YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Scattering Amplitude Techniques in Classical Gauge Theories and Gravity

Loading...
Thumbnail Image

Date

2022-12-14

Authors

Bautista Chivata, Yilber Fabian

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this thesis we present a study of the computation of classical observables in gauge theories and gravity directly from scattering amplitudes. In particular, we discuss the direct application of modern amplitude techniques in the one, and two-body problems for both, scattering and bounded scenarios, and in both, classical electrodynamics and gravity, with particular emphasis on spin effects in general, and in four spacetime dimensions. Among these observables we have the conservative linear impulse and the radiated waveform in the two-body problem, and the differential cross section for the scattering of waves off classical spinning compact objects. The implication of classical soft theorems in the computation of classical radiation is also discussed. Furthermore, formal aspects of the double copy for massive spinning matter, and its application in a classical two-body context are considered. Finally, the relation between the minimal coupling gravitational Compton amplitude and the scattering of gravitational waves off the Kerr black hole is presented.

Description

Keywords

Physics, Theoretical physics, Quantum physics

Citation