YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Apparatus for Inertial Sensing with Cold Atoms

Loading...
Thumbnail Image

Date

2018-11-21

Authors

Carew, Adam Curtis

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A variety of experimental techniques and equipment for the measurement of inertial effects are herein presented. The bulk of the work relates to improvements to an existing local gravitational acceleration "little-g'' measurement apparatus. These improvements are predicted to push the statistical uncertainty in the measurement of g to less than 1 part-per-billion (ppb). To accomplish this goal, several other projects were undertaken. These include a finite-element model of the magnetic field coil setup used in the experimental apparatus, as well as the design and construction of a hermetically-sealed diode laser system with excellent long-term frequency stability. Additionally, a direct digital synthesis-based frequency generator was designed and built for a proposed frequency-domain atom interferometer experiment. Finally, a side-project involving the evaluation of the magnetic field uniformity/stability of a commercial optical isolator was performed, and its results are presented as an appendix.

Description

Keywords

Atomic physics

Citation