under the larger scope of estimation, not NHST. The goal is to quantify the 

magnitude of an effect; namely, how far the effect is from the bounds of the EI. Therefore, 

including the PD is consistent with the movement towards estimation and away from solely 

considering NHST results (e.g., American Psychological Association, 2020; Cumming, 2014). 

We hope that the results and recommendations of this research will help provide information 

above and beyond equivalence tests and traditional ESs in the field of psychology.   
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Figure 1 

PD values plotted against 𝐸𝐼2.34 values, holding the mean difference constant at .01 
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Figure 2 

PD values plotted against 𝐸𝐼2.34 values, holding the mean difference constant at -.01 

 
 

 

PD

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

|EIsign|



 28 

 

Figure 3 

The proportional distance of the mean difference in distress tolerance 
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Figure 4 

The proportional distance of the mean difference in emotion regulation 
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Figure 5 

The proportional distance of the association between magnocellular performance and reading 

ability  
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Table 1 

The PD associated with each EI and MD condition for the Mean Difference Monte Carlo 

Study  

EI MD PD 

 

 

0.2 

-0.6 -3 

-0.4 -2 

-0.2 -1 

0 0 

0.2 1 

0.4 2 

0.6 3 

 

 

 

0.4 

-0.6 -1.5 

-0.4 -1 

-0.2 -0.5 

0 0 

0.2 0.5 

0.4 1 

0.6 1.5 

Note. EI = Equivalence Interval; MD = Mean Difference; PD = Proportional Difference.  
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Table 2  

The PD associated with each EI and ρ condition for the Correlation-based Monte Carlo Study  

EI ρ PD 

 

 

0.1 

-0.15 -1.5 

-0.10 -1 

-0.05 -0.5 

0 0 

0.05 0.5 

0.10 1 

0.15 1.5 

 

 

 

0.2 

-0.15 -0.75 

-0.10 -0.5 

-0.05 -0.25 

0 0 

0.05 0.25 

0.10 5 

0.15 0.75 

Note. EI = Equivalence Interval; ρ = Population Correlation; PD = Proportional Difference.  
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Table 3 

Descriptive Statistics for Bias and Standardized Bias by Sample Size for the Mean Difference 

Monte Carlo Study  

 
N 

Bias  Standardized Bias 
Mean SD Min Max  Mean SD Min Max 

30 0.00 0.03 -0.04 0.05  0.00 0.02 -0.02 0.03 

50 0.00 0.01 -0.02 0.02  0.00 0.01 -0.02 0.03 

100 0.00 0.01 -0.02 0.02  0.00 0.01 -0.02 0.03 

200 0.00 0.01 -0.02 0.01  -0.01 0.02 -0.03 0.02 

1000 0.00 0.00 -0.01 0  -0.01 0.02 -0.02 0.01 
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Table 4 

Descriptive Statistics for Bias and Standardized Bias by Sample Size for the Correlation-based 

Monte Carlo Study  

 
N 

Bias  Standardized Bias 
Mean SD Min Max  Mean SD Min Max 

30 0.00 0.03 -0.05 0.04  0.00 0.02 -0.03 0.05 

50 -0.01 0.01 -0.03 0.01  -0.01 0.01 -0.03 0.01 

100 0.00 0.01 -0.03 0.01  0.00 0.02 -0.03 0.01 

200 0.00 0.01 -0.02 0.01  0.00 0.02 -0.03 0.03 

1000 0.00 0.00 0.00 0.01  0.00 0.01 -0.02 0.02 
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Table 5 

Descriptive Statistics for 95% and 90% CI Coverage Rate by Sample Size for the Mean 

Difference Monte Carlo Study  

 
N 

95% Percentile CIs  90% Percentile CIs 
Mean SD Min Max  Mean SD Min Max 

30 0.94 0.00 0.93 0.94  0.88 0.01 0.87 0.89 

50 0.94 0.00 0.93 0.95  0.89 0.00 0.88 0.90 

100 0.95 0.00 0.94 0.95  0.89 0.00 0.89 0.90 

200 0.95 0.00 0.94 0.95  0.90 0.00 0.89 0.90 

1000 0.95 0.00 0.95 0.96  0.90 0.01 0.89 0.91 
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Table 6 

Descriptive Statistics for 95% and 90% CI Coverage Rate by Sample Size for the Correlation-

based Monte Carlo Study  

 
N 

95% Percentile CIs  90% Percentile CIs 
Mean SD Min Max  Mean SD Min Max 

30 0.93 0.00 0.92 0.93  0.87 0.00 0.87 0.88 

50 0.93 0.00 0.92 0.94  0.88 0.00 0.87 0.89 

100 0.94 0.00 0.94 0.95  0.89 0.00 0.88 0.90 

200 0.95 0.00 0.94 0.95  0.90 0.00 0.89 0.90 

1000 0.95 0.00 0.94 0.95  0.90 0.00 0.89 0.91 

 

 

 


