Natural Selection on S-linked genes in Turnera (Passifloraceae)

Deanna L. Harris

A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science

Graduate Program in Biology
York University
Toronto, Ontario

August, 2015
© Deanna L. Harris, 2015

Abstract

Investigations of the evolutionary dynamics exhibited by S-linked loci have the potential to provide evidence concerning the particular genes that determine the expression of distyly in flowering plants. Several approaches were adopted to explore the signatures of selection on S linked genes in distylous Turnera. While dN/dS-based results revealed pervasive purifying selection at the S-locus in Turnera, average nucleotide diversity (π) and sequence polymorphism (θ) measures were found to be elevated in two S-linked genes ($A P 2 D$ and $R N A B P$), suggesting the possible occurrence of balancing selection at these or closely-linked loci. Limited transspecies polymorphisms were identified in APETALA2, as well. Conversely, the negatively selected S-haplotype specific gene, Tsstal, also appears to be a very promising distyly gene candidate and shows significant sequence homology to known self-incompatibility proteins in Papaver. This study represents the first investigation of the molecular signatures of natural selection on S-linked genes in any heterostylous species. The implications of the results obtained for the elucidation of the genetic mechanisms that determine distyly in Turnera are discussed. Ultimately, it is hoped that understanding these mechanisms will, in turn, help to evaluate existing models regarding how distyly has evolved.

Dedication

For my Little Man, who liked plants too.

Acknowledgments

I owe no small measure of thanks to Dr. Joel Shore for agreeing to take me on as a graduate student and for allowing me to hang around his laboratory for the past several years. Without his supervision and encouragement, I necessarily could not have completed this work.

Thanks also to my graduate advisor, Dr. Amro Zayed, whose excellent insight and advice has certainly helped to shape the final product of my efforts. I only regret that, due to scheduling conflicts, we could not retain him for the final stages of this project. To Dr. Bridget Stutchbury, thanks ever so much for bravely stepping in at the very last moment to take his place.

To my lab-mate, Mr. Paul Chafe, I bestow much appreciation for both tolerating my presence and entertaining my many questions and queries.

To my family and friends, thanks for not always asking me why I am not "done yet" and for, instead, seeing my education as something that can only be advantageous to you in the impending zombie apocalypse and/or the future colonization of Mars.

I owe a special debt of gratitude to my wonderful mother, for allowing me to spend a large portion of my life pursuing higher education and, importantly, for not holding my apparent inability to settle on a particular profession against me. Without her absolutely unconditional love and support, I would not have had the freedom to explore those things that truly make me happiest.

And, lastly, I extend my utmost appreciation to my partner in crime of nearly a decade, Stefan Ferraro. Thanks for agreeing to endure with me the crazy schedules, constant stress, and near-permanent poverty that often accompanies graduate education. Thanks for making me work when I'd really rather not, and for telling me that I can do it when I am pretty sure that I can't. For all of your efforts - even the most subtle - I really cannot thank you enough.

TABLE OF CONTENTS

Abstract ii
Dedication iii
Acknowledgments iv
Table of Contents iv
List of Tables viii
List of Figures X
List of Abbreviations xv
Units of Measure xviii
1.0 INTRODUCTION 1
1.1 HETEROSTYLY 1
1.2 SELF-INCOMPATIBLITY (SI) SYTSTEMS 8
1.3 GAMETOPHYTIC SI: THE S-RNase SYSTEM 9
1.4 GAMETOPHYTIC SI IN PAPAVER 11
1.5 HOMOMORPHIC SPOROPHYTIC SI IN THE BRASSICACEAE 13
1.6 HETEROMORPHIC SPOROPHYTIC SI 14
1.7 PRIMULA AND THE SUPERGENE MODEL 16
1.8 DISTYLY IN FAGOPYRUM AND LINUM 17
1.9 DISTYLY IN TURNERA 19
1.10 NATURAL SELECTION IN SELF/NON-SELF RECOGNITION AND SEX DETERMINATION SYSTEMS. 25
1.11 OBJECTIVES 29
2.0 METHODS 31
2.1 PLANT MATERIAL AND DNA EXTRACTION 31
2.2 GENES OF INTEREST AND EXON PREDICTION: KNOWN S-LINKED GENES 33
2.3 CONTROL GENE SELECTION 38
2.4 PRIMER CONSTRUCTION 38
2.5 POLYMERASE CHAIN REACTION (PCR) AMPLIFICATION 42
2.6 PURIFICATION OF PCR PRODUCTS FOR CLONING 43
2.7 CLONING, BACTERIAL CULTURE, PLATING, AND PLASMID PURIFICATION 43
2.8 SEQUENCING AND SEQUENCE ASSEMBLY 44
2.9 SEQUENCE ALIGNMENT 45
2.10 DESCRIPTIVE STATISTICS 46
2.11 PHYLOGENETIC ANALYSES AND GENE GENAOLOGIES 47
2.12 SELECTION ANALYSES 48
2.12.1 NUCLEOTIDE AND CODON SUBSTITUTION MODEL SELECTION 50
2.12.2 GLOBAL dN/dS ESTIMATES 51
2.12.3 COMPARING EVOLUTIONARY RATES 53
2.12.4 LOCAL dN/dS PROCEDURES 54
2.12.5 SITE-BY-SITE SELECTION ANALYSES 56
2.12.5.1 SINGLE-LIKELIHOOD ANCESTOR COUNTING (SLAC) 56
2.12.5.2 FIXED EFFECTS LIKELIHOOD (FEL) 57
2.12.5.3 MIXED EFFECTS MODEL OF EVOLUTION (MEME) 58
2.12.5.4 FAST UNCONSTRAINED BAYESIAN APPROXIMATION (FUBAR) 59
2.12.6 MACDONALD-KREITMAN TESTS (MKTs) AND TAJIMA'S D TESTS OF 60NEUTRALITY
3.0 RESULTS 62
3.1 SEQUENCING, ALIGNMENTS, AND DESCRIPTIVE STATISTICS 62
3.2 PHYLOGENETIC ANALYSES 64
3.2.1 THE TOTAL DATA SET: DNA- AND AMINO ACID-BASED PHYLOGENIES 64
3.2.2 THE TOTAL DATA SET WITH A REDUCED NUMBER OF TAXA: DNA- AND AMINO ACID-BASED PHYLOGENIES 66
3.2.3 THE Tsstal DATA SET WITH AN EXPANDED NUMBER OF TAXA: DNA- AND AMINO ACID-BASED PHYLOGENIES 67
3.2.4 GENE GENEALOGIES 68
3.3 SELECTION ANALYSES 70
3.3.1 GLOBAL dN/dS ESTIMATES 70
3.3.2 COMPARING dN/dS IN S-LINKED AND CONTROL GENES 71
3.3.3 LOCAL OR LINEAGE-SPECIFIC SELECTION ON S-LINKED GENES 73
3.3.4 dN/dS IN Tsstal AND AP2D 74
3.3.5 CODON-LEVEL SELECTION ON S-LINKED GENES 75
3.3.5.1 CODON-LEVEL SELECTION ON APETALA2 75
3.3.5.2 CODON-LEVEL SELECTION ON Tsstal (TOTAL DATA) 76
3.3.5.3 CODON-LEVEL SELECTION ON Tsstal (WITH A REDUCED NUMBER OF
TAXA) 77
3.3.5.4 CODON-LEVEL SELECTION ON LEJ2. 77
3.3.5.5 CODON-LEVEL SELECTION ON $A P 2 D$ 78
3.3.5.6 CODON-LEVEL SELECTION ON $R N A B P$. 79
3.3.5.7 CODON-LEVEL SELECTION ON SCE1 80
3.3.5.8 CODON-LEVEL SELECTION ON $F R A 1$ 80
3.3.5.9 CODON-LEVEL SELECTION ON LRRK 81
3.3.5.10 CODON-LEVEL SELECTION ON IRXI5L 82
3.3.5.11 CODON-LEVEL SELECTION ON $F S P$ 83
3.3.5.12 CODON-LEVEL SELECTION ON NRFP 83
3.3.5.13 CODON-LEVEL SELECTION ON WRKY 84
3.3.6 POPULATION-LEVEL ANALYSES: MACDONALD KREITMAN TESTS (MKTS) AND TAJIMA'S D TESTS OF NEUTRALITY 85
3.6 TABLES AND FIGURES 87
4.0 DISCUSSION 123
4.1 S-LOCUS GENES WITH ELEVATED NUCEOLTIDE DIVERSITY AND SEQUENCE POLYMORPHISM 124
4.2 GENE GENEALOGIES 127
4.3 SPECIES PHYLOGENIES 128
4.4 PERVASIVE PURIFYING SELECTION ACROSS S-LINKED GENES 130
4.5 AP2D: AN INTERESTING CANDIDATE GENE 131
4.6 Tsstal 134
4.7 CONCLUSIONS 136
LITERATURE CITED 139
APPENDICES 162
Appendix A: PCR and Sequencing Primers 162
Appendix B: Nucleotide Alignments for S-linked Genes 169
Appendix C: Nucleotide Alignments for Control Genes 212
Appendix D: Amino Acid-Based Phylogenies for Concatenated Total Data Alignments and Total Tsstal Data Alignment 233
Appendix E: DNA- and Amino Acid-Based Phylogenies for all Individual Genes and for Concatenated alignments of all S-linked and all Control Data 236
Appendix F: Supporting Likelihood Ratio Tests and Parameter Estimates 280
Appendix G: Adaptive Branch-Site Random Effects Likelihood (aBS-REL) Results 286
Appendix H: Tsstal in a Localized Population of T. scabra from the Dominican Republic (DROT)289

List of Tables

Table 1: List of plants used in this study, along with their respective phenotypes, and ploidy levels 32
Table 2: List of S-linked genes of interest and their predicted functions 34
Table 3: List of control genes and their predicted functions. 40
Table 4: Nucleotide and amino acid substitution models used for phylogenetic reconstruction in MEGA 6.06 49
Table 5: Nucleotide and codon substitution model selection for analyses in HYPHY 52
Table 6: Descriptive statistics for all alignments 88
Table 7: Proportions of polymorphic sites, synonymous and non-synonymous mutations, numbers of indel events, average indel length, and indel diversity $\left(\pi_{1}\right)$ for all genes, obtained using a balanced data set91
Table 8: Global $\mathrm{dN} / \mathrm{dS}$ ratio estimates and likelihood ratio test of $\mathrm{dN}=\mathrm{dS}$ 96
Table 9: Comparing of selection on S-linked and control genes using likelihood ratio tests. 97
Table 10: Comparing of selection on Tsstal and other S-linked genes using likelihood ratio tests 98
Table 11: Comparing of selection on $A P 2 D$ and other S-linked genes using likelihood ratio tests. 99
Table 12: Comparison of global and local $\mathrm{dN} / \mathrm{dS}$ ratio models for each nucleotide alignment. 100
Table 13: Branch-site Unrestricted Statistical Test of Episodic Diversification (BUSTED) 101
Table 14: Integrative site-by-site selection analysis for Apetala2 102
Table 15: Integrative site-by-site selection analysis for Tsstal (total data) 103
Table 16: Integrative site-by-site selection analysis for Tsstal (reduced number of taxa) 104
Table 17: Integrative site-by-site selection analysis for $L E J 2$ 105
Table 18: Integrative site-by-site selection analysis for $A P 2 D$ 106
Table 18: Integrative site-by-site selection analysis for $R N A B P$ 108
Table 19: Integrative site-by-site selection analysis for SCE1 110
Table 20: Integrative site-by-site selection analysis for FRAI 111
Table 21: Integrative site-by-site selection analysis for $L R R K$ 112
Table 22: Integrative site-by-site selection analysis for IRX15L 115
Table 23: Integrative site-by-site selection analysis for FSP 117
Table 24: Integrative site-by-site selection analysis for $N R F P$ 118
Table 25: Integrative site-by-site selection analysis for WRKY 120
Table 27: McDonald-Kreitman tests and Tajima's D tests of neutrality for all S-linked genes of interest completed by treating diploid taxa from the Turnera subseries as a population sample 121
Table A1: PCR primer pairs used for the amplification of each exon(s) of interest 162
Table A2: Sequencing primers. 166
Table F1: Parameter estimates for LRT test comparing selection on S-linked and control genes 280
Table F2: Comparison of selection on S-linked and control genes using LRTs and random starting values for all parameters 281
Table F3: Parameter estimates for LRTs comparing selection on Tsstal and all other S-linked genes 282
Table F4: Comparison of selection on Tsstal and other S-linked genes using LRTs and random starting values for all parameters 283
Table F5: Parameter estimates for LRTs comparing selection on AP2D and all other S-linked genes 284
Table F6: Comparison of selection on $A P 2 D$ and other S-linked genes using LRTs and random starting values for all parameters 285
Table G1: Adaptive Branch-Site REL tests of Lineage-specific selection on S-linked genes (excepting Tsstal) 286
Table G2: Adaptive Branch-Site REL tests of Lineage-specific selection on Tsstal 288
Table H1: The degree of Tsstal sequence similarity between samples from a local population of T. scabra (DROT) and T. panamensis (PAN 2S) 292

List of Figures

Figure 1: Graphical representation of distyly 3
Figure 2: Graphical representations of the recessive s - and dominant S-haplotypes, as they are known from BAC sequencing in diploid T. subulata 24
Figure 3: Graphical representation of trans-specific evolution 28
Figure 4: Gene diagrams for all S-linked genes based on exon predictions from NetPlantGene Server and BLAST searches 39
Figure 5: Assay of Tsstal in a variety of long- and short-styled individuals of the genus, Turnera 87
Figure 6: Nucleotide diversity (π) and Watterson's θ estimates for all alignments 89
Figure 7: Average nucleotide diversity (π) and Watterson's θ estimates for S-linked and control genes 90
Figure 8: Molecular phylogenetic analysis by Maximum Likelihood methods using total DNA data for all genes 92
Figure 9: Molecular Phylogenetic analysis by Maximum Likelihood methods using total DNA data for all genes and a reduced number of taxa 93
Figure 10: Molecular Phylogenetic analysis by Maximum Likelihood methods using total DNA data for Tsstal 94
Figure 11: Gene genealogy for APETALA2 showing evidence of trans-specific evolution in the Turnera subseries clade 95
Figure B1: APETALA 2 nucleotide alignment 169
Figure B2: Tsstal nucleotide alignment (total data) 172
Figure B3: Tsstal nucleotide alignment with a reduced number of taxa 177
Figure B4: LEJ2 nucleotide alignment 180
Figure B5: $A P 2 D$ nucleotide alignment 181
Figure B6: $R N A B P$ nucleotide alignment 185
Figure B7: SCE1 nucleotide alignment 187
Figure B8: $F R A 1$ nucleotide alignment 189
Figure B9: $L R R K$ nucleotide alignment 192
Figure B10: IRX15L nucleotide alignment 198
Figure B11: FSP nucleotide alignment 202
Figure B12: $N R F P$ nucleotide alignment 204
Figure B13: $W R K Y$ nucleotide alignment 208
Figure C1: ECIPI nucleotide alignment 212
Figure C2: GAUT3 nucleotide alignment 216
Figure C3: GAUT1 nucleotide alignment 220
Figure C4: RNABP34 nucleotide alignment 223
Figure C5: FMO1 nucleotide alignment 225
Figure C6: MBD8 nucleotide alignment 227
Figure C7: $U N K N$ nucleotide alignment 229
Figure C8: POFUT nucleotide alignment 231
Figure D1: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid data 233for all genes
Figure D2: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid datafor all genes and a reduced number of taxa .. 234
Figure D3: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid datafor Tsstal235
Figure E1: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for APETALA2 236
Figure E2: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for APETALA2 237Figure E3: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for Tsstal238
Figure E4: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
Tsstal 239
Figure E5: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for LEJ2240
Figure E6: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data forLEJ2241
Figure E7: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for AP2D242
Figure E8: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for AP2D 243
Figure E9: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for RNABP 244

Figure E10: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for

 RNABP245Figure E11: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for SCE1 246
Figure E12: Molecular Phylogenetic analysis by Maximum Likelihood method using acid data for SCE1 247
Figure E13: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FRAI 248
Figure E14: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for FRAI 249
Figure E15: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for LRRK 250
Figure E16: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for LRRK. 251
Figure E17: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for IRX15L 252
Figure E18: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for IRX15L 253
Figure E19: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FSP254
Figure E20: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
FSP. 255
Figure E21: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for NRFP 256
Figure E22: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for NRFP 257
Figure E23: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for WRKY. 258
Figure E24: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for WRKY. 259
Figure E25: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for all S -linked genes260
Figure E26: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for all S-linked genes 261
Figure E27: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for ECIP1 262

Figure E28: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for

 ECIP1263Figure E29: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for GAUT3 264
Figure E30: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data forGAUT3 .. 265
Figure E31: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for GAUT1 266
Figure E32: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
GAUT1 267
Figure E33: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for RNABP34 268
Figure E34: Molecular Phylogenetic analysis by Maximum Likelihood method using acid data for RNABP34 269
Figure E35: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FMO1 270
Figure E36: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for FMO1 271
Figure E37: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for MBD8 272
Figure E38: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data forMBD8.. 273
Figure E39: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for UNKN. 274
Figure E40: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data forUNKN... 275Figure E41: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data forPOFUT.276
Figure E42: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data forPOFUT.277
Figure E43: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for all control genes 278
Figure E44: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for all control genes 279

Figure H1: Alignment of Tsstal sequences from 17 short-styled individuals belonging to a localized population of T. scabra from the Dominican Republic (DROT).

List of Abbreviations

aBS-REL	Adaptive Branch-site Random Effects Likelihood
AIC	Akaike information criteria
AP2	Floral homeotic protein, APETALA2
AP2D	AP2 domain containing transcription factor family protein
ARC1	Arm repeat-containing protein 1
BAC	Bacterial artificial chromosome
BIC	Bayesian information criteria
BLAST	Basic Local Alignment Search Tool
BUSTED	Branch-site Unrestricted Statistical Test of Episodic Selection
CBSX1	Cystathionine beta-synthase domain containing protein
cds	Coding sequence
CI	Confidence Interval
CPREV	General Reversible Chloroplast nucleotide substitution model
csd	Complimentary sex determining locus in hymenopterans
CTAB	Cetyl-trimethylammonium bromide, (C $\left.\mathrm{C}_{16} \mathrm{H}_{33}\right)$ N(CH $\left.)_{3}\right)_{3} \mathrm{Br}$
DEAR2	DREB and EAR motif containing protein
DF	Degrees of freedom
ddH2O	Double distilled water
dH2O	Distilled water
dN	Nonsynonymous changes
DNA	Deoxyribonucleic acid
dNTP	Deoxyribose nucleotide triphosphate
DREB	Dehydration-responsive element binding
dS	Synonymous changes
DUF579	Domain of unknown function 579
DUS	Dihydrouridine synthase
EAR	Ethylene response factor-associated amphiphilic repression
ECIP1	EIN2 C-terminus interacting protein 1
EDTA	Ethylenediaminetetraacetic acid, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$
EIN2	Ethylene Insensitive 2
ELF3	Early flowering 3gene (Arabidopsis thaliana)
ERF	Ethylene response factor
Ex070A1	A component of the exocyst complex in plants
F81	Felsenstein nucleotide substitution model
FEL	Fixed Effects Likelihood
FMN	Flavin mononucleotide
FMO1	Flavin-dependent mono-oxygenase 1
FRA1	Fragile Fibre 1, a kinesin-like motor protein
FSP	Flavonol synthase-like gene
FUBAR	Fast Unconstrained Bayesian Approximation
G	Gamma distribution
GAUT1	Galacturonosyltransferase 1
GAUT3	Galacturonosyltransferase 3
GLOBOSA	B-function MADS-box gene
GUI	Graphical user interface
GY94	Goldman-Yang codon substitution model
GPA/gpa	Putative loci of Primula supergene model
HCL	Hydrochloric acid

HKY85	Hasegawa-Kishino-Yano Nucleotide substitution model
HYPHY	Hypothesis Testing using Phylogenies
IDT	Integrated DNA Technologies
IGEPAL	Octylphenoxypolyethoxyethanol
IPTG	Isopropyl β-D-1-thiogalactopyranoside
IRX15L	Irregular xylem 15-like protein (previously referred to as NBP1)
JC	Jukes and Cantor nucleotide substitution model
JTT	Jones-Taylor-Thornton nucleotide substitution model
K2	Kimura 2-Parameter nucleotide substitution model
KCL	Potassium chloride
LB	Lysogeny broth
LEJ2	Cystathionine beta-synthase domain-containing protein ("Loss of the timing of ET and JA biosynthesis 2")
LG	Le and Gascuel nucleotide substitution model
LH	Long homostyle
LRRK	Leucine-rich repeat protein kinase
LRR-RLK	Leucine-rich repeat receptor-like kinase
LRT	Likelihood ratio test
MAPK	Mitogen-activated protein kinase
MBD8	Methyl-CpG-binding domain 8
MCL	Maximum Composite Likelihood
MCMC	Markov Chain Monte Carlo
MEGA	Molecular Evolutionary Genetic Analysis
MEME	Mixed Effects Model of Evolution
MG94	Muse-Gaut codon substitution model
MgCl_{2}	Magnesium chloride
MHC	Major Histocompatibility Complex
MKT	MacDonald-Kreitman Test
MLPK	M -locus protein kinase
NaCl	Sodium chloride
NaOH	Sodium Hydroxide
NBP1	Nucleic acid binding protein
nifR3	A family of nitrogen regulation proteins
NRFP	Nitrogen regulation family protein
2OG	2-oxogluterate
PAML	Phylogenetic Analysis by Maximum Likelihood
PCR	Polymerase chain reaction
POFUT	Protein O-fucosyltransferase
PrpS	Papaver rhoeas pollen S
PrsS	Papaver rhoeas stigma S
PvGLO	Short-specific GLOBOSA homologue identified in Primula vulgaris and Primula veris
PvSLLI	Unknown plasma membrane protein identified in P. vulgaris as having apparent longand short-specific alleles
PvSLL2	Flower timing gene identified in P. vulgaris as having apparent long- and short-specific alleles
PvSLP1	Short-specific RFLP identified in P. vulgaris
RBP-MS	RNA binding protein with multiple splicing
REL	Random Effects Likelihood
RNA	Ribonucleic-acid
RNABP	RNA binding protein
RNABP34	RNA binding protein 34

RNase	Ribonuclease
RNA-seq	RNA sequencing
RTREV	General Reverse Transcriptase nucleotide substitution model
SCEI	Small ubiquitin-related modifier (SUMO) conjugating enzyme 1
SCR	S-locus Cysteine-rich protein
SD	Standard deviation
S-ELF3	S-locus Early Flowering3 gene (Fagopyrum)
SH	Short-homostyle
SFB	S-haplotype specific F-Box Protein
SI	Self and intra-morph incompatibility
SLAC	Single-Likelihood Ancestor Counting
S-locus	Self-incompatibility locus
SLG	S-locus glycoprotein
SPH	S-protein homologue
SRK	S-locus receptor kinase
SRY	Sex determining region Y
SUMO	Sumo conjugating enzyme
T92	Tamura 3-parameter nucleotide substitution model
TAE	A buffer containing tris base, acetic acid, and EDTA
TAIR	The Arabidopsis Information Resource
TE	A buffer containing tris base and EDTA
TE	Melting temperature
tRNADS	tRNA-dihydrouridine synthase
TSP	Trans-species polymorphism
TSS1	Unknown short ("thrum") -style specific gene identified in Linum
Tsstal	Turnera subulata short stamen 1
UNKN	Unknown
WAG	Whelan and Goldman nucleotide substitution model
WRKY	Transcription factor named for its conserved 'WRKY' domain

Units of Measure

$\mathbf{k b}$	Kilobase
$\mathbf{b p}$	Base pair
\mathbf{g}	Gram
$\mathbf{m g}$	Milligram
$\mathbf{n g}$	Nanogram
\mathbf{L}	Litre
$\mathbf{m} \mathbf{L}$	Millilitre
$\mathbf{\mu \mathbf { L }}$	Microlitre
$\mathbf{c m}$	Centimetre
$\mathbf{m m}$	Millimetre
$\mathbf{m M}$	Millimole
$\mathbf{p m o l}$	Picomole
$\mathbf{x} \mathbf{g}$	Relative centrifugal force, measured as a multiple of Earth's gravitational force
$\mathbf{r p m}$	Revolutions per minute
\mathbf{V}	Volts
$\mathbf{v} \mathbf{v}$	Volume per volume
\mathbf{w} / \mathbf{v}	Weight per volume

1.0 INTRODUCTION

Since Darwin (1877), the question of how and why such a wide variety of flower morphologies might be maintained in nature has enjoyed a rich research tradition. Indeed, the precise arrangement of sexual organs - that is, of pistils and stamens - within the flower has been of particular interest in this regard (Vuilleumier 1967; Ganders 1979; Barrett 2002). In some species, differences in the heights of these organs distinguish individuals as belonging to one of two or three discrete mating groups - a condition known as heterostyly (Darwin 1877; Vuilleumier 1967; Ganders 1979; Barrett 1992). Here, I review the existing literature on this subject by first explaining the nature of heterostyly, with particular emphasis on distyly and the standing arguments regarding its evolution and function. I will then turn my attention to homomorphic self-incompatibility (SI) systems, where I will elucidate the two main varieties gametophytic and sporophytic - in turn, with particular emphasis on the diversity of molecular mechanisms underlying self-pollen rejection. Heteromorphic SI, often associated with heterostyly, will then be discussed, while paying careful attention to how the system functions and is inherited in distylous Primula, Fagopyrum, and, to a lesser extent, Linum. Similar topics will subsequently be covered more fully with reference to Turnera before detailing the overall objectives of the investigation described herein.

1.1 HETEROSTYLY

Heterostyly refers to a unique flower polymorphism whereby individuals of a hermaphroditic population may be categorized into one of two (distyly) or three (tristyly) discrete mating groups depending on the particular lengths of their styles and heights of their anthers (Darwin 1877; Vuilleumier 1967; Ganders 1979; Barrett 1992). More specifically, heterostylous species are characterized by the presence of discrete morphs which exhibit a complimentary arrangement of these organs, in a condition referred to as reciprocal herkogamy (Webb and Lloyd 1986). For example, in tristylous species, individuals may be identified as being either long-styled with two sets of stamens being short or intermediate in length; midstyled with long and short stamens; or short-styled with stamens that are intermediate and long in length (Ganders 1979). Distylous species, on the other hand, are more common and contain only
a short and a long-styled morph, each having long or short stamens, respectively (Ganders 1979; Figure 1).

A condition first coined by Hildebrand (1866) and embellished by Darwin $(1862,1877)$, heterostyly has since come to represent one of the fundamental model systems with which to address a range of queries in evolutionary biology (Vuilleumier 1967; Ganders 1979; Ornduff 1992; Barrett 1992; Barrett and Shore 2008). Indeed, Darwin himself considered his initial work on heterostyly to be quite important - not only as a scientific achievement - but as a personal undertaking. Indeed, in his 1872 treatise, The Different Forms of Flowers, he stated that distyly, in particular, "was a case to which no parallel exists" in that nowhere else in nature was a species divided into two bodies, which could not be accurately considered separate sexes, but still required complete reciprocal fertilization in order to produce viable progeny. In his 1876 autobiography he further noted that "no little discovery of mine ever gave me so much pleasure as making out the meaning of heterostyled flowers" even though, he conceded, his work to that end had been recognized by "only very few persons" (Darwin 1876). In truth, aside from those who have since endeavoured to more fully understand heterostyly, relatively few people are likely aware of his work in this area, even now.

Since Darwin's initial investigations, several hypotheses have been advanced in order to explain the adaptive significance of heterostyly (Barrett 1990; Lloyd and Webb 1992a \& b). Though he did not then call it heterostyly, Darwin was the first to suggest that the reciprocal arrangement of styles and stamens exhibited by distylous Primula may be an adaptation intended "namely, to favour the inter-crossing of distinct individuals" (1862). By performing several pollination experiments, he showed that the relative heights of the sexual organs of the two morphs allowed insect pollinators to leave pollen from one morph on the stigma of another. He also demonstrated that heteromorphic pollinations were more successful than those of the homomorphic variety (Figure 1; Darwin $1862 \& 1877$). In this way, he suggested, the occurrence of the two morphs functions similarly to the presence of individuals of separate sexes, or dioecy, in other plants, in that it discourages self-fertilization and encourages outcrossing (Darwin 1862 \&1877).

To be sure, this interpretation might be considered most popular among the majority of those who are currently concerned with the issue of heterostyly (Vuilleumier 1967; Ganders 1979; Barrett 1990; Dulberger 1992) and, moreover, it has been supported by several subsequent

Figure 1: A graphical representation of distyly. Anthers are symbolized by ovals, while stigmas are symbolized by triangles. Pollen-stigma compatibility relationships between long- and short-styled individuals are indicated by arrows. Compatible pollinations (those that occur between individuals of different floral morphs) are shown as solid arrows, while incompatible pollinations (those that occur between individuals of the same morph) are shown as dashed arrows. As incompatible pollinations do not result in seed set, these arrows are also crossed out.
lines of evidence, including further studies on the deposition of pollen on the bodies of pollinating insects (Rosov and Screbtsova 1958; Olesen 1979; Lewis 1982; Wolfe and Barrett 1989) and pollen flow between the different flower morphs of various distylous and tristylous species (Kohn and Barrett 1992; Stone and Thomson 1994; Barrett and Glover 1985; Lau and Bosque 2003; Keller et al. 2014; Zhou et al. 2015). Indeed, these sorts of experiments are especially efficacious in distylous taxa, as their pollen is also dimorphic, making it much easier to determine which morph deposited pollen originated from (Barrett 1992; Barrett and Shore 2008).

Even so, in many cases, this system appears to be imperfect, at least as far as promoting efficient inter-morph pollen transfer goes (Barrett and Shore 2008; Cohen 2010). For instance, pollen is often identified in considerable quantities on the styles of the same morph (Barrett and Glover 1985) and, similarly, the different morphs commonly capture and transfer different amounts of compatible pollen (Ganders 1974 \& 1979; Lewis 1982; Stone and Thomson 1994; Keller et al. 2014). However, it has been suggested that the occurrence of intra-flower selfing might, in part, account for these apparent inequities. Indeed, studies where flowers had been successfully emasculated in order to prevent selfing do appear to indicate that reciprocal herkogamy promotes disassortative pollen flow in heterostylous species, although pollen transference is still by no means perfectly complementary, even in these cases (Ganders 1974; Barrett and Glover 1985; Barrett 1990).

While supporting evidence has certainly been garnered, what is considered to be the first robust empirical demonstration of the hypothesis that reciprocal herkogamy promotes disassortative mating was achieved only very recently, with evidence gathered from a single population of distylous Luculia pinceana (Rubiaceae) (Zhou et al. 2015; Fornoni and Domínguez 2015). Interestingly, the long-styled morph of this species exhibits self- and intra-morph compatibility, while those that are short-styled cannot be selfed but can be successfully crossed with other individuals of the same mating type (Ma et. al. 2009; Zhou et al. 2012). By determining paternity in progeny that resulted from naturally-occurring matings within this population, the authors identified inter-morph pollinations as the most commonly occurring outcrossing events (62.3\%). Further, using the model outlined by Lloyd and Webb (1992b), which describes the maintenance of distyly in pollen-limited and pollen-unlimited populations, it was concluded that this rate of inter-morph crossing was sufficient for the maintenance of sexual
dimorphism in the population, even in the absence of SI. That being said, more incidences of assortative mating were detected than initially anticipated based on the expected degree of pollen transfer between the morphs given their reciprocally arranged floral morphologies (Zhou et al. 2015).

The picture becomes markedly more complicated when one considers the fact that reciprocal herkogamy is often also associated with self- and intra-morph incompatibility in heterostylous systems, a condition that already ensures outcrossing (Barrett and Shore 2008). In the case of distyly, for instance, successful pollinations are often only achieved by crossing the short and long morphs, with intra-morph pollinations being incompatible and thus resulting in little or nothing in the way of seed set (Figure 1). As was also indicated by Darwin, a plant variety, in already expressing the SI trait, likely "would never have been rendered heterostyled, as this state would then have been superfluous" (1877). Indeed, explaining this apparent redundancy has been a long standing issue for those seeking to resolve the question of how a condition such as heterostyly might have evolved in the first place (Darwin 1877; Dulberger 1992; Webb and Lloyd 1986; Lloyd and Webb 1992ab; Barrett 2002; Barrett and Shore 2008).

In order to overcome this challenge, some have opted to instead consider reciprocal herkogamy and SI in so far as they might promote fitness via either male or female function, respectively (Barrett 2002; Barrett and Shore 2008). In agreement with Darwin's original hypothesis (1877), reciprocal herkogamy would thus promote the male component of fitness by encouraging efficient cross-pollination and, in this way, discouraging pollen wastage (Baker 1964; Lloyd and Webb 1992ab; Barrett 2002; Barrett and Shore 2008). SI, on the other hand, would prevent self-fertilization, and thus inbreeding depression, thereby promoting the maternal component of fitness (Barrett 2002; Barrett and Shore 2008).

Despite the fact that there exists a general consensus in the literature that heterostyly largely functions as an outcrossing mechanism (Barrett and Shore 2008), whether or not reciprocal herkogamy preceded or followed the development of SI in the evolution of heterostyly has been and continues to be debated (Charlesworth and Charlesworth 1979a \& b; Lloyd and Yates 1982; Webb and Lloyd 1986; Lloyd and Webb 1992ab; Barrett and Shore 2008). While several competing theories have been offered (Mather and de Winton 1941; Ernst 1936; Crowe 1964; Yeo 1975...etc.), those that have been presented by Charlesworth and Charlesworth
(1979b) and Lloyd and Webb (1992a \& b) are more commonly held and may be considered the most well-articulated.

According to the population genetics models of Charlesworth and Charlesworth (1979b), the evolution of reciprocal herkogamy was necessitated by the earlier development of SI. In their view, the reciprocal arrangement of styles and stamens in the flower serves to reinforce a preexisting SI system by ensuring that pollen gets to "the right place" (Charlesworth and Charlesworth 1979b; Yeo 1975). Using evidence from the literature of the day in concert with computer simulations, their justification for emphasizing SI as the first step in the evolution of heterostyly was based on the following premises: 1) Instances of heterostyly without SI were, at the time, considered to be rare and those that did exist were thought to represent a reversion to self-compatibility from SI (though this is not thought to always be the case now; Santos-Gally et al. 2015); 2) In the absence of SI, style-length polymorphisms would be difficult to maintain, as such mutations would have equal chances of either being eliminated from a population (due to a resultant reduction in pollination in the largely homostylous starting population) or reaching fixation; 3) Initial stamen-height mutations would also likely become fixed, unless selfing was maintained at uncommonly low levels; and 4) SI would not likely arise in a population expressing reciprocal herkogamy as self-fertilization would already be reduced in this case. Their model then posits that heterostyly evolved within self-compatible, homostylous ancestral populations, which first acquired recessive pollen-compatibility mutations, resulting in mutant individuals that were effectively pollen-sterile. This was then followed by subsequent and reciprocal style-compatibility mutations, which restored the fertility of the original pollen mutants. Style and stamen length dimorphism then followed, and was presumably selected for in order to reduce pollen wastage resulting from frequent incompatible self-pollinations (Charlesworth and Charlesworth 1979b). One testable prediction that emerges from their model is that distyly will only evolve if the genes determining SI and reciprocal herkogamy are linked at the S-locus (Charlesworth and Charlesworth 1979b; Barrett and Shore 2008).

According to the phenotypic model of Lloyd and Webb (1992a), nearly the opposite is true. Representing a revival of Darwin's initial - though vague - conception, the authors contend that the first evolutionary steps toward heterostyly involved selection for reciprocal herkogamy in order ensure efficient cross-pollination. First, the introduction of a style length mutation into ancestral approach-herkogamous populations (monomorphic with stigmas
positioned above anthers) resulted in populations containing both approach- and reverseherkogamous (stigmas positioned below anthers) individuals. The initial spread of the reverse herkogamous mutant was then presumably favoured due to decreased interference between male and female reproductive structures from the perspective of pollen donation (Barrett 1990). Further selection for more efficient pollen transfer between the morphs then resulted in antherheight dimorphism. The development of SI may or may not have followed depending on the relative costs of inbreeding in the population in question (Lloyd and Webb 1992a \& b; Barrett and Shore 2008). Unlike the Charlesworth and Charlesworth model (1979b), the phenotypic model of Lloyd and Webb (1992 a \&b) does not make any predictions about the genetic basis of distyly, and thus allows for a wide array of possible underlying genetic mechanisms, including the occurrence of genes with morph-specific functions (Barrett and Shore 2008).

As heterostyly is expected to have multiple independent origins, sometimes even within a single genus (Graham and Barrett 2004; Barrett and Shore 2008), it has been suggested that both of these proposed evolutionary pathways may have been exploited at one point or another (Fornoni and Domínguez 2015; Zhou et al. 2015). That said, while the Charlesworth and Charlesworth model cannot be outwardly rejected, most recent evidence does support the plausibility of the Lloyd and Webb model (Arroyo et al. 2002; Pérez-Barrales et al. 2006; Zhou et al. 2012; Zhou et al. 2015; Fornoni and Domínguez 2015...etc.). As was earlier described, Zhou et al. (2015) recently demonstrated that reciprocal style- and stamen-length dimorphism can be effectively maintained in a population, even in the absence of SI. This finding effectively illustrates that SI is not a necessary precondition for the evolution of heterostyly, as would be expected under the Lloyd and Webb model (Zhou et al. 2015; Fornoni and Domínguez 2015). Also, due to its emphasis on the promotion of outcrossing (as opposed to the avoidance of inbreeding) as the initial driving force behind the development of heterostyly, the Lloyd and Webb model necessarily stresses the role of pollinator behaviour in the evolution of floral morphology (Lloyd and Webb 1992 a \& b; Pérez-Barrales et al. 2006; Fornoni and Domínguez 2015). In this same vein, phylogenetic character reconstructions in Narcissus have suggested that style-length dimorphism is ancestral to heterostyly and arose before SI in this group (Graham and Barrett 2004; Perez et al. 2004; Pérez-Barrales et al. 2006). Further, these results have also shown that the transition to heterostyly in Narcissus more closely mirrors historical pollinator changes than it does the evolution of SI (Pérez-Barrales et al. 2006). This evidence, of course,
leaves the question of "why SI?" unresolved, though it has been suggested that it may, perhaps, make up for the apparent inefficiencies of reciprocal herkogamy by ensuring perfectly disassortative mating (Zhou et al. 2015).

1.2 SELF-INCOMPATIBLITY (SI) SYTSTEMS

SI, itself, may be divided into several varieties. Specifically, SI systems may be characterized as being either gametophytic or sporophytic in nature, and further, sporophytic SI may, in turn, be broken down into its homomorphic and heteromorphic forms (Stevens and Murray 1982; Barrett 1988). Generally, gametophytic SI refers to a scenario in which pollen is rejected by the receiving style as a result of there being a match between the haploid SI genotype of the pollen (the male gametophyte) and one of the SI alleles (hereafter referred to as S-alleles or S-haplotypes) present in the diploid tissues of the style (Newbigin et al. 1993; Matton et al. 1994). In the case of sporophytic SI, on the other hand, pollen rejection depends not on the haploid genotype of the pollen, itself, but on the diploid genotype of its parent plant (the sporophyte producing the pollen) at the SI locus (hereafter referred to as the S-locus) (Matton et al. 1994). With reference to sporophytic SI, specifically, the terms homo- and heteromorphic may then be used to refer to the particular plant species in question. For instance, where a species or population is characterized by only a single flower morph, sporophytic SI is deemed to be homomorphic (Stevens and Murray 1982). In situations where a species or population is represented by a particular number of discrete flower morphs, as is the case with heterostylous systems, SI is referred to as heteromorphic (Stevens and Murray 1982). As might be imagined, the later will be the larger focus of the current review. However, gametophytic and homomorphic sporophytic SI will also be briefly considered given that considerable detail has emerged regarding the molecular and genetic mechanisms underlying their expression.

Though represented by a variety of molecular mechanisms, SI systems, both sporophytic and gametophytic, are inherited in a similar fashion. While the number and identities of the particular genes involved may differ substantially and are not thought to be homologous between systems, in all of the cases discussed, the inheritance of SI is - or is considered to be - controlled by a single polymorphic locus (the S-locus), now known to consist of tightly-linked genes that represent the style- and stamen-specific components of SI response (Gibbs 1986; Nasrallah and

Nasrallah 1989; Newbigin et al. 1993; Kao and Tsukamoto 2004; Barrett and Shore 2008). In those plants showing sporophytic SI, in particular, the genetic control of SI response may appear to be somewhat obscured by the complex dominance relationships that may exist between S alleles (Nasrallah and Nasrallah 1989; Hatakeyama et al, 1998; Billiard et al. 2007). And moreover, the relative dominance or recessiveness of any particular S-allele (of which there can be >100 in a single population) may differ depending on the particular tissue in which it is expressed (Nou et al. 1993; Hatakeyama et al, 1998; Billiard et al. 2007). Species with gametophytic SI, on the other hand, may avoid this complication due to the fact that self-pollen inhibition is determined solely by the haploid genotype of the pollen itself (Newbigin et al. 1993; Matton et al. 1994; Hatakeyama et al. 1998; Billiard et al. 2007).

At the S-locus of heterostylous species, genes for SI are expected to be tightly linked to those controlling reciprocal herkogamy (Bateson and Gregory 1905; Lewis and Jones 1992; Barrett and Shore 2008). However, more information on the inheritance of SI in heterostylous systems, in particular, will be given in sections 1.6 and 1.7.

1.3 GAMETOPHYTIC SI: THE S-RNase SYSTEM

Gametophytic SI is the most common form of SI and is perhaps the best studied (Barrett 1988; Newbigin et al. 1993; Kao and McCubbin 1996). Unlike in the sporophytic system, all species that exhibit gametophytic SI may be represented by any number of morphologically indistinct mating groups (Barrett 1988; Newbigin et al. 1993). There are two main types of gametophytic SI that have been well described: 1) The S-RNase system that is common to the Solanaceae, Rosaceae, and Plantaginaceae (Newbigin et al. 1993; Newbigin et al. 2008); and, 2) the S-glycoprotein-based mechanism that is active in Papaver (Franklin-Tong and Franklin 2003). However, these two gametophytic SI systems are not thought to share a common evolutionary origin (Foote et al. 1994; Franklin-Tong and Franklin 2003). Indeed, there is some evidence to suggest that the S-RNase system, alone, may have multiple origins within the Rosaceae, in particular (Tao and Iezzonni 2010; Aguiar et al. 2015; Morimoto et al. 2015).

The S-RNase system is characterized by the presence of a diversity of pistil-specific glycoproteins (Anderson et al. 1986; Anderson et al. 1989; Newbigin et al. 1993; Newbigin et al. 2008). Each individual variety segregates for a particular S-allele, and is a product of the S-locus
(Anderson et al. 1989; Gebhardt et al. 1991; Newbigin et al. 1993). The glycoproteins, themselves, are catalytically active RNases. (McClure et al. 1989; Newbigin et al. 1993: Franklin-Tong and Franklin 2003). It is thought that this RNase activity is crucial to the pollenrejection process. Namely, S-RNases are believed to act as cytotoxins, degrading the RNA associated with the pollen and pollen tubes originating from individuals of the same mating type (Franklin-Tong and Franklin 2003; Kao and Tsukamoto 2004; Goldraij et al. 2006). Indeed, transgenic studies in Petunia inflata have demonstrated that, when S-RNase activity was inhibited in members of this species, the ability to reject self-pollen was subsequently lost (Lee et al. 1994). Similarly, when individuals were modified to express S-RNases associated with genotypes other than their own, they then gained the ability to reject pollen from individuals having these genotypes, as well (Murfett et al. 1994; McClure 2004). Taken together, these results strongly suggest that S-RNases, alone, are sufficient to determine incompatibility reactions in the style (McClure 2010). That being said, additional genes, unlinked to the S-locus, have been shown to affect pollen rejection in Nicotiana and Solanum (McClure et al. 1999; O’Brien et al. 2002; McClure 2010; McClure et al. 2011).

The pollen determinants of SI in the S-RNase system were discovered somewhat more recently than their style-specific counterparts (Lai et al. 2002; Sijacic et al. 2004). Identified as F-Box proteins, they are known to be S-linked and have been shown to exhibit pollen-specific expression (Lai et al. 2002; Sijacic et al. 2004; McClure 2010). In other contexts, F-Box proteins are often involved in protein ubiquitination and, indeed, this is generally thought to be their role in S-RNase-based SI (McClure 2010; Chen et al. 2012). However, there is some debate regarding their precise role, as these purported pollen- S determinants have also been shown to exhibit far less sequence polymorphism than their associated S-RNases in some systems (Wheeler and Newbigin 2007; Newbigin et al. 2008). As some have pointed out, if the identified F-Box proteins are indeed the pollen-specific determinants of SI, their comparatively low diversity suggests that they have arisen relatively more recently than their pistil-specific partners, causing potential problems for the foundational idea that these two components of SI have coevolved (Wheeler and Newbigin 2007; Newbigin et al. 2008; McClure 2010). In Petunia, however, it has been shown that each type of pollen-specific F-Box protein may, instead, have the capacity to identify a particular subset of S-RNases, and that multiple F-Box proteins may work collaboratively to identify a larger suite of non-self S-RNases (Kubo et al. 2010). Indeed,
this is the view that largely prevails in the current literature (Kakui et al. 2011; Chen et al. 2012; Kubo et al. 2015; Sun et al. 2015), though how this complex system might have evolved remains an outstanding issue (Kubo et al. 2015).

Though S-linked F-Box proteins have been shown to interact with S-RNases (Qiao et al. 2004; Kubo et al. 2010), and have been implicated in their degradation (Chen et al. 2012), the precise nature of self-pollen rejection in S-RNase based SI systems has not been wholly elucidated. It has been suggested, however, that the specificity of the interaction is likely governed by the pollen-S determinants, and not the S-RNases (McClure 2004; Newbigin et al 1993; Sun et al. 2015). This is evidenced by the fact that S-RNases do not show any special affinity for particular RNA substrates and have been demonstrated to successfully degrade RNA from a variety of sources, in vitro (McClure et al. 1990). Several models have been proposed to explain the precise mechanism by which pollen- S determinants establish the specificity of pollen rejection by S-RNases (Kao and Tsukamoto 2004; McClure 2004; Hua et al. 2008; Kubo et al. 2010; Chen et al. 2012). However, none have been definitively or universally demonstrated (Hua et al., 2008; Zhang et al. 2009). Even so, it is generally thought that pollen-specific F-Box proteins likely act as S-RNase inhibitors by targeting inter-morph S-RNases for ubiquitination, thus allowing for uninterrupted pollen tube growth and successful pollination (Qiao et al. 2004; Zhang et al. 2009; McClure et al. 2011; Chen et al. 2012).

1.4 GAMETOPHYTIC SI IN PAPAVER

An entirely different form of gametophytic SI occurs in members of the Papaveraceae family (poppy), and particularly in those belonging to the genus, Papaver (Zhang et al. 2009). As with the S-RNase system, the production of pistil-specific glycoproteins is a key aspect of SI in this group (Foote et al. 1994; Zhang et al. 2009). However, the particular glycoproteins involved are not ribonucleases and the molecular mechanisms underlying the rejection of self-pollen differ substantially (Franklin-Tong et al. 1991; Foote et al. 1994). In Papaver rhoeas, these proteins are referred to as PrsS (P. rhoeas stigma S) and are thought to act as signalling peptides involved in SI reactions (Foote 1994; Bosch and Franklin-Tong 2008; Wheeler et al. 2009; Wu et al. 2011; Eaves et al. 2014). Interestingly, PrsS-like genes have been shown to represent a large gene family in Arabidopsis, though no known function has been ascribed to them (Ride et al. 1999).

Indeed, apparent homologues have also been identified in distylous Turnera (Chafe et al. 2015; Shore and Chafe, Unpublished data, and see below), suggesting that this gene family may have other roles in addition to those that they play in the regulation of gametophytic SI (Ride et al. 1999).

The precise nature of the pollen-specific counterpart of PrsS was entirely unknown until fairly recently (Wheeler et al. 2009). Interestingly, this gene, called PrpS (P. rhoeas pollen S), appears to be entirely novel, having no known homologues (Wheeler et al. 2009; Eaves et al. 2014). The resultant protein has been associated with the plasma membrane of the pollen tube and is believed to be a transmembrane receptor protein (Bosch and Franklin-Tong 2008; Wheeler et al. 2009; Wu et al. 2011; Eaves et al. 2014). It is thought that, when non-self PrsS signalling peptides interact with these pollen-tube-bound PrpS transmembrane proteins, a complex Ca^{2+} dependent signalling cascade results, ultimately ending in self-pollen tube inhibition and programmed cell death (Thomas and Franklin-Tong 2004; Bosch and Franklin-Tong 2008; Zhang et al. 2009; Wheeler et al. 2009; Wu et al. 2011). In Papaver, extensive cytoskeleton modifications are triggered by SI response, and these changes have been implicated, not only in the inhibition of incompatible pollen tubes, but also in the initiation of programmed cell death, directly (Geitmann et al 2000; Snoman et al. 2002; Thomas S.G., Huang S., Li S., Staiger C.J., and Franklin Tong V.E. 2006). Indeed, the rapid acidification of the cytosol of incompatible pollen tubes appears to be a necessary step in this process (Wilkins et al 2015). Possible roles for mitogen-activated protein kinases (MAPKs) in the instigation of programmed cell death have also been elucidated (Rudd et al. 2003; Li, Samaj, and Franklin-Tong 2007).

Clearly, many facets of the SI signalling process have been identified, however, the precise mechanism by which "self" pollen is distinguished from "non-self" pollen and the exact nature of downstream signalling processes remain largely unknown (Wu et al. 2011; Eaves et al. 2014). Importantly, however, when Papaver PrpS's were introduced into the genome of self-compatible Arabidopsis thaliana, their SI function was retained, suggesting that SI signalling targets in Papaver are likely ubiquitous cellular components, common to many plant taxa (de Graaf et al. 2012; Eaves et al. 2014).

1.5 HOMOMORPHIC SPOROPHYTIC SI IN THE BRASSICACEAE

As one might recall, SI in sporophytic systems is determined by the diploid genotype of the parent plant at the S-locus, as opposed to the haploid genotype of the pollen (Newbigin et al. 1993; Matton et al. 1994). Homomorphic sporophytic SI, in particular, has perhaps been best described in members of the Brassicaceae family (mustard) (Takayama and Isogai 2005). Here, the main style-specific determinant of SI is an S-linked receptor kinase (SRK) (Nasrallah et al. 1987; Stein et al. 1991; Nasrallah and Nasrallah 2014a). This protein is expressed in the upper epidermal layers of the style and has been shown to determine the specificity of pollen rejection (Takasaki et al. 2000; Takayama 2001; Suzuki et al. 2003; Takayama and Isogai 2005; Nasrallah and Nasrallah 2014a).

The pollen-specific counterpart to the SRK consists of a small, cysteine-rich protein (referred to as the S-locus cysteine-rich protein, or SCR), which is initially expressed in the pollen tapetum and is later incorporated into the pollen coat after maturation (Takayama et al. 2001). In terms of its role in SI, SCRs are thought to act as ligands for style-specific SRKs (Schopfer et al. 1999; Takayama et al. 2000; Hiroshi et al. 2001; Takayama et al. 2001). Specifically, when an SRK is in the presence of an SCR that is associated with the same S haplotype, they form a high-affinity receptor complex on the surface of the stigma (Takayama et al. 2001; Nasrallah 2011). This interaction results in a complicated signalling cascade which ultimately ends in self-pollen inhibition (Nasrallah 2011; Takayama and Isogai 2005). In the case of non-self pollinations, it is thought that the SRC and SRK simply cannot bind, and thus the signalling pathway is never initiated (Nasrallah and Nasrallah 2014a). However, several aspects of this process have yet to be fully explained. For example, how pollen-specific SCRs gain access to membrane bound SRKs and the precise mechanism by which the two molecules "recognize" each other remains mysterious. Further, the exact nature of the signal transduction pathway that results from their interaction is still largely unknown (Nasrallah 2011; Takayama and Isogai 2005; Nasrallah and Nasrallah 2014a).

That said, additional SI "modifiers" in the Brassicaceae have been identified, including what is known as the S-locus glycoprotein, or $S L G$, which, in some taxa, enhances SRK activity when in the presence of self-pollen (Takayama et al. 1987; Takasaki et al. 2000; Suzuki et al. 2003). Other components, possibly more integral to downstream signalling, have also been
discovered, including M-locus protein kinase (MLPK), arm repeat-containing protein 1 (ARC1), and Exo70A1 (Nasrallah and Nasrallah 2014a). MLPK and ARC1 are both reported to interact with SRK (Kakita et al. 2007; Indriolo et al. 2012), while Exo71, a putative component of the exocyst complex in plants, has been shown to interact with ARC1, a known ubiquitin ligase (Samuel et al. 2009). The exocyst complex is known to be involved in targeted secretion and is thus expected to be responsible for delivering water, calcium, and other factors necessary for proper pollen hydration and germination on the surface of the style (Samuel et al. 2009). Indeed, it is through this process that the three proteins listed above are anticipated to influence SI in Brassica and Arabidopsis (Nasrallah and Nasrallah 2014a). Specifically, it has been suggested that, upon encountering incompatible pollen grains, stigma-bound SRKs, in concert with MLPKs, activate ARC1. ARC1 subsequently ubiquitinates Exo70A1, resulting in its degradation. Due to the absence of Exo70A1, it has been surmised that incompatible pollen grains may then be unable to germinate due to improper hydration (Samuel et al. 2009; Nasrallah and Nasrallah 2014a). However, as the function of the exocyst complex is not well defined in plants (Samuel et al. 2009), and ARC1 has been shown to be unnecessary for the expression of strong SI in some taxa (Nasrallah and Nasrallah 2014b), whether or not these three proteins have a role to play in SI in the Brassicaceae remains controversial (Nasrallah and Nasrallah 2014b, Goring et al. 2014).

1.6 HETEROMORPHIC SPOROPHYTIC SI

In many ways, it is redundant to refer to this type of SI as both heteromorphic and sporophytic, as all known species that exhibit heteromorphic SI are of the sporophytic type (Stevens and Murray 1982). Thus, this system will hereafter be referred to simply as heteromorphic SI. Relevant to the study described herein, it is this form of SI that acts in a number of heterostylous species (Stevens and Murray 1982). However, as the genes involved remain almost entirely unknown, very few generalizations have emerged regarding how this system actually functions, biochemically (de Nettancourt 1997; Athanasiou and Shore 1997; Miljus-Dukic et al. 2004; Klein et al. 2009). At least one reason for this might be the fact that heterostyly likely evolved several times, independently (Ganders 1979; Barrett 1992; Barrett and Shore 2008). As a result, the molecular mechanisms determining self-pollen rejection might be
expected to differ between heterostylous species, thus making the discovery of a general mechanism of heteromorphic SI less likely (Dulberger 1992; Lloyd and Webb 1992ab; Athanasiou and Shore 1997). Indeed, evidence has been accumulated to suggest that, not only may the mechanisms of SI differ between heterostylous taxa (Dulberger 1992), but also between the different flower morphs represented by a single heterostylous species (Wedderburn and Richards 1990; Lloyd and Webb 1992a; Athanasiou and Shore 1997; Miljus-Dukic et al. 2004; Weller 2009; Safavian and Shore 2010). Similarly, efforts to describe the particular sites at which self and intra-morph pollen may be rejected have shown that pollen inhibition may occur in a variety of locales, including on the surface of the stigma, within the style or the ovary, or some combination of the three, depending on the species or particular morph in question (Stevens and Murray 1982; Gibbs 1986; Wedderburn and Richards 1990; Dulberger 1992; Safavian and Shore 2010).

Though their mechanisms likely differ, some generalizations may be made concerning the genetics of heteromorphic SI across heterostylous species. Indeed, considerably more success has been made in describing the particular genetical aspects of the "heterostylous syndrome" than the precise molecular mechanisms that underlie its expression (Stevens and Murray 1982; Barrett and Shore 2008). With reference to distyly, in particular, the genes determining SI are thought to be tightly linked to those responsible for the expression of reciprocal herkogamy, as part of a single diallelic genetic locus, showing typical Mendelian patterns of inheritance (Bateson and Gregory 1905; Lewis and Jones 1992; Barrett and Shore 2008). In general, the short-styled allele (S-allele) is most often dominant to that of the long (s-allele), with this relationship being reversed in only a few genera (Bateson and Gregory 1905; Baker 1966; Lewis and Jones 1992; Barrett and Shore 2008). The number, arrangement, and identities of the putative genes involved in heteromorphic SI, where they have been identified, often differ between species (Barrett and Shore 2008). With this in mind, the nature of distyly and SI will first be described in three contrasting systems, distylous Primula, Fagopyrum, and Linum before moving on to discuss these topics as they apply to Turnera.

1.7 PRIMULA AND THE SUPERGENE MODEL

Individuals of the genus, Primula, are perhaps the most often used subjects in investigations of distyly and the genetic and molecular mechanisms that underlie its expression (Mast and Conti 2006; Barrett and Shore 2008; Nowak et al 2015). Indeed, distyly and SI were first recognized in Primula by Darwin, and since then, the general pattern of their inheritance has also been deduced from experiments using members of this genus (Darwin 1862, 1877; Bateson and Gregory 1905; Ernst 1955; Dorwick 1956). Indeed, these patterns have largely been extended to other species that express the heterostylous syndrome, as well (Barrett and Shore 2008; Cohen 2010).

The recognition in Primula of the infrequent appearance and inheritance patterns of aberrant homostylous and heterostylous individuals having characteristics of both the long- and short-styled morphs resulted in the formulation of the supergene model of inheritance for heterostyly (Ernst 1955; Dorwick 1956; Barrett and Shore 2008; Cohen 2010). As these individuals were thought to represent S-locus recombinants, it was hypothesized that three tightly linked diallelic loci - one for each set of morphological and physiological characteristics represented by heterostyly - likely controlled the expression of the whole heterostylous syndrome in Primula (Dorwick 1956; Barrett and Shore 2008; Cohen 2010). These three loci, all located within the larger S-locus, are commonly referred to as G, P, and A, where G determines style length and female incompatibility, P determines pollen size and male incompatibility, and A determines anther height (Ernst 1936; Dorwick 1956; Lewis and Jones 1992; Barrett and Shore 2008; Cohen 2010). The relative order in which these loci are arranged has been debated (Dorwick 1956; Lewis and Jones 1992; Kurian and Richards 1997), though it is generally thought to be GPA, with the dominant S-haplotype being represented by three dominant alleles at these loci $(G P A)$, and the recessive s-haplotype being represented by three recessive alleles (gpa) (Barrett and Shore 2008). As the short-styled morph is most commonly heterozygous, it follows that these individuals would carry the genotype, GPA/gpa, while the long-styled individuals would be homozygous recessive, gpa/gpa, at the S-locus in Primula (Dorwick 1956). Another model has suggested that the S-locus in Primula may contain up to four additional causative loci (Kurian and Richards 1997), on top of the original three suggested by Ernst and others (Ernst 1936; Dorwick 1956; Lewis and Jones 1992). This model is considered to be highly speculative
(Barrett and Shore 2008), though it has been conceded that S-locus gene-arrangements may vary across species (Li et al. 2011; Nowak et al. 2015). The precise size of the purported "supergene" has also yet to be defined for this genus (Manfield 2005; Li et al. 2007, 2008, 2009, 2011; Gilmartin and Li 2010; Cohen 2010; Nowak et al. 2015), though chromosome localization experiments have suggested that the S-locus is located near the centromere of the largest metacentric chromosome pair in P. vulgaris (Li et al. 2015).

After over a century of study, only four genes (known as PvSLP1, PvSLL1, PvSLL2, and $P v G L O$) have been shown to be potentially S-linked in Primula (Manfield et al. 2005; Li et al. 2007, 2008, 2009, \& 2015; Nowak et al. 2015). However, their functions in SI, if any, remain wholly undescribed (Nowak et al. 2015). Genome sequencing efforts in distylous P. veris have recently been completed, representing the first genome assembled for any heterostylous species (Nowak et al. 2015). RNA-sequencing data has further identified an additional 113 gene candidates that show significant differential expression between the floral morphs. Most interestingly, of these gene candidates, the previously identified $P v G L O$ is the most significantly differentially expressed and may be absent from the long-morph S-haplotype (Li et al. 2007; Nowak et al. 2015). Physical and genetic maps of the P. vulgaris S-locus have also been recently constructed (Li et al. 2015). Collectively, these data are expected to yield significant insight into genetic and molecular underpinnings of heterostyly in Primula, and perhaps other heterostylous taxa, in the very near future (Fornoni and Dominguez 2015; Li et al. 2015; Nowak et al. 2015).

1.8 DISTYLY IN FAGOPYRUM AND LINUM

The supergene model is also commonly applied to distylous Fagopyrum (buckwheat), though the evidence for this supposition is not considered to be as strong (Sharma and Boyes 1961; Barrett and Shore 2008; Cohen 2010). As few as two (Woo et al. 1999; Wang et al. 2005; Barrett and Shore 2008) and as many as five or more (Sharma and Boyes 1961; Matsui et al. 2003; Yasui et al. 2008) individual loci within the larger S-locus have been proposed for species in this genus. However, several genes outside of the S-locus have also been reported to affect the expression of distyly in Fagopyrum, though the respective identities of these reported genes have not been determined (Matsui et al. 2004).

A number of proteins that are potentially involved in distyly and SI in this genus have been identified (Miljus-Dukic et al. 2004; Yasui et al. 2012). In a comparison of protein profiles obtained from the styles of long- and short-styled morphs of Fagopyrum esculentum after self and cross pollination, two groups of proteins, one associated with the short- and one associated with the long-styled morph, were revealed (Miljus-Dukic et al. 2004). Though their appearance was coincident with SI response, the identities and potential functions of these proteins have not been reported (Miljus-Dukic et al. 2004; Barrett and Shore 2008).

Interestingly, when the pistils of distylous F. esculentum were treated with a variety of protease inhibitors after being self-pollinated, self-pollen tube inhibition was suppressed, suggesting that proteases may be involved in SI response in this species (Miljus-Dukic 2007). Similarly, when pistils were treated with phosphatase inhibitors and calcium antagonists after self-fertilization, SI was also inhibited, suggesting that calcium signalling and phosphatases might be important components of the SI response, as well (Miljus-Dukic 2003). According to the authors, these two results, in particular, may indicate that Fagopyrum employs molecular mechanisms very similar to those that act in other homomorphic SI systems, like Papaver (Miljus-Dukic 2003, 2007).

Alternatively, if the proposal made by Yasui et al. is instead adopted, the particular molecular mechanisms employed by heteromorphic SI systems may be altogether different (2012). More recently, a gene found to be closely linked to the S-locus and expressed only in the short-styled morph of three separate species of Fagopyrum was identified (Yasui et al. 2012). By examining differentially expressed genes in the styles of the two floral morphs, a novel gene was identified, showing some homology to the Early Flowering 3 (ELF3) gene in A. thaliana (Yasui et al. 2012). Taking into account this homology and its linkage to the S-locus, this gene was thus named S-Locus Early Flowering 3 (S-ELF3). Due to its apparent evolutionary persistence in the short-styled morph and its reported linkage to the S-locus, this gene was likewise assumed to have a potentially important function in determining the expression of distyly and SI in the shortstyled morph of distylous Fagopyrum (Yasui et al. 2012). Also, as a result of its presence in only short-styled individuals, it was proposed that the dominance of the S-allele may be explained merely by its absence in the long-styled morph (Yasui et al. 2012).

Though limited in scope, some effort has also been made to describe the molecular events that lead to self- and intra-morph pollen rejection in distylous Fagopyrum (Miljus-Dukic 2003,

2007; Yasui et al. 2012). For instance, with the discovery that the ELF3 gene produces a nuclear DNA binding protein in Arabidopsis, it was speculated that S-ELF3 could possibly behave as a transcription factor in Fagopyrum and may thus be involved in various aspects of distyly and SI in short-styled individuals in this way (Yasui et al. 2012). However, the precise function of the protein produced by this gene in Fagopyrum, as well as the timing and cellular location in which it is expressed, has yet to be characterized (Yasui et al. 2012).

Interestingly, morph-specific genes have also been reportedly identified in distylous Linum (flax) (Ushijima et al. $2012 \& 2015$). While the S-locus in this genus is expected to be diallelic, it has not been definitively shown (Ushijima et al. 2012 \& 2015). Indeed, this has proven difficult to demonstrate due to the often very subtle or even non-existent differences in stamen lengths that are observed between morphs (Barrett 1992). As a result, defining and distinguishing the floral types has been somewhat problematic (Ushijima et al. 2015). However, more recently, a clearly segregating population of L. grandiflorum was assembled by exploiting style to stamen length ratios in order to define morphs. This population has since been used to explore S-locus inheritance and identify potentially S-linked genes in this genus (Ushijima et al. 2015). As a result of these explorations, the short-style-specific gene, TSS1, was shown to be S-linked (Ushijima et al. 2015). TSS1 codes for a 19 kDa basic protein with no identifiable signal peptide or transmembrane domains, as might be expected of a protein involved in SI. While there is some evidence to suggest that it may be a secreted protein, TSS1 appears to have no significant homologues, and thus any pronouncements regarding its potential function in SI have been largely speculative (Ushijima et al. 2012).

1.9 DISTYLY IN TURNERA

Formerly a member of the Turneraceae family, which has more recently been incorporated into the Passifloraceae, the genus, Turnera, consists of species that are largely neotropical in origin (Shore et al. 2006; APG 2009). The great majority of the 143 species represented by this group are distylous and typically show strong SI (Shore et al. 2006; Arbo 2015). Indeed, molecular phylogenetic analyses also suggest that this condition is likely to have evolved independently at least once within the former Turneraceae, with no other members of the Passifloraceae having been identified as heterostylous (Shore et al. 2006).

Distyly in Turnera also appears to be inherited as a single, diallelic genetic locus with two alternative alleles or haplotypes (Shore and Barrett 1985b). As with Primula and Fagopyrum, the S-locus in Turnera is most often conceptualized in accordance with the 'supergene' model, though this has not been definitively demonstrated (Tamari et al. 2005; Barrett and Shore 2008). Even so, the majority of the genetic evidence obtained for species of this genus is, at the very least, consistent with the supergene model of Primula (Shore and Barrett 1985b; Tamari et al. 2001; Tamari et al. 2005; Shore et al. 2006; Labonne et al. 2010). However, there is also some evidence to suggest that pollen size in Turnera may be determined by more than one gene residing within or near the S-locus, and additional genes outside of the apparent S-locus may affect style and stamen length, as well (Labonne et al. 2010).

As with other distylous species, differences in protein expression in the two morphs has been exploited in Turnera with the intent of uncovering both the genetic and molecular basis of distyly in members of this genus (Athanasiou and Shore 1997; Khosravi et al. 2003 \& 2004; Tamari and Shore 2004 \& 2006; Shore et al. 2006). Two proteins, a polygalacturonase and an α dioxygenase, both specific to the short-styled morph of several Turnera species, have been identified in this way (Athanasiou et al. 2003; Khosravi et al. 2003, 2004; Tamari and Shore 2004 \& 2006). In fact, two polygalacturonases were initially detected: one specific to the stylar tissue and another being pollen-specific (Athanasiou et al. 2003). However, it was later determined that the pollen-specific protein was likely unrelated to the expression of distyly in Turnera, generally, as it failed to be identified in the tissues of several related species of this genus (Tamari and Shore 2004). The short style-specific protein, on the other hand, was found to be expressed in all species of Turnera investigated, including an individual of the closely related genus, Piriqueta (Khosravi et al. 2003; Tamari and Shore 2004). Further, the style-specific polygalacturonase was also shown to be absent in several self-compatible homostylous species, thus suggesting that the stylar polygalacturonase perhaps has a role to play in determining reciprocal herkogamy and SI in this group (Tamari and Shore 2004). Importantly, previous results had indicated that the timing of its expression likely coincided with the onset of SI response (Anthanasiou et al. 2003). While polygalacturonases generally participate in cell growth processes, and several proposals have been made to describe its potential function in the expression of characteristics associated with distyly, its precise role, if indeed it has one, remains
unknown (Athanasiou et al. 2003; Khosravi et al. 2003; Tamari and Shore 2004, 2006; Shore et al. 2006; Barrett and Shore 2008).

The short-specific α-dioxygenase was also found to be expressed in high levels in the stylar tissues of several Turnera species, and this tissue specific expression also appeared to be coincident with SI response (Khosravi et al. 2004). However, these proteins were shown to have homology to other α-dioxygenases involved in stress induced signalling responses in plant, thus making its potential role in distyly unclear (Khosravi et al. 2004). Moreover, the genes encoding both the α-dioxygenase and the polygalacturonase were not found to reside at the S-locus, itself, suggesting that they either do not have a role in determining the syndrome or, alternatively, they are upregulated in short-styled individuals by some as of yet unknown component of the distyly locus in Turnera (Athanasiou et al. 2003; Khosravi et al. 2004; Labonne et al. 2010).

Though little is known about the precise molecular mechanisms by which SI acts in Turnera, there is some evidence to suggest that the particular processes involved may be morphspecific (Tamari et al. 2001; Safavian and Shore 2010). Initial observations of pollen tube growth in several species of Turnera and Piriqueta showed that incompatible pollen tubes tended to extend somewhat further into the styles of the long-styled morph before any further growth was arrested, though the difference between the morphs was not found to be statistically significant (Tamari et al. 2001). Striking structural differences were also noted, as these incompatible pollen tubes appeared to be associated with the generation of callose plugs, which appeared only very rarely in the pollen tubes produced in the short-styled morph within 24 hours of self-pollination (Tamari et al. 2001).

These observations were later reaffirmed in a second investigation where several other ultrastructural differences between the incompatible pollen tubes of the two morphs were also identified (Safavian and Shore 2010). In addition to the distinctive presence of callous plugs at their tips, incompatible pollen tubes in the long-styled morph were found to be further characterized by the swelling and loss of mitochondrial cristae, as well as the occurrence of circular-shaped rough endoplasmic reticula (Safavian and Shore 2010). Upon self-pollination in the short-styled morph, the cell wall and plasma membrane located at the apex of pollen tubes appeared to rupture, thus rendering cellular organelles largely indistinguishable (Safavian and Shore 2010). Swollen motochondria in the pollen tubes of the long-styled morph were hypothesized to be associated with cells that were undergoing programmed cell death, as had
been observed in other plant species (Safavian and Shore 2010). The cell membrane rupturing that was characteristic of pollen tubes in short-styled morphs was speculated to have resulted from cell necrosis, however, suggesting that the two morphs may employ different mechanisms in the rejection of self-pollen (Safavian and Shore 2010).

More recent efforts to characterize distyly in Turnera have focused on determining the precise identities of the genes involved by positional cloning, chromosome walking, deletion mapping, and a variety of other approaches. To do so, several molecular markers tightly linked to the S-locus were initially identified and their relative positions with reference to the S-locus were subsequently mapped (Labonne et al. 2008, 2009). As a result of these mapping efforts, alone, two putative genes and a non-LTR retroelement were discovered to be tightly associated with the S-locus (Labonne et al. 2009). Indeed, one gene, coding for a sulfotransferase, appeared to be somewhat differentially expressed in the short and long morphs of three Turnera species. Sulfotransferases have a variety of reported functions in plants. However, whether or not they play a role in SI in Turnera is uncertain (Labonne et al. 2009). A second gene, coding for an Nacetyltransferase, also showed some evidence of differential expression between the morphs (Labonne et al. 2009). However, the recovery of several individuals found to result from recombination events between the N -acetyltransferase gene and the S-locus suggested that, while S-linked, the N -acetyltransferase gene was not likely located within the S-locus, itself (Labonne et al. 2009).

The S-linked non-LTR retroelement that was discovered appeared to be non-functional, on the other hand (Labonne et al. 2009). While retroelements are apparently a common feature of the S-locus in other species (Lai et al. 2002; Manfield 2005), their potential role, if indeed they have one, is currently unknown. However, it has been suggested that retroelements may suppress recombination at the S-locus (Wheeler et al. 2003), or, alternatively, they may simply accumulate in the area as a result of recombination suppression, itself (Wright et al. 2003; Labonne et al. 2009). Interestingly, previous investigations of recombination rates in Turnera have revealed no statistically significant evidence of recombination suppression at the S-locus region. However, it was conceded that, if the S-locus were sufficiently small in size, the tests employed may have lacked the power necessary to detect it (Labonne et al. 2007).

Despite the fact that their potential functions in distyly in Turnera remain elusive, the previously identified S-linked genes and markers have provided valuable landmarks for
subsequent chromosome walking experiments in distylous T. subulata (Labonne et al. 2009; Labonne and Shore 2011; Labonne 2011, PhD thesis). A bacterial artificial chromosome (BAC) library has since been constructed using genetic material obtained from a short-styled (Ss) individual. The library was subsequently screened for the presence of the already identified S linked markers so as to facilitate the isolation of potentially relevant clones. Isolated BACs were sequenced and primers designed to their ends were then used to probe the library in an effort to extend the walk (Labonne and Shore 2011; Labonne 2011, PhD thesis). A series of floral mutants possessing deletions in the dominant S-haplotype were also exploited in order to identify BAC clones containing portions of the S-locus (Labonne et al. 2010; Labonne and Shore 2011; Labonne 2011, PhD thesis). From these initial efforts, a single BAC clone was found to contain the entire recessive s-haplotype (Labonne and Shore 2011; Labonne 2011, PhD thesis). The s haplotype containing BAC has since been sequenced and additional clones containing portions of the S-haplotype have also been identified and sequenced in this way (Labonne 2011, PhD thesis; Shore and Chafe, Unpublished data). While the S-haplotype in T. subulata has not been fully characterized, it is known to be much larger than its recessive counterpart. While the s-haplotype is approximately 192 kb , the portions of the S-haplotype that have been identified contain $>900 \mathrm{~kb}$ of sequence information, with much of the additional DNA being represented by transposable elements (Shore and Chafe, Unpublished data).

While the two haplotypes appear to be characterized by the presence of some of the same putative genes, their relative arrangements are known to differ due to one or more possible inversions (Shore and Chafe, Unpublished data; Figure 2). Further, very recently, short-specific genes have also been identified at the S-locus in T. subulata and these genes appear to be S linked in a number of related species of Turnera and Piriqueta, as well (Shore and Chafe, Unpublished data). The gene we have termed Tsstal, for example, was identified from a previously constructed RNA sequencing (RNA-seq) data set (Shore and Chafe, Unpublished data). This data set was constructed using RNA extracted from pooled samples of each of the following floral tissues obtained from tetraploid T. subulata: (1) the short styles and (2) long stamens of short-styled individuals, as well as (3) the long styles and (4) short stamens of longstyled individuals. After sequencing, transcripts were assembled, and read counts were summed for each transcript, creating 4 tissue-specific RNA-seq libraries. Transcript read-count data were then analyzed in order to detect tissue-specific differential expression in short-styled versus long-

S-Haplotype

Figure 2: Graphical representations of the recessive s - and dominant S-haplotypes, based upon Bacterial Artificial Chromosome (BAC) sequencing from a single individual of diploid T. subulata. The approximate gene arrangements (APETALA2, Tssta1, LEJ2, AP2D, RNABP, SCE1, FRA1, LRRK, IRX15L, $F S P$, and $N R F P$, and $W R K Y$) are known with certainty for the s-haplotype. To date, the entire S-haplotype has not been fully sequenced. Gaps in this sequence are bracketed on the left and right by " \ll " and " \gg " symbols. The genes that are anticipated to reside within these unsequenced sections of the dominant S haplotype are indicated. The S-haplotype gene order shown above may be considered hypothetical, as contig orientation was assumed, in part, based on the s-haplotype sequence. That is, in some cases, gene order may be inverted relative to what is shown, or some genes may not be represented at all. It should also be noted that additional genes may also reside in the as of yet unsequenced regions of the S-haplotype. Indeed two such genes have been identified between Tsstal and the presumed location of APETALA2. The approximate size of the recessive s-haplotype is $>192 \mathrm{kB}$. The boundaries of the recessive s-haplotype were determined by deletion mapping with individuals that harboured deletions in the S-haplotype. As a result, the recessive s haplotype may itself not be fully defined. The size of the dominant haplotype is known to be much larger than its recessive counterpart based on these data, as the sequence already consists of 900 kb of genetic information. Diagrams are not drawn to scale.
styled samples. From this analysis, Tsstal was identified and determined to have short-stamenspecific expression (Shore and Chafe, Unpublished data).

When the sequence obtained for this transcript was submitted to BLAST searches, it was found to have considerable sequence homology to self-incompatibility family proteins, related to known stigmatic SI genes in Papaver (PrS 's, described above) (Table 2). Further investigation also showed that Tsstal could be amplified only in short-styled individuals of all species of Turnera (Figure 5) and Piriqueta investigated (data not shown). The gene also could not be amplified in mutants harbouring deletions in the dominant S-allele, indicating that Tsstal is S linked in Turnera (Shore and Chafe, Unpublished data). The relative location of Tsstal within the apparent S-locus has since been confirmed by BAC sequencing. Two additional shortspecific genes have been identified in this way, and also on the same BAC as Tsstal. Investigations of their prospective functions in distyly in Turnera are ongoing. To this end, in the current study, the molecular signatures of natural selection on S-linked genes will be exploited in an effort identify gene candidates and/or gene regions that may determine distyly in Turnera.

1.10 NATURAL SELECTION IN SELF/NON-SELF RECOGNITION AND SEX DETERMINATION SYSTEMS

Self/non-self recognition systems are common to many organisms, and the various SI mechanisms described in angiosperms provide good examples of such processes (Grosberg and Hart 2000; Uyenoyama 2005). Other important cases of self/non-self recognition that have been well described in the literature include the major-histocompatibility complex (MHC) of jawed vertebrates (Takahata and Nei 1990), the complimentary sex determination (csd) locus of honey bees (Hassleman and Beye 2004; Cho et al. 2006), and mating-type determining loci in fungi (May et al. 1999). As this list suggests, most often, self/non-self recognition is associated with the definition of mating type or innate immune system responses (Grosberg and Hart; Sanabria et al. 2008). Indeed, many interesting parallels between innate immunity and SI systems in plants, in particular, have been described, suggesting that they may share common mechanisms, at least in some species exhibiting homomorphic sporophytic SI (Sanabria et al. 2008).

Importantly, similar selective pressures have been implicated in the maintenance of most self/non-self recognition systems (Klein et al. 1998; Richman 2000; Charlesworth 2006). As
these systems often necessitate the preservation of a diversity of alleles at a locus, balancing selection is of particular importance in these contexts (Takahata and Nei 1990; Richman and Kohn 1996; Richman et al. 1996; May et al. 1999; Richman and Kohn 1999, 2000; Schierup et al. 2001; Kamu and Charlesworth 2005; Cho et al. 2006; Castric and Vekemans 2007; Roux et al. 2012). Under balancing selection, allelic diversity may be maintained in a population either by overdominance (or heterozygote advantage) or by negative frequency dependent selection (Charlesworth 2006). In homomorphic SI systems, in particular, individuals harbouring rare S alleles have been shown to acquire a reproductive advantage over their more common counterparts, as they will necessarily encounter a greater proportion of compatible mating opportunities within a given population (Wright 1939; Richman et al. 1996; Schierup et al. 2001; Kamu and Charlesworth 2005; Castric and Vekemans 2007; Richman and Kohn 1999, 2000). Further, in heterostylous populations, morph ratios, stigma-height polymorphism, and reproductive success have all been shown to be maintained by negative frequency dependent selection (Eckert et al. 1996; Thompson et al. 2003; Barrett et al. 2004). Though evidence is lacking at the genetic level, S-linked sequence polymorphism is expected to be maintained by balancing selection in distylous species, as well (Barrett and Shore 2008), with populations possibly being characterized by the presence of S-alleles or haplotypes with long- and shortspecific functions.

The molecular signatures of balancing selection are readily identifiable by two key indicators (Richman and Kohn 1996; Richman 2000; Charlesworth 2006). Long-term balancing selection, as would be expected in the case of heterostylous systems (Barrett and Shore 2008), often results in increased sequence diversity at S-linked loci relative to unlinked regions of the genome, with the diversity of any particular region being inversely proportional to its distance from the gene(s) that are the actual subjects of selection (Richman 2000; Charlesworth 2006). In the context of self/non-self recognition systems, elevated levels of polymorphism are also thought to be preserved, in part, as a consequence of reduced recombination at the relevant loci (Though this is not always the case. Indeed, the hymenopteran $c s d$ is a good example of an instance in which the opposite is true; see Beye et al. 1999). Though recombination suppression has not been definitively shown to occur at the S-locus in many heterostylous taxa, it is often assumed, as selection against self-fertility is presumed to be strong (Awadalla and Charlesworth 1999; Vieira et al. 2003; Charlesworth 2006; Labonne et al. 2007).

The occurrence of trans-species polymorphism (TSP) is another consequence of long term balancing selection (Klein et al 1998; Richman 2000; Charlesworth 2006). TSP refers to the appearance of like-alleles in closely related species. These alleles might also be referred to as "shared" or "ancestral" in that they will appear to have originated prior to species divergence (Figure 3; Klein et al. 1998; Richman 2000; Charlesworth 2006). As a result of shared ancestry, in gene genealogies, alleles will not cluster by species, but rather by their "functional type" (Klein et al. 1998; Richman 2000; Charlesworth 2006). The occurrence of high levels of sequence diversity and TSP among S-alleles has been demonstrated in several plant taxa, representing a diversity of homomorphic SI systems, including the Brassicaceae (Dwyer et al. 1991; Nou et al. 1993; Boyes et al. 1997; Schierup et al. 2001; Kamu and Charlesworth 2005; Castric and Vekemans 2007) and the S-RNase system of the Solanaceae, Rosaceae, and Rubiaceae (Ioerger et al. 1990; Richman et al 1996; Ishimizu et al.1998; Richman and Kohn 1999 \& 2000; Sutherland et al. 2008; Nowak 2011). However, no efforts to detect balancing selection on candidate genes have been undertaken in any heterostylous species, though this information would prove valuable in identifying the genes involved in determining these systems.

However, morph-specific genes have recently been described in many heterostylous taxa, including Turnera (Li et al. 2008; Yasui et al. 2012; Ushijima et al. 2012 \& 2015; Nowak et al. 2015; Chafe et al. 2015; Shore and Chafe, Unpublished data), and the possibility that the presence or absence of a single gene may determine floral morph-identity has been suggested (Yasui et al. 2012). If this is the case, it might be expected that genes involved in determining heterostyly will exhibit patterns of sequence polymorphism more akin to what would be observed in male-specific genes typical of X/Y sex determination systems (King et al. 2007; Uyenoyama 2005). That is, they will exhibit the evolutionary dynamics expected of Y-linked genes. As is anticipated for S-loci in plants, the Y chromosome experiences considerable recombination suppression and, as a result, deleterious mutations are allowed to accumulate (via Muller's ratchet) and become fixed (via genetic hitchhiking) due to strong (largely purifying) selection acting on nearby functional sex-determination genes (Muller 1964; Rice 1987; Liu et al. 2004; Uyenoyama 2005; King et al. 2007). The primary male-determining gene in mammals and marsupials, SRY (Sex Determining Region Y), for example, is Y-linked and has been shown to be under the influence of widespread negative or purifying selection in order to maintain

Species 1

Figure 3: Graphical representation of trans-specific evolution. Due to speciation, two alleles (A and B) at a locus are transmitted to two daughter species from their common ancestor. Over time, the A and B alleles will accumulate their own unique species-specific differences. Consequently, the alleles are denoted as A_{1} / A_{2} and B_{1} / B_{2} depending on the daughter species in which they occur. However, as a result of common ancestry, allele A_{1} will share more sequence similarities with allele A_{2} than it will with allele B_{1} (and vice versa), even though allele A_{2} is present in a separate species (after Richman 2000 and Charlesworth 2006).
function within a variety of mammalian and marsupial orders (Graves 1998; Wang et al. 2002; King et al. 2007; Nowacka-Woszuk and Switonski 2009; Murtagh et al. 2012). In any case, over time, and as a result of these processes, the Y chromosome has significantly diverged from its homologue, the X chromosome, and, other than at loci determining male-specific function, little conservation of the Y chromosome has been observed between species (Graves 1998; Liu et al. 2004; Uyenoyama 2005). Morph-specific genes in heterostylous systems might therefore be expected to show a molecular signature of strong purifying selection.

1.11 OBJECTIVES

Given that the genes for distyly are unknown, I undertake a series of exploratory analyses using various evolutionary genetic methods in an effort to identify the signatures of natural selection on known S-linked genes in Turnera. In light of theoretical expectations regarding the evolution of distyly (Charlesworth and Charlesworth 1979b; Lloyd and Webb 1992a \& b) and its anticipated genetic underpinnings, my hypotheses and expectations for each set of analyses are as follows:

1) If any of the S-linked genes investigated are directly responsible for distyly and possess S - and s-specific alleles, I expect those alleles to show evidence of "trans-specific evolution" due to long-term balancing selection. That is, alleles of each lineage (S and s) are expected to have evolved prior to species divergence (Klein et al.1998; Richman 2000; Charlesworth 2006). As such, a phylogenetic reconstruction of the evolutionary history of such a gene should reveal that all S forms of the gene are derived from an ancestral S, while the alternative s forms are derived from an ancestral s.
2) If alleles for causative S-linked genes are maintained by balancing selection (namely, negative frequency dependent selection), S and s alleles will be held in populations for longer periods of time than genes that occur elsewhere in the genome that are presumably not selectively maintained in this way. As a result, the genes determining distyly will have had greater time to accumulate neutral mutations and should show comparatively greater genetic diversity. In addition, this effect may be seen for genes very closely linked to the S locus, as well, with the
effect decreasing as one moves away from the causative genes as a result of recombination (Charlesworth 2006).
3) One recently discovered S-linked gene (Tsstal) is restricted to the short-styled morph and is tightly linked to the dominant S allele. The evolutionary dynamics of such a gene are expected to differ from those of other genes in the genome, given that it is present in only one copy (as opposed to 2) and in only half of the population of available individuals of any species/populations. If this gene directly determines distyly, it should behave as would a Ylinked sex-determining gene in mammals and marsupials, in that it will likely be maintained by strong purifying selection in order to maintain function (Graves 1998; Wang et al. 2002; King et al. 2007; Nowacka-Woszuk and Switonski 2009; Murtagh et al. 2012).

In order to evaluate the above hypotheses and determine the forms of selection acting on known S-linked genes in Turnera, several approaches were adopted. Descriptive statistics and measures of average diversity - particularly nucleotide diversity (π), Watterson's θ, and indel diversity $\left(\pi_{1}\right)$ - were calculated for each gene in order to assess how these measures were distributed across the S-locus and if any patterns could be identified. Selection on individual S linked genes was examined directly using both inter-species (or "comparative") dN/dS-based methods and population-level tests. By employing comparative dN/dS-based approaches, the molecular signatures of natural selection were investigated at the alignment-wide, lineagespecific, and codon-specific levels. Using these methods in addition to summary statistics, S linked genes were compared to series of "random" genes located in other, unknown regions of the Turnera genome in order to determine if the nature of selection at the S-locus was in any way exceptional.

In part to support $\mathrm{dN} / \mathrm{dS}$-based tests, phylogenies were also constructed using the data. Phylogenies for each individual gene, also known as "gene genealogies", were generated as well, in order to investigate the occurrence of balanced TSPs for S-linked genes, in particular.

Lastly, using subset of the data, representing a collection of closely related individuals, population genetic analyses were also applied, including McDonald-Kreitman tests and Tajima's D tests of neutrality.

2.0 METHODS

2.1 PLANT MATERIAL AND DNA EXTRACTION

Plant material was obtained from several individuals of the genus, Turnera. DNA samples were also acquired from individuals of the related genera, Piriqueta and Erblichia, as well as 16 additional individuals from a localized population of tetraploid T. scabra from the Dominican Republic (DROT). However, samples from these groups were only used to amplify Tsstal. A list of the plant materials used, along with their respective phenotypes and ploidy levels is presented in Table 1. It should be noted that, while the individual, TSH (T. subulata), has both short styles and short stamens, it behaves like a typical short-styled individual in terms of its incompatibility responses. All plants were kept under greenhouse conditions at York University, Toronto, Canada.

DNA was extracted from each of the individuals of interest using the Mini-CTAB method outlined by Labonne et al. (2009) and modified from Doyle and Doyle (1990). However, here, an intermediate sized flower bud ($\sim 5 \mathrm{~mm}$ long) was removed for the purposes of DNA extraction, instead of two leaf discs ($\sim 6 \mathrm{mg}$). Each bud was macerated with $100 \mu \mathrm{~L}$ of CTAB isolation buffer [$2 \% \mathrm{w} / \mathrm{v}$ CTAB (Sigma-Aldrich), $1.4 \mathrm{M} \mathrm{NaCl}, 0.2 \% \mathrm{v} / \mathrm{v}$ 2-mercaptoethanol, 20 mM EDTA, and 100 mM Tris-HCL (pH 8.0)] in an individual well of a porcelain spotting plate that had been kept cool on ice. An additional $400 \mu \mathrm{~L}$ of CTAB buffer was then added to each sample prior to being transferred into individual 1.5 mL microcentrifuge tubes and incubated at $60^{\circ} \mathrm{C}$ for 20 minutes. Tubes were periodically inverted throughout the incubation period in order to ensure that their contents had been well mixed.

An equal volume of chloroform/isoamyl alcohol (24:1 v / v) was then added to each of the samples and each tube was briefly vortexed and centrifuged for 5 minutes at $15,000 \mathrm{xg}$. The supernatant was then removed and transferred into a new microcentrifuge tube to which $3 / 4$ of the volume of cold isopropanol was subsequently added in order to precipitate the DNA. After inverting the tubes a few times, they were then centrifuged for an additional 5 minutes at 15,000 $x g$ in order to pellet out the DNA precipitate. The supernatant was removed from each of these tubes by quickly inverting them over a waste container.

Table 1: List of individual plants used in this study. The designated laboratory code name, genus, species, morph, and ploidy level of each individual is provided.

Genus	Individual	Species	Morph	Ploidy Level
Erblichia	EOB	E. odorata (Seemann)	Homostyle	Unknown
Piriqueta	PCARO	P. cistoides ssp. caroliniana (Walter)	Short-styled	Diploid
	DUART 1S	P. duarteana (Urban)	Short-styled	Diploid
	PMOR 137S	P. morongii (Rolfe)	Short-styled	Diploid
	PLIC	P. plicata (Urban)	Short-styled	Unknown
	PREV	P. revoluta (Arbo)	Short-styled	Unknown
	PNAN	P. nanuzae (Arbo)	Short-styled	Unknown
	PSAR	P. sarae (Arbo)	Short-styled	Unknown
	VIS	P. viscosa (Grisebach)	Short-styled	Diploid
Turnera	AUR	T. aurelii (Arbo)	Long Homostyle	Alloctoploid
	CHAM 4L	T. chamaedrifolia (Cambessedes)	Long-styled	Diploid
	CON 20S	T. concinna (Arbo)	Short-styled	Diploid
	CUN	T. cuneiformis (Poiret)	Long Homostyle	Alloctoploid
	DIF	T. diffusa (Schultes)	Long-styled	Diploid
	DEN 20S	T. grandidentata (Arbo)	Short-styled	Tetraploid
	DEN 54L	T. grandidentata (Arbo)	Long-styled	Tetraploid
	GRAN 9S	T. grandiflora (Urban)	Short-styled	Diploid
	TJ 29S	T. joelii (Arbo)	Short-styled	Diploid
	TJ 30L	T. joelii (Arbo)	Long-styled	Diploid
	KRAP 5S	T. krapovickasii (Arbo)	Short-styled	Diploid
	KRAP 12L	T. krapovickasii (Arbo)	Long-styled	Diploid
	OCC	T. occidentalis (Arbo and Shore)	Long Homostyle	Hexaploid
	TOC 139S	T. oculata v. paucipilosa (Story)	Homostyle	Unknown
	ORI	T. orientalis (Arbo)	Long Homostyle	Hexaploid
	PAN 2S	T. panamensis (Urban)	Short-styled	Diploid
	COLO	T. subulata (Smith) /scabra (Millspaugh)	Short-styled	Diploid
	MAN 601S	T. scabra (Millspaugh)	Short-styled	Diploid
	MAN 713L	T. scabra (Millspaugh)	Long-styled	Diploid
	DROT 41S	T. scabra (Millspaugh)	Short-styled	Tetraploid
	ES	T. scabra (Millspaugh)	Short-styled	Diploid
	MIDC 710S	T. scabra (Millspaugh)	Short-styled	Diploid
	F60SS	T. subulata (Smith)	Short-styled	Diploid
	D16L	T. subulata (Smith)	Long-styled	Diploid
	SL8 201S	T. subulata (Smith)	Short-styled	Diploid
	E 207S	T. subulata (Smith)	Short-styled	Tetraploid
	E 2L	T. subulata (Smith)	Long-styled	Tetraploid
	PA 4S	T. subulata (Smith)	Short-styled	Tetraploid
	TSH	T. subulata (Smith)	Short Homostyle	Tetraploid
	QUACO 1	T. ulmifolia (Linnaeus)	Homostyle	Hexaploid
	BAH	T. ulmifolia v. acuta (Urban)	Homostyle	Hexaploid
	VEL	T. velutina (Presl)	Long Homostyle	Hexaploid
	WED 2S	T. weddelliana (Urban and Rolfe)	Short-styled	Diploid

One hour after adding $500 \mu \mathrm{~L}$ of wash solution (76% Ethanol, 10 mM ammonium acetate) to each of the pellet-containing tubes, the samples were then centrifuged for an additional 5 minutes at $15,000 \mathrm{xg}$. The supernatant was subsequently poured off and the pellet was allowed to air dry for at least 2 hours. Dry pellets were later resuspended in $300 \mu \mathrm{~L}$ of TE [10 mM TrisHCL (pH 8.0) and 1mM EDTA] so that they could be used in subsequent PCR reactions.

DNA extractions from all Piriqueta and Erblichia samples were performed by Mr. Paul Chafe.

2.2 GENES OF INTEREST AND EXON PREDICTION: KNOWN S LINKED GENES

The recessive s-haplotype at the S-locus and portions of the dominant S-haplotype in T. subulata are known from previous sequencing projects (Labonne, 2011, PhD Thesis; Shore, Unpublished data). From this data, it was determined that some preservation of gene order between the s - and S-haplotypes could be assumed, though it has more recently been found that the dominant S contains additional genes that are not found on the apparent recessive s-haplotype (Shore and Chafe, Unpublished data). The previously described short-specific gene, Tsstal, is one such example (Shore and Chafe, Unpublished data).

Graphical representations of the S - and s-haplotypes, as they are currently known, are depicted in Figure 2. It should be noted, however, that the boundaries of the recessive s haplotype were determined by deletion mapping that was completed with individuals that harboured deletions in the dominant S-haplotype. As a result, the recessive s-haplotype may not be properly defined. In addition, S-haplotype gene order, in some cases, may be inverted or otherwise arranged relative to what is shown.

All genes known to reside at or near the S-locus in T. subulata were considered in this investigation. A comprehensive list of these genes and their anticipated identities based on NCBI BLASTx (Altschul et al. 1997) and TAIR BLASTx (Lamesch et al. 2011) searches is shown in Table 2.

In lieu of sequencing whole genes, particular exons from each gene were selected and sequenced instead. In order to do this, exon positions were first predicted for each gene of

Table 2: S-linked genes. The predicted total gene and coding sequence sizes (bp), as well as the number of predicted exons is given for each entry. For each exon sequenced, the predicted exon size is also provided (bp). For each gene, the top BLASTX and TAIR BLASTX matches are shown. Based on research in Arabidopsis, the possible function of each gene is also detailed. Citations supporting these functions are provided. All listed genes are located in or linked to the putative S-locus region of T. subulata.

Gene Name	Gene Size (bp)	Size of Coding Sequence (bp)	Total \# of Exons	Exon(s) Sequenced (\#)	Exon Size (bp)	Top BLASTX Result**	Top TAIR BLASTX Result	Function in Arabidopsis	Citations
APETALA2	$\underset{2038}{>}$	1605*	10*	1	587	Apetala 2 (AP2)-1 (Populus tomentosa; Sequence ID: AGM20693.1)	AP2 (Locus: AT4G36920)	Encodes a member of the AP2/Ethylene Responsive Element Binding Protein (EREBP) class of transcription factors and has two AP2 DNA binding domains. It serves a diversity of functions, including roles in the specification of floral organ and meristem identity, as well as ovule and seed coat development.	Riechmann and Meyerowitz 1998, Wurschum et al. 2006, Ohto et al. 2009, Ripoll et al. 2011, Dinh et al. 2012
Tsstal	471	471	1	1	471	Self-incompatibility family protein (Populus trichocarpa; Sequence ID: XP_002304696.1)	S-Protein Homologue 1 (SPH1) (Locus: AT4G16295)	A member of a large gene family with significant homology to stigmatic SI genes in Papaver rhoeas. SPH's have no known homologues in any non-plant model organisms, suggesting a plant-specific function.	Ride et al. 1999
LEJ2	3311	711	8	1	207	Cystathionine betasynthase (CBS) domain-containing protein, CBSX1 (Vitis vinifera; Sequence ID: XP_002283079.1)	Loss of the Timing of Ethylene and Jasmonic Acid 2 (LEJ2 or CBSX1 (Locus: AT4G36910)	LEJ2 is a CBS domain containing protein and redox regulator of the ferredoxinthioredoxin system. Specifically, it affects anther dehiscence and plant growth by regulating lignin polymerization and photosynthesis-related enzymes, respectively.	Yoo et al. 2012

Continued from previous page.

Gene Name	Gene Size (bp)	Size of Coding Sequence (bp)	Total \# of Exons	Exon(s) Sequenced (\#)	Exon Size (bp)	Top BLASTX Result**	Top TAIR BLASTX Result	Function in Arabidopsis	Citations
AP2D	638	634	1	1	634	AP2 domaincontaining transcription factor family protein $(P$. trichocarpa; Sequence ID: XP_002307277.1)	DREB and EAR Motif protein (DEAR) 2 (Locus: AT5G67190)	A member of the DREB subfamily A-5 of the Ethylene Response Factor (ERF)/AP2 transcription factor family. It contains one AP2 DNA binding domain, and has been implicated in regulating plant stress responses to dehydration and pathogen defense.	Liu et al. 1998; Tsutsui et al. 2009; Zhou et al. 2010
RNABP	3168	966	10	1	330	Putative RNA binding protein (Ricinus communis; Sequence ID: XP_002534389.1)	RNA-binding family protein (RNABP) (Locus: AT2G42240)	RNA recognition motif containing protein, involved in post-transcriptional RNA processing, export, and/or stability.	Lorkovic and Barta 2002
SCE1	3225	489	5	3	153	Putative ubiquitinconjugating enzyme E2 I (R. communis; Sequence ID: XP_002534386.1)	Small ubiquitinrelated modifier (SUMO) conjugating enzyme 1 (SCE1) (Locus: AT3G57870)	SCE1 directs the attachment of SUMO to target protein substrates via SUMO E3 ligases (a process referred to as sumoylation). Sumoylation is a key post-translation modification, necessary for the regulation of a variety of plant processes, including stress responses, pathogen defense, and flowering time.	Miura, Jin, and Hasegawa 2007; Miller et al. 2010
				4	114				
FRA1	8922	3087	25	5	188	Kinesin motor family protein (P. trichocarpa; Sequence ID: XP_002310712.2)	Fragile Fibre 1 (FRA1) (Locus: AT5G47820)	Encodes a kinesin-like motor protein, involved in cell wall construction. Specifically, it facilitates the delivery of cell wall components, like pectin, by directing the movement of vesicles along cortical microtubules.	Zhong et al. 2002, Zhu and Dixit 2011, Zhu et al. 2015
				6	125				
				24	156				
				25	207				

Continued from previous page.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Gene Name \& \begin{tabular}{l}
Gene Size \\
(bp)
\end{tabular} \& Size of Coding Sequence (bp) \& Total \# of Exons \& \begin{tabular}{l}
Exon(s) Sequenced \\
(\#)
\end{tabular} \& \[
\begin{aligned}
\& \text { Exon } \\
\& \text { Size } \\
\& \text { (bp) }
\end{aligned}
\] \& Top BLASTX Result** \& \begin{tabular}{l}
Top TAIR \\
BLASTX \\
Result
\end{tabular} \& Function in Arabidopsis \& Citations \\
\hline LRRK \& 3920 \& 1947 \& 2 \& 1 \& 1408 \& Leucine-rich repeat transmembrane protein kinase (\(P\). trichocarpa; Sequence ID:
XP_002310125.2) \& \begin{tabular}{l}
Leucine-rich repeat protein kinase family protein \\
(LRRK) \\
(Locus: \\
AT5G67200)
\end{tabular} \& \begin{tabular}{l}
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been implicated in the regulation of organogenesis, ovule development and embryogenesis, endosperm and pollen generation, and stress responses, among many other processes. Unlike animal receptor kinases, most LRR- \\
RLKs phosphorylate serine/threonine residues.
\end{tabular} \& Dievart and Clark 2003, Zhang et al. 2006 \\
\hline IRX15L \& 933 \& 933 \& 1 \& 1 \& 933 \& Predicted Irregular Xylem 15-Like (IRX15-L) protein (P. euphratica; Sequence ID:
XP_011008784.1) \& \begin{tabular}{l}
IRX15-L \\
(Locus: \\
AT5G67210)
\end{tabular} \& \begin{tabular}{l}
Encodes a Domain of Unknown Function 579 (DUF579)containing protein that affects the synthesis of xylan, and is essential for its normal deposition in the primary and secondary cell walls of eudicots, grasses, and cereals. \\
Like other DUF579 domain containing proteins, it is predicted to be a type II transmembrane protein.
\end{tabular} \& Brown et al. 2011, Jensen et al. 2011, Hao and Mohnen 2014 \\
\hline FSP \& 3922 \& 993 \& 12 \& 6

7 \& 59

166 \& Putative flavonol synthase-like family protein (FSP) (P. trichocarpa; Sequence ID: XP_002310710.1) \& | oxoglutarate (2OG) and $\mathrm{Fe}(\mathrm{II})-$ dependent oxygenase superfamily protein (Locus: |
| :--- |
| AT3G50210) | \& The flavonol synthase family belongs to the larger 2-oxoglutarate-dependent dioxygenase family. They are involved in the synthesis of flavonoid pigments. \& Owens et al. 2008

\hline
\end{tabular}

Continued from previous page.

Gene Name	Gene Size (bp)	Size of Coding Sequence (bp)	Total \# of Exons	Exon(s) Sequenced (\#)	Exon Size (bp)	Top BLASTX Result**	Top TAIR BLASTX Result	Function in Arabidopsis	Citations
NRFP	1678	1308	3	3	745	Putative tRNAdihydrouridine synthase (R. communis; Sequence ID: XP_002533266.1)	Flavin mononucleotide (FMN)-linked oxidoreductase superfamily protein (Locus: AT5G67220)	Dihydrouridine synthases (DUS) post-transcriptionally modify uridine residues located in the D-loop of tRNA molecules. The precise function of dihydrouridines in tRNAs is unknown, though it has been suggested that they may serve to stabilize the molecule, and thus afford it some degree of conformational flexibility. No plant-specific function has been identified. These proteins have previously been referred to as nitrogen regulation family proteins (nifR3).	Bishop et al. 2002, Ditt et al. 2006, Kasprzak, Czerwoniec, and Bujnicki 2012
WRKY	1578	1110	3	1	824	WRKY transcription factor 15 family protein (P. trichocarpa; Sequence ID: XP_002310122.1)	WRKY DNA- binding Protein 7, (WRKY7) (Locus: AT4G24240)	WRKY7 is a transcription factor and negative regulator of salicylic acid-regulated defense responses to pathogen infection in Arabidopsis. It has also been shown to bind Ca^{2+}-dependent calmodulin. However, the precise regulatory function of this binding is unknown.	Park et al. 2005; Kim, Fan, and Chen 2006; Agarwal, Reddy, and Chikara 2011

*Only a partial APETALA2 sequence was obtained for T. subulata (D16L) after BAC Library experiments performed by Shore and Chafe (Unpublished data).
What has been sequenced is 2038 bp in total length (1015 bp of which is apparently coding) and is predicted to consist of 7 exons. As the sequence appears to end in an intron, it is suspected that the gene is actually longer than this. This suspicion is also supported by BLAST search results. More recent RNAseq data from T. subulata also revealed apparent APETALA2 transcripts, which are predicted to contain 10 exons, representing 1605bp of coding sequence (Shore and Chafe,
Unpublished data).
** The top BLASTX results presented are the most informative results with the highest similarity score and lowest e-value. That is, named genes from more closely related species were prioritized.
interest using the online software, NetPlantGene Server (Hebsgaard et al. 1996). Final exon positions were determined by comparing the exon positions generated in all 3 reading frames to BLASTx results obtained for plants most closely related to Turnera. Diagrams of the predicted exon positions for all S-linked genes were produced using the online Gene Structure Display Server v. 2.0 and are depicted in Figure 4 (Hu et al. 2015).

Exons were selected for sequencing based on size, with larger exons being prioritized over smaller ones. In cases where genes appeared to be composed of a collection of small ($<200 \mathrm{bp}$) exons, 2-4 exons were selected and sequenced. This latter scenario often necessitated sequencing through introns, though intron sequences were not included in any downstream analyses. Particular exons that were sequenced for each gene of interest are also identified in Figure 4. Their approximate sizes (bp) are given in Table 2.

2.3 CONTROL GENE SELECTION

Control genes were semi-randomly selected from a previously constructed RNA-seq data set (Shore and Chafe, Unpublished data). Each potential transcript was assigned a number and transcripts were then chosen using a random number generator in Excel 2007 (Microsoft). Using BLAST searches, potential gene identities were ascertained for these transcripts and the positions and sizes of their exons were determined as above. If any particular transcript was found to contain exons that were only very small in size ($<200 \mathrm{bp}$), it was excluded from the pool of potential controls and another candidate was chosen. Eight suitable control genes were selected in this way. A comprehensive list of these genes and their anticipated identities as is given in Table 3. The particular exons that were chosen for sequencing and their sizes (bp) are also indicated.

2.4 PRIMER CONSTRUCTION

Primers were constructed using the free online software, Primer3 (Rozen and Skaletsky 2000). Primers were designed to locations just within the boundaries the exons chosen to be sequenced in order to obtain the largest PCR product possible. Primers were not designed outside of the identified exons in order to avoid difficulties in sequencing, which may arise as a result of

Figure 4: Schematics for all S-linked genes based on exon predictions from NetPlantGene Server and BLAST
searches. Exons are depicted in yellow, while introns are shown as straight lines. Particular exons that were sequenced are displayed in orange. The size of each gene is represented by the corresponding scale shown below each diagram (in bp or kb). It should be noted that the orientation of APETALA2 and SCE1 is opposite, relative to the other genes. For APATELA 2, unknown intron sizes were determined from the most similar sequence from Populus trichocarpa based on BLAST searches. Diagrams were constructed using Gene Structure Display Server v. 2.0 (Hu et al. 2015).

Table 3: Control genes. The predicted total gene and coding sequence sizes (bp), as well as the number of predicted exons is given for each entry. For each exon sequenced, the predicted exon size is also provided (bp). For each gene, the top BLASTX and TAIR BLASTX matches are shown. B ased on research in Arabidopsis, the possible function of each gene is also detailed. Citations supporting these functions are provided.

Gene Name	Total \# of Exons*	Total Size (bp)*	Exon Sequenced (\#)	Exon Size (bp)	Top BLASTX Result**	Top TAIR BLASTX Result	Function in Arabidopsis	Citation
ECIP1	3	2109	3	1783	MA3 domain- containing family protein (Populus trichocarpa; Sequence ID: XP_002321660.1)	EIN2 C-terminus Interacting Protein 1 (ECIP1) (Locus: AT4G24800)	An MA3 domain containing protein. In the absence of ethylene, it degrades Ethylene Insensitive 2 (EIN2), a protein that is involved in plant responses to salt stress.	Qiao et al. 2012, Lei et al. 2011, Qiao et al. 2012
GAUT3	9	2043	6	946	Probable galacturonosyltra nsferase 3 isoform X1 (Populus euphratica; Sequence ID: XP_011040798.1)	Galacturonosyltransferase 3 (GAUT3) (Locus: AT4G38270)	Encodes a protein with putative galacturonosyltransferase activity. In plants, galacturonosyltransferases are required for the synthesis of pectin. Unlike most GAUT proteins, which are often membrane-bound, GAUT3 contains an N terminal signal peptide. However, its precise function is not known.	Sterling et al. 2006, Caffall et al. 2009
GAUT1	10	2022	4	588	Predicted polygalacturonate 4-alpha- galacturonosyl- transferase-like isoform X2 (P. euphratica; Sequence ID: XP_011002081.1)	Galacturonosyltransferase 1 (GAUT1) (Locus: AT3G61130)	In complex with GAUT7, GAUT1 synthesizes homogalacturonan, the most abundant plant pectin. GAUT1 is a type II transmembrane protein that is localized in the membrane of the golgi apparatus.	Sterling et al. 2006, Caffall et al. 2009, Atmodjo et al. 2011
RNABP34	6	1506	6	455	RNA recognition motif-containing family protein (P. trichocarpa; Sequence ID: XP_006368382.1)	RNA-binding family protein (RNABP) (Locus AT5G46840)	RNA recognition motif containing protein, involved in post-transcriptional RNA processing, export, and/or stability.	Lorkovic and Barta 2002

Continued from previous page.

Gene Name	Total \# of Exons*	Total Size (bp)*	Exon Sequenced (\#)	Exon Size (bp)	Top BLASTX Result**	Top TAIR BLASTX Result	Function in Arabidopsis	Citation
FMO1	5	1593	6	340	Probable flavincontaining monooxygenase 1 (Populus euphratica; Sequence ID: XP_011045108.1)	Flavin-Dependent Monooxygenase 1 (FMO1) (Locus: AT1G19250)	FMO1 is an essential component of acquired resistance to virulent pathogens and also promotes resistance and cell death, locally, at pathogen infection sites.	Bartsch et al. 2006, Mishina and Zeier 2006
MBD8	3	1575	3	395	DNA-binding family protein $(P$. trichocarpa; Sequence ID: XP_002306571.2)	Methyl-CpGBinding Domain 8 (MBD8) (Locus: AT1G22310)	MBD8 has been shown to play a role in flowering time in some A. thaliana ecotypes. Though it contains a methyl-CpG-binding domain, it has not been shown to bind to methylated or unmethylated DNA in Arabidopsis.	Berg et al. 2003, Zemach and Grafi 2003, Strangeland et al. 2009
UNKN	7	1182	1	300	Uncharacterized protein LOC105107279 (P. euphratica; Sequence ID: XP_010999458.1)	Unknown protein (Locus: AT2G38430)	Unknown	NA
POFUT	9	1650	8	332	$\begin{gathered} \text { Uncharacterized } \\ \text { protein } \\ \text { AT1G04910*** } \\ \text { (Populus } \\ \text { euphratica; } \\ \text { Sequence ID: } \\ \text { XP_011031885.1) } \end{gathered}$	O-fucosyltransferase family protein (Locus: AT4G16650)	A member of an as of yet uncharacterised protein family in plants, related to GDPfucose protein O-fucosyltransferases (POFUTs). These proteins add fucose sugars to serine and threonine residues that are located between the second and third conserved cysteins in Epidermal Growth Factor (EGF)-like repeats on Notch protein in Drosophila, humans, and other mammals. However, the Notch-signalling pathway does not exist in plants.	Chantha, Emerald, and Matton 2006; Chantha, Tebbji, and Matton 2007; Vodovar and Schweisguth 2008

* The total number of exons and total gene size for each entry is based on the size of full cds of the best match from Arabidopsis.
** The top BLASTX results presented are the most informative results with the highest similarity score and lowest e-value. That is, named genes from more closely related species were prioritized.
***AT1G04910 is also an O-fucosyltransferase family protein.
individuals being heterozygous for indels. Indeed, indels might be expected to more often occur in introns than in exons, presumably due to comparatively relaxed selective constraint in introns, in general (as shown in Shabalina and Kondrashov 1999 and Hughes and Yeager 1997, for example). All primers were subsequently synthesized by Integrated DNA Technologies (IDT, Coralville, Iowa, USA).

A compiled list of the primer pairs used for amplification, along with their sequences, melting temperatures $\left(T_{m}\right)$, and anticipated PCR product sizes (bp) is provided in Appendix A, Table A1.

2.5 POLYMERASE CHAIN REACTION (PCR) AMPLIFICATION

PCR products were amplified for each gene/exon(s) of interest for the purposes of sequencing (or cloning, where required). Each PCR reaction was performed using $6 \mu \mathrm{~L}$ of DNA ($\sim 50 \mathrm{ng}$), $6 \mu \mathrm{~L}$ of each primer (forward and reverse at $10 \mathrm{pmol} / \mu \mathrm{L}$), $12 \mu \mathrm{~L}$ of $\mathrm{ddH}_{2} \mathrm{O}$, and $30 \mu \mathrm{~L}$ of Quick-Load ${ }^{\circledR}$ Taq 2x Master Mix [10mM Tris-HCL (pH 8.6), $50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 50$ units $/ \mathrm{mL}$ Taq DNA Polymerase, 0.2 mM each dNTP, 5% glycerol, 0.08% IGEPAL ${ }^{\circledR}$ CA-630, 0.05% Tween ${ }^{\circledR}$ 20, 0.024% Orange G, 0.0025% Xylene Cyanol FF] (New England BioLabs, Ipswich, MA) for a $60 \mu \mathrm{~L}$ total reaction volume. Reactions were carried out in 0.2 mL PCR tubes using a thermal cycler (Mastercycler Gradient, Eppendorf, Mississauga, ON) that had been programmed for an initial 2 minute denaturation step at $94^{\circ} \mathrm{C}$. This was directly followed by an additional 30 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at between $50-61^{\circ} \mathrm{C}$, and another 30 seconds to 1 minute at $72^{\circ} \mathrm{C}$. For each particular reaction, the annealing temperature was varied depending on the T_{m} of the primers used. The length of the extension step was similarly adjusted according to the expected length of the PCR product (30 seconds/500 bp, approximately) (Appendix A, Table A1).This temperature sequence was cycled 35 times for the purposes of amplification. The final extension step was then performed at $72^{\circ} \mathrm{C}$ for an additional 5 minutes. After completion, samples were held at $4^{\circ} \mathrm{C}$ until removed from the thermal cycler. Samples were frozen at $-20^{\circ} \mathrm{C}$ prior to sequencing.

PCR amplifications for all Erblichia and Piriqueta samples were performed by Mr. Paul Chafe.

2.6 PURIFICATION OF PCR PRODUCTS FOR CLONING

In some cases, sequences could not easily be obtained by sequencing PCR products, directly (usually due to the persistence of "shifted peaks" in the sequence chromatograms). As a result, some PCR products were, instead, cloned into a vector prior to sequencing. For this purpose, the relevant PCR products were purified using the EZ-10 Spin Column PCR Products Purification Kit according to the manufacturer's instructions (BioBasic, Markham, Ontario). Prior to purification, PCR reactions were first verified by running $5 \mu \mathrm{~L}$ of the $60 \mu \mathrm{~L}$ total reaction volume out on a 0.8% agarose gel in order to ensure that the correct product had been amplified.

2.7 CLONING, BACTERIAL CULTURE, PLATING, AND PLASMID PURIFICATION

Cloning was achieved using the pGEM-T Easy Vector System (Promega, Madison, WI, USA). Each ligation reaction contained $5 \mu \mathrm{~L}$ of 2 x Rapid Ligation Buffer (60 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ 7.8), $20 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM}$ DTT, 2 mM ATP, 10% polyethylene glycol), $1 \mu \mathrm{~L}$ pGEM®-T Easy Vector ($50 \mathrm{ng} / \mu \mathrm{L}$), $1 \mu \mathrm{~L}$ of T4 DNA ligase (3 Weiss units $/ \mu \mathrm{L}$), and up to $3 \mu \mathrm{~L}$ of purified PCR product ($\sim 150 \mathrm{ng}$). If less than $3 \mu \mathrm{~L}$ of PCR product was used, an appropriate amount of $\mathrm{ddH}_{2} \mathrm{O}$ was added to the reaction in order to bring the total volume up to $10 \mu \mathrm{~L}$. The volume of PCR product that was added to the ligation reaction was determined using a $3: 1$ insert to vector ratio. After mixing the contents of the ligation reaction by pipetting up and down, it was incubated at room temperature for one hour. In particularly difficult cases, reactions were instead incubated a $4^{\circ} \mathrm{C}$ overnight in order to ensure proper ligation.

For each PCR product, $5 \mu \mathrm{~L}$ of ligation reaction was added to $50 \mu \mathrm{~L}$ of JM109 High Efficiency Competent Cells (Promega, Madison, WI, USA) that had previously been stored at $-80^{\circ} \mathrm{C}$. The tubes were then gently flicked in order to combine their contents prior to being incubated for 20 minutes on ice. Cells were then heat-shocked in a $42^{\circ} \mathrm{C}$ water bath for $45-50$ seconds before being immediately returned to the ice for an additional 2 minute incubation. Next, $200 \mu \mathrm{~L}$ of Lysogeny broth (LB) (10 g Tryptone, 10 g NaCl , and 5 g Yeast Extract/L, pH 7.5) was added to each tube of transformed cells. Tubes were then incubated for 1 hour at $37^{\circ} \mathrm{C}$. For each transformation, $70-100 \mu \mathrm{~L}$ of culture was plated out on individual X-Gal plates ($70 \mu \mathrm{~g} / \mathrm{mL} \mathrm{X}$ -

Gal, $80 \mu \mathrm{M}$ IPTG, $1 \mu / \mathrm{mL}$ carbenicillin). These plates were subsequently incubated overnight at $37^{\circ} \mathrm{C}$.

For each transformation, 12-20 individual clones were inoculated in culture tubes containing 3.5 mL of LB medium (10 g tryptone, 5 g yeast extract, and $10 \mathrm{~g} \mathrm{NaCl} / \mathrm{L}$, pH 7.5), to which $3.5 \mu \mathrm{~L}$ of carbenicillin ($25 \mu \mathrm{~g} / \mathrm{mL}$) had been added. Bacterial cultures were then grown overnight at $37^{\circ} \mathrm{C}$ in a shaking incubator (250 rpm).

Following overnight incubation, plasmid purification was completed using the E7-10 Spin Column Plasmid DNA Minipreps Kit in accordance with the manufacturer's protocol (BioBasic, Markham, Ontario). To ensure that the expected PCR product had been successfully cloned and inserted into the plasmid, its presence was confirmed by PCR, as described above, using a $1 / 100$ dilution of purified plasmid and a $20 \mu \mathrm{~L}$ total reaction volume.

2.8 SEQUENCING AND SEQUENCE ASSEMBLY

All sequencing was performed by the McGill University and Génome Québec Innovation Centre (Montréal, QC) using Applied Biosystem's 3730xl DNA Analyzer technology. For each PCR product, two $25 \mu \mathrm{~L}$ samples of unpurified PCR reaction mixture were submitted for sequencing in both the forward and reverse directions. For each purified plasmid to be sequenced, two $10 \mu \mathrm{~L}$ samples were similarly submitted. For each PCR sample, $15 \mu \mathrm{~L}$ of each sequencing primer ($5 \mathrm{pmol} / \mu \mathrm{L}$) was also provided. For plasmids, however, the common primers M13F (5' - GTAAAACGACGGCCAGT - 3') and M13R (5' - GGAAACAGCTATGACCATG 3^{\prime}) were supplied by the sequencing company. A list of sequencing primers is given in Appendix A, Table A2. All samples were submitted in 96-well microtiter plates or individual PCR tubes, depending on how many samples were included in the submission. Samples were kept cold on ice while in transit. Resequencing was performed as necessary.

Despite best efforts, sequences could not be obtained for the following genes (individuals): RNABP (KRAP 5S), LEJ2 (DIF), FM01 (WED 2S and DIF), and MBD8 (CHAM 4L, WED 2S, and DIF). Also, gaps in the sequences obtained for ES and SL8 201S for LRRK and DROT 41S and MIDC 710S for $R N A B P$ could not be resolved due to persistent double peaks present in the chromatograms obtained for these samples.

Sequence chromatograms were returned by the McGill University and Génome Québec Innovation Centre (Montréal, QC) via Nanuq, a web-based data-access application. Chromatograms were subsequently downloaded and uploaded into Sequencher v. 5.0 (Gene Codes Corporation, Ann Arbor, MI, USA). For each sequence, poor quality data was first trimmed using the default criteria. Sequences were then further trimmed by sight. Where necessary, vector sequence was also excised. For each PCR product, representative sequences were assembled automatically into contigs. Once assembled, heterozygous sites were identified for each contig by calling secondary base peaks. A minimum lower peak height cut-off value of 35% relative to the height of the larger peak was employed for this task. Contigs were also checked manually in order to verify the accuracy of secondary base peak-calling, as well as to check for the presence of additional double peaks in the chromatograms.

Final sequences were exported from Sequencher in FASTA format, in preparation for subsequent analyses. Select sequences for each gene were also submitted to BLASTx searches in order to identify possible conserved domains using NCBI's Conserved Domain Database (Marchler-Bauer et al. 2015).

2.9 SEQUENCE ALIGNMENT

For each gene/exon(s) of interest, representative sequences were initially aligned in MEGA 6.06 (Tamura et al. 2013) using the MUSCLE algorithm and default settings (Edgar 2004). Alignments were further adjusted by sight, where appropriate. Intron sequence, where it existed, was removed, and alignments were further trimmed in order to maintain the proper reading frame. Stop codons were also removed, so as to ensure that only protein coding information was represented. In addition to constructing alignments for each individual gene, four additional concatenated alignments were also created: 1) one that included sequence information for all genes of interest across all taxa, 2) another identical alignment where only short-styled individuals were represented, 3) an alignment of all S-linked sequence information, and 4) an alignment that included all control sequences. Final alignments were exported from MEGA 6.06 in FASTA format in preparation for subsequent analyses. Final alignment figures were edited and produced using CHROMA (Goodstadt and Ponting 2001).

2.10 DESCRIPTIVE STATISTICS

Descriptive statistics for each alignment, including alignment length (bp), and the number of conserved, variable, parsimony informative, and singleton sites were generated in MEGA v . 6.06 (Tamura et al. 2013). The numbers of duplicate or identical sequences in each alignment were determined in HYPHY by selecting the "Data Operations" icon in the "Data set" window of the graphical user interface (GUI). Identical sequences were then highlighted in the alignment after selecting the "Identical Sequences" option (Pond, Frost, and Muse 2005).

Descriptive nucleotide and indel polymorphism statistics were determined for each alignment using DNAsp v. 5 (Librado and Rozas 2009). Specifically, estimates of the average pair-wise nucleotide diversity (π) (Nei 1987) and Watterson's θ (Watterson 1975) were computed, in addition to the proportions of polymorphic sites and synonymous and nonsynonymous mutations, the number of indel events, average indel length (bp) and average indel diversity $\left(\pi_{1}\right)$. To estimate these quantities, the individuals, DIF, WED 2S, CHAM 4L, KRAP 5S, and MAN 601S, were excluded from each alignment in order to obtain a balanced data set, thus allowing for easier comparison between genes. For Tsstal, this was not possible as this gene is only represented in short-styled individuals. Instead, WED2S was eliminated from this alignment and KRAP 5S was retained, in an effort to make the results more comparable to those of other genes. Accordingly, the final "balanced" Tsstal alignment contained genetic information from 15 individuals and 7 species (T. subulata, T. scabra, T. grandidentata, T. krapovickasii, T. joelii, and T. panamensis) while all other alignments were represented by 17 individuals of the same 7 species.

Because DNAsp does not accept alignments containing ambiguous bases for most analyses, alignments were first submitted to PHASE v. 2.1, as implemented in DNAsp v. 5, for haplotype reconstruction (Stephens et al. 2001; Stephens and Donelly 2003; Librado and Rozas 2009). PHASE employs a coalescent-based Bayesian approach to reconstructing haplotypes. That is, prior expectations derived from population genetic and coalescent theory are used to inform haplotype reconstruction given a specific alignment of linked loci (Stephen et al. 2001). With these methods, haplotype reconstruction was completed using 100000 replicates with a burn-in of 10000 and a thinning interval of 10 .

Tetraploid individuals included in each alignment (E 2L, E 207S, TSH, PA 4S, and DROT 41S) were treated as though they were diploid and phased as described above. For each of these individuals, one randomly selected haplotype was copied and entered into the alignment an additional two times. Consequently, each tetraploid individual was represented by 4 haplotypes for each gene, 3 of which were identical. The premise of this is based on the assumption that most of the observed polymorphism would be at relatively low frequency, and thus, most haplotypes might be expected to be seldom represented relative to a few that are very common. At sites where individuals appeared to be characterized by more than two bases (as was the case at one site in each of the following alignments (individuals): IRX15L (TSH), NRFP3 (TSH, DEN 20S, DEN 54L), and ECIP1 (PA 4S). In all cases, the individual(s) in question were tetraploid.), the most common two bases at that position were selected to represent that individual in order to ensure conservative estimates. Gaps resulting from sequencing difficulties in the LRRK (ES and SL8 201S) and RNABP (DROT 41S and MIDC 710S) alignments were automatically resolved by PHASE v 2.1. Base positions containing gaps at the beginnings and ends of alignments were trimmed out prior to analysis as they did not represent indel events, but, rather, were the result of differences in the lengths of sequences obtained for particular individuals at particular loci. As a result, the alignments used in the generation of these statistics were, in some cases, somewhat shorter than those that were submitted to other analyses.

For measures of indel polymorphism, the "multiallelic" option was selected in DNAsp v. 5. Standard deviations were also calculated for nucleotide diversity estimates (π). Aside from in the calculation of indel polymorphism statistics, positions in the alignment containing gaps were not considered. In addition, Mann-Whitney-U tests (Mann and Whitney 1947) were performed in STATA 12 (StataCorp. 2011) in order to determine if S-linked and control gene diversity and polymorphism estimates were significantly different ($\mathrm{p}<0.05$), on average.

2.11 PHYLOGENETIC ANALYSES AND GENE GENEALOGIES

Phylogenetic analysis was completed in MEGA v. 6.06 using Maximum Likelihood methods (Tamura et al. 2013). Phylogenies were produced using the data from each individual gene, as well as for each of four larger concatenated alignments. These nucleotide alignments were then translated and submitted to additional phylogenetic analyses.

Nucleotide and amino acid substitution models for each analysis were determined in MEGA v. 6.06 using its endogenous model selection protocol and the default settings. Substitution models employed in the production of each phylogeny are given in Table 4. Best fitting modes were determined to be those that had obtained the lowest Bayesian Information Criterion (BIC) value.

For each analysis, sites with less than 95% coverage were eliminated from the final data set. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position in the alignment. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach and then selecting the topology with superior log likelihood value. Branch supports for each tree were determined using 1000 bootstrap replicates.

All trees were left unrooted, as HYPHY automatically unroots rooted phylogenies prior to performing most analyses (including all of those described here) (Pond, Frost, and Muse 2005). Final phylogenies were edited for aesthetic purposes in FigTree v. 1.4.2 (Rambaut 2007).

Alignments for individual genes were further investigated for the presence of trans-species polymorphisms (TSPs). Potential TSPs were identified by looking for nucleotide sites at which long-styled individuals were homozygous for a particular base, while short-styled individuals were heterozygous at that site. Ambiguous base codes at these heterozygous sites in short-styled individuals were then replaced with the apparently short-specific base. These alignments were subsequently submitted to phylogenetic analysis in MEGA 6.06 using the previously determined nucleotide substitution models (Tamura et al. 2013).

2.12 SELECTION ANALYSES

Species-level selection analyses were completed in HYPHY (Pond, Frost, and Muse 2005). In most cases, the nucleotide-based phylogeny that had been constructed using the total data was used in conjunction with the relevant nucleotide alignment (Figure 8). Because Tsstal could only be amplified in short-styled individuals, this tree was not suitable for selection analyses of this gene as more individuals were represented in the tree than were included in the alignment. As a result, a tree that was constructed using the total nucleotide data from a reduced number of

Table 4: Nucleotide and amino acid substitution models used for phylogeny reconstruction in MEGA 6.06.
Tests of model fit were completed in Mega 6.06 using maximum likelihood methods. Models that obtained the lowest Bayesian Information Criterion (BIC) values were selected and used for the relevant phylogenetic analysis.

Alignment	Model Selection for Phylogeny Reconstruction in MEGA 6.06			
	Nucleotide Substitution Model**	BIC	Amino Acid Substitution Model***	BIC
Total Data for All Genes	T92 + G	27879.505	JTT + G	14892.732
Total Data for All Genes (Reduced Taxa)*	T92 + G	24127.889	JTT + G	13501.130
APETALA2	HKY	1826.222	WAG	982.170
Tssta1 (Total data)*	K2 + G	3141.331	JTT	1965.076
Tssta1	K2	1797.989	JTT	1125.493
LEJ2	JC	725.049	JTT	485.272
AP2D	JC + G	1822.265	JTT	1029.823
RNABP	JC	1457.225	JTT	852.204
SCE1	JC	1036.530	RTREV	674.148
FRA1	HKY	2164.949	RTREV	1305.091
LRRK	JC	1408.200	JTT	749.665
IRX15L	HKY + G	3308.918	JTT	1950.214
FSP	JC	747.241	CPREV	502.241
NRFP	HKY	2425.672	JTT	1451.315
WRKY	K2 + G	3317.302	JTT + G	2080.602
Total S-linked Data	$\mathrm{K} 2+\mathrm{G}$	17122.322	JTT + G	9098.434
ECIP1	$\mathrm{HKY}+\mathrm{G}$	3478.610	LG	1920.685
GAUT3	T92	2966.538	LG	1834.846
GAUT1	HKY	1901.796	LG	1145.597
RNABP34	HKY	1861.044	Dayhoff	1172.746
FMO1	HKY	1335.266	JTT	884.949
MBD8	JC	1571.346	JTT	1098.829
UNKN	JC	1204.912	JTT	769.245
POFUT	HKY	1492.680	JTT	909.208
Total Control Data	T92 + G	11064.523	JTT + G	6181.410

* The phylogenetic trees obtained using these alignments were used for the analysis of Tsstal in HYPHY only. All other analyses were performed using the "Total Data for All Genes" nucleotide-based tree.
**Abbreviations: T92 = Tamura 3-Parameter Model (1992); JC = Jukes and Cantor Model (1969); HKY = Hasegawa-Kishino-Yano Model (1985); K2 = Kimura 2-Parameter Model (1980); G = Gamma distributed rates among sites.
*** Abbreviations: JTT = Jones-Taylor-Thornton Model (1992); Dayhoff = Dayhoff Model (Dayhoff et al. 1978); LG = Le and Gascuel Model (2008); CPREV = General Reversible Chloroplast Model (Adachi et al. 2000)); RTREV = General Reverse Transcriptase Model (Dimmic et al. 2002); WAG = Whelan and Goldman Model (2001); $G=$ Gamma distributed rates among sites.
individuals was employed (Figure 9). And, further, because Tsstal was of special interest in this study, it was amplified in a greater number of individuals, including representatives of Piriqueta and Erblichia. In order to analyse these data in HYPHY, the tree constructed using the total Tsstal data alone was used (Figure 10). All analyses in HYPHY were completed using the "Universal Genetic Code" option.

Additional McDonald-Kreitman Tests (MKTs) and Tajima's D tests of neutrality were performed in DNAsp v. 5 using a subset of the data, as described in section 2.12.6 (Librado and Rozas 2009).

2.12.1 NUCLEOTIDE AND CODON SUBSTITUTION MODEL SELECTION

Unlike substitution model selection procedures employed by MEGA, which consider only standard, or named, nucleotide substitution models, HYPHY evaluates all 203 possible models when estimating nucleotide biases in alignments (Pond, Frost, and Muse 2005). As a result, for the purposes of subsequent analyses in HYPHY, best fitting nucleotide substitution models were again determined for each alignment using HYPHY's endogenous model selection procedure (the batch file, NucModelCompare.bf). Here, the best fitting model was defined as that which most accurately described the data but with the fewest parameters according to Akaike's Information Criterion (AIC). Using this procedure, models were fitted using global parameters. Branch length estimates were reused (as opposed to being re-estimated) when assessing each model. A model rejection level of 0.0002 was selected in order to account for increases in error rate that arise as the result of multiple tests. Nucleotide substitution models selected for all alignments are given in Table 5, along with their AIC values.

In HYPHY, some analyses require the selection of a codon substitution model, two of which are available in HYPHY: MG94 (Muse and Gaut 1994) and GY94 (Goldman and Yang 1994). In cases where one is not explicitly chosen, the MG94 model is employed by default. In order to determine which model was more appropriate for each alignment, likelihood ratio tests were performed to compare them. The results of these tests are also given in Table 5, including their respective LRT statistics and p-values. In all cases the MG94 model was preferred, but not always in a statistically significant way. As a result, in all analyses where a codon substitution
model was required, MG94 was used. GY94 is the model popularly employed in the PAML package (Yang 1997), and differs from MG94 in only one major respect: MG94 allows for variation in dS while GY94 sets dS, the synonymous evolutionary rate, to be equal to 1 (Pond, Poon, and Frost 2009). While there are other minor differences between the models, they have been found to have only minor effects on the estimation of evolutionary rates (Pond, Poon, and Frost 2009).

2.12.2 GLOBAL dN/dS ESTIMATES

For each alignment, global, or alignment-wide, $\mathrm{dN} / \mathrm{dS}$ ($\mathrm{dN}=$ nonsynonymous substitution rate; $\mathrm{dS}=$ synonymous substitution rate) ratios were estimated as described in Pond, Poon and Frost (2009) using the AnalyzeCodonData.bf batch file located in the Basic Analyses submenu. The MG94CUSTOM codon model was selected in all cases. This option allows the user to cross the MG94 codon model with the appropriate nucleotide substitution model (indicated in Table 5). When prompted, the global model fit option was selected.

The appropriate tree and alignment combination were then submitted to this analysis. Rather than re-estimating branch length parameters for each analysis, they were assumed to be proportional to that of the input tree.

In order to determine 95% confidence intervals for each estimate, the $\mathrm{dN} / \mathrm{dS}$ value was selected in the likelihood parameter table, and the "Covariance, Sampler, and CI" option was chosen from the Likelihood drop-down list. "Asymptotic Normal (finer)" was selected as the confidence interval estimation method and the upper and lower bound global dN/dS estimates were given in the resultant table.

An additional test was performed for each alignment in order to determine if the global dN/dS estimate was statistically different from 1 , which would be expected if a sequence were evolving neutrally, on average. To do this, likelihood ratio tests (LRTs) were performed in order to compare the fit of a model where dN and dS values were constrained to be equal (the null hypothesis) to another where all parameters were estimated independently from the data (the alternate hypothesis). In HYPHY, this procedure is accomplished using the LRT.bf batch file that is available in the "Miscellaneous" sub-menu as part of the larger Phylohandbook.bf batch

Table 5: Nucleotide and codon substitution model selection for analyses in HYPHY. Nucleotide substitution models were selected for each alignment using the endogenous model selection procedure avialable for HYPHY. Nucleotide models are presented in terms of the 6 character model designations. For models that are named in the literature, the common model name also appears in parentheses. The Akaike Information Criterion (AIC) value for the best fitting model is provided. Further, some HYPHY analyses require the selection of a codon substitution model. Two codon substitution models are used by HYPHY: the GY94 and MG94. A likelihood ratio test (LRT) was performed in order to compare the fit of the models to each alignment. In all cases, the MG94 model was preferred, though, its fit was not always found to be significantly different from that of the GY94 model. Significant p-values are shown in bold.

Alignment	Nucleotide Substitution Model Selection		Codon Model Selection GY94 vs. MG94 LRT		
	Nucleotide Substitution Model*	AIC	Preferred Codon Model*	LRT Statistic	p-value
APETALA2	010010 (HKY)	2403.078	MG94	9.211	0.230
Tssta1 (Total Data)	010110	3377.518	MG94	88.702	0.000
Tssta1	010110	2006.052	MG94	38.520	0.000
LEJ2	000000 (F81)	1486.252	MG94	10.466	0.140
AP2D	000121	3648.502	MG94	97.950	0.000
RNABP	000000 (F81)	2557.446	MG94	64.792	0.010
SCE1	000000 (F81)	768.749	MG94	5.394	0.090
FRA1	011010	2380.178	MG94	10.225	0.080
LRRK	010111	6902.758	MG94	125.011	0.000
IRX15L	011020	3775.998	MG94	19.028	0.060
FSP	000000 (F81)	1006.646	MG94	9.022	0.040
NRFP	010010 (HKY)	2670.647	MG94	13.956	0.000
WRKY	010010 (HKY)	3524.644	MG94	6.488	0.320
Total S-locus Data	010010 (HKY)	32759.508	MG94	84.322	0.000
ECIP1	010010 (HKY)	3444.289	MG94	51.239	0.000
GAUT3	010010 (HKY)	2774.875	MG94	39.713	0.000
GAUT1	010110	1834.421	MG94	21.773	0.000
RNABP34	010010 (HKY)	1664.739	MG94	31.030	0.000
FMO1	000000 (F81)	1288.990	MG94	22.520	0.020
MBD8	001102	1490.452	MG94	10.726	0.060
UNKN	011110	1415.236	MG94	15.500	0.040
POFUT	010000	1357.795	MG94	31.807	0.000
Total Control Data	010010 (HKY)	15004.412	MG94	153.193	0.000

*Nucleotide substitution model abbreviations: HKY = Hasegawa-Kishino-Yano Model (1985) ; F81 = (Felsenstein 1981).
** Codon substitution model abbreviations: MG94 = Muse and Gaut 1994; GY94 = Goldman and Yang 1994
file. As with the above, the MG94 codon substitution model, crossed with the relevant nucleotide substitution model, was used. When prompted, the "Custom" alignment option was selected. This option allows for the submission of user-supplied alignments and phylogenetic trees. After hypothesis testing was completed, LRT and p-values for each test were outputted, along with the number of estimated parameters and log likelihood values for each model. Significant p-values (<0.05) indicate that the independent model fit is superior to that of the constrained model, suggesting that dN/dS is significantly different from 1 for the alignment in question.

2.12.3 COMPARING EVOLUTIONARY RATES

To compare evolutionary rates between alignments, the dNdSDistributionComparison.bf batch file was employed, as described in Pond, Poon, and Frost (2009). In HYPHY, this procedure is available in the "Codon Selection Analyses" submenu. This batch file completes four LRTs in order to determine if two alignments are different from one another with respect to the distribution of particular rate parameters. Unlike the previously described LRT, which was concerned only with alignment-wide dN/dS, these tests consider dN/dS at the level of individual codons by assigning each site in the alignment to one of four rate classes (one positive, one neutral, and two negative). The value of $\mathrm{dN} / \mathrm{dS}$ that is assigned to each of these rate classes is determined from the data, itself.

The first of the four tests attempts to determine if all estimated evolutionary rate parameters may be shared by the two alignments. These parameters include the estimation of dN, dS , and $\mathrm{dN} / \mathrm{dS}$ for each rate class, as well as the proportion of sites within each alignment that belong to each of the four rate classes. First, a model where all parameters were estimated independently for each alignment is fitted to the data. A model where the values of all parameters are constrained so as to be shared by both alignments is then fitted and models are compared using an LRT.

The remaining three LRTs are aimed at determining if there are any differences between the alignments in terms of positive (or diversifying) selection, in particular. These tests were performed by fitting a model that constrained the value of $\mathrm{dN} / \mathrm{dS}$ for the positively selected rate class, the proportion of positively selected sites, or both values simultaneously, so that they were
shared by both alignments. These three models were then compared, in turn, to the independent model described above using an LRT.

For these analyses, two alignments must be submitted so that they may be compared. Two phylogenies must also be submitted; however, the same tree may be used to represent both alignments. In all cases, branch lengths were estimated using a codon substitution model (MG94) with the relevant nucleotide substitution model correction. Initial tests were run with default starting values for all rate parameter estimates. Due to the complexity of the models being fitted, each comparison was completed a second time with random starting values for rate parameters in order to ensure that rate estimates converged on similar results.

This procedure was used to perform 3 different alignment comparisons: 1) the entire concatenated alignment for all S-linked genes to the total control alignment; 2) the Tsstal alignment to an alignment of the remaining S-linked genes; and 3) the $A P 2 D$ alignment to an alignment of all other S-linked genes.

2.12.4 LOCAL dN/dS PROCEDURES

Strong alignment-wide signatures of negative selection can dilute signals of positive selection, especially if positive selection has affected only particular lineages or specific codonsites in an alignment (Pond, Poon, and Frost 2009). And, moreover, it may not be safe to assume that evolutionary rates (measured here by $\mathrm{dN} / \mathrm{dS}$) have remained constant over time. In order to investigate this possibility in the current context, several tests of lineage-specific selection were completed using sequence information from S-linked genes. For each S-linked alignment, global and local (or branch-wise) dN/dS ratio models were compared in the HYPHY, as described in Pond, Poon, and Muse (2009). This procedure employs an LRT to compare models where all rate parameters are constrained so as to be equal across branches in the phylogeny (the null hypothesis) to another where rates are allowed to vary across branches (the alternate hypothesis). After hypothesis testing is completed, the program outputs LRT statistic values, degrees of freedom, and p-values for each test, as well as the number of parameters estimated under each model. Significant p-values (<0.05) indicate that the local model fit is superior to that of the global model, suggesting that $\mathrm{dN} / \mathrm{dS}$ rates vary across lineages.

If positive selection has occurred in only very few lineages or on only a small selection of codon sites, evidence of diversifying selection in an alignment can be subtle, and thus very difficult to detect (Murrell et al. 2015). As a result, individual S-linked gene alignments were also investigated for incidences of episodic diversifying selection across individual lineages and codon sites using a Branch-site Unrestricted Statistical Test of Episodic Selection (BUSTED) (Murrell et al. 2015). BUSTED analysis can be completed in HYPHY using the BUSTED.bf batch file that is available in the "Positive Selection" submenu of the "Standard Analyses" file. All branches were included in the analysis, as there were no a priori reasons to believe that any particular lineage would have been disproportionately affected by positive selection. LRTs are then performed, comparing models where $\mathrm{dN} / \mathrm{dS}$ is constrained so as to be less than 1 across all sites and all lineages to a model where all parameters are estimated independently. If no evidence of positive selection is obtained under the null (constrained) model (i.e.: the proportion of sites with $\mathrm{dN} / \mathrm{dS}>1$ across a subset of lineages was essentially zero), then an LRT is not performed, as it is already apparent that the null cannot be rejected.

In order to determine if any particular branches in the phylogeny have experienced episodic positive or diversifying selection on any of the S-linked genes, additional tests were performed using the Adaptive Branch-site Random Effects Likelihood (aBS-REL) approach (Smith et al. 2014; Pond et al. 2011). This was completed in HYPHY using the BanchSiteREL.bf batch file that is available in the "Positive Selection" submenu of the "Standard Analyses" file. For this analysis, the option that allows synonymous substitution rates to vary from site to site was selected and all possible branches were chosen to be tested. As before, the MG94 codon model was employed and locally fit so as to compute branch-wise estimates of $\mathrm{dN} / \mathrm{dS}$. This procedure first sorts branches by length, longest to shortest, and subsequently defines rate-classes for each branch. The number of rate-classes defined is limited by AIC value and additional classes are only added if it results in an AIC improvement (i.e.: if it is reduced). The proportion of sites belonging to each rate-class, or its weight, is also computed. Each branch is then tested in order to determine if there is a proportion of sites with $\mathrm{dN} / \mathrm{dS}>1$ whose removal from the data set would result in a significant reduction in the log-likelihood value obtained for that branch. That is, the locally fit MG94 model is compared to one where dN/dS is constrained to be less than or equal to 1 using an LRT. If no rate classes with $\mathrm{dN} / \mathrm{dS}>1$ are defined for a particular branch, then this test is not performed. Once these tests are complete, the Holm-Bonferroni multiple testing
correction is applied in order to correct for multiple tests. Corrected p-values for each branch, where tests are completed, are then outputted by HYPHY.

2.12.5 SITE-BY-SITE SELECTION ANALYSES

When positive selection affects only a small proportion of sites, it can be difficult to detect, especially when negative selection dominates an alignment (Pond, Poon, and Muse 2009). In order to contend with this possibility, tests of site-by-site variation in evolutionary rates were performed for all S-linked sequences. To do this, several methods were employed, including: Single-likelihood Ancestor Counting (SLAC) (originated by Suzuki and Gojobori 1999 and modified by Pond and Frost 2005), Fixed Effects Likelihood (FEL) (Pond and Frost 2005), and Fast Unconstrained Bayesian Approximation (FUBAR) (Murrell et al. 2013). In order to detect episodic diversifying selection on particular codon sites, specifically, the Mixed Effects Model of Evolution (MEME) method was employed (Murrell et al. 2012). While each method has its particular strengths, as will be discussed, it has been suggested that several methods be used in concert for an integrative approach to site-by-site selection detection - particularly when sequence data is limiting, as may be the case here (Pond, Poon, and Frost 2009).

Batch files for performing SLAC, FEL, and MEME analyses are available in the "Positive Selection" submenu of the "Standard Analyses" file, and are part of the larger QuickSelectionDetection.bf batch file. As with all other analyses, an alignment and a representative phylogenetic tree are submitted, and the best fitting nucleotide substitution model is selected. For these tests, codon models are approximated using branch lengths from the input tree and nucleotide substitution rate parameter estimates indicated by the selected nucleotide substitution model (Pond, Poon, and Frost 2009; Pond and Frost 2005). During the optimization of the approximate codon model, the global parameter, $\mathrm{dN} / \mathrm{dS}$, is estimated along with its 95% CI values in all cases.

2.12.5.1 SINGLE-LIKELIHOOD ANCESTOR COUNTING (SLAC)

SLAC analysis was completed by selecting the "Single Ancestor Counting" option in the QuickSelectionDetection.bf batch file submenu. The following SLAC-specific options were also
selected: ancestral reconstruction was applied to the whole tree, sequence ambiguities in ancestral reconstructions were averaged over all possible codon states (with particular states being weighted relative to their frequency in the alignment), and p-values were determined using an extended binomial distribution, as described below.

With this procedure, ancestral sequences are reconstructed using nucleotide and codon substitution model parameter estimates (including branch lengths, nucleotide substitution rates, and global dN/dS) following a maximum likelihood-based approach (as opposed to a parsimonybased or Bayesian approaches, for example) (Pond and Frost 2005; Pond, Poon, and Frost, 2009). These reconstructions represent the ancestral sequences for each site at each internal node of the tree. Reconstructed ancestral sequences are then fixed as known variables and are used to determine the observed proportions of non-synonymous and synonymous changes and expected proportions of synonymous and nonsynonymous sites for each codon position (which should be equivalent to the expected proportion of changes if a sequence is evolving neutrally). This process excludes the introduction of stop codons from the calculation. Observed numbers are computed by counting substitutions, directly, at a given site and averaging over all possible shortest paths when multiple substitutions are required. Expected numbers are obtained by computing the mean proportions of synonymous and nonsynonymous sites at a given codon across all branches. A test of whether the observed proportion of synonymous substitutions is significantly different from the expected proportion of synonymous sites is then performed. pvalues are determined using the two-tailed extended binomial distribution (following Durrett 2005). If the test is significant and the expected proportion of changes is greater than the observed proportion of sites, then the site is said to be positively selected. If, instead, the opposite scenario is observed, then the site is said to be negatively selected (Pond and Frost 2005; Pond, Poon, and Frost, 2009).

2.12.5.2 FIXED EFFECTS LIKELIHOOD (FEL)

FEL analysis was completed in HYPHY using the "Two rate FEL" option. As above, the entire tree was submitted for analysis, as opposed to a custom subset of branches. This procedure estimates dN and dS independently at each codon site, directly, in order to accommodate site-tosite variation in rates (Pond and Frost 2005). This method contrasts with Random Effects

Likelihood (REL)-type methods, such as those implemented in PAML, which, instead, determine synonymous and nonsynonymous substitution rates from a distribution of rates that is inferred from the data (Pond and Frost 2005; Pond, Poon, and Frost, 2009).

In HYPHY, FEL processes data in a number of stages. First, global alignment parameters are fitted to the data. This includes such things as the selected nucleotide and codon substitution models, global dN/dS, and branch lengths. Once fitted, these parameters are treated as known and are shared across branches. As a result, each branch can then be considered as an independent representation of the substitution process at each site, as described by the global parameters (Pond and Frost 2005; Pond, Poon, and Frost, 2009). LRTs of dN=dS are then performed at every site with 1 degree of freedom. This is completed by comparing the fit of a constrained model $(\mathrm{dN}=\mathrm{dS})$ to another where dN and dS are estimated independently from the data. Here, the asymptotic χ^{2} distribution is employed in order to determine significance. If the test is significant $(\mathrm{p}<0.05)$ and $\mathrm{dN}>\mathrm{dS}$ at a particular site, then it is assumed to be under positive or diversifying selection. If, instead, $\mathrm{dN}<\mathrm{dS}$, then the site is determined to be under negative or purifying selection (Pond and Frost 2005; Pond, Poon, and Frost, 2009).

2.12.5.3 MIXED EFFECTS MODEL OF EVOLUTION (MEME)

Unlike the previously discussed methods, MEME can not only detect pervasive sitespecific positive selection, but is also able to determine if a particular codon has been affected by transient episodes of diversification across a proportion of branches in the phylogenetic tree (Murrell et al. 2012). In fact, MEME represents an extension of earlier discussed branch-site REL methods (Pond et al. 2011; Smith et al. 2014).

In HYPHY, MEME analysis is competed by selecting the "Meme" option in the QuickSelectionDetection.bf batch file. Initial data analysis proceeds similarly to FEL. Global parameters are first fitted to the data, including the selected best-fitting codon and nucleotide models, global dN/dS, and branch lengths. However, unlike FEL, dN/dS at each site is not fixed across branches. Rather, MEME is referred to as a "Mixed Effects" model because it allows the distribution of rates to vary from site to site as a fixed effect (i.e.: rates are estimated independently and directly from the data), and from branch to branch at each site as a random effect (i.e.: each branch is assigned to one of a discrete number of rate-categories). Specifically,
at each site, dS is estimated independently, while each branch is assigned to one of two categories of dN : $\mathrm{dN} \leq \mathrm{dS}$ or $\mathrm{dN}>\mathrm{dS}$ (or dN 2). At each site, a null model of $\mathrm{dN} 2 \leq \mathrm{dS}$ is then fitted and compared to the unconstrained model using an LRT. Here, significance values are drawn from a mixture asymptotic χ^{2} distribution $\left(\chi^{2}{ }_{0}, \chi^{2}{ }_{1}\right.$, and $\chi^{2}{ }_{2}$) (after Self and Liang 1987). If dN 2 is greater than dS and the test is significant, positive selection is inferred. As earlier indicated, unlike FEL, MEME allows rate variation across branches, and, by binning dN values across branches at each site, it also allows for the pooling of information, thus improving ones ability to detect relatively weak signatures of selection at a particular site in an alignment (Murrell et al. 2012; Pond et al. 2011).

2.12.5.4 FAST UNCONSTRAINED BAYESIAN APPROXIMATION (FUBAR)

In HYPHY, the FUBAR.bf batch file is available in the "Selection/Recombination" submenu of the "Standard Analyses" file. The following FUBAR-specific options were also applied: 400 grid points (20x20) were used (as described below), 5 Markov Chain Monte Carlo (MCMC) chains were run, each chain was 2000000 steps in length, the first 1000000 steps were discarded as burn in, 100 samples were drawn from each chain (i.e.: each chain was sampled every 10000 steps), and the concentration of the Dirichlet prior concentration parameter was set at 0.5 .

FUBAR is similar to other REL-type methods, in that it bins rate-values into discrete classes that are defined from a distribution of possible dN and dS values, which is, itself, determined from the data (Murrell et al. 2013). In this way, FUBAR shares REL's ability to pool information in order aid in the detection of transient positive selection. However, as opposed to employing only relatively very few rate categories, sites are instead assigned to one of as many as 400 discrete classes, depending on grid-size (which is indicated a priori). Because the distribution of rates is so finely discretized, it is considered to be essentially unconstrained, meaning that it also shares some of the advantages of FEL-type methods, which are entirely unconstrained (Murrell et al. 2013; Pond et al. 2005).

The grid, itself, represents the distribution of dN and dS values for an alignment (Murrell et al 2013). Within this grid, 70% of points along a given axis represent $\mathrm{dN} / \mathrm{dS}<1$, one point
represents $\mathrm{dN} / \mathrm{dS}=1$, and the remaining points represent $\mathrm{dN} / \mathrm{dS}>1$ (to a maximum of $\mathrm{dN} / \mathrm{dS}=50$). Weights (i.e.: the number of sites belonging to each rate-class) are determined for each point in the grid using a hierarchical Bayes approach. A symmetric Dirichlet prior probability distribution is assumed for rate class weights. A concentration parameter is defined in order to determine how dispersed or clumped the prior distribution of weights will be (i.e.: how evenly distributed the weights are across all dN and dS value combinations). As a result, the probability of each dN -dS value combination is represented by a general discrete bivariate distribution, with each combination having a particular weight.

MCMC sampling is used to sample weights for each point on the grid in light of a particular alignment in order to approximate the posterior probability distribution (Murrell et al. 2013). In HYPHY, this is achieved using the Metropolis algorithm (Pond et al. 2005). For each sample, a posterior distribution of dN and dS is calculated for each site using Bayes' Theorem. Posterior probabilities of positive selection for each site are determined by averaging across samples. Multiple MCMC chains are run in parallel in order to ensure convergence on similar site-specific posterior probabilities of positive selection (Murrell et al. 2013). For the purposes of this study, posterior probabilities >0.9 are considered to be significant.

2.12.6 MACDONALD-KREITMAN TESTS (MKTs) AND TAJIMA'S D TESTS OF NEUTRALITY

Population-level selection analyses were performed using genetic data for a subset of individuals. To do this, data for all diploid plants of the Turnera subseries were considered and, as a result, individuals of the species T. subulata, T. scabra, T. krapovickasii, and T. concinna were represented. Tetraploid data were excluded because, where sequence ambiguities existed, haplotypes could not be reliably reconstructed in PHASE v. 2.1 (Stephens et al. 2001; Stephens and Donelly 2003). Also, as their tetraploid status already more-or-less prevents the exchange of genetic information with other non-tetraploid members of the Turnera subseries, together, they could not be properly considered as part of a "population" sample.

Alignments containing sequence ambiguities (heterozygous sites) were submitted to PHASE v. 2.1for the purposes of haplotype reconstruction, as described above (Stephens et al. 2001; Stephens and Donelly 2003; Librado and Rozas 2009). McDonald-Kreitman tests (MKTs)
were then performed on all 12 phased S-linked gene data sets, using sequences obtained for T. panamensis as the inter-specific sample. The Tsstal alignment was not found to contain any sequence ambiguities, and, as a result, an MKT was performed on this alignment, directly, as haplotype reconstruction was not required. An additional MKT test was performed on an alignment of Tsstal sequences obtained from 17 individuals, representing a very localized population of tetraploid T. scabra from the Dominican Republic (DROT). These analyses were also performed in DNAsp v. 5.

As proposed by McDonald and Kreitman (1991), MKTs evaluate the neutral expectation that the ratio of nonsynonymous to synonymous fixations and polymorphisms should be equal within a given alignment, with significant deviations from this expectation indicating the action of selection. Here, significance is determined using a 2 -tailed Fisher's Exact Test. In addition to p-values, Neutrality Index (Rand and Kann 1996) and α values (Smith and Eyre-Walker 2002) are also outputted using the MKT protocol available in DNAsp v. 5. However, it should be noted that the numbers of synonymous and nonsynonymous fixations and polymorphisms were not calculated at codon sites containing alignment gaps in sequences for any individual(s), as per the particular constraints of DNAsp v. 5.

Tajima's D tests of neutrality were also performed in DNAsp v. 5 using this same data (excepting the inclusion of T. panamensis). This test compares the average number of pair-wise sequence differences (Tajima's π) to the number of segregating sites (S or Watterson's θ) in an alignment (Tajima 1989). If a particular set of sequences are evolving neutrally, then these population and pair-wise measures of diversity should be approximately equal, as they are generated by the same process (i.e.: drift). In this case, $\mathrm{D} \approx 0$. A value of $\mathrm{D}<0$, which arises when the number of segregating sites is larger than the average number of pair-wise differences, can indicate a recent selective sweep, while $\mathrm{D}>0$ may indicate the action of balancing selection (i.e.: There are many alleles of intermediate frequency in the population, thus making $\pi>\theta$). Statistical significance is then determined from the beta distribution (Tajima 1989).

3.0 RESULTS

3.1 SEQUENCING, ALIGNMENTS, AND DESCRIPTIVE STATISTICS

In total, nearly 9.5 kb of sequence information was obtained and analysed, 6.1 kb of which originated from S-linked genes (Table 6). Alignments for individual genes ranged from 156 bp (LEJ2) to $1188 \mathrm{bp}(L R R K)$ in length. Nucleotide alignments for all S-linked genes are shown in Appendix B (Figures B1-B13), while alignments for all control genes are provided in Appendix C (Figures C1-C8).

For most genes, sequences were successfully obtained from all 24 individuals of interest (or 34, in the case of the Tsstal total data alignment) (Table 1, Table 6). However, PCR products could not be amplified or sequenced for the following genes (individuals): LEJ2 (DIF), RNABP (KRAP 5S), FMO1 (DIF and WED 2S), and MBD8 (DIF, WED 2S, and CHAM 4L).

Accordingly, the alignment for control gene MBD8 included the fewest species, as representative sequences from T. diffusa, T. weddelliana, and T. chamaedrifolia were not obtained. Similarly, gaps in alignments for $L R R K$ and $R N A B P$ could not be resolved due to persistent "shifted peaks" in the sequence chromatograms for ES and SL8 201S, and DROT 41S and MIDC 710S, respectively. Further, an early stop codon was identified in the $A P 2 D$ sequence that was obtained for CHAM 4L (T. chamaedrifolia), resulting in a truncated sequence of only 414 bp (138 codons) for this individual.

For alignments of individual genes, sequence conservation across taxa ranged from 69\% (for Tsstal (total data)) to 93% (for GAUT1). The SCEI alignment contained the greatest number of identical sequences (13), however, followed by the GAUT1 and Tsstal (total data) alignments (8 each). In total, 84.7% sequence conservation was observed across all S-linked genes, 90.3% across all control genes, and 86.6% across all genes, combined (Table 6).

The overall percentage of variable sites in each gene alignment ranged from 7\% (in the GAUT3 alignment) to 30\% (in the Tsstal (total data) alignment) (Table 6). In general, most variation was unique to a single sequence. That is, singleton sites often outnumbered parsimony informative sites. When all of the genetic data was considered (9489 bp in total), of the 1137 sites that were found to vary, 544 represented shared polymorphisms (or parsimony informative sites), while 589 were found in only one individual.

When the number of representative taxa in each alignment was reduced so as to be more or less equal across genes, estimates of nucleotide diversity (π) and sequence polymorphism (θ) were also obtained (Figure 6). Of all of the genes considered here, the highest nucleotide diversity and sequence polymorphism values were observed in the $R N A B P$ alignment ($\pi=0.037$ ($\mathrm{SD}=0.004$) and $\theta=0.049(\mathrm{SD}=0.014)$), followed by $A P 2 D(\pi=0.030(\mathrm{SD}=0.003)$ and $\theta=0.035$ ($\mathrm{SD}=0.010$) , which is located adjacent to $R N A B P$ at the S-locus (Figure 6). $L R R K$ also obtained similar values, though the standard deviations for these values were generally higher ($\pi=0.029$ $(\mathrm{SD}=0.011)$ and $\theta=0.039(\mathrm{SD}=0.011)$). $S C E I$ showed the lowest nucleotide diversity and Watterson's θ values ($\pi=0.006(\mathrm{SD}=0.001)$ and $\theta=0.006(\mathrm{SD}=0.005)$). Though the largest and smallest values were obtained by S-locus genes, estimates of π and θ were found to be very similar across control and S-linked alignments, on average. Indeed, no particular pattern in terms of the distribution of average pair-wise divergence (π) and alignment-wide sequence polymorphism (θ) across the S-locus was immediately detectable, though a general increasing trend in these values can be observed from Apetala2 to $R N A B P$ before dropping off precipitously at SCE1 (Figure 6). When compared, S-linked and control genes exhibited no significant difference in average π or θ ($\mathrm{p}>0.05$; mean $\pi_{S \text {-linked }}=0.020$; mean $\pi_{\text {control }}=0.018$; mean $\theta_{S \text {-linked }}=0.029 ;$ mean $\left.\theta_{\text {control }}=0.024\right)($ Figure 7).

In agreement with the above estimates, $R N A B P$ also showed the greatest proportion of polymorphic sites (22.2%), with the proportions of synonymous and non-synonymous mutations being roughly equal (48.2% and 51.8%, respectively) (Table 7). The $R N A B P$ alignment also contained the greatest number of indel events (8) and exhibited the largest average indel length (9.437 bp). However, indel diversity estimates $\left(\pi_{1}\right)$ were highest for $A P 2 D\left(\pi_{1}=0.005\right)$, followed by APETALA2 $\left(\pi_{1}=0.004\right)$, $R N A B P\left(\pi_{1}=0.003\right)$, and $\operatorname{LRRK}\left(\pi_{1}=0.003\right)$. Only one 3 bp long indel event was identified across all control gene alignments ($R N A B P 34$). When the S-linked and control gene datasets were compared, the average number of indel events and indel length per alignment were found to be significantly different ($\mathrm{p}<0.05$) (Table 7). However, indel diversity measures $\left(\pi_{1}\right)$ were not found to be significantly different ($p>0.05$). In general, control genes exhibited a somewhat smaller proportion of polymorphic sites (11.0% versus 13.4% in S-linked genes, on average), with most mutations resulting in synonymous amino acid changes (62.4% versus 57.8% in S-linked genes, on average) (Table 7). However, these differences were not found to be statistically significant by Mann-Whitney-U tests ($\mathrm{p}>0.05$). The average number of
nonsynonymous mutations per gene was also not found to differ significantly between data sets. SCE1 exhibited the lowest proportion of polymorphic sites and the highest proportion of synonymous mutations (5.1% and 88.9%, respectively), while the control gene, UNKN (unknown function), exhibited the greatest proportion of non-synonymous mutations, at 61.8\% (Table 7).

3.2 PHYLOGENETIC ANALYSES

Several phylogenies were computed using the data. Six trees were constructed for the purposes of analyses to be performed in HYPHY (Pond, Frost, and Muse 2005). These phylogenies were constructed using the total data for all genes and all individuals of interest, the same data with a reduced number of representative taxa, and Tsstal data that had been collected from an expanded number of species. Trees were constructed using both the DNA and amino acid alignments. Those that were obtained using DNA data are shown in Figures 8-10. Those computed using translated DNA data sets are supplied in Appendix D (Figures D1-D3). Phylogenies produced using nucleotide and amino acid data for each individual gene, and concatenated alignments of all S-linked genes and all control genes, separately, are provided in Appendix E (Figures E1-E44).

3.2.1 THE TOTAL DATA SET: DNA- AND AMINO ACID-BASED PHYLOGENIES

The total DNA data obtained for all genes and all individuals (excepting those that were specific to the Tsstal total data set) were used to produce the phylogeny shown in Figure 8 by maximum likelihood methods. After eliminating sites that were represented by $>5 \%$ gaps and ambiguous bases, a total of 6526 informative base positions were retained and used for phylogenetic reconstruction.

In this analysis, the monophyly of the Turnera series - represented here by members of the Turnera and Umbilicatae subseries - was supported by strong bootstrap values (100\%) (Figure 8). Though little species-level resolution was obtained within the Turnera subseries, this group also obtained considerable support (98\%). Interestingly, the individual, DEN 20S, a short-styled
plant of the species T. grandidentata, appears as sister taxon to all other members of the Turnera subseries (including a long-styled plant of the same species, DEN 54L), and with high bootstrap support (98%). The Umbilicatae subseries, represented here by T. joelii (TJ 29S and 30L), obtained high branch support (100%) and is depicted as the sister group to the Turnera subseries (100\%).
T. chamaedrifolia and T. diffusa, members of series Papilliferae and Microphylae, respectively, are strongly supported as a single clade, with 100% bootstrap support (Figure 8). Within the tree, they are presented as the most closely related group to the Turnera series. Representative members of series Salicifoliae (T. panamensis and T. weddelliana) are also a strongly supported monophyletic group (99%) and are sisters to all other taxa.

The total DNA data were translated and the resultant amino acid alignment was then used to generate another tree by maximum likelihood methods (Figure D1). A total of 1976 amino acid sites were retained and used to inform this phylogeny.

Analysis of the total amino acid data resulted in the production of a phylogenetic tree with very similar topology to that which was computed with the total DNA data (Figure D1). As was the case in Figure 8, the monophyly of the Turnera series was strongly supported by bootstrap values (100%), as was the position of T. chamaedrifolia and T. diffusa as the group in the tree to which it is most closely related (98%). Within the Turnera series, the Turnera and Umbilicatae subseries were also strongly supported groups, showing 90% and 100% bootstrap support, respectively. As with the above, members of the Salicifoliae series were depicted as sisters to all other groups.

As was shown in Figure 8, when the amino acid data were submitted to phylogenetic analysis, the position of the individual, DEN 20S (T. grandidentata), also appeared to be somewhat segregated from the remaining members of the Turnera subseries with strong bootstrap support (90\%) (Figure D1). Again, no species-level resolution was obtained within the Turnera subseries when the translated data set was employed.

3.2.2 THE TOTAL DATA SET WITH A REDUCED NUMBER OF TAXA: DNA- AND AMINO ACID-BASED PHYLOGENIES

In order to perform tests of selection in HYPHY (Pond, Frost, and Muse 2005), it is necessary that the taxa included in the alignment submitted for analysis match those that are represented in the accompanying phylogenetic tree. Because the Tsstal gene appears only to be represented in the genomes of short-styled and short-homostyled individuals of the species of interest, it was necessary to compute an additional set of phylogenetic trees using the total genetic data that had been obtained for individuals of these types (16 individuals, total). Because plant material was only available for long-styled individuals of T. diffusa and T. chamaedrifolia, no representatives of these species could be included in phylogenetic reconstruction. In HYPHY, these trees were used for tests of selection on the Tsstal alignment only.

A phylogeny constructed using the total DNA data from all genes for only short-styled individuals by maximum likelihood methods is shown in Figure 9. A total of 6467 nucleotide sites were retained for this analysis. As would be expected, even after a reduction in representative taxa, the resultant phylogeny retained a similar topology to those described earlier. The Turnera series was again strongly supported as a monophyletic group (100\%), with T. joellii, the only species from the Umbilicatae subseries represented here, appearing as its sister. Similarly, T. weddelliana and T. panamensis, both members of the Salicifoliae series, were again positioned as sister taxa to all other individuals included here.

In this tree, the Turnera subseries was also strongly supported as a clade (99\%) (Figure 9). However, in most cases, individuals did not appear to cluster by species within this group. For instance, all included individuals of the Turnera subseries, with the exception of TSH (tetraploid T. scabra), E 207S (tetraploid T. subulata), and DEN 20S (T. grandidentata), formed a reasonably well supported clade (85\%). Within this clade, MAN 601S and ES, both of which are T. scabra, also formed a moderately well supported sub-group with F60SS, a member of the species, T. subulata (80%). All other such relationships within the Turnera subseries received bootstrap supports of $\leq 75 \%$.

When the DNA data set was translated and submitted to phylogenetic analysis, many of the same relationships were identified (Figure D2). A total of 1922 amino acid sites were considered in this analysis. Again, DEN 20S and E 207S were shown as sister taxa to the Turnera subseries clade (96%), followed by TSH (47%). The remaining members of the Turnera subseries,
including representatives of T. krapovickasii, T. concinna, T. subulata, and T. scabra also formed a moderately well supported group within this clade (73\%).

3.2.3 THE Tssta1 DATA SET WITH AN EXPANDED NUMBER OF TAXA: DNA- AND AMINO ACID-BASED PHYLOGENIES

Because Tsstal is only represented in short-styled and short-homostyled individuals of distylous Turnera, and also has significant sequence homology to genes known to be involved in SI response in Papaver, it is of particular interest in this study. As a result, Tsstal was sequenced in an increased number of species, including members of related genera, Piriqueta and Erblichia, as well as additional species from the Turnera series. This larger data set included sequence information for 34 individuals. Phylogenies constructed using these data were subsequently employed in various selection analyses of the Tsstal gene (Figures 10 and D3).

When the DNA data for Tsstal across an increased number of taxa were considered, a total of 348 nucleotide base positions were retained for phylogenetic analysis. In the resultant phylogeny, the Turnera series is again strongly supported as a monophyletic clade (100%) (Figure 10). However, within this group, T. joellii (subseries Umbilicatae) is situated within the Turnera subseries, in an intermediate position between T. grandiflora (GRAN 9S) and the remaining members of this group (84%). Within the Turnera subseries clade, T. subulata, T. scabra, T. krapovickasii, T. concinna, and T. grandidentata all cluster together at the top of the tree. However, this grouping obtained only very modest bootstrap support (64\%). Within this particular collection of individuals, species-level resolution was also not achieved. Rather, members of two species, in particular, T. subulata and T. scabra, often appeared as less closely related to members of their own species than they were to individuals of the opposing species, as was also characteristic of many of the earlier described phylogenies (Figures 8-9).

With attention, again, to the Turnera subseries, individuals of the species T. occidentalis, T. Aurelii, T. orientalis, and T. cuneiformis formed a reasonably well-supported clade within this tree (83%) (Figure 10). Indeed, it should be noted that sequences obtained for T. occidentalis, T. orientalis, and T. cuneiformis were found to be identical at this locus (Appendix B, Figure B2). In any case, this collection of individuals is positioned as a close sister group to T. oculata, T. ulmifolia, and T. velutina (68%), with 77% bootstrap support.

As was also the case in the phylogenies described in Figures 8 and 9, in Figure 10, T. weddelliana and T. panamensis (series Salicifoliae) are depicted as most closely related Turnera series clade, with 77% and 71% bootstrap support, respectively. Members of the genus, Piriqueta, then form a sister group to Turnera in the tree. The monophyly of Piriqueta is supported by a 91% bootstrap value. The Piriqueta group is then separated into three distinct clades, containing the following species: 1) P. cistoides ssp. caroliniana (91\%), 2). P. sarae, P. revoluta, and P. nanuzae (99\%), and 3). P. viscosa, P. plicata, P. morongii, and P. duarteana (100\%). Within the third clade, P. plicata, P. morongii, and P. duarteana form a subgroup with 79% bootstrap support. That being said, the branch supporting the subdivision between Piriqueta species groups 2 and 3 only obtained 50% bootstrap support. Erblichia odorata (EOD) is then positioned as the sister taxon to all other groups in the phylogeny.

When the total Tsstal data set was translated, and the amino acid alignment was subsequently submitted to phylogenetic analysis using maximum likelihood methods, 116 amino acid positions were included in the final data set (Figure D3). This phylogeny suggests a very similar topology to that which was observed when the DNA data was considered, though bootstrap supports for all clades were found to be uniformly reduced, as was the general resolution of the tree. However, some key differences in tree topology can be readily identified. Perhaps most interesting is the position of T. weddelliana within the phylogeny. Here, it appears in an intermediate position between E. odorata and the Piriqueta group, and completely separated from other species of the Turnera genus.

3.2.4 GENE GENEALOGIES

Individual nucleotide and amino acid alignments for each sequenced gene/exon were submitted to phylogenetic analysis, in turn, using maximum likelihood methods. The total data for all S-linked and control genes were also analyzed separately in this way. These analyses were completed, in part, to determine if any further species-level resolution, particularly within the Turnera subseries, could be achieved. Additionally, these phylogenies were computed in order to identify any possible pattern(s) in terms of the relationships between the alleles for each gene. The results of these analyses are displayed in Appendix E (Figures E1-E44).

These results were found to be largely consistent with those that were obtained using the total nucleotide and amino acid data sets, though often with lower bootstrap support, as might be expected due to insufficient data. However, there were a few notable exceptions. For instance, taxa within the nucleotide and amino acid-based trees for $A P 2 D$ were found to be somewhat unusually arranged (Figures E7 and E8). In the nucleotide tree, T. chamaedrifolia and T. diffusa are positioned within the Turnera subseries (Figure E7). And, further, when the amino acid data for this gene were considered, T. grandidentata is repositioned as the sister group to all other taxa, with T. chamaedrifolia, T. diffusa, T. weddelliana, and T. panamensis becoming fully subsumed within the Turnera series (Figure E8). However, bootstrap supports for these particular species arrangements were quite meagre in most cases (<50\%).

The trees obtained using the data for $R N A B P$ were similarly remarkable, with branches often obtaining much more significant bootstrap supports than were observed for $A P 2 D$ (Figures E9 and E10). For instance, T. chamaedrifolia was again integrated within the Turnera series, with 98% and 88% support in the DNA and amino acid trees, respectively. The individual, DEN 54L, a long-styled member of the species, T. grandidentata, was also shown as being closely related to T. diffusa, with considerable bootstrap support, especially in the amino acid-based tree (92%). However, DEN 20S, the short-styled representative of T. grandidentata, is positioned as expected, within the Turnera subseries.

Of the phylogenetic results obtained using alignments of control genes, the phylogenies produced for FMO1 deviated most from what had been previously observed (Figures E35 and E36). In these trees, T. diffusa and T. weddelliana are situated within the Turnera subseries with considerable bootstrap support (91% and 95%, in the nucleotide and amino acid trees, respectively). However, it should be noted that most aberrations from expectations are likely explained by insufficient data (i.e.: short alignments, with few differences between taxa). Indeed, when total S-linked and total control data were considered separately, the phylogenies converged on a similar topology to those that were observed in Figures 8-10 (Figures E25-26 and E43-44).

Individual gene alignments were also investigated for the presence of trans-species polymorphisms (TSPs). However, evidence of trans-specific evolution was only obtained for one gene: APETALA2 (Figure 11). For this gene, short-styled individuals of the Turnera subseries appeared to form a single clade, while long-styled individuals fell into a polytomy from which the short-styled clade emerges. However, the TSP signal appeared to break down outside of this
subseries. Turnera joelii, T. chamaedrifolia, T. diffusa, T. weddelliana, and T. panamensis fell into their series/subseries-specific clades. Importantly, the TSP pattern that is evident in the gene genealogy for APETALA2 is driven by only 3 sites (base positions 75,376 , and 406 , as indicated in Appendix B, Figure B1). At site 75, both TSH (short homostyle, T. subulata) and DROT 41S (T. scabra) share the s-specific base. TSH also shares the s-specific base at position 406. At nucleotide sites 376 and 406, morph-specific base differences within the Turnera subseries result in amino acid substitutions. Due to base differences at site 376 , long-styled individuals possess an isoleucine, while shorts have a leucine at the corresponding codon position. Due to base differences at site 406 , longs possess a valine, while shorts have an isoleucine at that codon site. At site 75, both morphs possess a glutamate residue.

3.3 SELECTION ANALYSES

All selection analyses were performed in HYPHY v. 2.2.3 (Pond, Frost, and Muse 2005) and DNAsp v. 5 (Librado and Rozas 2009). For these analyses, in most cases, the phylogeny based on the total nucleotide data for all genes/exons sequenced here was used in conjunction with the relevant nucleotide alignment (Figure 8). For analyses of Tsstal, in particular, either the nucleotide-based phylogeny depicted in Figure 9 or Figure 10 was employed, depending on the number of taxa that were included in the relevant alignment.

3.3.1 GLOBAL dN/dS ESTIMATES

Global, or alignment-wide, estimates of dN/dS were calculated for each gene/exon sequenced, as well as their asymptotic 95% confidence intervals (CI) (Table 8). Estimates were also obtained for concatenated alignments of all S-linked genes and all control genes, separately. For most alignments, global dN/dS estimates were found to be less than 1, suggesting an alignment-wide deviation from neutral evolution in the direction of negative or purifying selection. However, the global dN/dS estimate for LEJ2 (exons 1-2), was calculated to be 1.59 (\pm 1.07), suggesting that selection across this alignment is not significantly different from neutral expectations, or $\mathrm{dN} / \mathrm{dS}=1$, on average.

In order to provide further support to these results, additional likelihood ratio tests (LRTs) were performed in order to evaluate the null hypothesis of $\mathrm{dN}=\mathrm{dS}$ (or $\mathrm{dN} / \mathrm{dS}=1$) across each alignment (Table 8). Significant p-values (p<0.05) were obtained for all but two alignments: LEJ2 and $U N K N$ ($\mathrm{p}=0.15$ and 0.08 , respectively), suggesting that the model where $\mathrm{dN} / \mathrm{dS}$ was estimated from the data did not fit the data significantly better than the model where dN and dS values were constrained to be equal. This result supports the conclusion that the particular exons represented in these alignments are evolving more or less neutrally, in general.

For all other alignments, LRTs of $\mathrm{dN} / \mathrm{dS}=1$ resulted in p-values that were $\ll 0.05$, suggesting that $\mathrm{dN} / \mathrm{dS}$ is significantly different from 1 in these cases (Table 8). These results, combined with the earlier estimations of global dN/dS, indicate that, not only is the evolutionary rate significantly non-neutral for these alignments, but also that they show statistically significant signatures of purifying selection in general, on an alignment-wide scale.

3.3.2 COMPARING dN/dS IN S-LINKED AND CONTROL GENES

In order to determine if S-linked genes are uniquely influenced by selection, their evolutionary rates were compared to those of a semi-random selection of genes located elsewhere in the Turnera genome. When the total genetic data that had been obtained for all S linked genes were considered, global $\mathrm{dN} / \mathrm{dS}$ was found to be $0.25(\pm 0.03)$, indicative of purifying selection across the alignment (Table 8). Importantly, when sequence data for LEJ2 (which, in isolation, obtained high global dN/dS value relative to other S-linked genes) was removed from the total S-linked gene alignment, global rate estimates remained very similar, at $0.23(\pm 0.02)$. Global dN/dS values that were obtained for the total control data were similar but somewhat lower, at $0.15(\pm 0.03)$. In addition, when these alignments were submitted to LRTs of $\mathrm{dN} / \mathrm{dS}=1$ significant p -values were obtained ($\mathrm{p} \ll 0.05$), suggesting that evolutionary rates deviate from the neutral expectation in both cases. Importantly, the global $\mathrm{dN} / \mathrm{dS}$ value ranges for S-linked and control genes do not overlap, as is indicated by their 95\% CIs. This suggests that the strength of selection, while negative in both cases, is significantly different between alignments.

In order to determine if the control and S-linked genetic data were significantly different from each other in terms of positive selection, in particular, four LRTs were performed. Specifically, these tests were employed to determine if any of the following rate parameters were
significantly different between alignments (Table 9): 1) All rate parameters, including the values of dN, dS, and $\mathrm{dN} / \mathrm{dS}$ for all four rate classes (1 neutrally, 2 negatively, and 1 positively selected), as well as the proportion of codon sites belonging to each rate class; 2) the strength of positive selection (i.e.: the values of dN, dS, and $\mathrm{dN} / \mathrm{dS}$ for the positively selected rate class); 3) the proportion of positively selected sites; and 4) the positive selective regime (the strength of positive selection and the proportion of positively selected sites). Rate parameter estimates for these tests can be found in Appendix F, Table F1.

When a model where the values of all rate parameters were constrained so as to be shared by both alignments was compared to another where all parameters were estimated independently, the S-linked and control data sets were found to be significantly different from each other ($\mathrm{p}=0.002$; LRT Statistic $=27.83, \mathrm{DF}=10$; Table 9). This suggests that the independent model fit was superior to that of the constrained model in this case, and further indicates that the data sets differ with regards to the distribution of rate parameters in some way. However, when rate parameters related to positive selection, in particular, were investigated, no significant differences were detected by any test, indicating that strength of positive selection, the proportion of positively selected sites, and the positive selective regime were largely the same across data sets ($\mathrm{p} \gg 0.05$) (Table 9).

As indicated above, LEJ2 obtained a global dN/dS value that was considerably higher than other S-linked genes (1.59 ± 1.074; Table 8). Interestingly, when LEJ2 was removed from the total S-locus alignment and then compared to the total control alignment using the LRTs described above, the results were found to be more extreme. While the distributions of the various rate parameters were still found to be significantly different ($\mathrm{p} \ll 0.05$), the positive selective regime and proportion of positively selected sites were also found to differ significantly in the two alignments ($\mathrm{p}=0.04$ and 0.02 , respectively). The strength of positive selection, however, was found to be shared by the two alignments ($\mathrm{p}>0.05$), as was the case when LEJ2 sequence data were included.

Due to the complexity of the models being fitted to the data, the LRTs described above were repeated using random starting values for all parameters (LEJ2 included). Importantly, these tests converged on nearly identical results (Appendix F, Table F2).

3.3.3 LOCAL OR LINEAGE-SPECIFIC SELECTION ON S-LINKED GENES

Because strong alignment-wide signatures of purifying selection, like those that have been detected here, can overpower weaker signals of positive selection, especially when it affects only particular lineages, and because evolutionary rates may be expected to vary over time (Pond, Poon, and Frost 2009; Murrell et al. 2015), several tests of lineage-specific selection were also completed using sequence information obtained from S-linked genes. Using LRTs, alignmentwide or global dN/dS ratio models were first compared to local or lineage-specific dN/dS models for each alignment, independently (Table 12). In the lineage-specific model, $\mathrm{dN} / \mathrm{dS}$ was estimated separately for each branch in the phylogenetic tree, while for the global model all branches were made to share the same evolutionary rate value. When these two models were compared for each alignment, significant results were not obtained in most cases ($\mathrm{p} \gg 0.05$). However, global and local models were found to be significantly different for the $A P 2 D$ alignment, indicating that the fit of the local model was superior to that of the global model for this alignment $(\mathrm{p}=0.01 ;$ LRT statistic $=69.17, \mathrm{DF}=44)$.

Individual S-linked gene alignments were also investigated for the presence of more subtle signals of episodic diversifying selection across individual lineages and codon sites using Branch-site Unrestricted Statistical Tests of Episodic Selection (BUSTED) (Table 13). However, significant results were not obtained for any alignment ($\mathrm{p} \gg 0.05$). Further, many alignments showed no evidence of positive selection (i.e.: proportion of sites with $\mathrm{dN} / \mathrm{dS}>1$ was essentially 0). As a result, LRTs of $\mathrm{dN} / \mathrm{dS}<1$ for all sites, across all lineages were not completed for some alignments (SCEI, FRA1, FSP , and NRFP), as it was already clear that this hypothesis could not be rejected in those cases.

Like most lineage-specific tests of selection, BUSTED is not recommended as a method of identifying particular lineages that have experienced positive selection when there is no a priori reason to believe that any particular lineages have been influenced by it (Pond, Poon, and Frost, 2009; Murrell et al. 2015). As a result, additional branch-site tests, which correct for the effect of multiple comparisons (aBS-REL), were performed in order to identify particular lineages that may have been influenced by episodic positive or diversifying selection in each alignment (Pond et al. 2011) (Tables G1 and G2, Appendix G). However, these tests did not identify any lineages that may have been inordinately influenced by positive selection in any alignment (corrected
$\mathrm{p}>0.05$ for all branches tested in all alignments). For $A P 2 D$, in particular, aBS-REL results obtained for node 5 (the node that separates D16L, DROT 41S, MAN 601S, ES, SL8, F60SS, and MAN 713L from MIDC 710S, COLO, PA 4S, TSH, E207S, and E 2L in the Turnera subseries clade in Figure 8) were approaching significance ($\mathrm{p}=0.08$). That being said, this node obtained 0% bootstrap support in the corresponding phylogeny (Figure 8).

3.3.4 dN/dS IN Tssta1 AND AP2D

As was earlier discussed, Tsstal is naturally a very interesting gene in the context of this study because of its sequence similarity to genes known to be involved in SI in other genera, as well as its presence in the genomes of only short-styled individuals. However, in light of the above results, $A P 2 D$ also emerges as an interesting candidate. Consequently, alignments of these two genes were investigated further. Specifically, the same series of LRTs that were performed in order to compare the strength and quality of positive selection on S-linked and control gene alignments were employed in order to compare the selection on alignments of Tsstal and AP2D with all other S-linked genes (Tables 10 and 11).

When Tsstal was compared to all remaining S-linked genes, no significant results were obtained for any test, indicating that the two alignments were not significantly different from each other with regards to the distribution of the rate parameters, $\mathrm{dN}, \mathrm{dS}, \mathrm{dN} / \mathrm{dS}$, and the proportion of sites belonging to any one of the four rate classes ($\mathrm{p} \gg 0.05$) (Table 10). Parameter estimates for these tests can be found in Appendix F, Table F3. When these tests were repeated using random starting values for parameters, similar results were also obtained (Appendix F, Table F4).

When the $A P 2 D$ alignment was then compared to an alignment of sequence data from the remaining S-linked genes, significant results were obtained for one of the four LRTs (Table 11). Specifically, when the fit of the fully constrained model was compared to the independent model, they were found to be significantly different $(\mathrm{p} \ll 0.05 ;$ LRT statistic $=37.33, \mathrm{DF}=10)$. However, tests of shared positive selection parameters between the alignments (i.e.: shared positive $\mathrm{dN} / \mathrm{dS}$ and proportions of positively selected sites) yielded no significant results ($\mathrm{p}>0.05$). Parameter estimates that were obtained for these tests can be found in Appendix F,

Table F5. As with previous tests of this type, LRTs completed with random starting values for all parameters converged on very similar results (Appendix F, Table F6).

3.3.5 CODON-LEVEL SELECTION ON S-LINKED GENES

When positive selection affects only a small proportion of codons, it can be difficult to detect, especially when negative selection dominates the alignment (Pond, Poon, and Frost 2009; Murrell et al. 2012). As a result, several tests of site-by-site variation in evolutionary rates were performed on all S-linked sequences, using Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME) methods. These results are summarized for each alignment in Tables 14-26. Sites that had been detected as positively or negatively selected by two or more methods are also indicated in the nucleotide alignments for each gene, as depicted in Appendix B, Figures B1-B13.

3.3.5.1 CODON-LEVEL SELECTION ON APETALA2

When site-by-site tests of selection were applied to the APETALA2 exon 1 alignment, 18 codons were identified as negatively selected by at least one method, while 4 were found to be influenced by positive selection, in total (Table 14). However, only five codons were identified as being negatively selected (codons $15,50,79,81$, and 83), and one as being positively selected (codon 40), by more than two methods. These sites are highlighted in the alignment shown in Figure B1 (Appendix B).

Codon 40 was identified as positively selected by 3 of the 4 methods employed here. Indeed, only SLAC failed to detect positive selection at this site, though it is considered to be the most conservative test of codon-level diversifying selection (Table 14; Pond and Frost 2005). In addition, according to MEME results, 100% of the branches in the tree were shown to evolve with a dN value greater than dS at codon $40(\mathrm{dN} 2=10.91 ; \mathrm{dS}=0.00)$, which further suggests pervasive positive selection at this site (Table 14). With reference to the alignment, individuals may possess one (or two, if they are heterozygous) of 3 amino acids at this codon position:
glycine, glutamic acid, or valine (Appendix B, Figure B1). T. panamensis, however, may be represented by an indel at this position (depending on how one resolves the gap in the sequence in this area). And, further, this particular site codes for a valine only in T. weddelliana.

It should be noted that codon 40 is located near the end of a particularly gap-rich portion of the APETALA2 alignment, due to apparent insertion/deletion events (Appendix B, Figure B1; base positions 87-123 of the alignment). Indeed, the alignment could be alternatively arranged in this region, as a result. If the alignment were rearranged in this area, another site may have been identified instead, or alternatively, no positively selected sites may have been detected in the area at all. That being said, the presence of indels does suggest a certain lack of constraint in this region, in general. Interestingly, in this particular area of the alignment, it is not uncommon for individuals of the same species to be characterized by indels of differing sizes. For instance, in this particular indel, F60SS (T. subulata) is less 1 codon relative to D16L, which is its sibling. Similarly, MAN 713L (T. scabra) is represented by 3 extra codons relative to MAN 601S, which originates from the same population.

Based on BLAST searches, no conserved domains were identified in the APETALA2 alignment, using the sequence information obtained here. Based on sequence information that was previously obtained for this gene in T. subulata, APETALA2 is predicted to contain two AP2 DNA binding domains downstream of exon 1 , the portion of the gene that was sequenced here (Accession: cd00018; E-values: 7.03e-03 and $8.34 \mathrm{e}-13$, respectively, using the D16L sequence).

3.3.5.2 CODON-LEVEL SELECTION ON Tsstal (TOTAL DATA)

Site-by-site selection analyses performed using the Tsstal (total data) alignment resulted in the detection of 18 negatively and 1 positively selected site (codon 9) (Table 15). However, when only those sites that were detected by two or more methods were considered, these numbers were reduced to 14 negatively selected and no positively selected sites. These sites are highlighted in the alignment depicted in Figure B2 (Appendix B). Interestingly, all 14 of the negatively selected codons were found to be located within the region of the alignment identified as homologous to plant self-incompatibility domain family S1 (Accession: pfam05938; E-value: $2.88 \mathrm{e}-06$, using the F60SS sequence). The sequence location of this domain is also highlighted in the alignment (base positions 133-447).

3.3.5.3 CODON-LEVEL SELECTION ON Tsstal (WITH A REDUCED NUMBER OF TAXA)

When tests of codon-level selection were reapplied to the Tsstal alignment with a reduced number of taxa, fewer potentially positively/negatively selected sites were consequently identified (Table 16). Indeed, almost no overlap in results was obtained between the two sets of results (Tables 15 and 16). Only codon sites 114 and 125 were identified as negatively selected in both cases. However, when the number of included taxa was reduced, these sites were only detected using one method (FEL).

No potentially positively selected sites were identified for Tsstal when fewer individuals were included in the alignment, and only 3 sites were found to be negatively selected by more than 1 method (codons 37, 51, and 99) (Table 16). These sites are highlighted in the alignment shown in Figure B3 (Appendix B). Unlike in the previous analysis of Tsstal, not all of the negatively selected sites detected here were located in the region of the conserved SI domain (Appendix B, Figure B3). However, one of the three was located just outside of this region.

3.3.5.4 CODON-LEVEL SELECTION ON LEJ2

In the $L E J 2$ exon 1 and 2 alignment, 3 negatively and 5 positively selected codons were identified by at least one method (Table 17). However, only 1 site of each type was identified by two or more methods (Codon 33 and 12, respectively). These two sites are underlined in the LEJ2 alignment depicted in Figure B4 (Appendix B).

Codon 12, identified as positively selected by all site-by-site selection detection methods employed with the exception of SLAC, is located at the beginning of the alignment, where sequence information was not obtained for 8 of the 23 individuals that were included in the analysis (also recall that no sequence was obtained for T. diffusa for this gene) (Table 17; Appendix B, Figure B4). However, those individuals that are represented at this particular site, are characterized by one of three different codons (CCC, TCC, or GCC), all of which code for different amino acids (proline, serine, and alanine, respectively). Indeed, in some cases, members of the same species are represented by a different codon at this position, as is the case for D16L and F60SS, which code for proline and alanine, respectively. Only representatives of T. joellii and T. chamaedrifolia code for serine at this codon. Further, MEME estimates suggest that 100%
of the branches in the tree evolve with a dN value greater than dS at this site $(\mathrm{dN} 2=19.78 ; \mathrm{dS}=$ 0.00) (Table 17).

Due to the small size of the alignment (156 bp , or 52 codons), no significant matches to any conserved domains in the region of $L E J 2$ that was sequenced here were identified. According to previously obtained genetic data, in T. subulata, the LEJ2 gene is predicted to contain a CBS domain, but the coding sequence for this domain is not located in exons 1 and 2, which were sequenced here (Accession: cd02205; E-value: 4.86e-23, using the D16L sequence).

3.3.5.5 CODON-LEVEL SELECTION ON AP2D

Site-by-site selection analysis revealed 21 negatively and 7 positively selected codons in the $A P 2 D$ alignment (Table 18). However, only 10 negatively and 1 positively selected site (codon 20) were identified by more than one detection method. These sites are emphasized in the $A P 2 D$ nucleotide alignment presented in Figure B5 (Appendix B).

Nearly the entire $A P 2 D$ gene was sequenced here, for all of the individuals of interest. According to BLAST results, it contains a conserved AP2 DNA binding domain (Accession: cd00018; E -value $=4.82 \mathrm{e}-20$, using the D16L sequence), located between base positions 91 and 264 in the alignment (Appendix B, Figure B5). Half of the negatively selected sites detected here are contained within this region. Specifically, this domain contains 11 conserved residues that, together, form a DNA binding site. These conserved residues have been mapped to the Turnera $A P 2 D$ sequence alignment shown in Figure B5 (Appendix B). In this alignment, 10 of the 11 conserved sites are 100% identical across taxa. The remaining site (Codon 32) was detected as negatively selected using the methods FEL and FUBAR (Table 18).

Codon 20 was identified as potentially positively selected by all four codon-level selection tests employed here (Table 18). MEME results also estimate that 100% of the branches in the phylogeny evolve with $\mathrm{dN}>\mathrm{dS}$ at this site $(\mathrm{dN} 2=11.50 ; \mathrm{dS}=0.00)$. At this codon position, individuals may possess an alanine, a threonine (or both alanine and threonine, if heterozygous), or a glycine. T. weddelliana, however, is represented by an indel at this position. Further, only representatives from the species, T. joellii, possess a glycine. Interestingly, codon 20 is located in a region of the alignment that is adjacent to and includes indels in the sequences obtained for some taxa (Appendix B, Figure B5). Sequences for some individuals contain no gaps in this area,
while others are represented by one or two fewer codons relative to those without gaps.
Members of the same species are often characterized by different indels at this position, as is the case for T. subulata and T. scabra. Indeed, the AP2D alignment, in general, is characterized by several indels, particularly near the 3 ' end of the gene (between the 387 and 561bp positions in the alignment). Further, within this region, the sequence obtained for T. chamaedrifolia (CHAM 4 L) was also found to contain an early stop codon, which truncated the coding sequence for this individual to just 414 bp . Interestingly, 3 of the 10 sites that were predicted to be negatively selected in this alignment are located just upstream of the position at which the stop codon was identified (codons 135, 136, and 138).

3.3.5.6 CODON-LEVEL SELECTION ON RNABP

In the $R N A B P$ exon 1 alignment, 22 negatively and 3 positively selected codons were found (Table 19). Of these, 17 negatively and 2 positively selected sites (codons 52 and 66) were detected by more than one method. These sites have been underlined in Figure B6 (Appendix B).

No sequence information for the individual, KRAP 5S (T. krapovickasii), was obtained for this gene. In addition, sequences for the individuals, DROT 41S and MIDC 710 S (both of which are tetraploid T. scabra) could not be resolved fully due to persistent shifted peaks in the alignment (from the 135 to 185 bp position in the alignment, approximately). It should be noted that the unresolved portions of these sequences are located within a region of the alignment that includes indels (Appendix B, Figure B6). This might indicate that DROT 41S and MIDC 710S are heterozygous for an indel somewhere within this region of the gene, which may have caused sequencing difficulties at this locus.

Importantly, both potentially positively selected sites are located in this same area of the alignment, in addition to 4 sites that are possibly negatively selected (codons 46, 60, 60, and 64) (Appendix B, Figure B6). At codon 52, which was determined to be possibly positively selected, individuals either code for an alanine or proline residue, with particular plants sometimes being heterozygous at this position. According to MEME results, 100% of the lineages represented are expected to evolve with $\mathrm{dN}>\mathrm{dS}$ at this codon $(\mathrm{dN} 2=2.51$; $\mathrm{dS}=0.00$). At codon 66 , sequences for individuals either code for a glycine, a valine, or are instead represented by an indel. Again, the
particular codon assignment follows no apparent clade- or species-specific pattern. In addition, at this site only 58% of lineages are predicted to evolve with $\mathrm{dN}>\mathrm{dS}(\mathrm{dN} 2=12.07 ; \mathrm{dS}=0.00)$, according to MEME results.

According to BLAST search results, exon 1 of $R N A B P$ contains sequence with homology to an RNA binding protein with multiple splicing (RBP-MS)-like RNA-recognition motif (Accession: cd12420; E-value 6.04e-10, using the D16L sequence). The homologous region is indicated in Figure B6 (Appendix B), and is located between base positions 234 and 330 in the alignment. Five of the 17 potentially negatively selected sites identified here lie within this region (codons $84,86,90,102$, and 103). The 8 remaining negatively selected sites that were identified are located within the first 110 bases of the $R N A B P$ exon 1 alignment.

3.3.5.7 CODON-LEVEL SELECTION ON SCE1

Site-by-site selection analysis in exons 3 and 4 of SCEI revealed only 4 potentially negatively selected sites (Table 20). Of these, only one was identified as significant by more than one method (Codon 22). This site is highlighted in Figure B7 (Appendix B).

According to BLAST search results, exons 3 and 4 of SCE1 have homology to a ubiquitin conjugating enzyme, E2, catalytic domain (Accession: cd00195; E-value: 1.28e-13, using the D16L sequence), including its conserved cysteine active site as well as 19 of 21 of its thioester intermediate interaction residues. These sites are also emphasized in the alignment (Appendix B, Figure B7). Nearly all of the codon sites that correspond to these residues are 100% conserved at the DNA level across all taxa included in the alignment, with the exception of the $6^{\text {th }}$ and $7^{\text {th }}$ thioester intermediate interaction sites (codons 14 and 16). However, at the amino acid level, all sites are 100% conserved, with the $6^{\text {th }}$ and $7^{\text {th }}$ thioester intermediate interaction sites coding for Leucine and Isoleucine, respectively. The single potentially negatively selected site that was detected also resides within this region, but is not, itself, one of the conserved active sites.

3.3.5.8 CODON-LEVEL SELECTION ON FRA1

FRA1 represents an interesting nucleotide alignment because it was constructed by concatenating sequencing products from two different parts of the gene: exons 5-6 and 24-25
(Appendix B, Figure B8). Because of this, gaps are present in the middle of the alignment that do no represent indels, but rather, are the result of differences in the amount of sequence information that was obtained at the beginning of exon 24 or the end of exon 6 for certain individuals. This should be kept in mind when interpreting the alignment and site by site selection analysis results.

No potentially positively selected sites were detected in the FRAI alignment, and, of the 20 potentially negatively selected sites that were detected, only 9 were identified as significant by more than one method (Table 21). These sites are underlined in the alignment in Figure B8 (Appendix B).

Exons 5-6, in particular, show significant sequence homology to a KIF4-like subfamily kinesin motor domain according to BLAST search results (Accession: cd01372; E-value: 1.16e26, using the D16L sequence). Five of the 9 potentially negatively selected sites are located in this region (Appendix B, Figure B8). The remaining 4 negatively selected sites were found to be located in exons 24 and 25 . However, no conserved domains were identified in this section of the alignment, according to BLAST searches.

3.3.5.9 CODON-LEVEL SELECTION ON LRRK

The $L R R K$ exon 1 alignment is the largest alignment investigated here, at 1188 bp (Table 6; Appendix B, Figure B9). Unfortunately, portions of the sequences for SL8 201S (T. subulata) and ES (T. scabra) could not be fully resolved due to persistent shifted peaks in the chromatograms for these sequences (Appendix B, Figure B9). These unresolved sections are located at approximately the 620-895 bp positions in the alignment. This portion of the alignment includes indels that these individuals may, perhaps, have been heterozygous for, thus resulting in difficulties sequencing the PCR products that were obtained.

Codon-level selection analyses resulted in the identification of 57 potentially negatively selected sites, and only 3 possibly positively selected sites (codons 239, 288, and 290) (Table 22). However, when only those codons that had been detected by more than one method were considered, no positively selected sites were detected, and only 32 potentially negatively selected sites were identified. These sites are underlined in the alignment in Figure B9 (Appendix B).

Exon 1 of $L R R K$ contains sequence with significant homology to a provisional Leucinerich repeat receptor-like protein kinase multi-domain according to BLAST search results (Accession: PLN00113; E-value: 5.41e-12, using the D16L sequence) (Appendix B, Figure B9). Eight of the 32 potentially negatively selected sites are located within this region, while an additional 3 sites are located upstream of this region. The remaining 21 sites are located downstream of this, and tend to be positioned directly adjacent to other potentially negatively selected sites (often in groups of 2-3). Interestingly, many potentially negatively selected sites tend to be located near regions of the alignment that contain indels.

3.3.5.10 CODON-LEVEL SELECTION ON IRX15L

Site-by-site selection analysis of $I R X 15 L$ revealed 38 potentially negatively selected sites, and 3 that were possibly positively selected (Table 23). When those sites that had been identified by more than one method were considered, 24 negatively and 2 positively selected sites were detected. These sites are emphasized in the alignment in Figure B10 (Appendix B).

Importantly, almost the entire IRX15L gene was sequenced here, in all taxa of interest (Appendix B Figure B10). According to BLAST search results, the predicted IRX15L gene in Turnera has considerable sequence similarity to an uncharacterized plant-specific domain in the polysaccharide biosynthesis domain superfamily (Accession: TIGR01627; E-value: 5.71e-52, using the D16L sequence) (base positions 145-774 in the alignment). All but 6 of the negatively selected sites identified here were found to be contained within this region.

Interestingly, both positively selected sites are also located within this conserved domain (Codons 143 and 200). Most individuals code for a threonine residue at codon position 143. However, within the Turnera subseries, the short styled individual of the species, T. joellii, appears to be heterozygous at this position, coding either for threonine or alanine. Turnera chamaedrifolia, T. weddelliana, and T. diffusa all code for glycine at this position, while T. panamensis, which is most closely related to T. diffusa, shares the same codon as the majority of members of the Turnera subseries. Indeed, an almost identical pattern is seen at codon 200, with the majority of individuals coding for leucine, T. joellii and T. chamaedrifolia coding for glutamine, and T. weddelliana and T. diffusa coding for a proline residue, while T. panamensis shares the more typical leucine-coding sequence. According to MEME results, 16% and 100% of
the lineages represented here are expected to evolve with $\mathrm{dN}>\mathrm{dS}$ at each of these sites, respectively (Codon 143: dN2 $=39.98$; $\mathrm{dS}=0.00$; Codon 200: $\mathrm{dN} 2=5.47$; $\mathrm{dS}=0.00$).

3.3.5.11 CODON-LEVEL SELECTION ON FSP

No positively selected sites were detected in the FSP, exon 5-6 alignment (Table 24). Rather, only 3 potentially negatively selected sites were identified, of which only one was shown to be significant by more than one method (Codon 27). This site was detected by all four methods employed here and is emphasized in the alignment in Figure B11 (Appendix B).

According to BLAST search results, exon 5 and 6 of $F S P$ has considerable sequence similarity to an undefined oxidoreductase-related domain (Accession: PLN02485; E-value: 3.29e-27, using the D16L sequence) (Appendix B, Figure B11, base positions 7-183). Codon 27, the only statistically significant selected codon identified here, is located within this region (exon $6)$.

3.3.5.12 CODON-LEVEL SELECTION ON NRFP

When site-by-site variations in evolutionary rate in the $N R F P$ exon 3 alignment were investigated, 27 negatively and 1 positively selected codon were detected (Table 25). Of these, only 8 potentially negatively selected sites and no positively selected sites were identified by more than one method. The locations of these sites are identified in the alignment in Figure B12 (Appendix B).

Based on BLAST search results, exon 3 of $N R F P$ has considerable sequence homology to a dihydrouridine synthase like FMN-binding domain, including all 4 of the conserved residues that form its phosphate binding site (BLAST Accession: cd02801; E-value: 4.50e-22, using the D16L sequence) (Appendix B, Figure B12, base positions 37-339). Five of the 8 negatively selected sites that were detected here lie within this region. None of the 4 binding site residues were recognized as being negatively selected, though they are all 100% conserved across all taxa included in the alignment at the amino acid level. While a minor amount of sequence variation is present at codon 103 (the third conserved codon in the phosphate binding site), sequences for all individuals code for the same amino acid at this position (alanine).

3.3.5.13 CODON-LEVEL SELECTION ON WRKY

Seventeen negatively and 6 positively selected codons were identified in the WRKY exon 1 alignment (Table 26). Of these, 8 potentially negatively selected and 2 potentially positively selected sites (codons 100 and 107) were detected by more than one method. These 10 sites have been highlighted in the alignment in Figure B13 (Appendix B).

According to BLAST searches using the DNA data obtained here, exon 1 of WRKY does not code for any known conserved domains. According to previously obtained genetic data, in T. subulata, the WRKY gene is predicted to contain a WRKY DNA binding domain (Accession: smart00774; E-value: 8.22e-12, using the D16L sequence), as well as an associated plantspecific zinc cluster domain (Accession: pfam10533; E-value: 5.60e-08, using the D16L sequence). However, the coding sequence for these domains is located downstream of exon 1 , which was sequenced here.

Codon 100 was determined to be positively selected using all methods except SLAC (Table 26). According to MEME results, 50% of the branches in the phylogenetic tree are expected to evolve with $\mathrm{dN}>\mathrm{dS}(\mathrm{dN} 2=18.90 ; \mathrm{dS}=0.00)$ at this codon. Individual sequences were found to code for one of three amino acids: alanine, threonine, or isoleucine (Appendix B, Figure B13). However, only individuals of the species, T. chamaedrifolia, T. diffusa, T. weddelliana, and T. panamensis, possess an isoleucine at this site.

Codon 107 was also identified as potentially positively selected by all methods, excepting SLAC (Table 26). According to MEME results, 100% of lineages are predicted to evolve with $\mathrm{dN}>\mathrm{dS}$ at this codon $(\mathrm{dN} 2=8.53 ; \mathrm{dS}=0)$. At this site in the alignment, codons for the amino acids alanine, valine, and proline are represented (Appendix B, Figure B13). However, the individual from the species, T. weddelliana, is the only one that codes for valine at this site.

It is also interesting to note that the potentially positively selected codons identified here are located on either side of an indel(s) in the alignment (and, particularly, ones that are specific to T. panamensis, T. diffusa, and T. chamaedrifolia) (Appendix B, Figure B13). The negatively selected sites, on the other hand, are distributed fairly evenly across the alignment.

3.3.6 POPULATION-LEVEL ANALYSES: MACDONALD KREITMAN TESTS (MKTS) AND TAJIMA'S D TESTS OF NEUTRALITY

As was earlier discussed, little to no species-level resolution was obtained within the Turnera subseries group when the genetic information that had been obtained for these individuals was submitted to various phylogenetic analyses (Figures 8-10; Appendix D, Figures D1-D3; Appendix E, Figures E1-E44). This result, in combination with the fact that these species also occupy a continuous habitat range in nature (Arbo 2005) and are capable of interbreeding with some degree of fertility (Shore and Barrett 1985a; Arbo and Fernandez 1987; Fernandez and Arbo 1990; Fernandez and Arbo 1993; Lopez et al. 2013) suggests that the application of population-level selection analyses to these data may be appropriate. To do this, data for all diploid individuals of this group were considered. Specifically, genetic information obtained from representatives of the species T. subulata, T. scabra, T. krapovickasii, and T. concinna were included. While T. grandidentata is also a member of the Turnera subseries, the representative individuals of this species are tetraploid, and were thus not included in the analysis. This was also the case for some individuals of T. subulata and T. scabra (Table 1). Specifically, tetraploid data were excluded because, where sequence ambiguities existed, haplotypes could not be reliably reconstructed (Stephens et al. 2001; Stephens and Donelly 2003). Also, as their tetraploid status already more-or-less prevents the exchange of genetic information with other non-tetraploid members of the Turnera subseries, together, they could not be properly considered as part of a "population" sample.

McDonald-Kreitman tests (MKTs) were performed for all $12 S$-linked gene data sets of interest, using sequences obtained for T. panamensis as the inter-specific sample (Table 27). However, no significant results were obtained for any alignment ($\mathrm{p}>0.05$). Rather, the ratio of non-synonymous to synonymous variation within and between species was not found to be significantly different. In the case of $F S P$, a test of significance could not be completed due to a lack of polymorphism within the population sample.

Interestingly, however, neutrality index values obtained for APETALA2, Tsstal, SCE1, IRX15L, FSP , and WRKY were all found to be <1, indicating a deviation from the neutral expectation in the direction of positive selection for these alignments (Table 27). According to values of α given for each gene, approximately $45.8 \%, 75 \%, 100 \%, 11.6 \%, 50 \%$, and 36.4% of amino acid substitutions are expected to be driven by positive selection for each of these
alignments, respectively. However, as indicated by the insignificant Fisher's exact test results described above, ratios of synonymous and non-synonymous substitutions that are between species and polymorphic within the population do not deviate significantly from the neutral expectation.

In order to further investigate population-level selection on Tsstal, sequence data that had been obtained from a more local population of tetraploid T. scabra was considered (17 individuals from the Dominican Republic). As no sequence ambiguities existed in the data, haplotypes did not need to be reconstructed, and the data were directly submitted to an MKT. As with the above, T. panamensis was again used as an outgroup sequence. However, within the population sample, no sequence variation was identified within the coding sequence for this gene (Appendix H, Figure H). As a result, a significance test could not be completed. When the population sample sequences were compared to that of T. panamensis, however, most fixed differences were found to result in synonymous substitutions (Appendix H, Table H1).

Tajima's D tests of neutrality were also not found to be significant for any alignment ($\mathrm{p}>0.1$; Table 27), suggesting that evolutionary rates did not differ significantly from the neutral expectation for an S-linked gene.

Figure 5: Assay of Tssta1 in a variety of long- and short-styled individuals of the genus, Turnera. PCR products were amplified using Tsstal primer pair F3/R1 and run on a 0.8% agarose gel. The expected PCR product amplified only in short-styled individuals, regardless of species or population of origin. Negative controls were run in lanes identified with "-". 2-log DNA ladder was run in the centre lane of each row in order to determine approximate PCR product sizes. PCR products shown are $\sim 500 \mathrm{bp}$ in length.

Table 6: Descriptive statistics for alignments of all genes. For each gene, the total number of taxa, alignment length (bp), and number of conserved, variable, parsimony informative, and singleton sites is given. The number of identical sequences in each alignment is also provided.

Alignment	DESCRIPTIVE STATISTICS						
	Total \# of Taxa Included	Length of Alignment (bp)	\# of Conserved Sites (\%)	\# of Variable Sites (\%)	\# of Parsimony Informative Sites	\# of Singletons	\# of Identical Sequences
Total Data	24*†	9489	8226 (86.6)	1137 (12.0)	544	589	0
APETALA2	24	444	380 (85.6)	61 (13.7)	20	41	1
Tsstal (Total Data)	34	447	311 (69.6)	136 (30.4)	70	66	8
Tssta1	16	447	388 (86.8)	59 (13.2)	19	40	5
LEJ2	23†	156	119 (76.3)	35 (22.4)	13	22	5
AP2D	24!	621	516 (83.2)	87 (14.0)	45	40	0
RNABP	23*†	333	253 (76.0)	68 (20.4)	39	28	3
SCE1	24	177	164 (92.7)	13 (7.3)	6	7	13
FRA1	24	543	500 (92.1)	43 (7.9)	19	24	0
LRRK	24*	1188	922 (77.6)	181 (15.2)	96	84	0
IRX15L	24	777	701 (90.2)	73 (9.4)	40	33	1
FSP	24	183	157 (85.8)	26 (14.2)	9	17	3
NRFP	24	603	543 (90.0)	60 (10.0)	26	34	0
WRKY	24	651	545 (83.7)	103 (15.8)	45	58	0
Total S-Locus Data	24*†	6123	5188 (84.7)	809 (13.2)	377	428	0
ECIP1	24	798	730 (91.5)	68 (8.5)	37	31	1
GAUT3	24	663	607 (91.6)	56 (8.4)	26	30	5
GAUT1	24	465	433 (93.1)	32 (6.9)	17	15	8
RNABP34	24	300	244 (81.3)	56 (18.7)	24	32	4
FMO1	$22 \dagger$	261	226 (86.6)	35 (13.4)	21	14	2
MBD8	21†	354	321 (90.7)	33 (9.3)	25	8	2
UNKN	24	234	200 (85.5)	34 (14.5)	18	16	4
POFUT	24	291	263 (90.4)	28 (9.6)	13	15	6
Total Control Data	24†	3366	3038 (90.3)	328 (9.7)	167	161	0

*Unresolved gaps are present in alignment. The $L R R K$ alignment contains a 281 bp gap for ES and a 283 bp gap for SL8 201S. For RNABP, a 51 bp gap in the alignment is present for DROT 41S, as well as a 37 bp gap for MIDC 710S. These gaps are also contained in the Total Data and Total S-locus data alignments. \dagger The alignment is missing sequences for certain taxa. No sequences were obtained for the following individuals (genes): DIF (LEJ2, FMO1, MBD8), KRAP 5S ($R N A B P$), WED 2S (FMO1, MBD8), CHAM 4L (MBD8).
\ddagger An early stop codon was found in the $A P 2 D$ sequence that was obtained for CHAM 4 L at the $139^{\text {th }}$ codon position in the alignment.

Figure 6: Nucleotide diversity ($\boldsymbol{\pi}$) and Watterson's $\boldsymbol{\theta}$ estimates for all genes. A) Nucleotide diversity (π) and B) Watterson's Estimator (θ). Error bars represent standard deviations (SDs). S-linked genes are presented in the order in which they are found at the S-locus, as it is currently known from the s-haplotype. Control genes are shown separately and are in no particular order. In all cases, excepting Tsstal, estimates were determined from sequence information obtained from 17 individuals representing 7 species (T. subulata, T. scabra, T. grandidentata, T. krapovikkassi, T. concinna, T. joelii, T. panamensis). For Tsstal, the same species were represented by 15 individuals.

B)

Figure 7: Average nucleotide diversity (π) and Watterson's $\boldsymbol{\theta}$ estimates for \boldsymbol{S}-linked and control genes. Error bars represent standard deviations (SDs). When averages were compared using a Mann-Whitney U test, no signficant differences were observed between S-linked and control gene data sets in terms of average π or θ ($\mathrm{p}>0.05$). In all cases, excepting Tsstal, estimates were determined from sequence information obtained from 17 individuals representing 7 species (T. subulata, T. scabra, T. grandidentata, T. krapovikkassi, T. concinna, T. joelii, T. panamensis). For Tsstal, the same species were represented by 15 individuals.

Table 7: Diversity measures for all genes. The total number of base positions (excluding gaps), proportions of polymorphic sites, synonymous and nonsynonymous mutations, as well as the number of indel events, average indel length, and indel diversity per site (π_{1}) were determined for each alignment. In all cases, excepting Tsstal, estimates were determined from sequence information obtained from 17 individuals, representing 7 species (T. subulata, T. scabra, T. grandidentata, T. krapovikkassi, T. concinna, T. joelii, T. panamensis). For Tsstal, the same species were represented by 15 individuals. Mann-Whitney-U tests were performed in order to determine if mean values were significantly different between S-linked and control gene data sets. Significantly different means ($\mathrm{p}<0.05$) are shown in bold.

Data set	Gene	\# of Sites (Excluding Gaps)	Proportion Polymorphic Sites	Proportion Synonymous Mutations	Proportion Nonsynonymous Mutations	Number of Indel Events	Average Indel Length (bp)	Indel Diversity $\left(\pi_{1}\right)$
S-linked	APETALA2	435 (402)	0.142	0.466	0.534	8	8.739	0.004
	Tsstal	447 (438)	0.100	0.591	0.409	2	6.000	0.000
	LEJ2	96	0.167	0.438	0.563	0	0.000	0.000
	AP2D	492 (468)	0.158	0.515	0.485	7	4.500	0.005
	RNABP	333 (270)	0.222	0.482	0.518	8	9.437	0.003
	SCE1	177	0.051	0.889	0.111	0	0.000	0.000
	FRA1	489	0.086	0.619	0.381	0	0.000	0.000
	LRRK	654 (636)	0.175	0.609	0.391	6	4.684	0.003
	IRX15L	777 (771)	0.095	0.744	0.256	2	3.000	0.000
	FSP	84	0.167	0.500	0.500	0	0.000	0.000
	NRFP	603	0.128	0.592	0.408	0	0.000	0.000
	WRKY	651 (603)	0.123	0.494	0.506	8	4.839	0.001
	S-linked (Mean)	-	0.134	0.578	0.422	3.417	3.433	$1.42 \mathrm{E}-03$
Control	ECIP1	798	0.069	0.885	0.115	0	0.000	0.000
	GAUT3	663	0.071	0.739	0.353	0	0.000	0.000
	GAUT1	465	0.090	0.705	0.295	0	0.000	0.000
	RNABP34	300 (297)	0.158	0.510	0.490	1	3.000	0.002
	FMO1	255	0.141	0.605	0.395	0	0.000	0.000
	MBD8	342	0.102	0.486	0.514	0	0.000	0.000
	UNKN	234	0.145	0.382	0.618	0	0.000	0.000
	POFUT	291	0.103	0.676	0.324	0	0.000	0.000
	Control (Mean)	-	0.110	0.624	0.388	0.125	0.375	$1.89 \mathrm{E}-04$

Figure 8: Molecular phylogeny constructed using sequence data for all genes. Evolutionary relationships were inferred using the maximum likelihood method based on the Tamura 3-parameter nucleotide substitution model (Tamura 1992). The tree with the highest \log likelihood (-13664.792) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all branch supports are shown. Those that are not shown are $\leq 10 \%$. Nodes are indicated by small " \square " symbols. Node 5 is indicated for reference. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.126)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 6526 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Series/Subseries membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera.

Figure 9: Molecular phylogeny constructed using sequence data for all genes, but with a reduced number of taxa. This tree was computed specifically for analyses of Tsstal in HYPHY. The data used to compute this phylogeny are identical to that which were used to produce the tree in Figure 8, except that data from long-styled individuals were excluded. Evolutionary relationships were inferred using the maximum likelihood method based on the Tamura 3-parameter nucleotide substitution model (Tamura 1992). The tree with the highest log likelihood (11879.077) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all branch supports are shown. Those that are not shown are $\leq 25 \%$. Nodes are indicated by small " \square " symbols. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+ G, parameter $=0.292$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 16 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 6467 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Series/Subseries membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera.

Figure 10: Molecular phylogeny constructed using all sequence data for Tssta1. Evolutionary relationships were inferred using the maximum likelihood method based on the Kimura 2-parameter nucleotide substitution model (Kimura 1980). The tree with the highest log likelihood (-1266.836) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all branch supports are shown. Those that are not shown are $<50 \%$. Nodes are indicated by small "■" symbols. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites $(5$ categories $(+G$, parameter $=0.880)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 34 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 348 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al 2013). Series/Subseries/Genus membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera.

Figure 11: Gene genealogy for APETALA2 showing evidence of trans-specific evolution in the Turnera subseries clade. Evolutionary relationships were inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model (Hasegawa et al. 1985). The tree with the highest log likelihood (-727.2067) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all branch supports are shown. Those that are not shown are $<50 \%$. Nodes are indicated by small "■" symbols. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. Codon positions included were $1 \mathrm{st}+2 \mathrm{nd}+3 \mathrm{rd}+$ Noncoding. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 371 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Series/Subseries/Genus membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera. Within subseries Turnera, short-styled and long-styled clades are also indicated.

Table 8: Global dN/dS ratio estimates and likelihood ratio tests of $\mathbf{d N}=\mathbf{d S}$. Global $\mathrm{dN} / \mathrm{dS}$ estimates are given for each alignment, along with their associated asymptotic normal 95% CI values. For each alignment, the null hypothesis that $\mathrm{dN}=\mathrm{dS}$ (or $\mathrm{dN} / \mathrm{dS}=1$) was tested against the alternative hypothesis that $\mathrm{dN} \neq \mathrm{dS}$ using a likelihood ratio test (LRT). Log likelihood values and numbers of estimated parameters for each model are stated, along with the corresponding LRT statistic for each test. Significant p-values are indicated in bold, suggesting that $\mathrm{dN} \neq \mathrm{dS}$ for the relevant alignments.

Alignment	Global dN/dS		Likelihood Ratio Test of dN=dS					
	$\begin{gathered} \hline \text { Global } \\ \text { dN/dS } \\ \text { Estimate } \end{gathered}$	$\begin{gathered} 95 \% \text { CI } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { Log } \\ \text { Likelihood } \\ (\mathrm{dN}=\mathrm{dS}) \end{gathered}$	\# of Parameters (dN=dS)	$\begin{gathered} \text { Log } \\ \text { Likelihood } \\ (\mathrm{dN} \neq \mathrm{dS}) \end{gathered}$	\# of Parameters ($\mathrm{dN} \neq \mathrm{dS}$)	$\begin{gathered} \text { LRT } \\ \text { Statistic } \end{gathered}$	p -value
APETALA2	0.350	0.143	-1132.418	55	-1121.840	56	21.156	0.000
Tsstal (Total Data)	0.318	0.100	-1601.089	73	-1576.319	74	49.539	0.000
Tsstal	0.227	0.120	-936.179	39	-936.179	40	28.253	0.000
LEJ2	1.592	1.074	-468.793	54	-467.746	55	2.095	0.148
AP2D	0.369	0.126	-1747.544	56	-1732.856	57	29.377	0.000
RNABP	0.249	0.085	-1169.629	54	-1137.326	55	64.607	0.000
SCE1	0.023	0.047	-329.407	54	-313.711	55	31.393	0.000
FRA1	0.088	0.055	-1119.120	55	-1085.764	56	66.712	0.000
LRRK	0.179	0.045	-3110.113	55	-3022.774	56	174.678	0.000
IRX15L	0.063	0.030	-1798.575	56	-1716.091	57	164.968	0.000
FSP	0.293	0.198	-448.004	54	-441.697	55	12.614	0.000
NRFP	0.190	0.093	-1258.169	55	-1233.177	56	49.985	0.000
WRKY	0.503	0.178	-1670.271	55	-1663.413	56	13.715	0.000
Total S-Locus Data	0.245	0.029	-16126.245	55	-15859.210	56	534.070	0.000
ECIP1	0.036	0.025	-1635.448	55	-1551.620	56	167.656	0.000
GAUT3	0.100	0.059	-1297.590	55	-1262.841	56	69.499	0.000
GAUT1	0.009	0.269	-850.374	55	-805.580	56	89.587	0.000
RNABP34	0.350	0.171	-765.584	55	-757.126	56	16.915	0.000
FMO1	0.174	0.110	-585.060	54	-571.356	55	27.409	0.000
MBD8	0.307	0.001	-678.931	56	-674.408	57	9.047	0.003
UNKN	0.577	0.315	-646.256	55	-644.749	56	3.016	0.083
POFUT	0.056	0.050	-619.673	55	-589.271	56	60.804	0.000
Total Control Data	0.150	0.031	-7325.466	55	-7153.880	56	343.171	0.000

Table 9: Comparing selection on S-linked and control genes. Four likelihood ratio tests were performed in order to determine if the S-linked genes of interest had experienced different selective pressures when compared to a random assortment of control genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. Significant p-values are indicated in bold. p-values < 0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the control and experimental gene data sets are significantly different with respect to the relevant constrained parameter(s). All four tests were completed twice, with random and default starting values for parameters, respectively. The results obtained using default starting values are shown below. Tests completed with random starting values converged on nearly identical results (see Appendix F, Table F2).

Constrained Parameter(s)	Log Likelihood (Constrained Model)	\# of Parameters (Constrained Model)	Log Likelihood (Independent Model)	\# of Parameters (Independent Model)	DF	LRT Statistic
p-						
value						

Table 10: Comparing selection on Tssta1 and other S-linked genes. Four likelihood ratio tests were performed in order to determine if Tsstal had experienced different selective pressures when compared to other S-linked genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. p-values < 0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the Tsstal and other S-linked gene data sets are significantly different with respect to the relevant constrained parameter(s). No significant results were obtained. All four tests were completed twice, with random and default starting values for parameters, respectively. The results obtained using default starting values are shown below. However, tests completed with random starting values converged on similar results (see Appendix F, Table F4).
$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Shared Parameters } & \begin{array}{c}\text { Log } \\ \text { Likelihood } \\ \text { (Constrained } \\ \text { Model) }\end{array} & \begin{array}{c}\text { \# of } \\ \text { Parameters } \\ \text { (Constrained } \\ \text { Model) }\end{array} & \begin{array}{c}\text { Log } \\ \text { Likelihood } \\ \text { (Independent } \\ \text { Model) }\end{array} & \begin{array}{c}\text { \# of } \\ \text { Parameters } \\ \text { (Independent } \\ \text { Model) }\end{array} & \begin{array}{c}\text { DF }\end{array} & \begin{array}{c}\text { LRT } \\ \text { Statistic }\end{array} \\ \text { p- } \\ \text { value }\end{array}\right]$

Table 11: Comparing selection on $A P 2 D$ and other S-linked genes. Four likelihood ratio tests were performed in order to determine if $A P 2 D$ had experienced different selective pressures when compared to other S-linked genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. Significant p-values are indicated in bold. p-values < 0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the $A P 2 D$ and S-linked gene data sets are significantly different with respect to the relevant constrained parameter(s). All four tests were completed twice, with random and default starting values, respectively. The results obtained using default starting values are shown below. However, tests completed with random starting values converged on similar results (see Appendix F, Table F6).

Parameters constrained in constrained model	Log Likelihood (Constrained Model)	\# of Parameters (Constrained Model)	Log Likelihood (Independent Model)	\# of Parameters (Independent Model)	DF	$\begin{gathered} \text { LRT } \\ \text { Statistic } \end{gathered}$	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
All rate parameters	-15349.666	117	-15331.000	127	10	37.331	0.000
Selective regimes ($+\mathbf{d N} / \mathbf{d S}$ and proportion of + selected sites)	-15333.756	125			2	5.511	0.064
Strength of positive selection (+ dN/dS)	-15333.181	126			1	4.361	0.113
Proportion of positively (+) selected sites	-15332.584	126			1	3.168	0.075

Table 12: Comparison of global and local dN/dS ratio models for each alignment. Global and local dN/dS ratio model fits were compared for each alignment using a likelihood ratio test (LRT). Log likelihood values are shown for each model and the degrees of freedom (DF) and LRT statistics are given for each test. Significant p-values (<0.05), shown in bold, suggest that the local dN/dS ratio model fit is superior to that of the global model for the corresponding alignment.

Alignment	Log Likelihood (Global)	Log Likelihood (Local)	DF	LRT Statistic	p- value
APETALA2	-1117.093	-1100.590	44	33.006	0.888
Tssta1 (Total Data)	-1566.870	-1547.556	62	38.628	0.991
Tssta1	-926.134	-932.486	28	8.006	1.000
LEJ2	-461.437	-453.479	44	15.916	1.000
AP2D	-1730.612	-1696.027	44	69.171	$\mathbf{0 . 0 0 9}$
RNABP	-1133.299	-1123.864	44	18.868	1.000
SCE1	-311.390	-309.679	44	3.421	1.000
FRA1	-1083.328	-1074.880	44	16.897	1.000
LRRK	-3012.665	-2997.724	44	29.882	0.949
$\boldsymbol{\text { IRX15L }}$	-1715.775	-1705.548	44	20.454	0.999
$\boldsymbol{F S P}$	-435.157	-421.231	44	27.851	0.973
$\boldsymbol{\text { NRFP }}$	-1232.025	-1219.722	44	24.606	0.992
$\boldsymbol{W R K Y}$	-1648.140	-1662.016	44	27.751	0.974

Table 13: Branch-site Unrestricted Statistical Test of Episodic Diversification (BUSTED). For BUSTED analysis, a likelihood ratio test (LRT) was used to compare the fits of two models: one where all parameters were estimated independently from the data and another where the value of dN/dS was constrained to < 1 at all sites, across all branches of the phylogenetic tree. For each model for each alignment, the log-likelihood value and the number of estimated parameters are given. If no evidence of positive selection was detected under the unconstrained model (i.e.: the proportion of sites with dN/dS>1 was approximately equal to 0), then no constrained model was fitted to the data and an LRT was not performed (NA). For each test, an LRT statistic and p-value were computed. Significant p-values suggest that there is evidence of transient positive selection on a portion of codon sites over a certain proportion of branches in the phylogenetic tree. For these tests, no branches suspected of being under the influence of transient positive selection were indicated, a priori.

Alignment	BUSTED						
	Log Likelihood (Independent)	$\begin{gathered} \hline \text { \# of } \\ \text { Parameters } \\ \text { (Independent) } \\ \hline \end{gathered}$	Proportion of sites with dN/dS >1	Log Likelihood $(d N / d S<1)$ 115.	\# of Parameters ($\mathbf{d N} / \mathbf{d S}<1$)	$\begin{gathered} \text { LRT } \\ \text { Statistic } \end{gathered}$	p-value
APETALA2	-1115.828	65	0.125	-1115.922	64	0.187	0.911
Tsstal (Total)	-1559.586	83	0.011	-1560.867	82	2.561	0.278
Tsstal	-925.357	49	0.115	-925.738	48	0.762	0.683
LEJ2	-459.275	65	0.274	-461.884	64	5.217	0.071
AP2D	-1728.477	65	0.098	-1771.964	64	2.947	0.230
RNABP	-1132.556	65	0.096	-1132.550	64	-0.011	1
SCE1	-311.137	65	0.000	NA	NA	NA	NA
FRA1	-1082.817	65	0.000	NA	NA	NA	NA
LRRK	-3011.648	65	0.024	-3011.658	64	0.020	0.990
IRX15L	-1706.072	65	0.002	-1708.881	64	5.617	0.060
FSP	-435.057	65	0.000	NA	NA	NA	NA
NRFP	-1231.175	65	0.000	NA	NA	NA	NA
WRKY	-1662.092	65	0.101	-1662.092	64	0.001	1.000

Table 14: Integrative site-by-site selection analysis for APETALA2. Selection at the level of individual codons within the APETALA2 alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches in the phylogenetic tree that are estimated to evolve with dN2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*). Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p -value	dN-dS	p-value	dN -dS	Posterior Probability	dN2- α	P (dN2)	p-value
Negative	9	-0.011	0.005	0.000	1.000	-0.125	0.566	-	-	-
	15*	-2.000	0.111	-7.560	0.030	-3.877	0.932	-	-	-
	29	-0.011	0.004	0.000	1.000	-0.196	0.612	-	-	-
	50*	-4.185	0.014	-5.190	0.030	-1.717	0.908	-	-	-
	65	-0.071	0.010	0.000	1.000	-0.299	0.673	-	-	-
	74	-0.006	0.009	0.000	1.000	-0.155	0.590	-	-	-
	75	-0.044	0.018	0.000	1.000	-0.166	0.602	-	-	-
	79*	-8.737	0.001	-32.300	0.000	-27.139	1.000	-	-	-
	81*	-5.436	0.008	-14.990	0.010	-10.812	0.996	-	-	-
	83*	-6.134	0.031	-24.090	0.020	-23.661	0.994	-	-	-
	84	-0.011	0.004	0.000	1.000	-0.171	0.591	-	-	-
	90	-0.044	0.018	0.000	1.000	-0.177	0.591	-	-	-
	91	-0.011	0.004	0.000	1.000	-0.137	0.576	-	-	-
	106	-4.774	0.025	-4.110	0.290	-1.695	0.760	-	-	-
	109	-0.011	0.004	0.000	1.000	-0.138	0.577	-	-	-
	128	-0.016	0.007	0.000	1.000	-0.125	0.566	-	-	-
	139	-2.093	0.141	-6.300	0.040	-1.796	0.888	-	-	-
	143	-0.011	0.004	0.000	1.000	-0.138	0.575	-	-	-
Positive	39	2.355	0.296	9.000	0.070	4.605	0.931	138.400	0.600	0.060
	40*	3.105	0.122	10.910	0.020	6.622	0.990	10.910	1.000	0.020
	95	-0.241	0.774	0.530	0.910	-0.101	0.568	324.200	0.160	0.050
	103	1.012	0.450	3.120	0.160	0.584	0.754	27.200	0.120	0.030

Table 15: Integrative site-by-site selection analysis for Tsstal (total data). Selection at the level of individual codons within the Tsstal (total data) alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches in the phylogenetic tree that are estimated to evolve with dN2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*).

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p -value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	P (dN2)	p-value
Negative	39	-1.970	0.169	-1.190	0.080	-0.699	0.907	-	-	-
	51	-1.984	0.168	-1.900	0.070	-0.733	0.924	-	-	-
	60*	-1.774	0.199	-3.100	0.040	-0.919	0.918	-	-	-
	68*	-2.000	0.111	-2.350	0.030	-0.811	0.950	-	-	-
	75*	-3.000	0.038	-4.230	0.010	-1.720	0.977	-	-	-
	78*	-3.259	0.042	-4.010	0.020	-0.860	0.953	-	-	-
	85*	-2.382	0.078	-2.930	0.020	-1.423	0.936	-	-	-
	89*	-2.000	0.111	-2.160	0.030	-0.789	0.948	-	-	-
	91*	-2.000	0.111	-2.320	0.030	-0.797	0.942	-	-	-
	112*	-2.705	0.131	-4.090	0.030	-1.022	0.925	-	-	-
	114*	-2.579	0.138	-3.980	0.030	-0.926	0.923	-	-	-
	119	-1.983	0.178	-2.050	0.070	-0.800	0.909	-	-	-
	122*	-2.000	0.111	-2.360	0.030	-0.821	0.945	-	-	-
	125*	-1.629	0.218	-2.790	0.050	-0.896	0.911	-	-	-
	128*	-1.743	0.162	-2.070	0.040	-0.658	0.927	-	-	-
	129*	-2.000	0.111	-1.980	0.030	-0.726	0.945	-	-	-
	134*	-1.939	0.118	-2.480	0.030	-0.791	0.928	-	-	-
	139	-1.599	0.209	-1.850	0.080	-0.679	0.905	-	-	-
Positive	9	2.415	0.296	2.470	0.150	0.561	0.764	18.530	0.150	0.040

Table 16: Integrative site-by-site selection analysis for Tsstal (reduced number of taxa). Selection at the level of individual codons within the Tsstal alignment was evaluated using three different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), and Fast Unconstrained Bayesian Approximation (FUBAR). For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. For Tsstal, no potentially positively selected sites were detected by any method, including Mixed Effects Model of Evolution (MEME). Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. Codons that were identified as positively/negatively selected by 2 or more methods are starred $\left({ }^{*}\right)$.

Selective Regime	Codon	SLAC		FEL		FUBAR	
		$\mathrm{dN}-\mathrm{dS}$	p -value	dN -dS	p -value	dN -dS	Posterior Probability
Negative	$37 *$	-3.550	$\mathbf{0 . 0 3 5}$	-20.390	$\mathbf{0 . 0 1 0}$	-14.821	$\mathbf{0 . 9 7 6}$
	51^{*}	-1.925	0.173	-21.310	$\mathbf{0 . 0 1 0}$	-10.401	$\mathbf{0 . 9 3 6}$
	63	-1.632	0.204	-8.360	$\mathbf{0 . 0 4 0}$	-4.258	0.894
	66	-1.763	0.189	-8.270	$\mathbf{0 . 0 4 0}$	-4.173	0.890
	99^{*}	-1.994	0.112	-8.170	$\mathbf{0 . 0 3 0}$	-6.313	$\mathbf{0 . 9 3 5}$
	114	-2.451	0.144	-15.070	$\mathbf{0 . 0 2 0}$	-4.259	0.897
	125	-1.632	0.216	-8.360	$\mathbf{0 . 0 5 0}$	-4.282	0.884

Table 17: Integrative site-by-site selection analysis for LEJ2. Selection at the level of individual codons within the LEJ2 alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*). Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN -dS	p-value	dN-dS	Posterior Probability	dN2- α	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Negative	33*	-3.540	0.043	-13.900	0.010	-7.964	0.952	-	-	-
	41	-2.018	0.118	-8.970	0.040	-2.675	0.894	-	-	-
	46	-0.012	0.005	0.000	1.000	-0.122	0.536	-	-	-
Positive	7	2.828	0.359	13.220	0.170	6.319	0.966	-66.870	0.650	1.000
	8	2.329	0.346	7.900	0.130	2.718	0.927	13.840	0.710	0.130
	12*	2.158	0.198	19.790	0.030	14.678	0.993	19.780	1.000	0.030
	31	1.097	0.459	5.610	0.210	1.312	0.794	43.860	0.140	0.040
	39	1.572	0.287	8.090	0.120	3.144	0.908	8.180	0.990	0.120

Table 18: Integrative site-by-site selection analysis for $\boldsymbol{A P 2 D}$. Selection at the level of individual codons within the $A P 2 D$ alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*). Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Negative	16*	-2.672	0.074	-5.010	0.030	-2.992	0.925	-	-	-
	22	-0.011	0.005	0.000	1.000	-0.095	0.541	-	-	-
	24*	-3.725	0.037	-8.820	0.020	-8.528	0.986	-	-	-
	31*	-3.871	0.043	-6.800	0.010	-5.499	0.950	-	-	-
	32*	-2.973	0.061	-18.850	0.000	-15.831	0.986	-	-	-
	61*	-4.000	0.019	-24.260	0.000	-22.475	1.000	-	-	-
	63	-1.000	0.333	-4.790	0.050	-1.969	0.852	-	-	-
	66	-0.044	0.018	0.000	1.000	-0.283	0.603	-	-	-
	67*	-3.250	0.040	-6.610	0.010	-5.724	0.981	-	-	-
	74	-0.044	0.018	0.000	1.000	-0.151	0.574	-	-	-
	82	-0.041	0.023	0.000	1.000	-0.277	0.600	-	-	-
	84*	-6.838	0.002	-16.010	0.000	-16.782	1.000	-	-	-
	105	-0.012	0.005	0.000	1.000	-0.277	0.600	-	-	-
	111	-0.017	0.003	0.000	1.000	-0.494	0.621	-	-	-
	121	-0.023	0.002	0.000	1.000	-0.201	0.588	-	-	-
	132	-0.023	0.002	0.000	1.000	-0.253	0.614	-	-	-
	135*	-9.141	0.001	-14.660	0.000	-16.133	1.000	-	-	-
	136*	-4.143	0.030	-6.650	0.010	-5.064	0.952	-	-	-
	138*	-6.357	0.005	-9.790	0.000	-10.176	0.993	-	-	-
	140	-0.035	0.006	0.000	1.000	-0.261	0.589	-	-	-
	155	-2.086	0.276	-11.780	0.040	-6.610	0.875	-	-	-

Continued from previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Positive	17	3.208	0.125	6.740	0.080	8.188	0.982	6.770	1.000	0.080
	20*	4.897	0.027	11.050	0.000	11.149	0.999	11.050	1.000	0.000
	26	1.906	0.459	3.790	0.190	2.592	0.909	3.790	1.000	0.190
	77	0.552	0.569	-0.280	0.930	0.083	0.520	2782.650	0.040	0.020
	141	2.865	0.293	4.970	0.130	4.501	0.958	4.970	1.000	0.130
	146	2.361	0.320	4.650	0.080	4.298	0.967	4.650	1.000	0.080
	186	1.993	0.394	4.370	0.130	2.911	0.892	262.800	0.080	0.010

Table 19: Integrative site-by-site selection analysis for $\boldsymbol{R N A B P}$. Selection at the level of individual codons within the $R N A B P$ alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*).

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Negative	5*	-12.397	0.000	-17.060	0.000	-13.768	0.999	-	-	-
	10*	-4.483	0.020	-5.000	0.010	-3.906	0.976	-	-	-
	15*	-2.003	0.111	-2.280	0.020	-1.062	0.943	-	-	-
	18*	-6.376	0.018	-10.760	0.000	-10.254	0.985	-	-	-
	29*	-4.322	0.013	-4.680	0.000	-6.453	0.996	-	-	-
	31*	-3.004	0.064	-3.030	0.010	-2.412	0.970	-	-	-
	32*	-7.254	0.007	-13.730	0.000	-12.073	1.000	-	-	-
	37*	-5.007	0.004	-5.100	0.000	-4.350	0.996	-	-	-
	45	-0.019	0.001	0.000	1.000	-0.483	0.709	-	-	-
	46*	-1.577	0.212	-1.930	0.050	-1.117	0.916	-	-	-
	60*	-2.710	0.111	-2.640	0.040	-1.066	0.909	-	-	-
	61*	-2.710	0.111	-2.230	0.030	-0.941	0.932	-	-	-
	64*	-7.917	0.003	-38.910	0.000	-27.293	1.000	-	-	-
	65	-0.052	0.002	0.000	1.000	-0.539	0.691	-	-	-
	81	-0.009	0.007	0.000	1.000	-0.065	0.527	-	-	-
	84*	-7.135	0.001	-12.420	0.000	-9.863	1.000	-	-	-
	86*	-5.118	0.007	-5.990	0.000	-9.313	0.999	-	-	-
	87	-2.003	0.111	-2.070	0.040	-0.706	0.890	-	-	-
	90*	-3.004	0.037	-3.400	0.010	-1.487	0.970	-	-	-
	97	-0.037	0.001	0.000	1.000	-0.513	0.740	-	-	-
	102*	-3.188	0.105	-4.070	0.020	-2.380	0.938	-	-	-
	103*	-3.905	0.020	-3.380	0.010	-1.262	0.942	-	-	-

Continued from previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Positive	51	2.180	0.3477	4.230	0.170	3.677	0.958	4.230	1.000	0.170
	52*	2.391	0.169	2.510	0.050	1.115	0.913	2.510	1.000	0.050
	66*	3.661	0.088	4.130	0.020	2.244	0.972	12.070	0.580	0.010

Table 20: Integrative site-by-site selection analysis for $\boldsymbol{S C E 1}$. Selection at the level of individual codons within the SCE1 alignment was evaluated using three different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), and Fast Unconstrained Bayesian Approximation (FUBAR). For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively ($\mathrm{dN}>\mathrm{dS}$) and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. For SCE1, no potentially positively selected sites were detected by any method, including Mixed Effects Model of Evolution (MEME). Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. Codons that were identified as positively/negatively selected by 2 or more methods are starred $\left(^{*}\right)$.

Selective Regime	Codon	SLAC		FEL		FUBAR	
		$\mathrm{dN}-\mathrm{dS}$	p-value	dN -dS	p -value	dN -dS	Posterior Probability
	3	-2.618	0.127	-9.830	$\mathbf{0 . 0 4 0}$	-4.883	0.842
	8	-0.011	$\mathbf{0 . 0 0 4}$	0.000	1.000	-0.115	0.516
	18	-2.618	0.127	-7.930	$\mathbf{0 . 0 5 0}$	-3.850	0.841
	22^{*}	-2.000	0.113	-7.250	$\mathbf{0 . 0 3 0}$	-7.485	$\mathbf{0 . 9 4 8}$

Table 21: Integrative site-by-site selection analysis for FRA1. Selection at the level of individual codons within the $F R A I$ alignment was evaluated using three different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), and Fast Unconstrained Bayesian Approximation (FUBAR). For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively ($\mathrm{dN}>\mathrm{dS}$) and negatively ($\mathrm{dN}<\mathrm{dS}$) selected groups. For FRA1, no potentially positively selected sites were detected by any method, including Mixed Effects Model of Evolution (MEME). Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*).

Selective Regime	Codon	SLAC		FEL		FUBAR	
		dN-dS	p-value	dN -dS	p-value	dN-dS	Posterior Probability
Negative	20	-0.027	0.002	0.000	1.000	-0.707	0.600
	24	-0.027	0.002	0.000	1.000	-0.707	0.600
	26*	-8.328	0.003	-593.570	0.000	-36.389	1.000
	33	-0.242	0.019	0.000	1.000	-0.739	0.606
	42	-0.098	0.039	0.000	1.000	-0.194	0.554
	50*	-2.000	0.111	-6.900	0.030	-4.482	0.934
	60	-0.011	0.004	0.000	1.000	-0.199	0.551
	72*	-6.079	0.006	-16.390	0.000	-10.967	0.974
	73	-0.011	0.004	0.000	1.000	-0.202	0.558
	76*	-2.000	0.111	-7.130	0.050	-8.250	0.957
	84	-2.214	0.178	-11.580	0.030	-9.682	0.899
	86	-0.016	0.007	0.000	1.000	-0.185	0.548
	88*	-2.501	0.136	-25.790	0.020	-10.812	0.904
	106	-0.012	0.005	0.000	1.000	-0.228	0.566
	115*	-3.244	0.040	-12.330	0.010	-9.850	0.991
	124	-0.024	0.002	0.000	1.000	-0.492	0.585
	126*	-4.696	0.012	-25.600	0.000	-29.479	1.000
	157*	-6.657	0.007	-18.550	0.000	-21.115	0.998
	161	-2.412	0.138	-13.850	0.020	-7.141	0.884
	164*	-3.498	0.078	-11.490	0.020	-14.223	0.975

Table 22: Integrative site-by-site selection analysis for LRRK. Selection at the level of individual codons within the LRRK alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred $\left(^{*}\right)$. Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Negative	1	-0.018	0.016	0.000	1.000	-0.300	0.680	-	-	-
	3*	-4.538	0.083	-9.990	0.010	-7.256	0.984	-	-	-
	19*	-8.944	0.033	-44.900	0.000	-24.042	0.995	-	-	-
	24*	-5.265	0.127	-12.960	0.000	-4.810	0.915	-	-	-
	42	-0.025	0.006	0.000	1.000	-0.344	0.706	-	-	-
	75	-0.022	0.005	0.000	1.000	-0.305	0.689	-	-	-
	116	-0.022	0.005	0.000	1.000	-0.309	0.690	-	-	-
	117*	-3.254	0.111	-5.890	0.030	-3.425	0.954	-	-	-
	118*	-3.209	0.119	-4.810	0.040	-2.059	0.940	-	-	-
	119*	-3.749	0.167	-10.990	0.020	-3.296	0.926	-	-	-
	123	-0.022	0.005	0.000	1.000	-0.305	0.690	-	-	-
	130	-0.238	0.006	0.000	1.000	-0.668	0.738	-	-	-
	136*	-14.128	0.000	-80.110	0.000	-18.781	0.996	-	-	-
	142*	-3.804	0.039	-5.030	0.020	-2.980	0.957	-	-	-
	143*	-3.694	0.071	-6.010	0.010	-2.802	0.973	-	-	-
	156*	-2.661	0.125	-7.910	0.030	-3.129	0.931	-	-	-
	163*	-3.698	0.031	-6.290	0.010	-4.903	0.988	-	-	-
	164	-5.217	0.005	-1.340	0.140	-0.647	0.887	-	-	-
	167	-0.011	0.004	0.000	1.000	-0.245	0.689	-	-	-
	168*	-1.651	0.163	-3.610	0.030	-1.742	0.942	-	-	-
	169*	-4.305	0.015	-4.100	0.020	-2.429	0.954	-	-	-
	172	-1.000	0.333	-1.790	0.090	-0.767	0.909	-	-	-
	185*	-3.060	0.123	-16.520	0.010	-4.865	0.941	-	-	-
	189	-1.560	0.259	-2.040	0.090	-0.657	0.900	-	-	-

Continued from previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	P (dN2)	p-value
Negative	191*	-2.661	0.131	-7.310	0.020	-2.810	0.942	-	-	-
	196	-0.011	0.004	0.000	1.000	-0.247	0.690	-	-	-
	198*	-5.206	0.024	-2.240	0.070	-0.778	0.910	-	-	-
	214	-4.957	0.044	-4.510	0.070	-2.122	0.872	-	-	-
	222	-0.013	0.005	0.000	1.000	-0.305	0.730	-	-	-
	230*	-2.766	0.073	-4.660	0.020	-2.601	0.961	-	-	-
	263	-0.073	0.014	0.000	1.000	-0.307	0.721	-	-	-
	270	-0.016	0.005	0.000	1.000	-0.277	0.717	-	-	-
	277*	-5.880	0.007	-33.530	0.000	-29.317	1.000	-	-	-
	281*	-2.671	0.125	-3.780	0.030	-1.087	0.933	-	-	-
	282	-0.013	0.005	0.000	1.000	-0.246	0.689	-	-	-
	284*	-2.923	0.052	-6.020	0.010	-3.062	0.965	-	-	-
	292	-2.847	0.155	-3.810	0.060	-1.152	0.906	-	-	-
	295*	-2.313	0.153	-5.380	0.040	-1.270	0.917	-	-	-
	296*	-4.016	0.012	-5.100	0.000	-3.453	0.991	-	-	-
	297*	-8.312	0.014	-27.690	0.000	-23.108	0.997	-	-	-
	304*	-2.134	0.113	-2.350	0.040	-0.968	0.937	-	-	-
	305*	-3.784	0.044	-4.410	0.050	-3.831	0.968	-	-	-
	306*	-7.721	0.001	-29.590	0.000	-29.386	1.000	-	-	-
	309	-2.647	0.114	-4.730	0.070	-3.419	0.935	-	-	-
	330*	-7.156	0.002	-20.340	0.000	-19.034	1.000	-	-	-
	331	-1.730	0.207	-2.220	0.080	-0.952	0.915	-	-	-
	346	-3.186	0.148	-19.360	0.100	-21.955	0.942	-	-	-
	348	-0.050	0.019	0.000	1.000	-0.231	0.680	-	-	-
	352	-0.013	0.006	0.000	1.000	-0.194	0.650	-	-	-
	354*	-2.677	0.077	-5.090	0.010	-1.609	0.958	-	-	-
	360	-1.852	0.187	-2.810	0.060	-1.026	0.919	-	-	-
	364*	-2.265	0.113	-3.900	0.030	-1.994	0.949	-	-	-
	379	-0.014	0.005	0.000	1.000	-0.257	0.695	-	-	-

Continued from previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2- α	P (dN2)	p-value
Negative	380*	-2.148	0.111	-3.810	0.030	-1.708	0.947	-	-	-
	383*	-3.094	0.056	-7.630	0.000	-2.950	0.972	-	-	-
	386*	-7.568	0.001	-50.340	0.000	-33.735	1.000	-	-	-
	394	-3.426	0.125	-2.810	0.070	-0.935	0.907	-	-	-
Positive	239	-1.267	0.821	-0.600	0.830	-1.173	0.292	10000.000	0.140	0.000
	288	1.779	0.283	2.530	0.130	0.734	0.796	20.910	0.280	0.040
	390	1.425	0.402	1.840	0.220	0.361	0.693	91.620	0.110	0.020

Table 23: Integrative site-by-site selection analysis for IRX15L. Selection at the level of individual codons within the IRX15L alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR), and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic diversifying positive selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively ($\mathrm{dN}>\mathrm{dS}$) and negatively ($\mathrm{dN}<\mathrm{dS}$) selected groups. Significant p-values (<0.05) and posterior probabilities $(>0.9$) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred $\left({ }^{*}\right)$. Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	$\mathrm{P}(\mathrm{dN} 2)$	p-value
Negative	3	-0.0101	0.004	0.000	1.000	-0.176	0.613	-	-	-
	4*	-3.628	0.033	-24.610	0.000	-20.614	0.999	-	-	-
	17*	-4.582	0.019	-8.090	0.000	-9.228	0.999	-	-	-
	19*	-9.251	0.000	-15.030	0.000	-17.494	0.997	-	-	-
	20*	-7.991	0.000	-8.950	0.000	-13.780	0.999	-	-	-
	25*	-5.000	0.004	-10.340	0.000	-12.513	0.999	-	-	-
	43	-0.056	0.013	0.000	1.000	-0.341	0.642	-	-	-
	46*	-3.151	0.039	-7.510	0.020	-5.095	0.959	-	-	-
	49	-1.500	0.259	-7.080	0.080	-5.707	0.902	-	-	-
	59*	-4.635	0.022	-3.710	0.050	-2.364	0.924	-	-	-
	60	-0.011	0.004	0.000	1.000	-0.250	0.632	-	-	-
	63	-0.011	0.005	0.000	1.000	-0.260	0.640	-	-	-
	65	-0.014	0.003	0.000	1.000	-0.350	0.637	-	-	-
	70*	-4.720	0.011	-6.880	0.010	-7.167	0.989	-	-	-
	78*	-2.942	0.047	-3.110	0.050	-2.093	0.927	-	-	-
	89*	-9.103	0.000	-52.380	0.000	-26.501	0.998	-	-	-
	91*	-1.971	0.114	-2.680	0.050	-1.563	0.918	-	-	-
	93*	-4.705	0.010	-6.520	0.000	-6.373	0.988	-	-	-
	100	-0.011	0.004	0.000	1.000	-0.175	0.612	-	-	-
	101	-0.011	0.004	0.000	1.000	-0.274	0.649	-	-	-
	104*	-2.099	0.113	-5.590	0.030	-4.555	0.949	-	-	-
	121	-1.047	0.330	-5.970	0.040	-2.841	0.895	-	-	-
	125	-2.558	0.162	-8.760	0.050	-4.513	0.894	-	-	-
	128*	-3.109	0.046	-4.160	0.030	-2.740	0.936	-	-	-

Continued from previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	pvalue	dN-dS	Posterior Probability	dN2-dS	P (dN2)	p-value
Negative	148	-0.011	0.004	0.000	1.000	-0.287	0.652	-	-	-
	149	-3.382	0.043	-4.410	0.060	-2.172	0.889	-	-	-
	165*	-2.124	0.175	-5.970	0.030	-3.075	0.903	-	-	-
	169*	-2.000	0.127	-5.230	0.020	-3.506	0.947	-	-	-
	172*	-8.851	0.001	-19.760	0.010	-17.773	0.988	-	-	-
	177*	-5.790	0.005	-85.040	0.000	-36.028	1.000	-	-	-
	183	-0.014	0.004	0.000	1.000	-0.330	0.640	-	-	-
	186*	-1.369	0.245	-5.700	0.050	-3.766	0.900	-	-	-
	199	-0.011	0.005	0.000	1.000	-0.217	0.613	-	-	-
	211	-0.044	0.018	0.000	1.000	-0.256	0.642	-	-	-
	215*	-4.729	0.015	-8.190	0.000	-9.331	0.999	-	-	-
	221	-0.044	0.018	0.000	1.000	-0.162	0.600	-	-	-
	230*	-2.000	0.111	-6.930	0.020	-4.890	0.961	-	-	-
	253*	-8.265	0.001	-10000.000	0.000	-41.623	1.000	-	-	-
Positive	48	1.591	0.240	-2.420	0.200	0.919	0.750	2633.750	0.050	0.010
	143*	1.961	0.227	5.790	0.070	4.959	0.963	39.980	0.160	0.010
	200*	2.562	0.080	5.470	0.040	5.205	0.971	5.470	1.000	0.040

Table 24: Integrative site-by-site selection analysis for $\boldsymbol{F S P}$. Selection at the level of individual codons within the FSP alignment was evaluated using three different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), and Fast Unconstrained Bayesian Approximation (FUBAR). For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively ($\mathrm{dN}>\mathrm{dS}$) and negatively ($\mathrm{dN}<\mathrm{dS}$) selected groups. For FSP, no potentially positively selected sites were detected by any method, including Mixed Effects Model of Evolution (MEME). Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*).

Selective Regime	Codon	SLAC		FEL		FUBAR	
		dN -dS	p-value	dN -dS	p-value	dN -dS	Posterior Probability
Negative	8	-0.040	$\mathbf{0 . 0 0 2}$	0.000	1.000	-0.172	0.580
	27^{*}	-2.365	$\mathbf{0 . 0 9 4}$	-7.260	$\mathbf{0 . 0 2 0}$	-4.847	$\mathbf{0 . 9 6 2}$
	57	-2.000	0.164	-5.780	$\mathbf{0 . 0 4 0}$	-1.821	0.875

Table 25: Integrative site-by-site selection analysis for NRFP. Selection at the level of individual codons within the NRFP alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR) and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred (*).

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	P (dN2)	p-value
Negative	9	-0.006	0.009	0.000	1.000	-0.217	0.574	-	-	-
	10	-0.014	0.003	0.000	1.000	-0.179	0.574	-	-	-
	26	-0.014	0.004	0.000	1.000	-0.239	0.576	-	-	-
	31	-0.056	0.014	0.000	1.000	-0.444	0.593	-	-	-
	32*	-3.942	0.017	-7.590	0.030	-4.855	0.932	-	-	-
	42	-0.011	0.004	0.000	1.000	-0.217	0.574	-	-	-
	46*	-4.200	0.019	-83.610	0.010	-22.122	0.984	-	-	-
	48	-0.050	0.038	0.000	1.000	-0.136	0.549	-	-	-
	53*	-2.520	0.077	-12.110	0.010	-10.901	0.968	-	-	-
	55	-0.038	0.022	0.000	1.000	-0.210	0.583	-	-	-
	58*	-7.335	0.001	-79.180	0.000	-32.430	1.000	-	-	-
	59*	-4.276	0.016	-15.770	0.010	-9.678	0.962	-	-	-
	72	-0.098	0.039	0.000	1.000	-0.132	0.554	-	-	-
	75	-0.011	0.004	0.000	1.000	-0.197	0.580	-	-	-
	83	-0.044	0.018	0.000	1.000	-0.249	0.590	-	-	-
	84	-0.014	0.003	0.000	1.000	-0.411	0.595	-	-	-
	88	-0.011	0.004	0.000	1.000	-0.215	0.573	-	-	-
	89	-0.010	0.005	0.000	1.000	-0.181	0.574	-	-	-
	103	-0.044	0.018	0.000	1.000	-0.245	0.586	-	-	-
	124	-1.540	0.251	-11.810	0.080	-9.175	0.909	-	-	-
	127	-0.125	0.030	0.000	1.000	-0.292	0.583	-	-	-
	134	-0.006	0.010	0.000	1.000	-0.036	0.510	-	-	-

Continued from the previous page.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	P (dN2)	p-value
Negative	136	-0.014	0.005	0.000	1.000	-0.262	0.564	-	-	-
	137*	-3.044	0.038	-12.080	0.020	-11.759	0.974	-	-	-
	142*	-3.954	0.023	-47.120	0.020	-16.953	0.971	-	-	-
	153*	-2.924	0.049	-7.610	0.030	-4.947	0.941	-	-	-
	197	-0.011	0.004	0.000	1.000	-0.129	0.552	-	-	-
Positive	117	3.597	0.054	5.760	0.110	3.603	0.902	14.690	0.540	0.100

Table 26: Integrative site-by-site selection analysis for WRKY. Selection at the level of individual codons within the WRKY alignment was evaluated using four different methods: Single-likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Fast Unconstrained Bayesian Approximation (FUBAR) and Mixed Effects Model of Evolution (MEME). Unlike the other methods, MEME only detects evidence of episodic and pervasive positive or diversifying selection. For each codon, the value of $\mathrm{dN}-\mathrm{dS}$ is given, as it is common for $\mathrm{dN} / \mathrm{dS}$ values to be undefined (i.e.: when $\mathrm{dN}=0$). Codons are arranged in positively $(\mathrm{dN}>\mathrm{dS})$ and negatively $(\mathrm{dN}<\mathrm{dS})$ selected groups. Significant p-values (<0.05) and posterior probabilities (>0.9) are highlighted in bold. For MEME results, the proportion of branches that are estimated to evolve with dN 2 (i.e.: where the value of dN is greater than dS) at each identified site is also indicated. Codons that were identified as positively/negatively selected by 2 or more methods are starred $\left(^{*}\right)$. Conflicting results are indicated in italics.

Selective Regime	Codon	SLAC		FEL		FUBAR		MEME		
		dN-dS	p-value	dN-dS	p-value	dN-dS	Posterior Probability	dN2-dS	P (dN2)	p-value
Negative	3*	-3.026	0.038	-10.970	0.010	-9.860	0.987	-	-	-
	11	-0.011	0.004	0.000	1.000	-0.137	0.549	-	-	-
	13	-0.014	0.004	0.000	1.000	-0.240	0.579	-	-	-
	15	-0.011	0.004	0.000	1.000	-0.192	0.565	-	-	-
	53*	-2.588	0.116	-6.810	0.050	-3.793	0.918	-	-	-
	70	-0.011	0.004	0.000	1.000	-0.172	0.561	-	-	-
	87	-0.011	0.004	0.000	1.000	-0.109	0.532	-	-	-
	89*	-2.067	0.113	-6.170	0.040	-3.907	0.917	-	-	-
	128	-0.018	0.003	0.000	1.000	-0.411	0.592	-	-	-
	129*	-2.000	0.111	-8.260	0.020	-5.679	0.944	-	-	-
	130*	-3.225	0.056	-11.870	0.020	-8.835	0.963	-	-	-
	140*	-2.035	0.112	-7.740	0.030	-5.202	0.935	-	-	-
	143*	-2.000	0.111	-8.570	0.020	-7.115	0.955	-	-	-
	158	-0.011	0.004	0.000	1.000	-0.161	0.554	-	-	-
	193	-0.018	0.003	0.000	1.000	-0.318	0.576	-	-	-
	201	-0.044	0.021	0.000	1.000	-0.120	0.531	-	-	-
	203*	-2.000	0.111	-6.110	0.030	-3.173	0.920	-	-	-
Positive	100*	1.917	0.234	6.880	0.050	5.057	0.970	18.090	0.500	0.040
	107*	2.500	0.132	8.530	0.050	6.810	0.985	8.530	1.000	0.050
	109	0.997	0.447	3.430	0.200	0.983	0.769	29.390	0.110	0.030
	127	0.420	0.793	1.180	0.510	-0.040	0.565	515.380	0.050	0.050
	141	2.298	0.161	7.780	0.060	5.348	0.965	7.780	1.000	0.060

Table 27: McDonald-Kreitman tests and Tajima's D tests of neutrality for all S-linked genes completed by treating diploid taxa from the Turnera subseries as a population sample. McDonald-Kreitman tests (MKTs) and Tajima's D tests of neutrality were performed for all genes using a reduced number of taxa in DnaSP v. 5 (Librado and Rozas 2009). With the exception of the MKT performed for Tsstal, only genetic data from diploid individuals of the species, T. subulata, T. scabra, T. krapovickasii, and T. concinna were included. For MKTs, sequence information from T. panamensis was employed as the inter-specific sample. For each MKT, the number of fixed and polymorphic synonymous and non-synonymous sites is given. Neutrality index, α values, and Fisher's Exact Test p-values are also provided. Tajima's D statistics and corresponding p-values are shown for each alignment. No significant results were obtained for any test.

Alignment	McDonald-Kreitman					Tajima's D	
	Fixed	Polymorphic	Neutrality Index	α	Fisher's Exact Test p-value	$\underset{\text { D }}{\text { Tajima's }}$	$\begin{gathered} \mathbf{p}- \\ \text { value } \end{gathered}$
APETALA2							
Synonymous	3	18	0.458	0.542	0.328	-0.390	>0.1
Nonsynonymous	8	22					
Tsstal							
Synonymous	20	5	0.250	0.750	0.374	-0.670	>0.1
Nonsynonymous	16	1					
LEJ2							
Synonymous	2	2	1.000	0.000	1.000	-0.639	>0.1
Nonsynonymous	4	4					
AP2D							
Synonymous	13	12	1.393	-0.393	0.751	-0.451	>0.1
Nonsynonymous	7	9					
RNABP							
Synonymous	10	13	1.026	-0.026	1.000	0.306	>0.1
Nonsynonymous	9	12					
SCEI							
Synonymous	3	4	0.000	1.000	1.000	-1.457	>0.1
Nonsynonymous	1	0					
FRAI							
Synonymous	6	13	3.692	-2.692	0.371	-0.080	>0.1
Nonsynonymous	1	8					

Continued from previous page.

Alignment	McDonald-Kreitman					Tajima's D	
	Fixed	Polymorphic	Neutrality Index	$\boldsymbol{\alpha}$	Fisher's Exact Test p-value	$\underset{\mathbf{D}}{\text { Tajima's }}$	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
LRRK							
Synonymous	36	33	1.091	-0.091	0.854	0.002	>0.1
Nonsynonymous	25	25					
IRX15L							
Synonymous	14	19	0.884	0.116	1.000	0.353	>0.1
Nonsynonymous	5	6					
$\boldsymbol{F S P}$							
Synonymous	3	3	0.500	0.500	1.000	-0.401	>0.1
Nonsynonymous	2	1					
NRFP							
Synonymous	12	20	1.050	-0.050	1.000	0.439	>0.1
Nonsynonymous	8	14					
WRKY							
Synonymous	14	8	0.636	0.364	0.548	-1.069	>0.1
Nonsynonymous	22	8					

4.0 DISCUSSION

This study represents the first investigation of the molecular signatures of natural selection on S-linked genes in any heterostylous species. Importantly, the particular molecular "footprints" of selection that are expected to be exhibited by genes involved in determining heterostyly will largely depend on the particular genetic mechanisms that underlie the expression of reciprocal herkogamy and SI in heterostylous species. While evidence from homomorphic systems, in particular, indicates that alleles for SI genes with pollen- and pistil-specific functions are maintained by balancing selection, recent evidence from distylous Fagopyrum, Linum, and Primula may suggest an altogether different scenario. In species exhibiting homomorphic SI and particularly those possessing S-RNase-based or Brassicaceae-type systems - the action of balancing selection is strongly suggested by the presence of identifiable trans-species polymorphisms (TSPs) and increased nucleotide diversity at S-linked loci (Ioerger et al. 1990; Dwyer et al. 1991; Nou et al. 1993; Richman et al 1996; Boyes et al. 1997; Ishimizu et al.1998; Richman and Kohn 1999 \& 2000; Schierup et al. 2001; Kamu and Charlesworth 2005; Castric and Vekemans 2007; Sutherland et al. 2008; Nowak 2011). More generally, balancing selection is thought to be a common feature of many self/non-self recognition systems, like SI, that are possessed by a diverse array of organisms, including the mating-type determination system of fungi (May et al. 1999), the complimentary sex-determination (csd) locus of honey bees (Hassleman and Beye 2004; Cho et al. 2006), and the vertebrate MHC (Takahata and Nei 1990; Klein et al. 1998; Richman 2000; Charlesworth 2006).

More recently, morph-specific genes - and particularly short-specific genes - have been identified in a few distylous species, which likely possess SI mechanisms with differing evolutionary histories (Li et al. 2008; Yasui et al. 2012; Ushijima et al. 2012 \& 2015; Nowak et al. 2015; Chafe et al. 2015; Shore and Chafe, Unpublished data). It has also been proposed that the mere presence or absence of these genes may be responsible for determining floral-morph identity in these taxa (Yasui et al. 2012). If this is the case, then the evolutionary dynamics exhibited by genes responsible for determining distyly may be very different from what is observed in homomorphic SI systems. Instead, under these circumstances, patterns of sequence evolution should be analogous to that which is observed in male-specific genes typical of X/Y sex determination systems (King et al. 2007; Uyenoyama 2005). For instance, the primary Y-
linked male-determining gene in mammals and marsupials, $S R Y$, has been shown to experience pervasive purifying selection in order to maintain its function (Graves 1998; Wang et al. 2002; King et al. 2007; Nowacka-Woszuk and Switonski 2009; Murtagh et al. 2012). If causative morph-specific genes in distylous systems behave like Y-linked genes, we might expect them to show molecular signatures of purifying selection, as well.

The genes involved in determining heterostyly are not known with certainty for any species. However, recent efforts in the genus, Turnera, have identified a series of candidate "distyly genes" known to be S-linked in T. subulata, including those that are represented on both the S - and s-haplotype, as well as others that are S-haplotype specific (Labonne and Shore 2011; Shore and Chafe, Unpublished data). Given that the genetic basis of distyly in Turnera is unknown, several approaches were adopted in order to explore the nature of selection on S linked genes with the aim of assessing their potential involvement in determining distyly in this genus. Here, I will summarize and interpret the main findings of these analyses and communicate any conclusions that may be drawn from them, including their implications for future study.

4.1 S-LOCUS GENES WITH ELEVATED NUCEOLTIDE DIVERSITY AND SEQUENCE POLYMORPHISM

The distribution of nucleotide diversity (π) and sequence polymorphism (Watterson's θ) estimates across the S-locus indicate that levels of diversity are somewhat elevated in regions directly adjacent to the short-specific gene, Tsstal, relative to other regions of the genome. Indeed, diversity measures appear to increase fairly consistently as one moves out from the Tsstal gene, before values drop off considerably at the SCE1 gene. Interestingly, based on recent BAC sequencing results, $S C E 1$ is expected to be located farther away from $R N A B P$ on the S haplotype, perhaps in the vicinity of $W R K Y$ (Figure 6), as a result of one or more inversions (J.S. Shore, Personal communication). In fact, the region represented by IRX15L through to WRKY is anticipated to be inverted in the S-haplotype relative to the recessive s-haplotype, with the specific positions of APETALA2, LRRK, and FRAI currently being uncertain (J.S. Shore, Personal communication). If the gene order presented in Figure 6 is subsequently reconfigured to reflect the newly anticipated gene order of the S-haplotype in light of these suspected rearrangements, diversity measures are then shown to gradually increase from Tsstal until they
peak in $R N A B P$, and then decrease gradually as they move outward toward $S C E I$. If S - and s specific alleles are maintained by balancing selection, this pattern in the distribution of diversity measures might be expected for genome regions containing causative distyly genes. If this were the case, the gene or genes that are subject to selection are likely to be located in the region exhibiting the highest diversity, which, in this case, is in the vicinity of $R N A B P$ and $A P 2 D$. Indeed, two newly discovered S-haplotype specific genes have recently been discovered in this region (J.S. Shore, Personal communication).

Increased nucleotide diversity at SI-determining loci that are maintained by balancing selection has been demonstrated in other SI systems. Estimates of nucleotide diversity in homomorphic systems, for example, are generally very high, with populations obtaining π estimates of between 0.13 and 0.46 (Castric and Vekemans 2004). Clearly, none of the π estimates obtained here approached these values, as the greatest value of π observed represented only a few percent (0.037 for $R N A B P$). While these generally low values may suggest that none of the candidate genes investigated here are likely the direct targets of balancing selection, it also may not be appropriate to compare the diversity measures obtained for S-linked genes in a distylous system to those garnered for SI-determining genes in homomorphic systems. Plants that possess homomorphic SI systems are generally characterized by the presence of a diversity of morphologically indistinct "mating types", with populations containing between a dozen and a hundred or more different SI alleles, each allele representing a different pollen-stigma specificity (Nou et al. 1993; Castric and Vekemans 2007). In distylous systems, on the other hand, only two allelic lineages are thought to occur for genes involved in determining distyly: one that is S specific and another that is s-specific (that is, if their maintenance by balancing selection is assumed). Under these circumstances, diversity estimates might be expected to be comparatively low. Also, estimates of average nucleotide diversity per site (π) are not found to be high in all self/non-self recognition systems. Indeed, at the MHC locus of jawed vertebrates, π values have been measured to be only a few percent ($\pi=0.021-0.093$), which is comparable to what was observed here (Raymond et al. 2005). Similar values were also obtained for the honey bee complimentary sex-determining locus (csd) (Cho et al. 2006).

While the absolute levels of nucleotide diversity obtained here appear to be lower than in other SI systems, it is, perhaps, more useful to compare S-linked genes to unlinked genes in the same system in order to determine the significance of sequence diversity measures. In the
context of the current study, estimates of the mean level of nucleotide diversity (π) and sequence polymorphism (θ) did not differ significantly between S-linked and control genes in Turnera, as determined by Mann-Whitney-U tests. However, not all candidate genes are expected to be involved in distyly. Indeed, it is possible that none of the genes investigated here serve any such function. If the latter is the case, we might still expect to see increased levels of sequence diversity for the genes most closely linked to those that do have a function in determining distyly, as balancing selection will cause elevated diversity at neutral sites closely linked to a gene under balancing selection (Charlesworth et al. 1997; Charlesworth 2006). There is, indeed, elevated diversity at two genes ($R N A B P$ and $A P 2 D$) that are immediately adjacent to perhaps the best candidate gene, Tsstal (as will be discussed in more detail below).

Interestingly, S-linked genes were found to exhibit a significantly greater number indels relative to controls. Indels were also significantly larger at the S-locus than they were elsewhere, on average. In general, the presence of indels in the coding region of a gene suggests reduced selective constraint (though they are apparently common in "essential" protein-coding genes (Chan et al. 2007; Ajawatangawong and Badauf 2013)). Indeed, site-by-site selection analyses tended to identify potentially positively selected sites near regions characterized by the presence of indels, as well. In addition, those genes in which the greatest number of indels had been identified also tended to have the largest nucleotide diversity (π) and sequence polymorphism (θ) estimates. Recently, indels have been implicated in increasing mutation rates at closely linked sites (Tian et al. 2008). A pattern that was observed across and within several disparately related species, it was proposed that the presence of indels may promote mutation in surrounding sequences, with indel-associated rates of mutation decreasing in inverse proportion to sequence distance from indels (Tian et al. 2008; Hollister et al. 2010). Importantly, this phenomenon has also been demonstrated in angiosperms, and the effects of indel-associated mutation appear to be more severe in outcrossing species, such as those studied here (Hollister et al. 2010). In light of this, it may be possible that the increased values of π and θ that were observed in $A P 2 D$ and $R N A B P$, in particular, may be related to the presence of many indels in these genes. However, this does not explain why S-linked genes might contain more and larger indels than are characteristic elsewhere in the genome, nor does it explain how they might arise or be allowed to persist in the coding regions of a genes that appear to be otherwise well-conserved across a number of species of Turnera.

Alternatively, the increased number and size of indels observed in S-linked genes may be indicative of the occurrence of increased neutral sequence diversity at these loci (in this instance, small deletions or insertions) that results from their linkage to another site that is the direct subject of balancing selection (Charlesworth 2006). Finally, I cannot discount the possibility that there is something unusual about the genomic region in which the candidate genes reside, such that it is subject to increased insertion/deletion events. Indeed, there is a great preponderance of transposable elements in the S-locus region that also involve insertion events (J.S. Shore, Personal communication).

Notably, one of the control genes, $R N A B P 34$, showed somewhat higher nucleotide diversity and sequence polymorphism estimates, as well. In fact, it was the only control gene that was shown to contain an indel, suggesting that RNA binding protein coding genes may simply exhibit high sequence diversity in general, regardless of their particular function. Indeed, this may be the case, as RNA binding proteins represent a remarkably diverse protein family with a variety of RNA targets (Glisovic et al. 2008). It is therefore conceivable that elevated diversity at the S-linked $R N A B P$ locus may simply be confirmation of this gene family characteristic.

In general, I caution that much of the above is built upon the base assumption that mating type in distylous Turnera is determined by the Mendelian segregation of two alleles at the causative distyly locus/loci (Barrett and Shore 2008). As will be discussed in further detail below, it is possible that distyly is determined by S-specific genes, in a system that is more akin to the genetic basis of sex determination in mammals and marsupials than it is to any SI system in plants. Indeed, this possibility is exemplified here by the occurrence of the Tsstal gene, which remains a strong distyly-gene candidate. Due to its presence in only one morph, it will necessarily exhibit evolutionary dynamics that will not yield increased genetic diversity at the Tsstal gene, itself. This possibility will be further discussed below.

4.2 GENE GENEALOGIES

If the genetic basis of distyly involves genes, each possessing two alleles (S and s), as is suggested by its apparently simple Mendelian inheritance pattern, we can make predictions about the relationship these alleles should show across species. As the causative alleles are expected to be maintained by balancing selection, they will have been preserved in populations for extended
periods of time, persisting even after speciation events (Klein et al. 1998; Richman 2000; Charlesworth 2006, Barrett and Shore 2008). As a result, we might expect short-specific alleles at these loci to form a single clade, while long-specific alleles fall into a second clade (Klein et al. 1998; Richman 2000; Charlesworth 2006). In such cases, gene genealogies will therefore not reflect species phylogenies, and will instead take on a pattern characteristic of trans-specific evolution.

Gene genealogies were constructed for all S-linked genes investigated here as a means to explore the incidence of trans-species polymorphism (TSP) and to provide evidence for its underlying cause (i.e.: balancing selection). Interestingly, only APETALA2 showed evidence of TSP. For this gene, the TSP pattern occurred within the Turnera subseries and was driven by linkage disequilibrium at three nucleotide positions. Because this pattern breaks down in T. joelii and more distantly related species, it is not likely that APETALA2 is directly involved in the determination of distyly. That is, the specific polymorphisms (which do, in fact, result in amino acid substitutions at 2 of the 3 sites) cannot be responsible for determining morph-identity because short-styled plants outside of subseries Turnera posses the s-specific nucleotides at these sites. Therefore, the TSPs observed in APETALA2 are likely neutral in nature (Klein et al. 1998). However, their occurrence does suggest that there is reduced recombination in this gene region and that APETALA2 is perhaps closely linked to the gene(s) that do determine distyly. Indeed, while the position of APETALA2 is known for the s-haplotype, its position on the dominant S haplotype remains uncertain due to one or more gene rearrangements within this haplotype, at least in T. subulata (P. Chafe and J.S. Shore, Personal communication). It would be of value to more fully explore the incidence to TSP in APETALA2 using the more costly and time consuming approach of sequencing cloned PCR products so that haplotype-specific information can be obtained. It would be interesting to sequence the entire APETALA2 gene, as well, in order to see if other such informative sequence positions occur.

4.3 SPECIES PHYLOGENIES

The phylogenies computed here were not explicitly constructed for the purposes of evaluating the phylogenetic relationships between the various species of Turnera. Rather, they were constructed so that they might be used to inform subsequent $\mathrm{dN} / \mathrm{dS}$ based selection
analyses. Nevertheless, to that end, it is important to assess their accuracy relative to what is currently known about the evolutionary relationships between the representative species in order to ensure that selection analyses were not adversely affected by errors in phylogeny. Generally, all of the series of Turnera represented here appear to be placed in their expected arrangements in the phylogenies produced and reflect species relationships presented in the published literature (Truyens et al. 2005; Arbo 2015). Though relationships between members of the Turnera subseries were not well resolved, the subseries, itself, does form a well supported monophyletic clade in all of the trees that were employed for the purposes of subsequent selection analyses. Importantly, the species included that belong to the Turnera subseries are very closely related and are capable of interbreeding to varying extents (Shore and Barrett 1985a; Arbo and Fernandez 1987; Fernandez and Arbo 1990; Fernandez and Arbo 1993). As a result of potential gene exchange and recent common ancestry, their evolutionary relationships may be difficult to discern using genetic data that is generally lacking in sequence polymorphism.

Over the last decade, several attempts have been made to deduce the phylogenetic relationships among various Turnera species and their close relatives using molecular data (Truyens et al. 2005; Thulin et al. 2012; Lopez 2013; Arbo et al. 2015). While reasonable serieslevel resolution has been obtained (particularly, with the addition of morphological data), subseries resolution has proven more difficult to achieve - particularly with reference to the placement of T. scabra and T. subulata (Lopez 2013; Arbo et al. 2015). According to early taxonomic classifications, these two species were initially considered to be taxonomic varieties of a single species (T. ulmifolia) (Urban 1883). Recent molecular investigations have been unable to resolve the phylogenetic relationships between these species and the possibility that hybridization has occurred between them has been suggested in order to explain the lack monophyly observed (Lopez 2013; Arbo et al. 2015).

In terms of the phylogenies obtained here, the placement of DEN 20S (tetraploid T. grandidentata) within the Turnera subseries is also somewhat interesting. That is, in many of the trees presented, it is usually positioned as sister to all other members of the Turnera subseries. Interestingly, T. grandidentata is also a segmental allotetraploid, and it is suspected that T. concinna and perhaps T. subulata (though that is less certain) may have acted as its genome donors (Fernandez and Arbo 1993; Lopez et al. 2013). This reticulate origin may explain the placement of DEN 20S as the most "basal" taxon in the Turnera subseries lineage.

While the low resolution obtained within the Turnera subseries might perhaps be remedied by the addition of increased sequence data, this finding provides at least a further rationale for treating these taxonomic species as if they are all a single species for some of the analyses that were performed here. Fortunately, in practice, $\mathrm{dN} / \mathrm{dS}$ methods are also quite resilient to potential "errors" in phylogeny, so long as the tree in question is not completely inaccurate (Pond et al. 2009). Indeed, based on their general similarity to existing phylogenies in the published literature, it is thought that the trees employed here are more than sufficient for the current purposes (Truyens et al. 2005; Arbo 2015).

4.4 PERVASIVE PURIFYING SELECTION ACROSS S-LINKED GENES

Though the distribution of nucleotide diversity (π) and Watterson's θ estimates, in addition to the increased incidence and size of indels in S-linked genes, may indicate the possible influence of balancing selection at a few loci, $\mathrm{dN} / \mathrm{dS}$-based tests of selection suggest the occurrence of pervasive purifying selection across the S-locus in Turnera. Indeed, this appears to be true at all levels according to alignment-wide (global), lineage-specific (local), and codonspecific analyses. While a few codon sites have been identified as potentially affected by diversifying selection, they were largely located near indels, and thus the significance of these particular sites in terms of selective processes involved in evolution of distyly in Turnera is doubtful. However, the observation of wide-spread purifying selection across known S-linked genes does not negate the possibility that balancing selection may maintain diversity at other linked sites. Indeed, purifying selection is expected to act on genes that code for functional proteins, as most mutations will likely erode that function (Pond et al. 2009; Pybus and Shapiro 2009). As a result, purifying selection is more commonly detected using $\mathrm{dN} / \mathrm{dS}$ methods (Pond et al. 2009). Neutrally evolving sites, on the other hand, are observed to experience the effects of balancing selection more keenly and, similarly, the extent of silent polymorphism in selectively constrained genes might be affected by balancing selection that acts on nearby sites, as well (Kreitman and Akashi 1995; Charlesworth et al. 1997; Charlesworth 2006). This effect will not likely be detected using dN/dS methods, which prioritize nonsynonymous mutations in the detection of diversifying selection (Pond et al. 2009).

If the S-locus is indeed largely affected by purifying selection, it would provide support to the notion that morph-specific genes are important in the determination of distyly in this genus. In fact, when concatenated alignments of all S-linked and all control genes were compared using likelihood ratio tests (LRTs), they were found to differ significantly in terms of the distribution of evolutionary rate parameters. While these tests also indicate that parameters related to positive selection appear to be largely the same between the two data sets, global dN/dS values do suggest that the control genes are perhaps more constrained by purifying selection than are S linked genes, on average, as control genes obtained somewhat lower global dN/dS values. This finding, perhaps, does not support the view that genes at the S-locus are inordinately influenced by purifying selection, and may, in fact, suggest that the opposite is true.

The estimation of $\mathrm{dN} / \mathrm{dS}$ can be adversely affected by uneven taxon sampling, particularly when closely related individuals are included in a sample (Kryazhimskiy and Plotkin 2008). For several species, including T. subulata, T. scabra, T. krapovickasii, T. grandidentata, and T. joelii, more than one individual was included in the analysis. This was done, initially, so as to include genetic information from each of the floral morphs, as well as from individuals from different populations in the data set (though, no more than two individuals were represented from any one population). However, dN/dS methods assume that individuals are more distantly related, and therefore polymorphism within any one population is not considered (Kryazhimskiy and Plotkin 2008). Rather, each sequence difference between individuals is treated as a fixed difference between species. Under these circumstances, $\mathrm{dN} / \mathrm{dS}$ may be underestimated, as synonymous polymorphisms within any one population will be treated as synonymous fixations and these will tend to drive the value of dS up (Kryazhimskiy and Plotkin 2008). As a result, the values of dN/dS obtained here may be somewhat conservative. However, when closely related individuals were subjected to more statistically powerful population-genetic analyses (Pybus and Shapiro 2009), no signatures of positive or diversifying selection were detected, thus suggesting that perhaps the dN/dS estimates obtained were not inordinately conservative after all.

4.5 AP2D: AN INTERESTING CANDIDATE GENE

From the results obtained here, $A P 2 D$ emerged as an interesting gene candidate, as $\mathrm{dN} / \mathrm{dS}$ based tests of selection indicate that evolutionary rates for this gene vary in some way across
lineages (i.e.: over evolutionary time). Moreover, when selection on $A P 2 D$ was compared to all other S-linked genes, $A P 2 D$ was found to differ significantly, though apparently not in terms of the strength or prevalence of positive selection at the codon-level across the alignment. While evolutionary rates appear to have varied across lineages for this gene, no particular lineages were identified as being differentially affected by diversifying selection, in particular, suggesting that the differences detected may have resulted from changes in the strength of purifying selection or the proportion of sites affected by it. However, it is not clear why evolutionary rates for $A P 2 D$ may be expected to vary over time, and its relevance to determining distyly in Turnera, if it has any, is unknown.

In addition, $A P 2 D$ is also located in the region of the S-locus that appears to be characterized by somewhat elevated nucleotide diversity (π) and sequence polymorphism (θ). It also contains more and larger indels than the average S-linked gene and, further, the sequence for this gene that was obtained for one species, T. chamaedrifolia (a tetraploid), appeared to be truncated (though this is possibly because the sequence obtained was from a pseudogene that arose as a result of a duplicate locus due to allopolyploidy). All of these things, taken together, may indicate the influence of possible balancing selection on this gene or a gene immediately adjacent to it, making $A P 2 D$ an interesting candidate. In general, however, $A P 2 D$ exhibits alignment-wide signatures of purifying selection, like all other S-linked genes investigated here (with the exception of $L E J 2$, perhaps, which appeared to be evolving more or less neutrally). Further, when codon-level analyses were applied, only one potentially positively selected site was detected, indicating that the high diversity estimates obtained for this gene relative to other S-linked genes may not be the result of diversifying selection. Diversifying selection is notoriously difficult to detect using dN/dS methods, however, unless its molecular signal is very strong (Yang and Bielawski 2000; Wong et al. 2004; Pybus and Shapiro 2009). Moreover, because dN/dS-based tests of selection tend to be conservative, they will often fail to detect instances of balancing selection, in particular, unless a considerable excess of non-synonymous substitutions are produced as a result (Yang and Bielawski 2000). As indicated above, if balancing selection is an important force in the maintenance of distyly-determining genes, only two allelic lineages are expected for those genes that are involved. Due to this low number of expected allelic types, it may be the case that the signature of balancing selection on these genes is simply not strong enough to detect using dN/dS-based methods. As a result, the estimation of
nucleotide diversity for this gene may more readily detect the effects of balancing selection on adjacent linked genes.

Using comparative $\mathrm{dN} / \mathrm{dS}$ methods, the molecular signatures of positive and balancing selection also cannot be distinguished, as both forces are expected to result in higher proportions of nonsynonymous relative to synonymous substitutions (Pond et al. 2009). Population-level tests of neutrality, like Tajima's D , on the other hand, can differentiate between these two processes and are considered to be more powerful tests of selection than dN/dS-based approaches (Pybus and Shapiro 2009). However, no significant results were obtained using these tests for any gene examined here, including $A P 2 D$, suggesting that balancing selection has perhaps not been a major factor in the direct evolution of these genes in Turnera. The occurrence of balancing selection at still other unknown S-linked loci remains possible, however.

The particular function of $A P 2 D$ is also unknown in Turnera. Based on sequence homology to known transcription factors in Arabidopsis, AP2D is presumed to code for a member of the DREB subfamily A-5 of the ethylene response factor (ERF)/AP2 transcription factor family referred to as DEAR2. Proteins in this family have been implicated in plant stress responses to dehydration as well as pathogen defense (Tsutsui et al. 2009; Zhou et al 2010). While this designation does not illustrate a clear role for $A P 2 D$ in the determination of distyly, it has been suggested that SI and innate immunity responses in plants may share some common mechanisms in other systems (Sanabria et al. 2008). Indeed, more generally, innate immunity and SI - both of which rely on self/non-self recognition mechanisms - are thought to be moulded by similar selective pressures (Nasrallah 2005; Sanabria et al. 2008). However, upon pathogen infection, DEAR2, in particular, was not found to be transcriptionally induced in Arabidopsis, suggesting that it may not be involved in responses to biotic stress in this genus (Tsutsui et al. 2009). Interestingly, Athanasiou et al. 2003 and Khosravi et al. 2004 previously discovered two other pathogen-response genes that were found to be specific to the styles of the short-styled morph of several Turnera species. Neither of these genes is linked to the S-locus, however, and their role in distyly is currently unknown.

4.6 Tsstal

In Turnera, Tsstal represents, perhaps, the most promising distyly gene candidate for several reasons: 1) It exhibits morph- and tissue-specific expression; 2) Its expression has been identified as being short-stamen-specific in all species that have been investigated to date; 3) It is also expressed in homostyles with short-like pollen compatibility behaviour; 4) According to BAC sequencing and deletion mutant screens, Tsstal is located in the S-locus region; and 5) Tsstal also has sequence homology to a known self-incompatibility protein in Papaver. Here, Tsstal was also shown to be highly conserved across populations and species of Turnera and its sister genus, Piriqueta. dN/dS-based tests of selection further indicated that Tsstal appeared to be evolving significantly non-neutrally, in the direction of purifying selection and signatures of purifying selection were also identified for this gene at the lineage- and codon-specific levels. When selection on Tsstal was compared to the remaining S-linked genes, no significant differences were observed, indicating that, while Tsstal may be negatively selected, it was perhaps not inordinately affected by purifying selection relative to other S-linked genes. This, however, does not necessarily indicate that Tsstal is not involved in distyly, only that it is conserved in the same manner as other functional genes.

In Papaver, PrsS's act as the style-specific determinants of SI and are small secreted proteins that interact with pollen-specific transmembrane proteins called PrpS's (Foote et al. 1994; Bosch and Franklin-Tong 2008; Wheeler et al. 2009; Wu et al. 2011; Eaves et al. 2014). In Turnera, however, the apparent PrsS homologue, Tsstal, has stamen-specific expression in the short-styled morph. While its homology to a known SI protein is certainly intriguing, its function in the stamen tissues of short-styled Turnera remains unknown. If the general function of PrsS is maintained in Turnera, and it is indeed a secreted signalling protein involved in SI response cascades, the other proteins that it may interact with remain unidentified. Alternatively, it is also possible that Tsstal has no function in distyly in Turnera at all, as a large number of PrsS homologues have also been identified in species of Arabidopsis that lack SI altogether and have relatives with SI mechanisms that are not homologous to that which is presented in Papaver (Ride et al. 1999). However, this scenario is unlikely as Tsstal appears to serve a short-stamen specific function in Turnera. Further, its sequence does not seem to have been degenerated in self-compatible homostylous species, which are homozygous for Tsstal due to the fact that they
can inbreed. As a result, Tsstal is free to recombine in these species, and - should Tsstal not serve a function - it might have been expected to have mutated to the point of being nonfunctional in these individuals (J.S Shore, Personal communication).

The occurrence of morph-specific genes for SI in addition to some of the peculiar characteristics exhibited by the S-haplotype in Turnera might also fit with the predictions of Uyenoyama (2004) regarding the evolution of gene regions that are tightly linked to mating type. In plants and other systems, large swaths of genes with unrelated functions tend to co-segregate with mating type (Wang et al. 2003 \& 2004; Li et al 2004; Uyenoyama 2004). This observation, she proposes, may be a symptom of the limited recombination that is thought to characterize gene regions that have key functions in the determination mating type, with the function of reduced recombination being so that type-specific alleles at this locus may remain distinct over time (Uyenoyama 2004). While reduced recombination can ensure heterozygosity, it also reduces ones ability to purge deleterious mutations, and particularly the accumulation of transposable elements, that occur in closely linked regions via a process referred to as Muller's Ratchet (Muller 1964; Uyenoyama 2004). The reduced effective population size of mating-type determining alleles relative to recombining alleles at other loci is also expected to enhance the effect of these "degenerative processes" due to genetic drift (Uyenoyama 2004). In the context of Turnera, this might help to explain the large size of the S-haplotype ($>900 \mathrm{~kb}$) relative to the recessive $s(192 \mathrm{~kb})$, the presence of inversions and transposable elements that are apparently specific to the dominant S-haplotype (Shore and Chafe, Unpublished data), and also the larger number and size of indels observed in S-linked genes. However, this scenario does not explain the origins of Tsstal, which may itself have gotten "stuck" in a non-recombining region of the S locus by chance, perhaps being transmitted there via a transposable element. However, the fact that Tsstal remains highly conserved across a number of species and populations of Turnera and Piriqueta suggests that it does serve some function in determining the stamen- or pollen-related aspects of SI in this group.

Interestingly, when a local population of tetraploid T. scabra from the Dominican Republic was investigated, absolutely no sequence polymorphism was identified in the coding region Tsstal. When levels of isozyme variation were previously surveyed in tetraploid populations of T. scabra from the same region, low levels of diversity were also detected in comparison with mainland populations (Shore 1991). As a result, it was suggested that lack of genetic diversity
within these populations could be due to a founder effect resulting from island colonization (Shore 1991). Indeed, this explanation may explain the lack of sequence diversity observed in the data obtained here.

4.7 CONCLUSIONS

If the expression of distyly in Turnera is determined by genes with S - and s-specific alleles that are maintained by balancing selection, patterns of trans-specific evolution are expected to be observed in gene genealogies constructed for causative loci (Klein et al. 1998; Richman 2000; Charlesworth 2006). Here, evidence of trans-specific evolution was obtained for one of the genes that were investigated (APETALA2). In general, gene genealogies tended to reflect species phylogenies, with observed deviations likely resulting from close evolutionary relationships between species in combination with insufficient genetic data necessary to obtain optimal phylogenetic resolution. In the case of APETALA2, in particular, it would be interesting to sequence the entire gene in order to see if more sequence positions showing evidence of TSP can be identified, as the occurrence of TSPs across this gene suggests that APETALA2 is closely linked to gene(s) that determine distyly.

The detection of elevated nucleotide diversity and sequence polymorphism in two genes ($A P 2 D$ and $R N A B P$) closely linked to Tsstal may indicate that they are influenced by balancing selection, directly (Charlesworth 2006). This, in turn, may implicate them as possibly having some function in the expression of distyly in Turnera. The general signature of purifying selection that was identified across the $A P 2 D$ and $R N A B P$ gene alignments does suggest that they are perhaps not directly involved in determining distyly, however. That being said, dN/dS-based results indicate that selective pressures on $A P 2 D$, in particular, are in some way different when compared to other S-linked genes. Its sequence similarity to DEAR2 in Arabidopsis is also interesting, as genes in this family have been implicated in responses to pathogen infection (Tsutsui et al. 2009; Zhou et al 2010). Indeed, proteins related to innate immune responses in plants are thought to perhaps play a role in SI response in other systems (Nasrallah 2005; Sanabria et al. 2008). Other pathogen response genes have also been shown to have morphspecific expression in Turnera (Athanasiou et al. 2003 and Khosravi et al. 2004). However, their precise functions remain unknown.

Alternatively, it might be possible that the increased sequence diversity observed at these loci are symptoms of the effects of balancing selection on other closely linked genes that are responsible for the expression of distyly in Turnera. Indeed, balancing selection has been observed to increase neutral sequence diversity at linked sites (Kreitman and Akashi 1995; Charlesworth et al. 1997; Charlesworth 2006). Though dN/dS results identified extensive purifying selection across S-linked loci, these methods may fail to identify balancing selection unless its molecular signal is very strong (Yang and Bielawski 2000; Wong et al. 2004; Pybus and Shapiro 2009). In addition, as dN/dS methods emphasize increased nonsynonymous mutations as indicators of diversifying selection (Pond et al. 2009), the effect of balancing selection on synonymous mutation rates in genes that are largely maintained by purifying selection but are, perhaps, closely linked to loci that are maintained by balancing selection, will not likely be detected.

The S-haplotype-specific gene, Tsstal is possibly the most promising "distyly gene" candidate investigated here. This gene has been previously shown to have short-stamen specific expression and exhibits significant sequence homology to a known SI protein in Papaver (Shore and Chafe, Unpublished data). Further, Tsstal has also been demonstrated to be located in the S locus region according to BAC sequencing and deletion mutant screens (Shore and Chafe, Unpublished data). If Tsstal is involved in determining distyly in Turnera, it is expected to exhibit evolutionary dynamics typical of Y-linked sex-determining genes in mammals and marsupials. Specifically, it would be expected to show signals of purifying selection in order to maintain function (Graves 1998; Wang et al. 2002; King et al. 2007; Nowacka-Woszuk and Switonski 2009; Murtagh et al. 2012). Indeed, here, this was demonstrated to be the case for Tsstal using dN/dS methods. These results are further supported by the fact that Tsstal appears to be well conserved across many species and populations of Turnera and Piriqueta.

The involvement of morph-specific genes - and particularly short-specific ones like Tsstal - in the expression of distyly in Turnera might also help to explain some of the peculiar characteristics that are exhibited by the dominant S-haplotype, more generally. For instance, if the gene region containing causative S-haplotype specific genes is maintained by purifying selection and experiences reduced recombination, it might be expected to accumulate deleterious mutations in closely linked sites (Uyenoyama 2004). If this is the case in Turnera, it might account for the increased size of the dominant S-haplotype relative to the recessive s-haplotype
as well as the greater proportion of transposable elements, inversions, and indels that have been identified there (Uyenoyama 2004; Shore and Chafe, Unpublished data).

It is important to note, however, that the genes investigated here may not represent the "distyly genes" at all, and still other as-of-yet undiscovered causative genes might exist. To this end, two other short-specific genes have recently be uncovered in the S-locus region (Shore and Chafe, Unpublished data), providing support for the notion that distyly may perhaps be influenced not by one, but by an entire suite of morph-specific genes.

It is also possible that the structure of the S-locus differs in different species of Turnera. However, larger scale BAC and RNA sequencing efforts have mainly been focused on one species (T. subulata). It would be interesting to know if the gene-content of the S-locus is the same across species of Turnera and if gene expression profiles, particularly among differentially expressed genes, are analogous. Future selection analyses that include a wider variety of more evenly sampled taxa might serve to bolster dN/dS-based results, as well.

Several approaches were adopted to explore the signatures of selection on S-linked genes in distylous Turnera. While no clear signature of balancing selection was detected, evidence of increased nucleotide diversity and sequence polymorphism for two genes ($A P 2 D$ and $R N A B P$) that are located immediately adjacent to a strong candidate gene, Tsstal, was observed. Limited TSPs were also identified in another S-linked gene (APETALA2). Purifying selection on key gene candidates, such as Tsstal, was found to occur as well. While these results, perhaps, do not provide a full elucidation of the genetic underpinnings of distyly in Turnera, some very promising gene candidates - such as $A P 2 D$ and Tsstal - did emerge. Investigations of the evolutionary dynamics exhibited by S-linked genes have the potential to yield clues regarding the genetic structure that underlies the expression of distyly. It is hoped that understanding these processes and mechanisms, in turn, will help to evaluate existing models regarding how distyly is presumed to have evolved (Charlesworth and Charlesworth 1979b; Lloyd and Webb 1992 a \&b).

LITERATURE CITED

Adachi J, Waddell P., Martin W., and Hasegawa M. 2000. Plastid genome phylogeny and model of amino acid substitution for proteins encoded by chloroplast DNA. Journal of Molecular Evolution. 50: 348-358.

Aguiar B., Viera J., Cunha A.E., Fonseca N.A., Iezzoni A., van Nocker S., Vieira C.P. 2015. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS ONE. 10(5):1-24.

Ajawatangawong P. and Badauf S.L. 2013. Evolution of protein indels in plants, animals, and fungi. BMC Evolutionary Biology.13(140): 1-15.

Altschul S. F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research. 25: 3389-3402.

Anderson M.A., McFadden G.I., Bernatzky R., Atkinson A., Orpin T., Dedman H., Tregear G., Fernley R., and Clarke A.E. 1989. Sequence variability of three alleles of the self incompatibility gene of Nicotina alata. The Plant Cell. 1: 483-491.

Anderson M.A., Cornish E.C., Mau S.-L., Williams E.G., Hoggart R., Atkinson A., Bonig I., Grego B., Simpson R., Roche P.J., Haley J.D., Penschow J.D., Niall H.D., Tregear G.W., Coghlan J.P., Crawford R.J., and Clark A.E. 1986. Cloning of cDNA for stylar glycoprotein associated with expression of self-incompatibility in Nicotina alata. Nature. 32: 38-44.

Angiosperm Phylogeny Group (APG). 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 161(2): 105-121.

Arbo M.M. 2005. Estudios sistematicos en Turnera (Turneraceae). III Series Anomalae Y Turnera. Bonplandia. 14(3-4): 115-318.

Arbo M. M. and Fernandez Y.A. 1987. Cruzamientos intra e interespecificos en Turnera, serie Canaligerae. Bonplandia. 6(1): 23-38.

Arbo M.M., Gonzalez A.M., and Sede S.M. 2015. Phylogenetic relationships within the Turneraceae based on morphological characters with emphasis on seed micromorphology. Plant Systematics and Evolution. 301(7): 1907-1926.

Arroyo J., Barrett S.C.H, Hidalgo R., and Cole W.W. 2002. Evolutionary maintenance of stigmaheight dimorphism in Narcissus papyraceus (Amaryllidaceae). American Journal of Botany. 89(8): 1242-1249.

Athanasiou A., Khosravi D., Tamari F., and Shore J.S. 2003. Characterization and localization of short-specific polygalacturonase in distylous Turnera subulata (Turneraceae). American Journal of Botany. 90: 675-682.

Athanasiou A. and Shore J.S. 1997. Morph-specific proteins in pollen and styles of distylous Turnera (Turneraceae). Genetics. 146: 669-679.

Awadalla P., Charlesworth D. 1999. Recombination and selection at Brassica selfincompatibility loci. Genetics. 152: 413-425.

Baker H.G. 1964. Variation in style length in relation to outbreeding in Mirabilis (Nyctaginaceae). Evolution. 18(3): 507-509.

Baker H.G. 1966. The evolution, functioning and breakdown of heteromorphic incompatibility systems. I Plumbaginaceae. Evolution. 20: 349-368.

Barrett S.C.H. 1988. The evolution, maintenance, and loss of self-incompatibility systems. In: Doust J.L. and Doust L.L (ed.) Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press, New York, pp. 98-124.

Barrett S.C.H. 1990. The evolution and adaptive significance of heterostyly. Trends in Ecology and Evolution. 5(5): 144-148.

Barrett S.C.H. 1992. Heterostylous genetic polymorphisms: Model Systems for Evolutionary Analysis. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 1-29.

Barrett S.C.H. 2002. The evolution of plant sexual diversity. Nature Reviews Genetics. 3: 274284.

Barrett S.C.H. and Glover D.E. 1985. On the Darwinian hypothesis of the adaptive significance of tristyly. Evolution. 39(4): 766-774.

Barrett S.C.H., Harder L.D., Cole W.W. 2004. Correlated evolution of floral morphology and mating-type frequencies in a sexually polymorphic plant. Evolution. 58(5): 964-975.

Barrett S.C.H. and Shore J.S. 2008. New insights on heterostyly: Comparative biology, ecology and genetics. In: Franklin-Tong V. (ed) Self-Incompatibility in Flowering plants: Evolution, Diversity and Mechanisms. Springer-Verlag, Berlin, pp. 3-32.

Bateson W. and Gregory R.P. 1905.On the inheritance of heterostylism in Primula. Proceedings of the Royal Society of London Series B. 76: 581-586.

Beye M., Hunt G.J., Page R.E., Fondrk M.K., Grohmann L., Moritz R.F.A. 1999. Unusually high recombination rate detected in the sex locus region of the honey bee (Apis mellifera). Genetics. 153: 1701-1708.

Billiard S., Castric V., and Vekemans X. 2007. A general model to explore complex dominance patterns in sporophytic self-incompatibility systems. Genetics 175: 1351-1369.

Bosch M. and Franklin-Tong V.E. 2008. Self-incompatibility in Papaver: Signalling to trigger PCD in incompatible pollen. Journal of Experimental Botany. 59(3): 481-490.

Boyes D.C., Nasrallah M.E., Vrebalov J., and Nasrallah J.B. 1997. The self-incompatibility haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. The Plant Cell. 9: 237-247.

Casselman A.L., Vrebalov J., Conner J.A., Singhal A., Giovannoni J., Nasrallah M.E., and Nasrallah J.B. 2000. Determining the physical limits of the Brassica S locus by recombinational analysis. The Plant Cell. 12: 23-33.

Castric V. and Vekemans X. 2004. Plant self-incompatibility in natural populations: A critical assessment of recent theoretical and empirical advances. Molecular Ecology. 13: 28732889.

Castric V. and Vekemans X. 2007. Evolution under strong balancing selection: How many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae? BMC Evolutionary Biology. 7: 132-147.

Chafe P.D.J., Lee T., Shore J.S. 2015. Development of a genetic transformation system for distylous Turnera joelii (Passifloraceae) and the characterization of a self-compatible mutant. Plant Cell Tissue and Organ Culture. 120: 507-517.

Chan S.K., Hsing M., Hormozdiari F., and Cherkasov A. 2007. Relationship between insertion/deletion (indel) frequency of proteins and essentiality. BMC Bioinformatics. 8 (227): 1-13.

Charlesworth B. and Charlesworth D. 1979a.The maintenance and breakdown of distyly. American Naturalist. 114(4): 499-513.

Charlesworth B. and Charlesworth D. 1979b. A model for the evolution of distyly. American Naturalist. 114(4): 467-498.

Charlesworth B., Nordborg M., and Charlesworth D. 1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genetical Research. 70: 155-174.

Charlesworth D. 2006. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genetics. 2(4): 379-384.

Chen G., Zhang B., Liu L., Li Q., Zhang Y., Xie Q., and Xue Y. 2012. Identification of the ubiquitin-binding structure in the S-locus F-Box protein controlling S-RNase-based selfincompatibility. Journal of Genetics and Genomics. 39: 93-102.

Cho S., Huang Z.Y., Green D.R., Smith D.R., and Zhang J. 2006. Evolution of complementary sex-determination of honey bees: Balancing selection and trans-species polymorphisms. Genome Research.16: 1366-1375.

Cohen J.I. 2010. "A case to which no parallel exists": The influence of Darwin's Different Forms of Flowers. American Journal of Botany. 97(5): 701-716.

Crowe L.K. 1964. The evolution of outbreeding in plants. I. The angiosperms. Heredity. 19:435457.

Darwin C. 1862. On the two forms, or dimorphic condition, in the species of Primula, and on their remarkable sexual relations. Journal of the Proceedings of the Linnean Society of London (Botany). 6(22): 77-96.

Darwin C. 1876. Recollections of the development of my mind and character (1876-1881). In: Secord JA (ed). Charles Darwin: Evolutionary Writings Including the Autobiographies [2010]. New York: Oxford University Press. pp. 355-425.

Darwin C. 1877. The different forms of flowers on plants of the same species. John Murray, London, U.K.

Dayhoff M.O., Schwartz R.M., and Orcutt B.C. 1978. A model for evolutionary change in proteins. Atlas of Protein Sequence and Structure. 5: 345-352.
de Graaf B.H.J. Vatovec S., Juarez-Daiz J.A., Chai L., Kooblall K., Wilkins K.A., Zou H., Forbes T., Franklin F.C.H., and Franklin-Tong V.E. 2012. The Papaver selfincompatibility pollen S-determinant, PrpS, functions in Arabidopsis thaliana. Current Biology. 22: 154-159.
de Nettancourt D. 1997. Incompatibility in angiosperms. Sexual Plant Reproduction. 10: 185199.

Dimmic M. W., Rest J.S., Mindell D.P., and Goldstein R.A. 2002. rtREV: An amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. Journal of Molecular Evolution. 55: 65-73.

Dolgin E.S. and Charlesworth B. The effects of recombination rate on the distribution and abundance of transposable elements. Genetics. 178: 2169-2177.

Doyle J.J. and Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:13-15.
Dorwick V.P.G. 1956. Heterostyly and homostyly in Primula obconica. Heredity. 10: 219-236.

Dulberger R. 1992. Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 41-86.

Durrett R. 2005. Mathematical flaws in Suzuki and Gojobori's test for selection. Molecular Biology and Evolution. (in press).

Dwyer K.G., Balent M.A., Nasrallah J.B., and Nasrallah M.G. 1991. DNA sequences of selfincompatibility genes from Brassica campestris and Brassica oleracea: polymorphism predating speciation. Plant Molecular Biology. 16:181-186.

Eaves D.J., Flores-Ortiz C., Haque T., Lin Z., Teng N., and Franklin-Tong V. 2014. Selfincompatibility in Papaver: Advances in integrating the signalling network. Biochemical Society Transactions. 42(2): 370-376.

Eckert C.G., Manicacci D., Barrett S.C.H. 1996. Frequency-dependent selection on morph ratios in tristylous Lythrum salicaria (Lythraceae). Heredity. 77: 581-588.

Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32(5): 1792-1797.

Ernst A. 1936. Weitere untersuchungen zur phananalyse zum fertilitatsproblem und zur genetic heterostyler primeln. II Primula hortensis. Wettstein. Arch. Julius Klaus-Stift. Vererbungsforsch. Socialanthropol. Rassenhyg. 11:1-280.

Ernst A. 1955. Self-fertility in monomorphic Primulas. Genetica 27: 391-448.
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution. 17(6): 368-376.

Fernandez A. and Arbo M.M. 1990. Gametas no reducidas y ralaciones genomicas en tres especies de Turnera (Turneraaceae). Darwiniana. 30(1-4): 21-26.

Fernandez A. and Arbo M.M. 1993. Citogenetica de hibridos entre Turnera grandidentata (4x) y T. subulata y T. scabra (2x) (Turneraceae). Bonplandia. 7(1-4): 119-127.

Foote H.C.E., Ride J.P., Franklin-Tong V.E., Walker E.A., Lawrence M.J., and Franklin F.C.H. 1994. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proceedings of the National Academy of Science of the United States of America. 91: 2265-2269.

Fornoni J. and Dominguez C.A. 2015. Beyond the heterostylous syndrome. New Phytologist. 206: 1191-1192.

Franklin-Tong V.E., Atwal K.K., Howell E.C., Lawrence M.J., and Franklin F.C.H. 1991. Selfincompatibility in Papaver rhoeas: there is no evidence for the involvement of stigmatic ribonuclease activity. Plant, Cell and Environment. 14(4): 423-429.

Franklin-Tong V.E. and Franklin F.C.H. 2003. The different mechanisms of gametophytic selfincompatibility. Philosophical Transactions of the Royal Society of London B. 358: 10251032.

Ganders F. R. 1974. Disassortative pollination in the distylous plant Jepsonia heterandra. Canadian Journal of Botany. 52: 2401-2406.

Ganders F.R. 1979.The biology of heterostyly. New Zealand Journal of Botany. 17(4): 607-635.
Gebhardt C., Ritter E., Barone A., Debener T., Walkemeier B., Schachtschable U., Kaufmann H., Thompson R.D., Bonierbale M.W., Ganal M.W., Tanksley S.D., and Salamini F. 1991. RFLP maps of potato and their alignment with the homoeologous tomato genome Theoretical and Applied Genetics. 83(1): 49-57.

Geitmann A., Snowman B.N., Emons A.M., and Franklin-Tong V.E. 2000. Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell. 12: 1239-1251.

Gibbs P.E. 1986. Do homomorphic and heteromorphic self-incompatibility systems have the same sporophytic mechanism? Plant Systematics and Evolution. 154: 285-223.

Gilmartin P.M. and Li J. 2010. Delineation of the S-locus in Turnera subulata: Homing in on heterostyly. Heredity. 105: 161-162.

Glisovic T., Bachorik J.L., Yong J., and Dreyfuss G. 2008. RNA-binding proteins and posttranscriptional gene regulation. FEBS Letters. 582(14): 1977-1986.

Goldraij A., Kondo K., Lee C.B., Hancock C.N., Sivaguru M., Vazquez-Santana S., Sunran K., Phillips T.E., Cruz-Garcia F., and McClure B.A. 2006. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature. 439: 805-810.

Goodstadt L. and Ponting C. 2001. CHROMA: consensus-based colouring of multiple sequence alignments for publication. Bioinformatics. 9: 845-846.

Goring D.R., Indriolo E., and Samuel M.A. 2014. The ARC1 E3 ligase promotes a strong and stable self-incompatibility response in Arabidopsis species: Response to the Nasrallah and Nasrallah commentary. The Plant Cell. 26: 3842-3846.

Graham S.W. and Barrett S.C.H. 2004. Phylogenetic reconstruction of the evolution of stylar polymorphisms in Narcissus (Amaryllidaceae). American Journal of Botany. 91: 10071021.

Graves J.A.M. 1998. Evolution of the mammalian Y chromosome and sex-determining genes. The Journal of Experimental Zoology. 281: 472-481.

Grosberg R.K. and Hart M.W. 2000. Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science. 289: 2111-2114.

Hasegawa M., Kishino H., and Yano T. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution. 22:160-174.

Hasselmann M. and Beye M. 2004. Signatures of selection among sex determining alleles of the honey bee. Proceedings of the National Academy of Science of the United States of America. 101: 4888-4893.

Hatakeyama K., Watanabe M., Takasaki T., Ojima K., and Hinata K. 1998. Dominance relationships between S-alleles in self-incompatible Brassica campestris L. Heredity. 80: 241-247.

Hebsgaard S.M., Korning P.G., Tolstrup N., Engelbrecht J., Rouze P., and Brunak S. 1996. Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Research. 24(17): 3439-3452. Available from: http://www.cbs.dtu.dk/services/NetPGene/.

Hildebrand, F. 1866. Experimente zur Dichogamie und zum Dimorphismus. Botanische Zeitung. 23: 13.

Hiroshi S., Takayama S., Iwano M., Shimosatao H., Funato M., Nakagawa T., Che F-S., Suzuki G., Watanabe M., Hinata K., and Isogai A. 2001. A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatible Brassica species. Plant Physiology. 125: 2095-2103.

Hollister J.D., Ross-Ibarra J., and Gaut B.S. 2010. Indel-associated mutation rate varies with mating system in flowering plants. Molecular Biology and Evolution. 27(2): 409-416.

Hu B., Jin J., Guo A-Y., Zhang H., Luo J., and Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 31(8): 1296-1297.

Hua Z-H., Fields A., and Kao T-h. 2008. Biochemical models for S-RNase-based selfincompatibility. Plant Molecular Biology. 1(4): 575-585.

Hughes A. L. and Yeager M. 1997. Comparative evolutionary rates of introns and exons in murine rodents. Journal of Molecular Evolution. 45: 125-130.

Indriolo E., Tharmapalan P., Wright S.I., and Goring D.R. 2012. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell. 24: 4607-4620.

Ioerger T.R., Clark A.G., and Kao T-H. 1990. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proceedings of the National Academy of Sciences of the United States of America. 87: 9732-9735

Jones D.T., Taylor W.R., and Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences. 8: 275-282.

Jukes T.H. and Cantor C.R. 1969. Evolution of Protein Molecules. New York: Academic Press. pp. 21-132.

Kakita M., Murase K., Iwano M., Matsumoto T., Watanabe M., Shiba H., Isogai A., and Takayama S. 2007. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transducer selfincompatibility signalling in Brassica rapa. Plant Cell. 19: 3961-3973.

Kakui H., Kato M., Ushijima K., Miyoko K., Kato S., and Hidenori S. 2011. Sequence divergence and loss-of-function phenotypes of S-locus F-box brothers genes are consistent with recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). The Plant Journal. 68: 1028-1038.

Kamu E. and Charlesworth D. 2005. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata. Current Biology. 15(19): 1773-1778.

Kao T-H. and Tsukamoto T. 2004. The molecular genetic basis of S-RNase-based selfincompatibility. The Plant Cell. 16: S72-S83.

Kao T.-H. and McCubbin A.G. 1996. How flowering plants discriminate between self and non-self-pollen to prevent inbreeding. Proceedings of the National Academy of Science of the United States of America. 93: 12059-12065.

Keller B., Thomson J.D., and Conti E. 2014. Heterostyly promotes disassortative pollination and reduces sexual interference in Darwin's primroses: Evidence from experimental studies. Functional Ecology. 28: 1413-1425.

Khosravi D., Joulaie R., and Shore J.S. 2003. Immunocytochemical distribution of polygalacturonase and pectins in styles of distylous and homostylous Turneraceae. Sexual Plant Reproduction. 16: 179-190.

Khosravi D., Yang E.C.C., Siu K.W.M., and Shore J.S. 2004. High level of α-Dioxygenase in short styles of distylous Turnera species. International Journal of Plant Sciences. 165(6): 995-1006.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16 (2): 111-120.

King V., Goodfellow P.N., Wilkerson A.J.P., Johnson W.E., O’Brien S.J., and Pecon-Slattery J. 2007. Evolution of the male-determining gene $S R Y$ within the cat family Felidae. Genetics. 175: 1855-1867.

Klein D.E., Freitas L., and Cunha M.D. 2009. Self-incompatibility in a distylous species of Rubiaceae: Is there a single incompatibility response of the morphs? Sexual Plant Reproduction. 22: 121-131.

Klein J., Sato A., Nagl S., and O’hUigin C. 1998. Molecular trans-species polymorphism. Annual Review of Ecology and Systematics. 29: 1-21.

Kohn J.R. and Barrett S.C.H. 1992. Experimental studies on the functional significance of heterostyly. Evolution. 46(1): 43-55.

Kreitman M. and Akashi H. 1995. Molecular evidence for natural selection. Annual Review of Ecology and Systematics. 26: 403-422.

Kryazhimskiy S. and Plotkin J.B. 2008. The population genetics of dN/dS. PLoS Genetics. 4(12): 1-10.

Kubo K. Entani T., Takara A., Wang N., Fields A.M., Hua Z., Toyoda M., Kawashima S., Ando T., Isogai A., Kao T., and Takayama S. 2010. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science. 330(6005): 796-799.

Kubo K., Paape T., Hatakeyama M., Entani T., Takara A., Kajihara K., Tsukhara M., ShimizuInatsugi R., Shimizu K.K., and Takayama S. 2015. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. The Plant Journal. (1): 1-9.

Kurian V. and Richards A.J. 1997. A new recombinant in the heteromorphy ' S ' supergene in Primula. Heredity. 78: 383-390.

Labonne J.D.J. 2011.Genetic mapping and positional cloning of the S-locus of distylous Turnera subulata (Turneraceae) [PhD thesis]. Toronto (ON): York University.

Labonne J.D.J., Goultiaeva A., and Shore J.S. 2009. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles. Molecular Genetics and Genomics. 281: 673-685.

Labonne J.D.J., Hilliker A.J., and Shore J.S. 2007. Meiotic recombination in Turnera (Turneraceae): Extreme sexual differences in rates, but no evidence for recombination suppression associated with the distyly (S) locus. Heredity. 98: 411-418.

Labonne J.D.J. and Shore J.S. 2011. Positional cloning of the s-haplotype determining the floral and incompatibility phenotype of the long-styled morph of distylous Turnera subulata. Molecular Genetics and Genomics. 285: 101-111.

Labonne J.D.J, Tamari F., and Shore J.S. 2010. Characterization of X-ray generated floral mutants carrying deletions at the S-locus of distylous Turnera subulata. Heredity. 105: 235-243.

Labonne J.D.J., Vaisman A., and Shore J.S. 2008. Construction of a first genetic map of distylous Turnera and fine-scale map of the S-locus region. Genome. 51: 471-478.

Lai Z., Ma W., Han B., Liang L., Zhang Y., Hong G., and Xue Y. 2002. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Molecular Biology. 50: 29-42.

Lamesch P., Berardini T.Z., Li D., Swarbreck D., Wilks C, Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., Karthikeyan A.S., Lee C.H., Nelson W.D., Ploetz L, Singh S., Wensel A, and Huala E. 2011. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research. 1-9.

Lau P. and Bosque C. 2003. Pollen flow in the distylous Palicourea fendleri (Rubiaceae): An experimental test of the disassortative pollen flow hypothesis. Oecologia. 135: 593-600.

Le S. Q. And Gascuel O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution. 25(7): 1307-1320.

Lee H-S., Huang S., and Kao T-H. 1994. S proteins control rejection of incompatible pollen in Petunia inflata. Nature. 367: 560-563.

Lewis D. 1982. Incompatibility, stamen movement, and pollen economy in a heterostyled tropical forest tree, Cratoxylum formosum (Guttiferae). Proceedings of the Royal Society of London. Series B. 214: 273-283.

Lewis D. and Jones D.A. 1992.The genetics of heterostyly. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 129-150.

Li J., Dudas B., Webster M.A., Cook H.E., Davies B.H., and Gilmartin P.M. 2009. Hose in hose, an S-locus-linked mutant of Primula vulgaris, is caused by an unstable mutant at the Globosa locus. Proceedings of the National Academy of Sciences of the United States of America. 107(12): 5664-5668.

Li J., Webster M., Dudas B., Cook H., Manfield I., Davies B., and Gilmartin P.M. 2008. The S -locus-linked Primula homeotic mutant sepaloid shows characteristics of B-function mutant but does not result from mutation in B-function gene. The Plant Journal. 56: 1-12.

Li J., Webster M., Furuya M., and Gilmartin P.M. 2007. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S-locus. The Plant Journal. 51: 18-31.

Li J. Webster M.A., Smith M.C., and Gilamartin P.M. 2011. Floral heteromorphy in Primula vulgaris: Progress towards isolation and characterization of the S-locus. Annals of Botany. 108(4): 715-726.

Li J., Webster M.A., Wright J., Cocker J.M., Smith M.C., Badakshi F., Heslop-Harrison P., and Gilmartin P.M. 2015. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. New Phytologist. (2015):1-12.

Li S., Samaj J., and Franklin-Tong V.E. 2007. A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiology. 145: 236-245.

Librado P and Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451-1452.

Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two signal transduction pathways in drought- and low-temperatureresponsive gene expression, respectively, in Arabidopsis. The Plant Cell. 10: 1391-1406.

Liu Z., Moore P.H., Ma H., Ackerman C.M., Ragiba M., Yu Q., Pearl H.M., Kim M.S., Charlton J.W., Stiles J.I., Zee F.T., Paterson A.H., and Ming R. 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature. 427: 348-352.

Lloyd D.G. and Webb C.J. 1992a.The evolution of heterostyly. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 151-178.

Lloyd D.G. and Webb C.J. 1992b.The selection of heterostyly. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 179-208.

Lloyd D.G. and Yates J.M.A. 1982. Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution. 36(5): 903-913.

Lopez A., Fernandez A., and Shore J.S. 2013. Inferences on the origins of polyploidy Turnera species (Passifloraceae) based on molecular data. Botany. 91: 167-175.

Ma H., Wang Y., Li Z.H., Wan Y.M., Liu X.X., Liang N. 2009. A study of the breeding system of Luculia pinceana. Forest Research. 22: 373-378.

Manfield , I. W., Pavlov V.K., Li J., Cook H.E., Hummel F., and Gilmartin P.M. 2005. Molecular characterization of DNA sequences from the Primula vulgaris S-locus. Journal of Experimental Botany. 56: 1177-1188.

Mann, H. B. and Whitney D.R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics. 18: 50-60

Marchler-Bauer A., Derbyshire M.K., Gonzales N.R, Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., Lanczycki C.J, Fu F., Marchler G.H., Song J.S., Thanki N., Wang Z., Yamashita R.A, Zhang D., Zheng C. and Bryant S.H. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research. 43(Database Issue): D222-D226.

Mast A.R. and Conti E. 2006.The primrose path to heterostyly. New Phytologist. 171: 439-442.
Mather K. 1950. The genetical architecture of heterostyly in Primula sinensis. Evolution. 4(4): 340-352.

Mather K. and de Winton D. 1941. Adaptation and counter-adaptation of the breeding system in Primula. Annals of Botany. 5: 279-311.

Matsui K., Nishio T., and Tetsuka T. 2004 Genes outside the S Supergene suppress S functions in buckwheat (Fagopyrum esculentum). Annals of Botany. 94: 805-809.

Matsui K., Tetsuka T., Nishio T., and Hara T. 2003. Heteromorphic incompatibility in selfcompatible plants produced by a cross between common and wild buckwheat. New Phytologist. 159: 701-708.

Matton D.P., Nass N., Clarke A.E., and Newbigin E. 1994. Self-incompatibility: How plants avoid illegitimate offspring. Proceedings of the National Academy of Sciences of the United States of America. 91: 1992-1997.

May G., Shaw F., Badrane H., and Vekemans X. 1999. The signature of balancing selection: Fungal mating compatibility gene evolution. Proceedings of the National Academy of Sciences of the United States of America. 96: 9172-9177.

McClure B.A. 2004. S-RNase and $S L F$ determine S-haplotype-specific pollen recognition and rejection. The Plant Cell. 16: 2840-2847.

McClure B.A. 2010. Darwin's foundation for investigating self-incompatibility and the progress toward a physiological model for S-RNase-based SI. Journal of Experimental Botany. 60(4): 1069-1081.

McClure B.A., Cruz-Garcia F., and Romero C. 2011. Compatibility and Incompatibility in SRNase -based systems. Annals of Botany. 108: 647-658.

McClure B.A., Gray J.E., Anderson M.A., and Clarke A.E. 1990. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature. 347: 757-760.

McClure B.A., Haring V., Ebert P.R., Anderson M.A., Simpson R.J., Sakiyama F., and A.E. Clarke. 1989. Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature. 342:955-957.

McClure B.A., Mou B., Canevascini S., and Bematzky R. 1999. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proceedings of the National Academy of Sciences of the United States of America. 96: 13548-13553.

Miljus-Dukic J.D., Ninkovic S., and Nesovic M. 2003. Effects of protein phosphatase inhibitors and calcium antagonists on self-incompatible reaction in buckwheat. Biologica Plantarum. 46(3): 475-478.

Miljus-Dukic J.D., Ninkovic S., Radovic S.R., Maksimovic V.R., Brkljacic J., and Neskovic M. 2004. Detection of proteins possibly involved in self-incompatibility response in distylous buckwheat. Biologia Plantarum. 48(2): 293-296.

Miljus-Dukic J.D., Radovic S.R., and Maksimovic V.R. 2007. Treatment of isolated pistils with protease inhibitors overcomes the self-incompatibility response in buckwheat. Archives of Biological Sciences, Belgrade, 59(1): 45-49.

Moreira M.A.M. 2002. SRY evolution in Cebidae (Platyrrhini: Primates). Journal of Molecular Evolution. 55: 92-103.

Morimoto T., Akagi T., and Tao R. 2015. Evolutionary analysis of genes for S-RNase-based self-incompatibility reveals S-locus duplications in ancestral Rosaceae. The Horticulture Journal. Online Advance Publication: 1-10.

Muller H.J. 1964. The relation of recombination to mutational advance. Mutation Research. 1(1): 2-9.

Murfett J., Atherton T.L., Mou B., Gasser C.S., and McClure B.A. 1994. S-RNase expressed in transgenic Nicotiana causes S-allele specific pollen rejection. Nature. 367: 563-566.

Murrell B., Moola S., Mabona A., Weighill T., Sheward D., Pond S.L.K., and Scheffler K. 2013. FUBAR: A fast, unconstrained Bayesian approximation for inferring selection. Molecular Biology and Evolution. 30(5): 1196-1205.

Murrell B., Weaver S., Smith M.D., Wertheim J.O., Murrell S., Aylward A., Eren K., Pollner T., Martin D.P., Smith D.M., Scheffler K., and Pond S.L.K. 2015. Gene-wide identification of episodic selection. Molecular Biology and Evolution. 32(5): 1365-1371.

Murrell B., Wertheim J.O., Moola S., Weighill T., Scheffler K., Pond S.L.K. 2012. Detecting individual sites subject to episodic diversifying selection. PLOS Genetics. 8(7): 1-10.

Murtagh V.J., O’Meally D., Sakovic N., Delbridge M.L., Kuroki Y., Boore J.L., Toyoda A., Jordan K.S., Pask A.J., Renfree M.B., Fujiyama A., Graves J.A.M., and Waters P.D. 2012. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution. Genome Research. 22: 498-507.

Nasrallah JB. 2005. Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility. Trends in Immunology. 26: 412-418.

Nasrallah J.B. 2011. Self-incompatibility in the Brassicaceae. In: Schmidt R., and Bancroft I (eds) Genetics and Genomics of the Brassicaceae, Plant Genetics and Genomics: Crops and Models 9. Springer Science and Business Media, pp. 389-411.

Nasrallah and Nasrallah. 1989. The molecular genetics of self-incompatibility in Brassica. Annual Review of Genetics. 23-121-139.

Nasrallah J.B. and Nasrallah M.E. 2014a. S-locus receptor kinase signalling. Biochemical Society Transactions. 42: 313-319.

Nasrallah J.B. and Nasrallah M.E. 2014b. Robust self-incompatibility in the absence of functional ARC1 gene in Arabidopsis thaliana. The Plant Cell. 26: 3838-3841.

Nasrallah J.B, KaoT-h., Chen C-H., Goldberg M.L., and Nasrallah M.E. 198. Amino-acid sequence of glycoproteins encoded by three alleles of the S-locus of Brassica oleracea. Nature. 326:617-619

Nei M. 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.

Newbigin E., Anderson M.A., Clarke A.E. 1993. Gametophytic self-incompatibility systems. The Plant Cell 5: 1315-1324.

Newbigin E., Paape T., and Kohn J.R. 2008. RNase-based self-incompatibility: Puzzled by pollen S. The Plant Cell. 20: 2286-2292.

Nou, I.S., Watanabe, M., Isuzugawa, K., Isogai, A. and Hinata, K. 1993. Isolation of S-alleles from a wild population of Brassica campestris L. at Balcesme, Turkey and their characterization by S-glycoproteins. Sexual Plant Reproduction. 6: 71-78

Nowacka-Woszuk J. and Switonski M. 2009. Differentiated evolutionary conservatism and lack of polymorphism of crucial sex determination genes (SRY and SOX9) in four species of the family Canidae. Folia Biologica. 57(3-4): 171-176.

Nowak M.D., Davis A.P., Anthony F., and Yoder A.D. 2011. Expression and trans-specific polymorphism of self-incompatibility RNases in Coffeae (Rubiaceae). PLoS ONE. 6(6): 111.

Nowak M.D., Russo G., Schlapbach R., Huu C.N., Lenhard M., and Conti E. 2015. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biology. 16:1-17.

O’Brien M., Kapfer C., Major G., Laurin M., Bertrand C., Kondo K., Kowyama Y., Matton D.P.. 2002. Molecular analysis of the stylar expressed Solanum chacoense asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in Nicotiana. The Plant Journal. 32: 1-12.

Olesen J.M. 1979. Floral morphology and pollen flow in the heterostylous species Pulmonaria obscura Dumort (Boraginaceae). New Phytologist. 82(3): 757-767.

Ornduff R. 1992. Historical perspectives on heterostyly. In: Barrett S.C.H. (ed.) Evolution and Function of Heterostyly. Springer, Berlin, Heidelberg, pp. 31-39.

Pérez R., Vargas P., and Arroyo J. 2004. Convergent evolution of flower polymorphism in Narcissus (Amaryllidaceae). New Phytologist. 161: 235-252.

Pérez-Barrales R., Vargas P., and Arroyo J. 2006. New evidence for the Darwinian hypothesis of heterostyly: breeding systems and pollinators in Narcissus sect. Apodanthi. New Phytologist. 171: 553-567.

Pond SLK and Frost S.D.W. 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution. 22: 12081222.

Pond S.L.K., Frost S.D.W., and Muse S.V. 2005. Hyphy: Hypothesis testing using phylogenies. Bioinformatics. 21(5): 676-679.

Pond S.L.K., Murrell B., Fourment M., Frost S.D.W., Delport W., and Scheffler K. 2011. A random effects branch-site model for detecting episodic diversifying selection. Molecular Biology and Evolution. 28(11): 3033-3043.

Pond S.L.K., Poon A.F.Y., and Frost S.D.W. 2009. Estimating selection pressures on alignments of coding sequences. In: Lemey P., Salemi M., and Vandamme A-M. (eds) The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (2 ${ }^{\text {nd }}$ Ed.). Cambridge University Press, New York, pp. 419-490.

Pybus O.G. and Shapiro B. 2009. Natural selection and adaptation of molecular sequences. In: Lemey P., Salemi M., and Vandamme A-M. (eds) The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (2 ${ }^{\text {nd }}$ Ed.). Cambridge University Press, New York, pp. 419-490.

Qiao H., Wang H, Zhao L, Zhou J, Huang J, et al. 2004. The F-box protein Ah-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteosome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell.16:582-95

Rambaut, A. 2007. FigTree, a graphical viewer of phylogenetic trees. Available from: http://tree. bio.ed.ac.uk/software/figtree.

Rand D.M. and Kann L.M. 1996. Excess amino acid polymorphism in mitochondrial DNA: Contrasts among genes from Drosophila, mice, and humans. Molecular Biology and Evolution. 13(6): 735-748.

Raymond C.K., Kas A., Paddock M., Qui R., Zhoiu Y., Subramanian S., Chang J., Palmeieri A., Haugen E., Kaul R., and Olson M.V. 2005. Ancient haplotypes of the HLA Class II Region. Genome Research. 50: 1250-1257.

Rice W.R. 1987. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics. 116: 161-167.

Richman A.D. 2000. Evolution of balanced genetic polymorphism. Molecular Ecology. 9: 19531963.

Richman A.D. and Kohn J.R. 1996. Learning from rejection: The evolutionary biology of singlelocus incompatibility. TREE. 11(12): 497-502.

Richman A.D. and Kohn J.R. 1999. Self-incompatibility alleles from Physalis: Implications for historical inference from balanced genetic polymorphisms. Proceedings of the National Academy of Science of the United States of America. 96: 168-172.

Richman A.D. and Kohn J.R. 2000. Evolutionary genetics of self-incompatibility in Solanaceae. Plant Molecular Biology. 42: 169-179.

Richman A.D., Uyenoyama M.K., and Kohn J.R.1996. Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science. 273:1212-16

Rosov S.A. and Screbtsova N.D. 1958. Honey bees and the selective fertilization of plants. XVII International Beekeeping Congress. 2: 494-501.

Roux C., Pauwels M., Ruggiero M-V., Charlesworth D., Castric V., and Vekemans X. 2012. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata. Molecular Biology and Evolution. 30(2): 435-447.

Rozen S. and Skaletsky H.J. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S and Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386. Available from: http://frodo.wi.mit.edu/primer3/.

Rudd J.J., Osman K., Franklin F.C., and Franklin-Tong V.E. 2003. Activation of a putative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Letters. 547: 223-227.

Safavian D. and Shore J.S. 2010. Structure of styles and pollen tubes of distylous Turnera joelii and T. scabra (Turneraceae): Are there different mechanisms of incompatibility between the morphs? Sexual Plant Reproduction. 23: 225-237.

Samuel M.A., Chong T.Y., Haasen K.E., Aldea-Brydges M.G., Stone S.L., and Goring D.R. 2009. Cellular pathways regulating responses to compatible and self-compatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell. 21: 2655-2671.

Sanabria N., Goring D., Nurnberger T., and Dubery I. 2008. Self/Nonself perception and recognition in plants: A comparison of self-incompatibility and innate immunity. New Phytologist. 178: 503-514.

Santos-Gally R., de Castro A., Pérez-Barrales R., and Arroyo J. 2015. Stylar polymorphism on the edge: Unusual flower traits in Moroccan Narcissus broussonetii (Amaryllidaceae). Botanical Journal of the Linnean Society. 117: 644-656.

Schierup M.H., Mable B.K., Awadalla P., and Charlesworth D. 2001. Identification and characterization of a polymorphic receptor kinase gene linked to the self-incompatibility locus of Arabidopsis lyrata. Genetics. 158: 387-399.

Schopfer C.R., Nasrallah M.E., and Nasrallah J.B. 1999. The male determinant of selfincompatibility in Brassica. Science. 286: 1697-1700.

Seavey S.R. and Bawa K.S. 1986. Late-acting self-incompatibility in angiosperms. The Botanical Review. 52(2): 195-219.

Self S.G. and Liang K-L. 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. Journal of the American Statistical Association. 82(398): 605-610.

Sequencher® version 5.0 sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA. Available from: http://www.genecodes.com.

Sharma K.D. and Boyes J.W. 1961. Modified incompatibility of buckwheat following irradiation. Canadian Journal of Botany. 39: 1241-1246.

Shore J.S. 1991. Tetrasomic inheritance and isozyme variation in Turnera ulmifolia vars. elgans Urb. and intermedia Urb. (Turneraceae). Heredity. 66: 305-312.

Shore J.S., Arbo M.M., and Fernandez A. 2006. Breeding system variation, genetics and evolution in the Turneraceae. New Phytologist. 171: 539-551.

Shore J.S. and Barrett S.C.H. 1985a. Morphological differentiation and crossability among populations of the Turnera ulmifolia L. complex (Turneraceae). Systematic Botany. 10(3): 308-321.

Shore J.S. and Barrett S.C.H. 1985b. The genetics of distyly and homostyly in Turnera ulmifolia L. (Turneraceae). Heredity. 55: 167-174.

Sijacic P., Wang X, Skirpan A.L., Wang Y., Dowd P.E., McCubbin A.G., Huang S., and Kao T.H. 2004. Identification of the pollen determinant of S-RNase-mediated selfincompatibility. Nature. 429: 302-305.

Smith N.G.C. and Eyre-Walker A. 2002. Adaptive protein evolution in Drosophila. Nature. 415: 1022-1024.

Snowman B.N., Kovar D.R., Shevchenko G., Franklin-Tong V.E., and Staiger C.J. 2002. Signal mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell. 14: 2613-2626.

StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP.
Stein J.C., Howlett B., Boyes D.C., Nasrallah M.E., and Nasrallah J.B. 1991. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassicaoleracea. Proceedings of the National Academy of Science of the United States of America. 88: 8816-8820.

Stevens V.A.M. and Murray B.G. 1982. Studies on heteromorphic self-incompatibility systems: Physiological aspects of the incompatibility system of Primula obconica. Theoretical and Applied Genetics. 61: 245-256.

Stone J.L. and Thomson J.D. 1994. The evolution of distyly: Pollen transfer in artificial flowers. Evolution. 48(5): 1595-1606.

Sun P., Li S., Lu D., Williams J.S., and Kao T-H. 2015. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. The Plant Journal. 83(2): 213-223.

Sutherland B.G., Tobutt K.R., and Robbins T.P. 2008. Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes. Molecular Genetics and Genomics. 279: 95-106

Suzuki G., Kakizaki T., Takada Y., Shiba H., Takayama S., Isogai A., and Watanabe M. 2003. The S-haplotypes lacking $S L G$ in the genome of Brassica rapa. Plant Cell Reports. 21: 911-915.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123: 585-595.

Takahata N. and Nei M. 1990. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 124: 967978.

Takasaki T., Hatakeyama K., Suzuki G.,Watanabe M., Isogai A., and Hinata K.. 2000. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature. 403:913-916.

Takayama S. and Isogai A. 2005.Self-incompatibility in plants. Annual Review of Plant Biology. 56: 467-489.

Takayama S., Isogai A., Tsukamoto C., Ueda Y., Hinata K, Okazaki K., and Suzuki A. 1987. Sequences of S-glycoproteins products of Brassica campestris self-incompatibility locus. Nature. 326:102-105.

Takayama S., Shiba H., Iwano M., Shimosato H., Che F-S., Kai N., Watanabe M., Suzuki G., Hinata K., Isogai A. 2000.The pollen determinant of self-incompatibility in Brassica campestris. Proceedings of the National Academy of Sciences of the United States of America. 97(4): 1920-1925.

Takayama S., Shimosato H., Shiba H., Funato M., Che F-S., Watanabe M., Iwano M., and Isogai A. 2001. Direct ligand-receptor complex interactions controls Brassica selfincompatibility. Nature. 431: 534-538.

Tamari F., Athanasiou A., and Shore J.S. 2001. Pollen tube growth and inhibition in distylous and homostylous Turnera and Priqueta (Turneraceae). Canadian Journal of Botany. 79: 578-591.

Tamari F., Khosravi D., Hilliker A.J., and Shore J.S. 2005. Inheritance of spontaneous mutant homostyles in Turnera subulata x krapovickasii an in autotetraploid T. scabra (Turneraceae). Heredity. 94: 207-216.

Tamari F. and Shore J.S. 2004. Distribution of style and pollen polygalacturonases among distylous and homostylous Turnera and Piriqueta spp. (Turneraceae). Heredity. 92: 380385.

Tamari F. and Shore J.S. 2006. Allelic variation for a short-specific polygalacturonase in Turnera subulata: Is it associated with the degree of self-incompatibility? International Journal of Plant Sciences. 167(1): 125-133.

Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution. 9: 678-687.

Tamura K. and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution. 10(3): 512-526.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 30: 27252729.

Tao R. and Iezzoni A.F. 2010. The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Scientia Horticulturae. 10(4): 423433.

Thomas S.G. and Franklin-Tong V.E. 2004. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature. 429: 305-309.

Thomas S.G., Huang S., Li S., Staiger C.J., and Franklin-Tong V.E. 2006. Actin depolymerization is sufficient to induce programmed cell death in self-compatible pollen. Journal of Cell Biology. 174: 221-229.

Thompson J.D., Barrett S.C.H., and Baker A.M. 2003. Frequency-dependent variation in reproductive success in Narcissus: Implications for the maintenance of stigma-height dimorphism. Proceedings of the Royal Society of London B. 270: 949-953.

Thulin M., Razafimandimbison S.G, Chafe P., Heidari N., Kool A., and Shore J.S. 2010. Phylogeny of the Turneraceae clade (Passifloraceae s.1.): Trans-Atlantic disjunctions and two new genera in Africa. Taxon. 61(2): 308-323.

Tian D., Wang Q., Zhang P. Araki H., Yang S., Kreitman M., Nagylaki T., Hudson Richard, Bergelson J., and Chen J-Q. 2008. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature. 45 (7209): 105-108.

Truyens S., Arbo M.M., and Shore J.S. 2005. Phylogenetic relationships, chromosome and breeding system evolution in Turnera (Turneraceae): Inferences from ITS sequence data. American Journal of Botany. 92(10): 1749-1758.

Tsutsui T., Kato W., Asada Y., Sako K., Sato T., Sonoda Y., Kidokoro S., Yamaguchi-Shinozaki K., Tamaoki M., Arakawa K., Ichikawa T., Nakazawa M., Seki M., Shinozaki K., Matsui M., Ikeda A., and Yamaguchi J. 2009. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research.122: 633-643.

Tuskan G.A., Difazio S. Jansson S., Bohlmann J., Grigorjiev I., Hellsten U., Putnam N., Ralph S., Rombauts S., Salamov A., Schein J., Sterck L., Aerts A., Bhalerao R.R., Bhalerao R.P., Blaudez D., Boerjan W., Brun A., Brunner A., Busov V., Campbell M., Carlson J., Chalot M., Chapman J., Chen G.-L., Cooper D., Coutinho P.M., Couturier J., Covert S., Cronk Q., Cunningham R., Davis J., Degroeve S., Dejardin A., dePamphillis C., Detter J., Dirks B., Dubchak I., Duplessis S, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. \& Gray). Science. 3113(5793): 1596-1604.

Urban, I. 1883. Monographie der familia der Turneraceen. Jahrb. Konigl. Bot. Gart. 2: 1-152.

Ushijima K, Nakano R, Bando M, Shigezane Y, Ikeda K, Namba Y, Kume S, Kitabata T, Mori H, Kubo Y. 2012. Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. Plant Journal. 69: 317-331.

Ushijima K., Ikeda K., Nakano R., Matsubara M., Tsuda Y., and Kubo Y. 2015. Genetic control of floral morph and petal pigmentation in Linum grandiflorum Desf., a heterostylous flax. The Horticulture Journal Preview. (2015): 1-8.

Uyenoyama M.K. 2005. Evolution under tight linkage to mating type. New Phytologist.165: 6370.

Vieira C.P., Charlesworth D., Vieira J. 2003. Evidence for rare recombination at the gametophytic self-incompatibility locus. Heredity. 91: 262-267.

Vuilleumier B.S. 1967. The origin and evolutionary development of heterostyly in the angiosperms. Evolution. 21(2): 210-226.

Wang Y., Scarth R., and Campbell C. 2005. S^{h} and S_{c} - Two complimentary dominant genes that control self-compatibility in buckwheat. Crop Science. 45: 1229-1234.

Wang X., Zhang J., and Zhang Y. 2002. Erratic evolution of SRY in higher primates. Molecular Biology and Evolution. 19(4): 582-584.

Watterson G.A. 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology. 7(2): 256-276.

Webb C.J. and Lloyd D.G. 1986.The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany. 24: 163-178.

Wedderburn F. and Richards A.J. 1990. Variation in within-morph incompatibility inhibition sites in heteromorphic Primula L. New Phytologist. 116: 149-162.

Weller S.G. 2009. The different forms of flowers - what have we learned since Darwin? Botanical Journal of the Linnean Society. 160: 249-262.

Wheeler D. and Newbigin E. 2007. Expression of $10 S$-class SLF-like genes in Nicotiana alata pollen and its implications for understanding the pollen factor of the S-locus. Genetics. 177 (4): 2171-2180.

Wheeler M.J., Armstrong S.A., Franklin-Tong V.E., and Franklin F.C.H. 2003. Genomic organization of the Papaver rhoeas self-incompatibility SI locus. Journal of Experimental Botany. 54: 131-139

Wheeler M.J., de Graaf B.H.J., Hadjiosif N., Perry R.M. Poulter N.S., Osman K., Vatovec S., Harper A., Franklin F.C.H., and Franklin-Tong V.E. 2009. Identification of the pollen selfcompatibility determinant in Papaver rhoeas. Nature. 459(7249): 992-995.

Whelan S. and Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution. 18(5): 691-699.

Wolfe L.M. and Barrett S.C.H. 1989.Patterns of pollen removal and deposition in tristylous Pontederia cordata L. (Pontederiaceae). Biological Journal of the Linnaean Society. 36: 317-329.

Wong W.S.W., Yang Z., Goldman N., and Nielsent R. 2004. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sites. Genetics. 168: 1041-1051.

Woo S.H., Adachi T., Jong S.K., and Campbell C.G. 1999. Inheritance of self-compatibility and flower morphology in an inter-specific buckwheat hybrid. Canadian Journal of Plant Science. 79: 483-490.

Wright S. 1939. The distribution of self-sterility alleles in populations. Genetics. 24: 538-552.
Wright S.I., Agrawal N., and Bureau T.E. 2003. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Research. 13: 1897-1903

Wu J., Wang S., Zhang S., Publicover S.J., and Franklin-Tong V.E. 2011. Self-incompatibility in Papaver rhoeas activates non-specific cation conductance permeable to Ca^{2+} and K^{+}. Plant Physiology. 155: 963-973.

Yang Z. and Bielawski J.P. 2000. Statistical methods for detecting molecular adaptation. TREE. 15(12): 496-503.

Yang Z., Nielsen R, and Hasegawa M. 1998. Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution. 15(12): 1600-1611.

Yasui Y., Mori M., Matsumoto D., Ohnishi O., Campbell C.G., and Ota T. 2008. Construction of a BAC library for buckwheat genome research - An application to positional cloning of agriculturally valuable traits. Genes and Genetic Systems. 83: 393-401.

Yasui Y., Mori M., Aii J., Abe T., Matsumoto D., Sato S., Hayashi Y., Ohnishi O., and Ota T. 2012. S-locus early flowering 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS ONE. 7(2): e31264.

Yeo P.F. 1975. Some aspects of heterostyly. New Phytologist. 75: 147-153.

Zhang Y., Zhao Z., and Xue Y. 2009. Roles of proteolysis and plant self-incompatibility. Annual Review of Plant Biology. 60: 21-42.

Zhou W., Barrett S.C.H, Wang H., and Li D-Z. 2012. Loss of floral polymorphism in heterostylous Luculia pinceana (Rubiaceae): A molecular phylogeographic perspective. Molecular Ecology. 21(18): 4631-4645.

Zhou W., Barrett S.C.H., Wang H., and Li D-Z. 2015. Reciprocal herkogamy promotes disassortative mating in a distylous species with intramorph compatibility. New Phytologist. 2015: 1-10

Appendix A: PCR and Sequencing Primers

Table A1: PCR primer pairs used for the amplification of each exon(s) of interest. The name, sequence, and melting temperature ($\mathrm{T}_{\mathrm{m}}{ }^{\circ} \mathrm{C}$) for each individual primer is provided. The PCR extension time (seconds) used and approximate PCR product size (bp) for each pair is also given. Some exons were amplified with multiple primer pairs. The pair that was employed depended on the DNA sample that was used in the PCR reaction.

Gene	Exon(s) Amplified	Primer Name	Primer Sequence	$\begin{aligned} & \mathbf{T}_{\mathrm{m}} \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$	Extension Time (Seconds)	PCR Product Size (bp)
APETALA2	1	F10	TGGGACTTGAACGACTCTCC	59.11	30	580
		R10	ATATGAGACTCCCATCGGCC	58.73		
		F11	GGACTTGAACGACTCTCCTGA	59.03	30	570
		R9	GACTCCCATCGGCCAGTT	59.01		
Tsstal	1	3F	CCAACTATTTCATTGTGAAAGCATTTA	59.89	45	600
		1R	CCTTTCCTTTTTTCTGATATACCA	58.47		
LEJ2	1	F11	CTCCTTAATCCTCCACCGGG	59.24	30	445
		R16	ACCACGCGTAACTCATCTTT	57.55		
		F12	GGCTCCTCCTCCCTTTACTAC	58.96	30	420
		R16	ACCACGCGTAACTCATCTTT	57.55		
		F12	GGCTCCTCCTCССТTTACTAC	58.96	30	400
		R15	TGGTCATAAAATCACCCACCG	58.28		
AP2D	1	F7	ATGGAAAGCGGGGTGGAAAA	60.18	30	620
		R10	CTCCCCATCCGACTCTTCC	58.87		
		F7	ATGGAAAGCGGGGTGGAAAA	60.18	30	600
		R9	CAGGCACCTTGTTCAAGTCA	58.32		
		F8	AAAAGAGATGGTGGCGGC	58.00	30	575
		R9	CAGGCACCTTGTTCAAGTCA	58.32		
		F4	GAAAGCGGGGTGGAAAAA	60.95	30	555
		R9	CAGGCACCTTGTTCAAGTCA	58.32		
RNABP	1	F3	GGTGTCAGCGCATGAGAATA	59.83	30	430
		R9	TGAGTTGGGCTACGGAGATT	58.43		

Continued from previous page.

Gene	Exon(s) Amplified	Primer Name	Primer Sequence	$\begin{gathered} \mathbf{T}_{\mathbf{m}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Extension Time (Seconds)	PCR Product Size (bp)
SCE1	3-4	F17	ACTGATTGGGAGGGTGGTT	58.12	30	780
		R20	AGACAAGAGGAGGGTATTGCT	58.16		
		F19	TGGGAGGGTGGTTACTTTCC	58.93	30	765
		R17	GAGGGTATTGCTTGGCTTGAA	58.55		
		F20	ACTTTCCGCTTACTCTGCAC	58.20	30	755
		R18	AGGAGGGTATTGCTTGGCTT	59.00		
FRA1	24-25	F14	CGCAGTTCAAATAAGCACCG	58.12	30	415
		R18	CCATATCGACAAGAGTTCGAGT	57.71		
		F15	GTTCAAATAAGCACCGTGTAGAT	57.20	30	405
		R18	CCATATCGACAAGAGTTCGAGT	57.71		
		F16	CAAATAAGCACCGTGTAGATGAC	57.86	30	400
		R18	CCATATCGACAAGAGTTCGAGT	57.71		
	5-6	F6	TCGGTCGCATGCCATATTCA	59.89	30	400
		R12	AGTTTACTGTCTCGGTAGGGA	57.55		
LRRK	1	F5	AAATCCCTCTTCCTCGACCG	59.18	60	1055
		R8	CGTGAATGAGATTGAAGAGGCT	58.47		
		F6	ACTTCTTCTCCGGCTCCTTC	59.10	60	1025
		R7	TGAGATTGAAGAGGCTGCCA	59.01		
		F1	TGCCTCTACTAACCAACTCAATT	57.50	60	1010
		R4	CGCAGCATTACCGTCAACTT	59.20		
		F2	CСАСТССТTСТTTTCATCTCCG	58.73	60	875
		R1	TGTTGATCAAAACCGCCCC	58.65		
IRX15L	1	F1	CGGTAACAATAACAACACAAAGC	57.20	60	925
		R4	CAGGAAGATTTGGGTGATTTTGA	57.27		
		F2	CACAAAGCTCATCCTCCTCC	57.96	60	900
		R2	GGGTGATTTTGATGTCCGGTTA	58.65		
		F1	CGGTAACAATAACAACACAAAGC	57.20	60	875
		R1	AGCTATTCTCATCCATCTTCTCC	57.26		

Continued from previous page.

Gene	Exon(s) Amplified	Primer Name	Primer Sequence	$\begin{gathered} \mathbf{T}_{\mathbf{m}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Extension Time (Seconds)	PCR Product Size (bp)
FSP	6-7	F1	GCCACTCAATCCACCAAACT	58.38	30	300
		R4	TGTCATTTTCCGGAGCATCA	57.51		
		F4	TCCACCAAACTTCAAACCACT	57.91	30	295
		R4	TGTCATTTTCCGGAGCATCA	57.51		
		F3	CTCAATCCACCAAACTTCAAACC	58.38	30	290
		R1	CGGAGCATCATGACCATTTGT	58.98		
NRFP	3	F5	CGGATTGCCAAACGAGGG	58.81	45	720
		R8	CCCATTTGGTGAAGCTCTGG	58.82		
		F5	CGGATTGCCAAACGAGGG	58.81	45	710
		R7	CTCTGGCTACATGATTGATCTCT	57.53		
		F7	ACCTTCCGCTTGTGAAATCTC	58.57	45	630
		R5	AGTGGAATCCTAACACCCAGT	58.37		
WRKY	1	F1	ATGGCCGTAGAGCTCATGA	58.17	60	790
		R4	CACCACACTTGCCAGAACC	58.97		
		F3	GTTATAGGAACGGTAGCTTTGTG	57.29	60	760
		R4	CACCACACTTGCCAGAACC	58.97		
ECIP1	3	F1	TTTCACGGTGGAGGAAGTGA	58.88	60	1000
		R1	GGCATTCCAAGGTCACGAAT	58.54		
		F2	AGGAAGTGGGGTGGAAGTAC	58.64	60	995
		R2	GCAAGCTTCACCCACAACA	58.89		
GAUT3	6	F1	GCAGCTGACTATTTCCGACA	57.99	45	700
		R1	GCTTTCTCCACTCCTTCAAGTC	58.93		
		F2	CCGACATGGGTATCAAAAGAAAG	57.76	45	690
		R2	TTCCGCTTTCTCCACTCCTT	58.94		
GAUT1	4	F1	TCCTTCCAAGCATGTTTTCCA	58.04	45	575
		R1	GCCACTTGTGATATATCCCTGTG	58.93		

Continued from previous page.

Gene	Exon(s) Amplified	Primer Name	Primer Sequence	$\begin{aligned} & \mathbf{T}_{\mathbf{m}} \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$	Extension Time (Seconds)	PCR Product Size (bp)
GAUT1	4	F1	TCCTTCCAAGCATGTTTTCCA	58.04	45	560
		R2	TCCCTGTGATATCCTTCTTCTTC	57.12		
RNABP34	6	F1	AAGCTGCAAAGTTGGTGGTT	58.81	30	430
		R1	TCCTGTTTGAACTCCCAGGG	59.23		
FMO1	6	F2	ACAACTAGCAGTGATTGGGTTC	58.59	30	280
		R2	ACAAATCGGCGAAGAATCCC	58.62		
MBD8	3	F1	TCTTAATAATGGCAAGAACGGGA	57.89	30	355
		R1	AGTCCTTTATGTGATTTCCGAGG	58.23		
UNKN	1	F1	GGCTTACATCCCTCCACACA	59.38	30	240
		R1	TCTTCCACAGAAACAGGCTCA	59.23		
POFUT	8	F2	GCAAGCAACCCTGACAAAGA	58.97	30	315
		R2	CATTTTAGCCATGTTGCCGT	57.35		

Table A2: Sequencing primers. The name and sequence is given for each primer. PCR products for each exon were sequenced in both the forward and reverse directions, resulting in the production of at least two sequences for each individual. These sequences were then assembled in order to produce a single sequence. The anticipated size of this product is provided for each primer pair. Of course, not all sequences obtained were of the suggested length. Some exons were sequenced with multiple primer pairs. The pair that was used depended on the DNA sample from which the sequenced PCR product was amplified. For plasmid sequencing, primers M13F and M13R were provided by the Génome Québec and McGill University Innovation Centre.

Gene	Exon(s) Sequenced	Primer Name	Primer Sequence	Product Size (bp)
APETALA2	1	F10	TGGGACTTGAACGACTCTCC	575
		R9	GACTCCCATCGGCCAGTT	
		F11	GGACTTGAACGACTCTCCTGA	570
		R9	GACTCCCATCGGCCAGTT	
Tsstal	1	3F	CCAACTATTTCATTGTGAAAGCATTTA	600
		R1	CCTTTCCTTTTTTCTGATATACCA	
		1F	ATTGCGGTCTTCCCATTTCT	450
		1R	ATAATCCGGAGGCCAAAGTG	
LEJ2*	1	F12	GGCTCCTCCTCССТTTACTAC	420
		R16	ACCACGCGTAACTCATCTTT	
		F12	GGCTCCTCCTCCCTTTACTAC	400
		R15	TGGTCATAAAATCACCCACCG	
AP2D	1	F8	AAAAGAGATGGTGGCGGC	575
		R9	CAGGCACCTTGTTCAAGTCA	
RNABP	1	F5	CGAAAACCTGGCGGCATATT	315
		R9	TGAGTTGGGCTACGGAGATT	
SCE1	3-4	F17	ACTGATTGGGAGGGTGGTT	780
		R19	CAAGAGGAGGGTATTGCTTGG	
		F20	ACTTTCCGCTTACTCTGCAC	750
		R17	GAGGGTATTGCTTGGCTTGAA	
		F20	ACTTTCCGCTTACTCTGCAC	713
		R8	TCTGCAGCATCCTGAATCAA	
FRA1	24-25	F16	CAAATAAGCACCGTGTAGATGAC	400
		R18	CCATATCGACAAGAGTTCGAGT	
		F15	GTTCAAATAAGCACCGTGTAGAT	400
		R17	TCGACAAGAGTTCGAGTCCT	
	5-6	F6	TCGGTCGCATGCCATATTCA	400
		R12	AGTTTACTGTCTCGGTAGGGA	
		F8	CGCATGCCATATTCACCATCA	390
		R11	ACTGTCTCGGTAGGGAACATG	

Continued from previous page.

Gene	Exon(s) Sequenced	Primer Name	Primer Sequence	Product Size (bp)
LRRK	1	F5	AAATCCCTCTTCCTCGACCG	1055
		R8	CGTGAATGAGATTGAAGAGGCT	
		F6	ACTTCTTCTCCGGCTCCTTC	1025
		R7	TGAGATTGAAGAGGCTGCCA	
		F1	TGCCTCTACTAACCAACTCAATT	940
		R2	CGGAGCAGATACGTTTACAGT	
		F7	CTCACCCTCCTCGATCTCTC	925
		R6	TTTGGCCTGAAAGTAAGCGG	
		F8	TCTCCCACAACAACCTCTCC	900
		R5	AAAGTAAGCGGCCATCCTCA	
		F8	TCTCCCACAACAACCTCTCC	900
		R5	AAAGTAAGCGGCCATCCTCA	
		F4	CCGCAGCACAGACAAACT	850
		R1	TGTTGATCAAAACCGCCCC	
IRX15L	1	F2	CACAAAGCTCATCCTCCTCC	900
		R2	GGGTGATTTTGATGTCCGGTTA	
		F2	CACAAAGCTCATCCTCCTCC	860
		R1	AGCTATTCTCATCCATCTTCTCC	
FSP	6-7	F1	GCCACTCAATCCACCAAACT	295
		R3	TTTTCCGGAGCATCATGACC	
		F4	TCCACCAAACTTCAAACCACT	280
		R1	CGGAGCATCATGACCATTTGT	
NRFP	3	F5	CGGATTGCCAAACGAGGG	720
		R8	CCCATTTGGTGAAGCTCTGG	
		F7	ACCTTCCGCTTGTGAAATCTC	630
		R5	AGTGGAATCCTAACACCCAGT	
WRKY	1	F1	ATGGCCGTAGAGCTCATGA	790
		R4	CACCACACTTGCCAGAACC	
		F2	GGCCGTAGAGCTCATGATGA	780
		R3	ACACTTGCCAGAACCCAGAT	
		F3	GTTATAGGAACGGTAGCTTTGTG	760
		R4	CACCACACTTGCCAGAACC	
ECIP1	3	F1	TTTCACGGTGGAGGAAGTGA	1000
		R1	GGCATTCCAAGGTCACGAAT	
GAUT3	6	F1	GCAGCTGACTATTTCCGACA	700
		R1	GCTTTCTCCACTCCTTCAAGTC	

Continued from previous page.

Gene	Exon(s) Sequenced	Primer Name	Primer Sequence	Product Size (bp)
GAUT1	4	F1	TCCTTCCAAGCATGTTTTCCA	575
		R1	GCCACTTGTGATATATCCCTGTG	
RNABP34	6	F1	AAGCTGCAAAGTTGGTGGTT	430
		R1	TCCTGTTTGAACTCCCAGGG	
FMO1	6	F2	ACAACTAGCAGTGATTGGGTTC	280
		R2	ACAAATCGGCGAAGAATCCC	
MBD8	3	F1	TCTTAATAATGGCAAGAACGGGA	355
		R1	AGTCCTTTATGTGATTTCCGAGG	
UNKN	1	F1	GGCTTACATCCCTCCACACA	240
		R1	TCTTCCACAGAAACAGGCTCA	
POFUT	8	F2	GCAAGCAACCCTGACAAAGA	315
		R2	CATTTTAGCCATGTTGCCGT	
Plasmids		M13F	GTAAAACGACGGCCAGT	
		M13R	GGAAACAGCTATGACCATG	

Abstract

Appendix B: Nucleotide Alignments for S-linked Genes E 2I DROT 41S ES MIDC 710S MAN 601S MAN 713L COLO PA 4S TSH KRAP 5S KRAP 12L CON 20S DEN 20S DEN 54L J 30L TJ 29S CHAM 4L WED 2S DIF PAN 2S SELECTION

AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC-------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAG GATGGGAGTGGC-------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC--------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC------------------- 105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC------------------105 AAGGGGAA GAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC--AAGGGGAA A AGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC-------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC---------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC-------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC---------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC---------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGS--- ---------------- 105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAR GATGGGAGTGGC---------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC-------------------10 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC--------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGC--------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCT GTSGTCGTCGAGGAT GGATCCGAGGAAGAA GATGGCAGTGGC---------------------105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCG GTGGTAATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGCGAC AAGAGTAATTATTAT 105 AAGGGGAAGAGGGTC GGATCCGTGTCGAAT TCTAGCTCCTCCGCC GTTGTCGTCGAGGAT GGATCCGAGGAAGAA GATGGCAGTGGC------------------AAGGGGAAAAGGGTC GGATCCGTGTCGAAT TCCAGCTCCTCCGCC GTGGTCATCGAGGAT GGATCCGAGGAAGAA GATGGGAGTGGCGAC AAGAGTAATTAT--- 105 ---------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 -------------- GAA GCAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACCATGGACGGTGAT 210 ----------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 ----------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACTATGGACAGTGAT 210 ---------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCYATGGACAGTGAT 210 -_-_-----GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 ---------GAAGSA GGAGGAGGAAGATTG CTCATCAAGAAGCGY AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACRGTGAT 210 ---------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 -------------GAA GSAGGAGGAAGATTG CTCATCAAGAAGCGY AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACRGTGAT 210 ---GAAGGAGGAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGC AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 -------------GAA GSAGGAGGARGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACCATGGACGGTGAT 210 ------------GAA GSAGGAGGARGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACCATGGACGGTGAT 210 -_-_-----GAAGGA GGAGGAGGAWKAYTS MTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACTATGGACAGTGAT 210 ---------GAGSA GGAGGAGGAAGATTG CTCATCAAGAAGCGC AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACRGTGAT 210 ---------GAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGC AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 --------GAAGSA GGAGGARGAAGATTG CTCAYCAAGAAGCGY AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACRGTGAT 210 ---------GAAGSA GGAGGARGAAGATTG CTCAYCAAGAAGCGY AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACRGTGAT 210 ----------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGY AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT RCCATGGACAGTGAT 210 ------GAAGGAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGY ACCRTGGACAGTGAT 210 ------GAAGGAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGY ACCRTGGACAGTGAT 210 ---------GAAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACCATGGACAGTGAT 210 ACTGGAGGAGGAGTA GGAGGAGGGAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT GCCATGGACAGTGAT 210 ---------GGAGGA GGAGGAGGAAGATTG CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGACAGT ACCATGGACAGTGAT 210 ACTGGAGGAGGA--- ---GGAGGAAGATTT CTCATCAAGAAGCGT AGCAGCAGAATATTC GGCTTCTCGGTGCCC TATGAGGAGGRCAGT ACCATGAATAGTGAT 210

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S SELECTION

GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCT---AGT GGCGGTGGTGCTGAT GGTAGTGGAGGTGGG 315 GAGCCGCCAGTGACA CGGCAGTTCTTCCCC GTAGACAATCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCYGCTGCTRGTKGT GGYGGTGSTGMTGRT RGTRGWGGWGGK--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCTGGTTGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCTRGTKGY GGYGGTGSTGMTGRT RGTRGWGGWGGK--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCT---AGT GGCGGTGGTGCTGAT GGTAGTGGAGGTGGG 315 GAGCCGCCAGTGACA CGGCAGTTCTTYCCC GTRGACRAYCCCGAA ATGGGGGCCAYGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCT---AGT GGCGGTGGTGCTGAT GGTAGTGGAGGTGGG 315 GAGCCGCCAGTGACA CGGCAGTTCTTYCCC GTRGACRAYCCCGAA ATGGGGGCCAYGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCT---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTCCCC GTAGACAATCCCGAA ATGGGGGCCACGTCY GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTCCCC GTAGACAATCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGGTGMTGRT RGTRGWGGAGGK--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACSTCC GCTGCTGCTGGTTGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTYCCC GTRGACRAYCCMGAA ATGGGGGCCACGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGCT---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGYRACA CGGCAGTTCTTYCCC GTRGACRAYCCCGAA ATGGGGGCCACGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTYCCC GTRGAMRAYCCCGAA ATGGGGGCCACGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTTCCC GTGGAMGACCCCGAA ATGGGGGCCACGTCC GCTGCTGST---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACR CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACR CGGCAGTTCTTTCCC GTGGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGGTGCTGAT GGTAGTGGAGGT--- 315 GAGCCGCCAGTGACA CGGCAGTTCTTCCCC GTAGACGACCCCGAA ATGGGGGCCACGTCY GCTGCTGGT---TGY GGCGGTGGTACTGAT GGTRGTGGAGGA--- 315 GAGCCCCCAGTGACA CGACAGTTCTTCCCC GTAGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGGTTGTGGC GGTGGTGGTGCTGAT GGTAGTGGAGGA--- 315 GAACCGCCAGTGACA CGGCAGTTCTTCCCC GTAGACGACCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGGTACTGAT GGTGGTGGAGGA--- 315 GAGGCGCCAGTGACA CGGCAGTTCTTCCCC TTGGACGATCCCGAA ATGGGGGCCACGTCC GCTGCTGGT---TGT GGCGGTGTTACTGAC KGTAGTATA------ 315

GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCAGAA CTTTCATCGCGTGCT TCCCATCAGAAACCC ATCGAGGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCWGAA MTTTCATCGCKTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAKGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCTTCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCWGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGAGGAGGAGCYGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCWGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCWGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGTGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATAAAAAACCC GTCGAGGTCTCACCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCWGAA MTTTCATCGCTTGCT TCCCATMAAAAACCC RTCGAGGTCTCACCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAAYCWGAA MTTTCWTCGCTTGCT TCCCATMAAAAACCC RTCGAGGTCTCACCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCWCCA 420 GGTGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCWCCA 420 GGWGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGWGGMGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA MTTTCATCGCTTGCT TCCCATCAAAAACCC RTCGAGGTCTCACCA 420 GGWGGMGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420 GGAGGAGGAGCTGST TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420 GGAGGAGGAGCTGST TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420 CGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCY GTCGAGGTCTCGCCA 420 GGAGCTGGGGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAA TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCT GTCGAGGTTTCTCCA 420 CGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTCGCT TCCCATCAAAAACCC GTCGAGGTCTCGCCA 420 GGAGGAGGAGCTGGT TTTCCTAGGGCTCAC TGGGTTGGAGTCAAG TTTTGCCAATCTGAA ATTTCATCGCTTGCT TCCCATCAAAAACCC GTCGAGGTCTCACCA 420

D16L	TCACAACCGTTGAAG AAGAGCCGG 444
F60SS	TCACAACCGTTGAAG AAGAGCCGG 444
SL8 201S	TCACAACCGTTGAAG AAGAGCCGG 444
E 207 S	TCACARCCGTTGAAG AAGAGCCGG 444
E 2L	TCACARCCGTTGAAG AAGAGCCGG 444
DROT 41S	TCACAACCGTTGAAG AAGAGCCGG 444
ES	TCACAACCGTTGAAG AAGAGCCGG 444
MIDC 710S	TCACAACCGTTGAAG AAGAGCCGG 444
MAN 601S	TCACAACCGTTGAAG AAGAGCCGG 444
MAN 713L	TCACAACCGTTGAAG AAGAGCCGG 444
COLO	TCACAACCGTTGAAG AAGAGCCGG 444
PA 4S	TCACAACCGTTGAAG AAGAGCCGG 444
TSH	TCACAGCCGTTGAAG AAGAGCCGG 444
KRAP 5S	TCACAACCGTTGAAG AAGAGCCGG 444
KRAP 12L	TCACAACCGTTGAAG AAGAGCCGG 444
CON 20S	TCACAACCGTTGAAG AAGAGCCGG 444
DEN 20S	TCACAACCGTTGAAG AAGAGCCGG 444
DEN 54L	TCACAACCGTTGAAG AAGAGCCGG 444
TJ 30L	TCACAACCGTTGAAG AAGAGCCGG 444
TJ 29S	TCACAACCGTTGAAG AAGAGCCGG 444
CHAM 4L	TCACAACCRTTGAAG AAGAGCCGG 444
WED 2S	TCACAACCGTTGAAG AAGAGCCGA 444
DIF	TCACAACCGTTGAAG AAGAGCCGG 444
PAN 2S	TCACAACCGTTGAAG AAGAGCCGG 444
SELECTION	

Figure B1: APETALA2 nucleotide alignment. Alignment of DNA sequences for exon 1 of APETALA2 obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Sequences for the individuals, TJ 29S and TJ 30L were found to be identical at this locus. Sites that show evidence of trans-specific evolution in the Turnera subseries are underlined and starred in red. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a " + " or "-", suggesting the action of positive/diversifying and negative selection, respectively. The length of the alignment (bp) is given in the right-most column (444 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).
F60SS
SL8 201S
E 207 S
DROT 41S
ER
MIDC 710S
MAN 601S
COLO
PA 4S
TSH
KRAP 5S
CON 20S
DEN 20S
GRAN 9S
TJ 29S
WED 2S
PAN 2S
CUN
CC
OCC
ORI
OC 139 S
QUACO1
VEL
AUR
BAH
PCARO
PMOR 137S
VIS
IS
NAN
PSAR
PREV
PLIC
PDUART 1S EOD

SELECTION

ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCССТАСС GGAGGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC GTCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTA ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCССТАСС GGACGGGAGCTTACC АTСТАТСТСТАТСТС TTTTCTATTATTGCG GTCTTCССАTTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC GTCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCССTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCССАTTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTСАТССССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTСTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 $------\quad-\quad$ ATGTCATCCCCTACC GGACGGGTGGCTACC ATC------TATCTC TTTTCTATTATTACA ATCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105
 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCССТАMC GGACGGGAGCTTACC ATCTATCTCTTTCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCTTCCCCTACC GGACGGGAGCTTACC ATCTATCTCTAYCTC TTTTCTATTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTСТТССССТАСС GGACGGGAGСTTACC АТСТАТСТСТАТСТС TTTTСТАTTACTGTG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGCCATCCTCTACA TGGCTGGTGCCTAAC ATC-_-_--TATCTT TTTTTTATTATTACA ATCTTCACATTTCTT GCATCAGCCAATAAC TCCTTGAAGTTTGAT 105 ATGCCATCCTCTACG TGGCTGGTGCCTAAC ATC------TATCTT TTTTCTATTATTACA ATCTTCCCATTTCTT GCATCAGCCAATAGC TCCTTGAAGTTTGAT 105

\qquad
 -------------- --------------- --------------- ---------------- -- TCCTTGAAGTTTGAT 105

F60SS
SL8 201S
E 207 S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4 S
PA 4
TSH
KRAP 5S
KRAP 5S
CON 20S
DEN 20S
GRAN 9S
TJ 29S
WED 2S
PAN 2S
CUN
OCC
ORI
TOC 139S
QUACO1
VEL
AUR
BAH
PCARO
PMOR 137S
VIS
NAN
PSAR
PREV
PLIC
PDUART 1S EOD

SELECTION

CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTAGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTGGGCAACATG TACAGAGTCCATGTC ATCAATGGCTTCAGC AGCAATGACATGCCA TTTTTACTTCGTTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTCGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGTAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CCTTTTGGCAACATG TACAGAGTTCATGTG ATCAACGGCTTCAGC AGCAATGACCAACCA TTGCTACTTCATTGT TGGTCAAGTGATGAC GACCTGGGGCACCAT 210 CTCTTCGGCAACTTA TACAGAGTTCATGTG ATCAATGGCTTCAGC AGCAATGACCAGCCA TTTTTACTTCATTGT TGGTCAAGTGATAAC GACCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СTСTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CCCTTTGGCAATCTT TACAGAGTTTATGTG ATCAATGGCTTTAGC AGCAATGACCAGCCA TTGTTACTTCATTGC TGGTCAAGTGATGAT GCCCTAGGTCACCAT 210 CCCTTGGGCAACTTG TACAGAGTTCATGTG ATCAATGGCTTTAAT AGCAATGACCAGCCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGGCACCAT 210 CCCTTGGGCAACTTG TACAGAGTTCATGTG ATCAATGGGTTTAGT AGCAATGACCAACCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGGCACCAT 210 CCCTTTGGCAACGTG TACAGAGTTCATGTG ATCAATGGCTTTAGC AGCAATGACCAGCCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGTCACCAT 210 CССTTTGGCAACGTG TACAGAGTTCATGTG ATCAATGGCTTTAGC AGCAATGACCAGCCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGTCACCAT 210 CCCTTTGGCAACGTG TACAGAGTTCATGTG ATCAATGGCTTTAGC AGCAATGACCAGCCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGTCACCAT 210 CССTTGGGCAACTTG TACAGAGTTCATGTG ATCAATGGCTTTAGT AGCAATGACCAGCCA TTGTCAATTCATTGC TGGTCAAGTGATGAT GACCTGGGGCACCAT 210 CCCTTGGGCAACTTG TACAGAGTTCATGTG ATCAATGGCTTTAGT AGCAATGACCAGCCA TTGTTAATTCATTGC TGGTCAAGTGATGAT GACCTGGGGCACCAT 210 СССТTTGGCAACAAG TACAGAGTTCATGTG ATAAATGGCTTCAGC AGCAATGACCAGCCA TTGTTACTTCATTGC TGGTCAATTGATGAC GATCTGGGGCAACAT 210
F60SS
SL8 201S
E 207S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4S
TSH
KRAP 5S
CON 20S
DEN 20S
GRAN 9S
TJ 29S
WED 2S
PAN 2S
CUN
OCC
ORI
TOC 139S
QUACO1
VEL
AUR
BAH
PCARO
PMOR 137S
VIS
PNAN
PSAR
PREV
PLIC
PDUART $1 S$
EOD
SEIECTON

AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGG GGCGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AAGCTCTACATTGGT GGAGACTTTAGCTTC CACTTTGGCCTCCGG ATTATACCTCCCGCT ACCCGCTTCTGGTGT GACATGAACAGGGGC CCAAAATATATTCCT 315 AGCCTCTACATTGGC GGAGAGTTTAACTTC CACTTTGGCCTCCGC ATTATACCTCCCTCT ACACGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCC 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCATTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACAATGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCATTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCATTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGTCTATACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCATTTCTGGTGT GACATGAAGCGCGGC CCAAAATATATTCCT 315 AGCCTCTATATTGGC GAAGACTTCAACTTC CACTTCGGCCTCAGG ATTATACCTCCTTCT ACCCGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCT 315 AGCCTCTACATTGGA GAAGACTTTAACTTC CAGTTCGGCCTCAGG ATTATACCTCCGTCA ACCCATTTCTGGTGT GACATGAACCAGGGC CGAAAATATATTCCT 315 AGCCTCTACATTGGA GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCGTCA ACCCATTTCTGGTGT GACATGAACCGGGGC CGAAAATATATTCCT 315 AСАСТСTACATTGGC GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCT 315 AСАСТСTACATTGGC GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCT 315 ACACTCTACATTGGC GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCT 315 AGCCTCTACATTGGA GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCGTCA ACCCATTTCTGGTGT GACATGAACCGGGGC CGAAAATATATTCCT 315 AGCCTCTACATTGGA GAAGACTTTAACTTC CACTTCGGCCTCAGG ATTATACCTCCGTCA ACCCATTTCTGGTGT GACATGAACCGGGGC CGAAAATATATTCCT 315 AACCTCTGCCTTGGC GGAGACTTCAGTTTC CACTTTGGCCTCAGG ATTATACCTCCCTCT ACGCATTTCTGGTGC GACATGAACCGGGGC CCAAAATATCTTCAT 315
F60SS
SL8 201S
E 207S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4S
TSH
KRAP 5S
CON 20S
DEN 20S
GRAN 9S
TJ 29S
WED 2S
PAN 2S
CUN
OCC
ORI
TOC 139S
QUACO1
VEL
AUR
BAH
PCARO
PMOR 137S
VIS
PNAN
PSAR
PREV
PLIC
PDUART $1 S$
EOD
SEIETI

CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGCCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTRCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGT TATTGGCGGGGACAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAGGTG TTGCATCTGTGCAGC CACACGCAACAATGT TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTGAGTGTGTTT GAGGAGGATGAGGTG TTGCATTTGTGCAGC AAGACGAAGCAATGT TATTGGCGTGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CGAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CGAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CGAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CGAGTTAGTGTGTTT GAGGAGGAWGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGAGTGTTT GACGAGGATGAGGTG TTGCATTTGTGCAGC CAGACGCAGCAATGT TATTGGCGAGGGCAA GATAACGGACTATAT TTCTGCAATGACAAC 420 CAAGTTTCTGTGTTT GAAGAAGATGAGGTG TTGCATTTGTGCAGC CATACACAGCAATGT TATTGGCGAGGGCAA GATAACGGACTCTAT TTCTCTAATGATAAC 420 CAAGTTTCTGTGTTT GAAGAATATGAGGTG TTGCATTTGTGCAGC CATACGCAGCAATGT TATTGGCGAGGGCAA GATAAGGGACTCTAT TTCTCTAATGATAAC 420 CAAGTTACTGTGTTT GAAGAGGATGAGGTG TTGCATTTGTGTAGC CACACGCAGCAATGT TATTGGCGAGGGCAA GATAACGGACTGTAT TTCTGCAATGATAAC 420 CAAGTTACTGTGTTT GAAGAGGATGAGGTG TTGCATTTGTGTAGC CACACGCAGCAATGT TATTGGCGAGGGCAA GATAACGGACTGTAT TTCTGCAATGATAAC 420 CAAGTTACTGTGTTT GAAGAGGATGAGGTG TTGCATTTGTGTAGC CACACGCAGCAATGT TATTGGCGAGGGCAA GATAACGGACTGTAT TTCTGCAATGATAAC 420 CAAGTTTCTGTGTTT GAAGAAGATGAGGTG TTGCATTTGTGCAGC CATACACAGCAATGT TATTGGCGAGGGCAA GATGACGGACTCTAT TTCTCTAATGATAAC 420 CAAGTTTCTGTGTTT GAAGAAGATGAGGTG TTGCATTTGTGCAGC CATACACAGCAATGT TATTGGCGAGGGCAA GATAACGGACTCTAT TTCTCTAATGATAAC 420 CAAGTTACTGTTTTT GACGAGGATGAGGTT TTGCATTTGTGCAGC CGCACCCAGCGATGT TACTGGCGGGGGCAA TACGACGGACTCTAT TTTTCCAATGATAAC 420

MIDC 710S	TCСТССТАTTTCAAG TTGTATGACTGG
MAN 601S	TCCTCCTATTTCAAG TTGTATGACTGG 447
COLO	TCCTCCTATTTCAAG TTGTATGACTGG 447
PA 4S	TССТССТАTTTCAAG TTGTATGACTGG 447
TSH	TCCTCCTATTTCAAG TTGTATGACTGG 44
KRAP 5S	TCCTCCTATTTCAAG TTGTATGACTGG 447
CON 20S	TCCTCCTATTTCAAG TTGTATGACTGG 447
DEN 20S	TCCTCCTATTTCAAG TTGTATGACTGG 447
GRAN 9S	TССТССТАTTTCAAG TTG--------- 447
TJ 29S	TCCTCCTATTTCAAG TTGTATGACTGG 447
WED 2S	TCСТССTATTTCAAG TTGTATGACTGG
PAN 2S	TCCTCCTATTTCAAG TTGTATGACTGG 44
CUN	TCCTCCTATTTCAAG TTGTATGACTGG 447
OCC	TCCTCCTATTTCAAG TTGTATGACTGG 44
ORI	TCCTCCTATTTCAAG TTGTATGACTGG 447
TOC 139S	TCCTCCTATTTCAAG TTGTATGACTGG 44
QUACO1	TCCTCCTATTTCAAG TTGTATGACTGG 447
VEL	TCCTCCTATTTCAAG TTGTATGACTGG 447
AUR	TCCTCCTATTTCAAG TTGTATGACTGG 447
BAH	TCCTCCTATTTCAAG TTGTATGACTGG 447
PCARO	TССТССТАTTTCAAG TTGTATGACTGG
PMOR 137S	TCCTCCTATTTCAAG TTGTATGACTGG 447
VIS	TССТССТАTTTCAAG TTG--------- 447
PNAN	TCCTCCTATTTCAAG TTGTATGACTGG 447
PSAR	TCCTCCTATTTCAAG TTGTATGACTGG 447
PREV	TCCTCCTATTTCAAG TTGTATGACTGG 447
PLIC	TTCTCCTATTTCAAG TTG---------447
PDUART 1S	TССТССТАТTTCAAG TTG--------- 44
EOD	TCCTCCTATTTCAAG TTGTATGACTGG 447
SELECTION	4

Figure B2: Tssta1 nucleotide alignment. Alignment of DNA sequences for Tsstal obtained from 34 individuals from the genus, Turnera. Because Tsstal is only represented on the dominant S-haplotype, sequences were only obtained from short-styled and short-homostyled individuals. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) MIDC 710S, DROT 41S, COLO, and PA 4S; 2) DEN 20S and CON 20S; 3) MAN601S and ES; 4) OCC, CUN, and ORI; and 5) PSAR and PNAN. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to plant self-incompatibility domain family S 1 according to BLAST searches is indicated by arrows at the base of the alignment $(\boldsymbol{\uparrow})$. The length of the alignment (bp) is given in the right-most column (447 bp , total, representing almost the entire gene). The alignment is sectioned into groups of 15 bases (or 5 codons).

F60SS
SL8 201S
E 207 S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4S
TSH
KRAP 5S
CON 20S
DEN 20S
TJ 29 S
ED 2S
PAN 2 S
SELECTION

ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGAGGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC GTCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTA ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC GTCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCСССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGTGGCTACC ATC------TATCTC TTTTCTATTATTACA ATCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105

CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTAGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTCTTCGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGTAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CСTTTTGGCAACATG TACAGAGTTCATGTG ATCAACGGCTTCAGC AGCAATGACCAACCA TTGCTACTTCATTGT TGGTCAAGTGATGAC GACCTGGGGCACCAT 210 СТСТTCGGCAACTTA TACAGAGTTCATGTG ATCAATGGCTTCAGC AGCAATGACCAGCCA TTTTTACTTCATTGT TGGTCAAGTGATAAC GACCTGGGGCACCAT 210 $\frac{C T C T T C G G C A A C T T A ~ T A C A G A G T T C A T G T ~}{-}$

F60SS
SL8 201S
207S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4 S
TSH
KRAP 5S
CON 20S
DEN 20S
TJ 29S
WED 2S
PAN 2 S
SELECTION

CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCGAGCAATGAC GATCTGGGGCACCAT 210

F60SS
SL8 201S
E 207 S
DROT 41S
ER
MIDC 710S
MAN 601S
COLO
PA 4S
TSH
KRAP 5S
CON 20 S
DEN 20S
TJ 29S
NED 2S
PAN 2S
SELECTION

AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AAGCTCTACATTGGT GGAGACTTTAGCTTC CACTTTGGCCTCCGG ATTATACCTCCCGCT ACCCGCTTCTGGTGT GACATGAACAGGGGC CCAAAATATATTCCT 315 AGCCTCTACATTGGC GGAGAGTTTAACTTC CACTTTGGCCTCCGC ATTATACCTCCCTCT ACACGTTTCTGGTGT GACATGAACCGGGGC CCAAAATATATTCCC 315

F60SS
SL8 201S
E 207S
DROT 41S
ES
MIDC 710S
MAN 601S
COLO
PA 4 S
TSH
KRAP 5S
CON 20S
DEN 20S
TJ 29S
WED 2S
PAN 2S
SELECTION

AAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGCCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG TTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAGGTG TTGCATCTGTGCAGC CACACGCAACAATGT TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTGAGTGTGTTT GAGGAGGATGAGGTG TTGCATTTGTGCAGC AAGACGAAGCAATGT TATTGGCGTGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420

F60SS	TССТССТАTTTCAAG TTGTATGACTGG
SL8 201S	TCCTCCTATTTCAAG TTGTATGACTGG 447
E 207S	TССтССтATTTCAAG TTGTATGACTGG 447
DROT 41S	TCCTCCTATTTCAAG TTGTATGACTGG 447
ES	TCСTССТАTTTCAAG TTGTATGACTGG 447
MIDC 710S	TCCTCCTATTTCAAG TTGTATGACTGG 447
MAN 601S	TCСTССтATTTCAAG TTGTATGACTGG 447
COLO	TССТССтATTTCAAG TTGTATGACTGG 447
PA 4S	TCCTCCTATTTCAAG TTGTATGACTGG 44
TSH	TССТССтATTTCAAG TTGTATGACTGG 447
KRAP 5S	TCCTCCTATTTCAAG TTGTATGACTGG 447
CON 20S	TCCTCCTATTTCAAG TTGTATGACTGG 44
DEN 20S	TCCTCCTATTTCAAG TTGTATGACTGG 447
TJ 29S	TCCTCCTATTTCAAG TTGTATGACTGG 447
WED 2S	TССтССтATTTCAAG TTGTATGACTGG 447
PAN 2S	TССТССтATTTCAAG TTGTATGACTGG 447
SELECTION	4

Figure B3: Tssta1 nucleotide alignment with a reduced number of taxa. Alignment of DNA sequences for Tsstal obtained from 16 individuals from the genus, Turnera. Because Tsstal is only represented on the dominant S-haplotype, sequences were only obtained from short-styled and short-homostyled individuals. Base positions showing 100\% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) MIDC 710S, DROT 41S, COLO, and PA 4S; 2) CON 20S and DEN 20S; and 3) MAN601S and ES. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a " + " or " - ", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to plant self-incompatibility domain family S1 according to BLAST searches is indicated by arrows at the base of the alignment $(\boldsymbol{\uparrow})$. The length of the alignment (bp) is given in the right-most column (447 bp , total, representing almost the entire gene). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16I
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA S4
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
PAN 2 S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA S4
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
PAN 2 S
SELECTION

ACGCCCCGCCGCTCC CGCCGCCGTCTCCTT GTCCCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCTCCGCCGCTCC CGCTGCCATCTCCTT GTCGCCCCAGCTGCC CTGTCTCTC---TCC TCCTCCCTGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCCCCGCCGCTCC CGCCGCCGTCTCCTT GTCCCCССAGCTCCC СTGTСTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCYCCGCCGCTCC CGCTGCCRWCTCCTT GTCCCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA YCCGCCATTCCCTCC 105 ACGCYCCGCCGCTCC CGCTGCCRWCTCCTT GTCCCCCCAGCTCCC СTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105
 ACGCCCCGCCGCTCC CGCTGCCGTCTCCTT GTCCCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 (-TCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 CGCCCGCCGCTCC CGCTGCCGTCTCCTT GTCCCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCCCCGCCGCTCC CGCTGCCGTCTCCTT GTCCCCCCAGCTCCC СTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ------------- --------------- ------------------TСТСТС---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCTCCGCCGCTCC CGCTGCCATCTCCTT GTCCCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCTCCGCCGCTCC CGCTGCCATCTCCTT GTCGCCCCAGCTGCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTTC 105
 ACGCTCCGCCGCTCC CGCTGCCGTCTCCTT GTCСССССАTСTССС СТGTСТСTC---TCC TССTССССGGACCGG AGGCTTCTTTCTCTA TCCGCCATCCCCTCC 105 ------------ ------------- ---1 TCCTCCCGGNCCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ----------------------------------TCTCTC---TCC TCCTCCCCGGGCCGG AGGCTTCTTTCTCTA TCCGCCATTCCCTCC 105 ACGCGCCGCCGCTCC CGCTGCCGTCTCCTT GTCTCCCCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGRCCGG AAGCTTCTTTCTCTA TCCGCCATTCCCTCG 105 (------------------------------------TC--TCC TCCTCCCCGGRCCGG AAGCTTCTTTCTCTA TCCGCCATTCCCTCG 10 RCGCWCCGCCGCTCC CGCCACCRTCTCCTT GTCTCCYCAGCTCCC CTGTCTCTC---TCC TCCTCCCCGGACCGG AGGCTGCTTTCTCTA ------------TCC 105 CСGCTCCGCCGCACC CGCTGCCATCTCCTT GTCGCCCCAGCTCCC CTGTATCTCTCCTCC TCCTCCCCGGACCGG AGGCTGCTTTCTCTA CACGCCATTCCCTCC 105

CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCTCTCA GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC RCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCССTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCYCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC RCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCTCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTASC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCCGTGGCAGCTGGC GGSACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCCGTGGCAGCTGGC GGGACCTTGATTACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGAC GGGACCTTGATGACC AATTCC 156 CCCCGGAGGCTCTCC GCCGTCGCCGCTGGC GGGACCTTGATGACC AATTCG 156 CCCCGGAGGCCCTCC GCTGTGGCAGCTGGC GGGACCTTGACGACC AATTCG156

Figure B4: LEJ2 nucleotide alignment. Alignment of DNA sequences

for exon 1 of $L E J 2$ obtained from 23 individuals from the genus,
Turnera. No sequence information was obtained for the individual, DIF (T. diffusa). Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) SL8 201S and D16L; 2) MAN 601S, MAN 713L, and ES; and
3) COLO, DROT 41S, and PA 4S. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The length of the alignment (bp) is given in the right-most column (156 bp, total). The alignment is sectioned into groups of 15 bases (or 5 codons).

COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S SELECTION

GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG (-------------1GGCG GCGGCGACAAGGAAG AGAACAACAGCAGCA GGAGGAGGGGGCATG GATAACGACAGGCCC TACAAGGGGATAAGG GRAAGCGGGGTGGAA AAAGAGATCGTGGCG GCGGCGACAAGGAAG AGAACAACAGCAGCA GGAGGAGGGGGCATG GAWAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACAACAGCTGCA GGAGGAGGGGGCATG GATAACGACAGGCCC TACAAGGGGATA AGG GAARGCGGGGTGGAA AAAGAGATCGTGGCG GCGGCGACAAGGAAG AGAACAACAGCAGCA GGAGGAGGGGGCATG GATAACGACAGGCCC TRCAAGGGGATA AGG GAAAGCGGGGTGGAA AAAGRGATSGTGGCG GCGGCGACAAGGAAG AGARCAACAGCAGCA GGAGGAGGGGGCWTR GAWAACGACAGGCCC TACAAGGGGATA AGG GAAAGCGGGGTGGAA AAAGAGATSGTGGCG GCGGCGACAAGGAAG AGAACAACAGCAGCA GGAGGAGGGGGCATG GATAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG ---AGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG ------------GAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAGGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACAACAGCTGCA GGAGGAGGGGGCATG GATAACGACAGGCCC TACAAGGGGATA AGG GAAAGCAGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGARCAACAGCARCA GGAGGAGGGGGCTTG GAAAACGACAGGCCC TACAAGGGGATA AGG GAAAGCGGGGTGGAA AAAGAGATSGTGGCG GCGGCGACAAGGAAG AGARCAACAGCARCA GGAGGRGGGGGCWTR GAWAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGGGCAACA---ACA GTAGGAGGGGGAATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGGGCAACA---ACA GTAGGAGGGGGAATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACGACAGCAGGA GGAGGAGGGGGCATC GAAAACGACAGGCCC TACAAGGGGATA AGG GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACGACAGCAGGA GGAGGAGGGGGCATC GAAAACGACAGGCCC TACAAGGGGATA AGG GAAAGCGGGGTGGAA AAAAAGATGGTGGCG GCGGCGACAAGGAAG AGAGCAACA---ACA GGAGGAGGGGGCATG GAAAACGACAGGCCC TACAAGGGGATAAGG GAAAGCGGGGTGGAA AAGGAGATGGTGGCG GCGGCGACAAGGAAG AGAACAACA------ GGAGGAGGG---ATG GAAAACGACAGGCCC TATAAAGGGATA AGG ---------GTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACAACAGCAGCA GGAGGAGGG---TTG GAAAACGACAGGCCC TATAAAGGGATAAGG 10. GAAAGCGGGGTGGAA AAAGAGATGGTGGCG GCGGCGACAAGGAAG AGAACAACA---GCA GGAGGAGGGGGGATG GAAAACGACAGGCCC TATAAGGGATA AGG 105 ATGAGGAAGFGGGGC ATGAGGAAGIGGGGC
ATGAGGAAGTGGGGC ATGAGGAAGTGGGGC ATGAGGAAGrGGGGC AtGAGGAAGTGGGGC ATGAGGAAGTGGGGC ATGAGGAAGTGGGGC ATGAGGAAGTGGGGC AtGAGGAAGTGGGGC ATGAGGAAGIGGGGC ATGAGGAAGIGGGGC AtGAGGAAGTGGGGC AtGAGGAAGTGGGGC ATGAGGAAGIGGGGC ATGAGGAAGTGGGGC ATGAGGAAGIGGGGC ATGAGGAAGIGGGGC AtGAGGAAGTGGGGC ATGAGGAAGTGGGGC ATGAGGAAGIGGGGC ATGAGGAAGFGGGGC ATGAGGAAGFGGGGC ATGAGGAAGIGGGGC

ATGAGGAAGTGGGGC AAGTGGGTGGCTGAG ATTAGGGACCCAAC AAAAGTCGAGATT

FGFTCGGGCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT GGFTCGGGFCTPAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTCGGGTCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGETCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTCGGGFCTIAT TCGACTCCGGTGGCG GCGGCGAGGGCCTAT 210 GGGTCGGGFCTrAT TCAACTCCGGTGGCG GCGGCGAGGGCCTAT 210 GGGTCGGGECTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGFTCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGCTCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTCGGGTCTTAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 TGGFTCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 rGGFTCGGGECTIAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGFTCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGFTCGGGFCTIAT TCGACTCCGGTGGCG GCGGCGAGGGCCTAT 210 GGGTCGGGECTrAT TCGACTCCGGTGGCG GCGGCRAGGGCCTAT 210 GGFTCGGGPCTrAT TCGACTCCGGTGGCG GCRGCAAGGGCCTAT 210 GGFTCGGGFCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTCGGGFCTrAT TCCACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTCGGG[CTIAT TCCACTCCGGTGGCG GCGGCAAGGGCCTAT 210 rGGFTCGGTPCTIAT TCGACTCCGGTGGCG GCGGCGAGGGCCTAT 210 GGFTCGGTFCTएAT TCGACTCCGGTGGCG GCGGCGAGGGCCTAT 210 rGGFTCGGGPCTrAT TCGACTCCGGTGGCG GCGGCAAGGGCCTAT 210 GGGTTGGGECTIAT TCGACTCCCGTGGCG GCGGCGCGGGCCTAT 210 GGGTCGGGFCTPAT TCCACTCCGGTGGCG GCGGCAAGGGCCTAT 210 rGGCTTGGGETTAT TCGACTCCGGTGGCG GCRGCGCGGGCCTAT 210

D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTIO

GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTYAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGYTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGGCATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC YTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTYAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315
 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCR 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCRAGGCTYAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA CCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTSCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA CCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTYTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCGTA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTYTTT TACTTGCGGGGGCCG TCTGCRAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCGTA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTTAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGAGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCAGGGGAGAGCGTA GCTGGC---GGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTGCGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGTATA GCTGGTGCCGGGGCA TGCAGCGACATGTCG 315 GACACGGCGGTCTTT TACTTACGGGGGCCG TCTGCGAGGCTCAAC TTCCCGGAGTTCCTG GCCGGGGAGAGCATA GCTGGC---GGGGCA TGCAGCGACATGTCG 315

GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACA GCTTTGATTAAC--- ---CACCACCACCAC CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACA GCTTTGATTAAC--- ---CACCACCACCAC CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CCCCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTMAC--- CMCCACCACCAYCAT CATCAYCATCAACAA 420
 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAY CATCAYCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACA GCTTTGATTAAC--- ---CACCACCACCAC CAYCACCATCAMCAV 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GAYGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCAT---CAA 420 GCGGCTTCTATAAGG AARAGAGCCACCRAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAY CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAC CATCATCACCATCAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAACCAC CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAACCAC CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAACCAC CACCAYCAYCACCAT CATCACCATCAMCAR 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAACCAC CACCACCACCACCAT CATCACCATCAACAA 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAT CATCACCATTAA--- 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCCCTTGAGACC GCTTTGATTAAC--- CACCACCACCATCAC CACCACCAC------ 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTCGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CACCACCACCACCAC CACCACCAC------ 420 GCGGCTTCTATAAGG AAGAGAGCCACCGAG GTTGGAGCCAGGGTT GATGCTCTTGAGACC GCTTTGATTAAC--- CATCACCATCACCAY CACCAC------CAA 420

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

CAACACCAC---AAC CATAACCACCACCAC CGCCGCAACCACCAG GAGGAGCAGTATTAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAACAC---AAC СТTAACCACCACCAC CGC---CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAMCAC---AAC CWTAACCACCACCAC CGC---CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CACCACCAC---MAY CATMGCCGCCACCAC CRC---CATCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 САССАССАС---AAC CATAGCCGCCACCAC CAC---СATCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAACAC---AAC СTTAACCACCACCAC CGC---CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAACAC---AAC CWTAACCACCACCAC CGC---CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAACAC---AAC CTTAACCACCACCRC CGC---CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 САССАССАС---AAC САТААССАССАССАС CGCCGCAACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACACCAC---AAC СATAACCACCACCAC CGCCGCCACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACACCAC---AAC САTAACCACCACCAC CGCCGCCACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACACCAC---AAC СATAGCCGCCGCCAC CAC---CATCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT-----AGTAGT AGTAGTGATAATAGT 525 CAACATCAC---AAC CATAACCACCAC--- ------CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAWCAC---AAC CWTAACCACCACCAC ---CGCCGCCACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CAACAACAC---AAC CTTAACCACCAC--- ---------CACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 СААСАССАС---AAС САТААССАССАССАС ---------------- CAGGAGCAGTATAAT CAAAATAGTCACGGG GGT-------AGTAGT AGTAGTGATAATAGT 525 CAACACCAC---AAC CATAACCACCAC-_- _-_---_--CACCAG GAGGAGCAGTATAAT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CRACACCACGACAGC CATAACCATCAC--- ------CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCAAGGG GGT------AGTAGT AGTAGTGATAATAGT 525 CGACACCACGACAGC CATAACCATCAC--- ------CACCACCAG GAGGAGCAGTATAAT CAAAATAGTCAAGGG GGT------AGTAGT AGTAGTGATAATAGT 525
 CAC---------AGC CATAACATCCACCAC CAC------------ CAGGAGCAGTATAAT CAAAATATTCATGGG GGTGGTAGTAGTAGT AGTAGTGATAGTAGT 525 CAC---------AGT CGTAACCACCACCAC CATCATCACCACCAA CAAGAGCAGTATATT CAAAATAGTCACGGG GGT------AGTAGT AGTAGTGATAATAGT 525

D16L	ATTCAAGAAAATAAC	TCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAG	621
F60SS	ATTCAAGAAAATAAC AAC	AACTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
SL8 201S	ATTCAAGAAAATAAC AAC	ААСТССАAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
E 207S	ATTCAAGAAAATAAC AA	AACTCCAAAGCTATT	GATACGACAGAG				621
E 2L	ATTCAAGAAAATAAC AAC	ААСТССАAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
DROT 41S	ATTCAAGAAAATAAC AAC	ААСТССАAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
ES	ATTCAAGAAAATAAC AA	-TCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTYGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
MIDC 710S	ATTCAAGAAAATAAC AAC	AACTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
MAN 601S							621
MAN 713L	ATTCAAGAAAATAAC AAC	AACTCCAAAGCTATT	GAT				621
COLO	ATTCAAGAAAATAAC AAC	AACTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAA		621
PA 4S	ATTCAAGAAAATAAC A	-TCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
TSH	ATTCAAGAAAATARC AAC	AACTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
KRAP 5S	ATTCAAGAAAATAAC A	TCCTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTTGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
KRAP 12L	ATTCAAGAAAATAAC AAC	TCCTCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTYGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
CON 20S	ATTCAAGAAAATAAC AA	-TCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
DEN 20S	ATTCAAGAAAATAAC	---TCCAAAGCTATT	GATACGACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAT	AAGGTG	621
DEN 54L	ATTCAAGAAAATAAC AAC	-TCCAAAGCTATT	GATACGGCAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAT	AAGGTG	621
TJ 30L	ATTCAAGAAAATAAC A	TCCTCCAAAGCTATT	GATACTACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
TJ 29S	ATTCAAGAAAATAAC AAC	TCCTCCAAAGCTATT	GATACTACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAGC	AAGGTG	621
CHAM 4L							62
WED 2S	ACTCATGAAAATAGC AA	------AAAGCTATT	GATACTACAGAGTTG	AAGTCGTCCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621
DIF	ACTCAAGAAAATAAC AACAGCAGCAACAAC	ACCACCAAAGCTATT	GATACTACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAG	621
PAN 2S	ACTCAAGAAAATAAC AAC	AССАССАAAGCTATT	GATACTACAGAGTTG	AAGTCGTTCGTGGAG	CGGGTTGACTTGAAC	AAGGTG	621

Figure B5: AP2D nucleotide alignment. Alignment of DNA sequences for $A P 2 D$ obtained from 24 individuals from the genus, Turnera. Base positions
showing 100% identity across taxa are shown in blue. No identical sequences were identified in this alignment. An early stop codon, identified in the sequenced obtained for CHAM 4L (T. chamaedrifolia) is shown in red. This stop codon was removed from all analyses, however. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to a plant-specific AP2 DNA binding domain according to BLAST searches is indicated by arrows at the base of the alignment ($\boldsymbol{\varphi}$). Conserved residues that form the DNA binding site are indicated by boxes. The length of the alignment (bp) is given in the right-most column (621 bp , total, representing almost the entire gene). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

SELECTION

GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCACA CCGCCGGCCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCC CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGSCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGRCCATACCT TCACTSGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGSCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCMCA CCGCCGGCCATACCT TCACTSGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCYCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCY CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTSGCGCCCCTC 105 GCGGCATATTACCAG CTGCCGGTTCCTCCC CCGCCAACC---GTC GCACACTATCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAG CCGCTGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GYACACTACCCGGCC TACTACCAAGCMCCA CCGCCGRCCATACCT TCACTSGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGGCCATACCT TCACTGGCGCCCCTG 105 GCGGCATATTACCAG CCGCCGGTTCCTCCC CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGRCCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAA CCTCCGGCTCCTCCG CCGCCACCC---GTC GCACACTATCCGGCC TACTACCAAACCCCA CCGCCGACCATCCCT TCCCTAGCGCCCCTC 105 GCGGCATATTACCAG CCGCTGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAA CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATRCCT TCACTCGCGCCCCTC 105 GYGGCATATTACCAA CCGCCGGTTCYTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTCGCGCCCCTC 105 GCGGCATATTACCAG CCGCCGGTTCCTCCT CCGCCAACC---GTC GCACACTACCCGGCC TACTACCAAGCCCCA CCGCCGACCATACCT TCACTGGCGCCCCTC 105 GCGGCATATTACCAA CCGCCGGCTCCTCCT CCGCCAGCCGTCGTG GCACACTACCCGGCC TACTACCAAGGCCCA CCGGCGGCAATCCCT TCCCTGGCGGCCCTC 105 GCGGCATATTACCAA CCGCCGGCTGCTCTG CCGCCACCC---GTG GCACACTACCCGGCC TACTACCAAACCCCA CCGCCGACAATCCCT TCCCTTGCGCCCCTC 105 GCGGCATATTACCAA CCGCCGGCTCCTCCT CCGCCAGCCGTCGTG GCACACTACCCGGCC TACTACCAAGGCCCA CAGGCGGCAATCCCT TCCCTGGCGGCCCTC 105

CCGCTTCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGGCG--------- ---GCAGCCCCCGCA GGTTTCGCATCGTAC GGG------------ 210 CCGCTCCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCGACCT TCGCCG-------------GGAGCCCCCGCA GGTTTCGCATCCTAC GTG------------ 210
 CCGCTTCCGSCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGGCG------------- - GCAGCCCCCGCA GGTTTCGCATCGTAC GGG------------ 210
 CCGCTTCCGCCA--- CACCACCACCCTTAN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNGCATCCTAC GTG------------- 210 ССКСТTCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCRACCT TYGSCG---------- ---GSAGCCCCCGCA GGTTTCGCATCCTAC GTG------------- 210 CCGCTCCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCGATNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNGCATCCTAC GTGGCTCCTTAC--- 210 CCGCTCCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGGCG------------- - GCAGCCCCCGCA GGCTTCGCATCGTAC GGG------------- 210 ССТСТTCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGSCG--------- ---GGAGCCCCCGCA GGTTTCGCATCCTAC GTG------------ 210 CCGCTTCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGGCG------------ - GCAGCCCCCGCA GGTTTCGCATCCTAC GTG------------ 210

 CCGCTCCTGCCA--- CACCACCACCCTTAC ATCCCCCAGCGACCT TCGCCG---------- ---GGAGCCCCCGCA GGTTTCGAATCCTAC GTGGCTCCTTAC--- 210 CCGCTTCCGCCA--- CACCACCACCCTTAC ATCCCGCAGCAACCT ACGCCGGCAGCAGGA GCGGCAGCCCCCGCG GGTTTCGCATCGTAC GTGGCGCCTTACGTA 210 CCGCTCCCGCCA--- CACCACCACCCTTAC ATCCCCCAGCAACCT TTGGCG------------- - GCAGCCCCCGCA GGCTTCGCATCGTAC GGG------------- 210 CCGCTTCCGCCA--- CACCACCACCCATAC ATCCCCCAGCAACCT TTGGCG---------- ---GCAGCCCCCGCA GGTTTCGCATCGTAY GGG------------- 210 CCGCTTCCGCCA--- CACCACCACCCATAC ATCCCCCAGCAACCT TTGGCG------------- - GCAGCCCCCGCA GGTTTCGCATCGTAC GGG------------ 210

 CCGCTTCCGCCA--- CACCACCACCCTTAC ATTCCCCAGCAACCT CCGCCGCCA------ ---GCCGCCCCCGCG GGTTTCGCATCGTAC GTGGCTCCTTACTTA 210

16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

D16L

F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

Abstract

--------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ----------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACATCTTCCGC GAGTTCCCGGGCTAC 315 -_-------GCTCAG GATCAGGTGCGCACA YTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACMTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCKGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---.----GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCKGGG CTWCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACMTCTTCCGC GAGTTCCCGGGCTAC 315 ------GGGGCTCAG CATCAGGTGCGGACA CTGTTCGTTGCGGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GYTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCKGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTCGCTGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ------GGGGCTCAG GATCAGGTGCGCACT CTGTTCGTTGCAGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 CCACAGGGGGCTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGG CTACCCGATGACGTC AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCAGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ----------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 ---------GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTG AAGGCCCGGGAAATC TACAAYCTCTTCCGC GAGTTCCCGGGCTAC 315 _-_-_-_-_GCTCAG GATCAGGTGCGCACA CTGTTCGTTGCTGGG CTTCCGGAGGACGTG AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCGGGCTAC 315 CCGCAGGGGGCTGAG GATGAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTC AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCRGGCTAC 315 CCACACGGGGGTCAG GATCAGGTGCGCACA CTGTTCGTTGCGGGC CTACCCGATGACGTC AAGGCCAGGGAAATC TACAACCTCTTCCGC GAGTTTCCAGGCTAC 315 CCACTGGGGGCTGAG GATGAGGTGCGCACA CTGTTCGTTGCGGGG CTACCGGAGGACGTC AAGGCCCGGGAAATC TACAACCTCTTCCGC GAGTTCCCAGGCTAC 315

GAATCCTCCAATCTC CGT 333 GAATCCTCCAATCTC CGT 333

Figure B6: $\boldsymbol{R N A B P}$ nucleotide alignment. Alignment of DNA sequences for exon 1 of $R N A B P$ obtained from 23 individuals from the genus, Turnera. No sequence information was obtained for the individual, KRAP 5S (T. krapovickasii). Gaps in the alignment for sequences from DROT 41S (T. scabra) and MIDC 710S (T. scabra) are also present, and are represented by a profusion of undefined bases (N's) at the $135-186 \mathrm{bp}$ and $149-186 \mathrm{bp}$ positions, respectively. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) PA 4S, COLO, and CHAM 4L; and 2) DEN 20 S and MAN 601S. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "_", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to an RNA binding protein with multiple splicing (RBP-MS)-like RNA-recognition motif according to BLAST searches is indicated by arrows at the base of the alignment ($\mathbb{4}$).The length of the alignment (bp) is given in the right-most column (333 bp, total). The alignment is sectioned into groups of 15 bases (or 5 codons).

Abstract

D16L F60SS SL8 201S E 207S E 2L DROT 41S ER MIDC 710S MAN 601S MAN 713L COLO PA 4 S TSH KRAP 5S KRAP 12L CON 20S DEN 20S DEN 54L TJ 30L J 29S CHAM 4L WED 2S DIF PAN 2S SELECTION TTСTTССАССССАА GTCTACCCTTCTGGA ACTGTTTGCCTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGCTTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTСТTССАССССААТ GTСТАСССТTCTGGA ACTGTTTGC CTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTMTGC TTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGCCTGTCA ATCCTTAATGAGGAC AGTIGGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTСТTССАССССААТ GTСТАСССТTСTGGA ACTGTTTGCСTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCKTCTGGA ACTGTTTGCCTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGCTTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGCTTGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTСТTССАССССААТ GTСТАСССТTCTGGA ACTGTTTGC TTKTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGC TTСТТССАССССААТ GTCTACCCTTCTGGA ACTGTTTGC TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTYTGC ITCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGC TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGC TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTTTGC TTCTTCCACCCCAAT GTCTACCCTTCTGGA ACTGTMTGC TTCTTCCAССССААТ GTCTACCCTTCTGGA ACTGTITGC TTСТТССАССССААТ GTCTACCCTTCTGGA ACTGTTTGC TTCTTCCATCCCAAT GTCTACCCTTCGGGA ACAGTYTGC TTCTTCCATCCCAAT GTCTACCCTTCTGGA ACTGTYTGC TTCTTCCATCCCAAT GTCTACCCTTCGGGA ACTGTTTGC TTCTTCCATCCCAAT GTCTACCCTTCTGGA ACTGTYTGC

TGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 GTCA ATTCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 GTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATYCTTAATGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAATGAGGAC AGT|GGATGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAATGAGGAC AGT|GGATGGAGACCA GCCATCACAGTGAAG CAAATTCTTGTTGGC 105 TGTCA ATCCTTAACGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTGAAG CAAATTCTTATTGGC 105 TGTCA ATCCTTAACGAGGAC AGT|GGGTGGAGACCA GCCATCACAGTAAAG CAAATTCTTATTGGC 105 TGTCA ATCCTTAACGAGGAC AGT|GGATGGAGACCA GCCATCACAGTGAAG CAAATTCTTATTGGC 105 TGTCA ATCCTTAACGAGGAC AGT|GGGTGGAGACCA GCCATCACCGTGAAG CAAATTCTTATTGGC 105

6L	ATCCAG $\overline{\mathrm{GAC}}$ TTGCTG	$\overline{\mathrm{GAC}} \overline{\mathrm{CAG}} \mathrm{CCA} \overline{\mathrm{AAT}} \mathbf{C C T}$	$\overline{\mathrm{GCT}} \overline{\mathrm{GAT}} \mathrm{CCAGCACAA}$	ACTGAGGGTtATCAT	CTTTTTATTCAG	7
F60SS	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	77
SL8 201S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	77
E 207S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACKGAGGGTTATCAT	CTTTTTATTCAG	77
E 2L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACKGAGGGTTATCAT	CTTTTTATTCAG	177
DROT 41S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
ES	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	77
MIDC 710S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTITTTATTCAG	177
MAN 601S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTITTTATTCAG	177
MAN 713L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
COLO	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	77
PA 4S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTITTTATTCAG	17
TSH	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACKGAGGGTTATCAT	CTTTTTATTCAG	77
KRAP 5S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTITTTATTCAG	177
KRAP 12L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACGGAGGGTTATCAT	CTITTTATTCAG	177
CON 20S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
DEN 20S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
DEN 54L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACKGAGGGTTATCAT	CTTTTTATTCAG	177
TJ 30L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	17
TJ 29S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
CHAM 4L	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
WED 2S	ATCCAGGACTTGCTG	GACCAGCCTAATCCT	GCTGATCCAGCTCAA	ACTGAGGGTTATCAT	CTTTTTATTCAG	177
DIF	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	CTITTTATTCAG	177
PAN 2S	ATCCAGGACTTGCTG	GACCAGCCAAATCCT	GCTGATCCAGCACAA	ACTGAGGGTTATCAT	TA	77
SELECTION					\uparrow	

Figure B7: SCE1 nucleotide alignment. Alignment of DNA sequences for exons 3-4 of SCE1 obtained from 24 individuals from the genus, Turnera. All noncoding, intronic sequence information has been excised from the alignment. Boundaries between exons are indicated by "|" symbols in the alignment. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS, D16L, SL8 201S, DROT 41S, ES, MAN 601S, MAN 713L, PA4S, KRAP 5S, CON 20 S, and DEN 20S; 2) E 2L, E 207S, and TSH; and 3) TJ 29S and TJ 30L. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to a Ubiquitin Conjugating enzyme, E2, catalytic domain according to BLAST searches is indicated by arrows at the base of the alignment (\uparrow). The conserved cysteine active site is indicated by a box. Conserved thioester intermediate interaction residues are starred at the top of the alignment. The length of the alignment (bp) is given in the right-most column (177 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTIO

GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCСATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTCTCCTTGAT GACAATCCAGATGAG --ATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GACATGGGTGAAGAA TATTTCTGYGCAAAG 105 ---ATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GAYATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GAYAYGGGTGAAGAA TATTTCTGYGCAAAG 10 ---------ACCATC ACATTAGAACAGATG CGCAAAGTCSATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG RAYATGGGTGAAGAA TATTTCTGTGCAAAG 10 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GACATGGGTGAAGAA TATTTCTGTGCAAAG 105 --ATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GAYATGGGTGAAGAA TATTYCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GACATGGGTGAAGAA TATTTCTGYGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCWGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 10 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTACATTCA GTTTCTCSTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 10 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCSTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 10 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCMTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCGTTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 GCCATATTCACCATC ACATTAGAACAGATG CGGAAAGTCCATTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGCGAAGAA TATTTTTGTGCAAAG 105 ---ATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCGTTCA GTTTCTCCTCTTGAY GACAATCCAGAYGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 105 ---ATATTCACCATC ACATTAGAACAGATG CGCAAAGTCCRTTCA GTTTCTCCTCTTGAT GACAATCCAGATGAG GATATGGGTGAAGAA TATTTCTGTGCAAAG 10

CTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGTTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT СTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCWGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT СTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT СTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCRCATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 TTCACCTGGTAGAT CTGGCTGGWTCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCWGGWTCTGAA CGAGCAAAGCGWACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCWGGATCTGAA CGAGCAAAGCGWACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATAAACAAA GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGCGTACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATAAACAAA GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGAGAACC GGTTCTGATGGTCTT CGTTTGAAAGAGG|GY ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGAGAACT GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 СTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGAGAACT GGTTCTGATGGTCTT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGGCTTCTTGCACTT 210 CTTCACCTGGTAGAT CTGGCTGGATCTGAA CGAGCAAAGAGAACT GGTTCTGATGGTCAT CGTTTGAAAGAGG|GT ATTCACATTAACAAG GGACTTCTTGCACTT 210

D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTIO

GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAACGTTATCAGT GCGCTTGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAACTGGTCCTCTA TCCCCAAGATCTCTT 315

 GGTAAYGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTSTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT З15
 GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315
 GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 RGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAAYGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315
 GGTAACGTTATCAGT GCGCTAGGAGATGAG AAAAAGCGTAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315

 GGTAACGTTATCAGT GCGCTAGGAGATGAC AAAAAGCGAAAAGAA GGTGTTCATGTTCCC TACCGA|GTAGATGAC ACAAGTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAACGTTATCAGT GCGCTAGGAGATGAC AAAAAGCGAAAAGAA GGTGTTCATGTTCCC TACCGAl-----GAC ACAAGTGGTCCTCTA TCCCCAAGATCTCTT 315 GGTAATGTTATCAGT GCACTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAAGTGGTCCTCTA TCCCCAATATCTCTT 315 GGTAATGTTATCAGT GCTCTAGGAGATGAG AAAAAACGAAAAGAA GGTGTGCATGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315
 GGTAACGTTATCAGT GCACTAGGAGATGAG AAAAAGCGAAAAGAA GGTGTGCACGTTCCC TACCGA|GTAGATGAC ACAATTGGTCCTCTA TCCCCAAGATCTCTT 315 -
CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCT GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCY GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCTGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA СTAAAATTCTCACCY GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCWGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CСAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCTGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CСAGCTCCAAAGCAA CTAAAATTCTCACCY GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCWGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCTGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CСАGСТССАAAGCAA СTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCTGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCRGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCTGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA STAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 ---CCAAAGCAA CTAAAATTCTCACCC GGGATTGCTARTGGA TCTGTTAAAGARGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCARCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 -----CCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCARCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCA GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCA GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAACAA CTAAAATTCACACCT GGGATTGCTAATGGA TCTGCTAAAGAAGCA GCAGCATTTTTGAAC CAGAAGCGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCWGCATTTTTGARC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA STAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCAGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420 CCAGCTCCAAAGCAA CTAAAATTCTCACCC GGGATTGCTAATGGA TCTGTTAAAGAAGCA GCWGCATTTTTGAAC CAGACACGAAAG|ATG GTGCCAGTTGGACAG 420
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
DE 2S
SELECTION

CTGTCAATGAGGAAA GTGGCAACCGTTGGG CAATCTGGAAAATTG TGGAGGTGGAAGAGG AGTCATCATCAATGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAGTTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCYGTTGGG CAATCTGGAAARTTG TGGAGRTGGAAGAGG AGTCATCATCARTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAARTTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCWGTTGGG CAATCTGGAAAATTG TGGAGRTGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAARTTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAARTTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAARTTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCYGTTGGG CAATCTGGAAARTTG TGGAGRTGGAAGAGG AGTCATCATCARTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAACCGTTGGG CAATCTGGAAAATTG TGGAGGTGGAAGAGG AGTCATCATCAATGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCYGTTGGG CAATCTGGAAARTTG TGGAGRTGGAAGAGG AGTCATCATCARTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCARCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAACYGTTGGG CAATCTGGAAAATTG TGGAGRTGGAAGAGG AGTCATCATCARTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGGTGGAAGAGG AGCCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGGTGGAAGAGG AGCCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GCTGCAGCTGTTGGA CAATCCGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCWTCRGTTCAAA TGGAAATKGCAGAAA 525 CTGTCAATGAGGAAA GTGGCAGCTGTTGGG CAATCTGGAAAATTG TGGAGATGGAAGAGG AGTCATCATCAGTGG TTGCTTCAGTTCAAA TGGAAATGGCAGAAA 525

CCCTGGAAGCTCTCA GAA 543 CCCTGGAAGCTATCA GAA 543 CCCTGGAAGCTCTCA GAA 543 CCCKGGAAGCTCTCA GAA 543 CCCTGGAAGCTCTCA GAA 543

Figure B8: FRA1 nucleotide alignment. Alignment of DNA sequences for exons 5-6 and 24-25 of FRA1 obtained from 24 individuals from the genus, Turnera. All non-coding, intronic sequence information has been excised from the alignment. Exons are presented in order $(5-25)$ and the boundaries between exons are indicated by " \mid " symbols in the alignment. Base positions showing 100% identity across taxa are shown in blue. No identical sequences were identified in this alignment. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to a KIF4-like subfamily kinesin motor domain according to BLAST searches is indicated by arrows at the base of the alignment ($\mathbf{4}$). The length of the alignment (bp) is given in the right-most column (543 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
J 29S
CHAM 4L
NED 2S
DIF
PAN 2S

SELECTION

GCGGACCTGGACAAC AAGCTGCTCTACACC TTAAACGAGCGCTTC GACTACTGCCAGTGG CAAGGCGTGAAGTGC GCCCAGGGACGCGTC GTCCGCCTCGTCCTC 105 GCGGACCTGGACAAC AAGCTGCTCTACACC TTAAACGAGCGCTTC GACTACTGCCAGTGG CAAGGAGTGAAGTGC GCCCAGGGACGCGTC GTCCGCCTCGTCCTC 105 GCGGACCTGGACAAC AAGCTGCTCTACACC TTAAACGAGCGCTTC GACTACTGCCAGTGG CAAGGCGTGAAGTGC GCCCAGGGACGCGTC GTCCGCCTCGTCCTC 105 GCGGACYTGGACAAC AAGCTGCTCTACACC TTAAACGAGCGCTTC GACTACTGCCARTGG CAAGGCGTGAAGTGC GCCCAGGGACGCGTC GTCCGCCTCGTCCTC 105 GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACACC GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACAC GCGGACCTGGACAAC AAGCTGCTCTACACC

GCGGACTTGGACAAC AAGCTGCTTTACAC GCGGACCTGGACAAC AAGCTGCTCTACACC GCGGACCTGGACAAC AAGCTGCTCTACAC ---------GACAAC AAGCTGCTYTACACC
GCGGACTTGGACAAC AAGCTGCTCTACAC CGGACTMCACAC CRGAC TTAAACGAGCGCTTC GACTACTGCCAATGG CAGGGCGTGAAGTGC GCCCAGGGACGCGTC GTCCGCCTCGTCCTC 10

САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТTССАСССТСТСС СGССТСGАССАGСТС СGСGTССТСАGССТС САСААСААСТСССТС TTCGGTCСССТСССТ 210 САСТСССGСТСССТС CGGGGСАСТTTСССТ ССТТССАСССТСТСС СGССТСGAССАGСTС СGСGTССТСАGССТС САСААСААСТСССTС TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТТССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210
 САСТСССGСТСССТС CGGGGСАСTTTСССТ ССTTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСтTTСССт ССТТССАСССТСТСС СGССТСGAССАGСТС СGСGTССТСАGССТС САСААСААСТСССТС TTCGGTCCCCTCССТ 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТТССАСССТСТСС СGССТСGAССАGСТС СGСGTССТСАGССТС САСААСААСТСССТС TTCGGTCСССТСССТ 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТTССАСССТСТСС СGССТСGAССАGСТС СGСGTССТСАGССТС САСААСААСТСССТС TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТТССАСССТСТСС СGССТСGAССАGСTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGСАСТTTСССТ ССТТССАСССТСТСС СGССТСGAССАGСТС СGСGTССТСАGССТС САСААСААСТСССТС TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС CGGGGСАСTTTСССТ ССТTССАСССТСТСС СGССTCGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСTСССTC CGGGGCACTTTCCCT ССTTCCACCCTCTCC CGCCTCGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС CGGGGСАСТTTСССТ ССTTССАСССТСТСС СGССTCGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210 САСТСССGСТСССТС СGGGGMACTTTСССТ ССТTССАСССТСТСС СGССTCGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGKCCCCTCCCT 210

САСТСССGСTСССТС СGСGGСАСТTTCССТ ССТTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TCCGGGCCCCTCCCC 210 САСТСССGСТСССТС СGСGGСАСТTTСССТ ССТTССАСССТСТСС СGССTCGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TCCGGGCCCCTCCCC 210 САСТСССАСТСССТС СGGGGСАСТКTGCCT ССТTССАСССТСТСС СGССТСGACCAGCTC CGCGTCCTCAGCCTC CACAACAACTCCCTC TTCGGTCCCCTCCCT 210

 ---------------- -------------------

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGАССGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС З15 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGACCGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС 315 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGАССGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС 315 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGACCGC AАСТТСТTСТССGGC TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС З15 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGАССGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС З15
 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGАССGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС 315 GАССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGACCGC ААСТТСТТСТССGGС TССТTСССТСGTTCС СТССТСТСССТССАС СGССТСАСССТССТС З15

 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGACCGC AACTTCTTCTCCGGC TCCTTCCCTCCTTCC СТССТСТСССТССАС СGССТСАСССТССТС 315 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGACCGC AАСТТСТTСТССGGC TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС 315
 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGАССGС ААСТТСТТСТССGGС TССТТСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС З15 GAССТСТССССТСТС TССААССТСАААТСС СТСТТССТСGAССGС ААСТТСТТСТССGGС TССТTСССТССТТСС СТССТСТСССТССАС СGССТСАСССТССТС З15

GATCTСTСССАСААС ААССТСТССGGCCCC СТССССССТСААСТС ААСТСССТСGACCGC СTTTCCTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCCTC 420 GATCTCTCCCACAAC AACCTCTCCGGCCCC СTССССССТСААСТС AACTCCCTCGACCGC CTTTCCTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GATCTСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTССTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GATСТСТСССАСААС ААССТСТССGGСССС СТСССССҮTСААСТС AАСТСССТСGACCGC СTTTССТАССТTAAG CTCGAGTCCAACTGG TTYAACGGCACCGTC 420 GATCTСТСССАСААС ААССТСТССGGСССС СТСССССҮТСААСТС ААСТСССТСGACCGC СTTTССТАССТTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTY 420 GATCTСTСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTССТАССТTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GATСТСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTССТАССТTAAR CTSGAGTCCAACTGG TTYAACGGCACCSTC 420 GАТСТСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTССТАССТTAAG CTCGAGTCCAACTGG TTCAACGGCACCSTC 420 GАТСТСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTССTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GATCTСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTCCTACCTTAAR CTSGAGTCCAACTGG TTYAACGGCACCSTC 420 GATCTСTСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СТTTCСTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GATСТСТСССАСААС ААССТСТССGGСССС СтССССССТСААСТС ААСТСССТСGACCGC СTTTCСTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTC 420 GАТСТСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGAССGС СТTTССТАССТTAAG CTCGAGTCCAACTGG TTYAACGGCACCGTC 420 GATCTСTСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTCCTACCTTAAG CTCGAGTCCAACTGG TTTAACGGCACCGTT 420 GATCTСTСССАСААС ААССТСТССGGСССС СТССССССТСААСТС AACTCCCTCGACCGC CTTTCCTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTT 420 GATCTСТСССАСААС ААССТСТССGGСССС СТССССССТСААСТС ААСТСССТСGACCGC СTTTCCTACCTTAAG CTCGAGTCCAACTGG TTCAACGGCACCGTT 420 GATCTСТСССАСААС ААССТСТССGGСССС СТССССССТСАWСТС ААСТСССTSGACCGC СTTTCCTACCTTAAG CTCGAGTCCAACTGG TTTAACGGCACCSTY 420 ------------ --------------- --------------- ------------------ CTTTCCTACCTTAAG CTCGATTCCAACTGG TTTAACGGCACCGTT 420 GATСТСТСССАСААС AAССТСТССGGCCCC СТСССТССССАGСTC AGCGCCCTCGACCGC CTTTCCTACCTTAAG CTCGAGTCCAACTGG TTTAACGGCACCCTC 420 GATСТСТСССАСААС ААССТСАССGGСССС СТYССGССССАGYTC AACTCCCTCGACCGC CTTTGCTACCTTAAG CTGGAGTCCAACTGG TTTAACGGCACCGTY 420 GАТСТСТСССАСААС ААССТСАССGGСССС СТСССЄССТСАGСТС ААСТСССТСGACCGC СTTTGGTACCTTAAG CTGGAGTCCAACTGG TTTAACGGCACCGTT 420

D16L
F60SS
SL8 201S
E 207 S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4 S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S SELECTION

CCGCCCCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 ССGССССТАAACCAG AССТTСTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCSYTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCSGGG AACAACCTCAGCGGG CCTGTTCCSGTSACG CCCACGCTCTCSCGG TTCGGCGCGGCGTCG 525 CCGCCSYTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCSGGG AACAACCTCAGCGGG CCTGTTCCGGTSACG CCCACGCTCTCKCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG MCTGTTCCGGTSACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCSCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCSGGG AACAACCTCAGCGGG CCTGTTCCSGTGACG SCCACGCTCTCSCGG TTCGGCGCGGCGTCG 525 CCGCCSCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG MCTGTTCCGGTSACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCSCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCSGGG AACAACCTCAGCGGG CCTGTTCCSGTGACG SCCACGCTCTCSCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTCACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG AMCTTCTTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTSACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCSYTAAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCSGGG AACAACCTCAGCGGG CCTGTTCCSGTSACG CCCACKCTCTCSCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCG TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCSGTGACG CCCACGCTCTCCCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCG TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCCCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCG TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCGGTGACG CCCACGCTCTCCCGG TTCGGCGCGGCGTCG 525 CCGCCSCTAAACCAG ACCTTCTTGGTCGCS TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCSGTGACG CCCACGCTCTCSCGG TTCGGCGCGGCGTCG 525 CCGCCCCTAAACCAG ACCTTCTTGGTCGCS TTCGACGTCTCCGGG AACAACCTCAGCGGG CCTGTTCCCGTGACG CCCACGCTCTCCCGG TTCGGCGCGGCGTCG 525 CCGCCGCTTAACCAG ACCTTCCTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCCGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCGCTTAACCAG ACCTTCCTGGTCGCC TTCGACGTCTCCGGG AACAACCTCAGCGGG CCCGTTCCGGTGACG CCCACGCTCTCGCGG TTCGGCGCGGCGTCG 525 CCGCCCTTAAACCAG ACCTCCTTGCTCGCC TTCGACGTCTCCGGG AACAACCTCACCGGG CCTGTGCCTGTGACG CCCACGCTGTCCCGG TTCGGCGCCGCGTCG 525 CCGCCGTTGAACCAG ACCTTCTTGGTCGCC TTCGACGTCTCCGGG AATAACCTTAGCGGG CCTGTTCCCGTGACG CCGACGCTGTCCCGG TTCGGCGCGGCGTCG 525 CCGCCСTTAAACCAG ACCTCСTTGCTCGCC TTCGACGTCTCCGGG AACAACCTCACCGGG CCTGTACCTGTGACG CCCACGCTCTCCCGG TTCGGCGCGGCATCG 525

TCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCCGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCCGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCCGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGKCGNNNNNNNNN 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCGTYCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGYGAATGCG 630 rTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCCGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCS GATCTCTGCGGCGAG ATTATKAACAGRCCC TGCMGCTCGCGTYCT CCGTTCTTYGAGAAT ---AACACCTCCTCG TCGKCNNNNNNNNNN 630 TTCCAGCGKAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCMGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCCGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCS GATCTCTGCGGCGAG ATTATKAACAGRCCC TGCMGCTCGCGTYCT CCGTTCTTYGAGAAT ---AACACCTCCTCG TCGKCG--------- 630 TTCCAGCGGAACSCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCMGCTCGCGTCCT CСGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACSCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCMGCTCGCGTCCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCGTYCT CCGTTCTTCGAGAAT ---AACACCTCCTCG TCGTCGGCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCATTCT CCRTTCTTTGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCGTTCT CCGTTCTTTGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCRTTCT CCGTTCTTTGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGSGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGRCCC TGCMGCTCGCRYTCT CCGTTCTTTGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGACCC TGCAGCTCGCATTCT CCGTTCTTTGAGAAT ---AACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGGCCC TGCAGCTCGCGTTCC CCGTTCTTTGAGAAT AACAACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG ATTATTAACAGGCCC TGCAGCTCGCGTTCC CCGTTCTTTGAGAAT AACAACACCTCCTCG TCG---GCGAATGCG 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAG GTTATTAACAGACCG TGCAGCTCGCGTTCC CCGTTCTTTGAGAAT ---AACACCTCCGCG TCG------------ 630 TTTCAGAGGAACGTG GATCTCTGCGGCGAG ATTATTSACAGACCG TGCAGCTCGCGTTCT CCGTTCTTTGAGAAT ---AACACCTCCSCG TCG---GCGAATGCC 630 TTCCAGCGGAACGCG GATCTCTGCGGCGAA GTTATTAACAGACCG TGCAGCTCGCGTTCT CCGTTCTTTGAGAAT ---AACACCTCCGCG TCC------------ 630 TACCAGCGGAACGCG GATCTCTGCGGCGAG ATTATGAACAGACCG TGTAGCTCTCGTTCT CCGTTCTTTGAGAAT ---AACACCTCCGCG TCG---GCGAATGCC 630

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

D16L

F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGACCAAC GTCGTCTTGGTGTTC 735 NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGRGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGACCAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGRGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGASYAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGASYAAC GTCGTCTTGGTGTTC 735 NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGACCAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735
 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGMGGGGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGACCAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAGG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGAGTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCS CCTTCGAGTGCGAAG CACAAGCGGACTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCC CCTTCGAGTGCGAAG CACAAGCGGASTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCCCCG CCTTCGAGTGCGAAG CACAAGCGGACTAAC GTCGTCTTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCCCCG CCTTCGAGTGCGAAG CACAAGCGGACTAAC GTCGTCTTGGTGTTC 735 ---GCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCTCTGGCTCCG CCTTCGAGTGCGAAG CACAAGCGGACTAAC GTCGTCCTGGTGTTC 735 ACGGCGCCGTTCGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCT CCTTCGAGTTCGAAG CACAAGCGGACTAAC GTCGTCTTGGTCTTC 735 ---GCGCCGTACGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCTCTGGCTCCG CCTTCGAGTGCGAAG CACAAGCGGACTAAC GTCGTCCTGGTGTTC 735 ACGGCGCCGTTTGGG CAGAGCGCGCAGGCG GAAGGCGGAGTGGTG GTGGCGCTGGCTCCT CCTGCGAGTTCGAAA CACAAGCGGACTAAC GTCGTCTTGGTGTTC 735

GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTTGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCTCCGTCGGCG 840 NNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCMCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCMCCGTCGGCG 840 GCCGYCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840
 GCCGYCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCACCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA GCTGCTCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCYCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGRCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCWCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGRCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTGATCAAC AAAAAGAGGAACAGA ---ACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTRWTCAAC AAAAAGAGGAACAGA ---ACTGTWAACGTG TCTGCACCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGGCCGCCGCG ATTTTGTGCGTCGGG GCGGTTTTRWTCAAC AAAAAGAGGAACAGA ---ACTGTWAACGTG TCTGCACCGTCGGCG 840 GCCGTCGTCCTCTCG GTATTGATCGCCGCG ATTTTGTGCGTCGKG GCGGTTTTGATCAAG AGACAGAGGAACAGA ACTACTGTAAACGTA TCTGCCCCATCGGCG 840 GCCGTCGTCCTCTCG GTCTTGATCGCCGCC ATTTTGTGCGTCGTG GCGGTTTTGATCAAG AGACAGAGGAACAGA ---ACTGCAAACGTA ACTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTATTGACCGCCGCG ATTTTGTGCGTCATG GCGGTTTTGATCAAG AGACAGAGGAACAGA ACTACTGTAAACGTA TCTGCCCCGTCGGCG 840 GCCGTCGTCCTCTCG GTCTTGACCGCCACG ATTTTGTGCGTCGTG GCGGTTTTGATCAAG AGGCAGAGGAACMGA ---ACTGTAAACCTG ACTTCCCCGTCGGCG 840

D16L
F60SS
SL8 201S
e 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20 S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 713L
MAN601S
COLO
PA 4S
TSH
CON 20S
KRAP 5S
KRAP 12L
DEN 20S
DEN 54L
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTTGATGGTAAT--- ------GCTGCTGCG GCGGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTTG GCCGGAGCAGAACCC GCCGAGGCTGTGAAA GTTGACGGTAAT--- ---GCTGCGGCGGCG GCGGCGGCGGCGAAG ACGAAAGATATCGAG 945 NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNT--- -------GCKGCKGCG GCGGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTTGATGGTAAT--- ---GCTGCTGCTGCT GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTTGATGGTAAT--- ---GCTGCTGCTGCT GCTGCGGCGGCGAAG ACRAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTGGATGGTAAT--- - ------ GCTGCTGCT GCTGCTGCGGCGAAG ACGAAAGATATCGAG 945 NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNNNNN NNNNNNNNNNNT--- ---GCTGCKGCKGCG GCKGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTGGATGGTAAT--- ---GCTGCTGCTGCT GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTTGATGGTAAT--- GCTGCTGCTGCTGCG GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945

AGTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTGGATGGTAATGCT GCTGCTGCTGCTGCG GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCKGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTGGATGGTAAT--- - - - - - GCTGCTGCT GCTGCKGCGGCGAAG ACGAAAGATATCGAG 945 AgTCCGGTCAGGTCG GCCGGAGAAGAACCC GCCGAGGCTGTGAAA GTTGATGGTAATGCT GCTGCTGCTGCTGCT GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTTG GCCGGAGCAGAACCC GCCGAGGCTGTGAAA GTTGACGGTAAT--- ---GCTGCTGCTGCT GCGGCGGCGGCGACG GCGAAAGATATCGAG 945 AGTCCGGTCAGGTYG GCCGGAGMAGAACCC RCCGAGGCTGTGAAA GTTGAYGGTAAT--- ---GCTGCTGCTGCT GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AgTCCGGTCAGGTCG GCCGGAGAAGAACCC ACCGAGGCTGTGAAA GTTGATGGTAAT--- GCTGCTGCTGCTGCK GCGGCGGCGGCGAAG ACGAAAGATATCGAG 945 AGTCCGGTCAGGTCG GCCGGAGCAGAACCC GCCGAGGCTGTGAAA GTTGRCGGTAAT--- ----------GCTGCT GCTGCGGCGGCGAAG ACGAAAGATATGGAG 945 AgTCCGGTCAGGTCG GCCGGAGAAGAACCC ACCGAGGCTGTGAAA GTTGATGGTAAT--- -------GCTGCTGCT GCTGCGGCGGCGAAG ACGAAAGATATCGAG 945 AgTCCGGTCAGGTCA GCCGGAGCAGAACCC GCCGARGCTGTGAAA GTTGACGGTAAT--- GCTGCTGCTGCTGCT GCGGCGGCGGCTAAG GCGAAAGATATCGAG 945 AGTCCGGTCAGGTCA GCCGGAGCAGAACCC GCCGARGCTGTGAAA GTTGACGGTAAT--- ---GCTGCTGCTGCT GCGGCGGCGGCTAAG GCGAAAGATATCGAG 945

 AGCCCGGTCCGGTCA GCCGGAGCAGAACCC GCTGAAGCTGTGAAG GTTGAGGGAAAT--- ---GCTACTGCGACG GCAGCGGCGGCAAAG ACGAAAGATATCCAG 945

GGGAGAAGCAGTG GCGGTGAGGGCGGG AGCAAGAGCGGGGGG CTGGTGTTCTGC--- --------GGGGAAGCG CAG-------------

 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGG CTGGTGTTCTGC--- -------- GGGGAAGCG CAG-------------- GTCTACACATTGGAG 1050 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGR CTRGTGTTCTGC--- --------GGGGAAGCG CAG--------------- GTSTACACATTGGAG 1050 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGG CTGGTGTTCTGC--- -------- GGGGAAGCG CAG-------------- GTCTACACATTGGAG 1050 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGG CTGGTGTTCTGC--- ------- GGGGAAGCG CAG-------------- GTCTACACATTGGAG 1050

 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGR CTRGTGTTCTGC--- -------GGGGAAGCG CAG--------------- GTSTACACATTGGAG 1050 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGG CTGGTGTTCTGC--- -------GGGGAAGCG CAG-------------- GTCTACACATTGGAG 1050 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCAGGGGG CTGGTGTTCTGC--- -------GGGGAAGCG CAG-------------- GTGTACACATTAGAG 1050

 GTGGGAGAAGCAGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGA CTGGTGTTCTGC--- ------ GGGGAAGCG CAGACGTACCCGTAC CCGTACACATTAGAG 1050 GTGGGAGAAGCGGTG GCGGTGAGGGCGGGG AGCAAGAGCGGGGGT CTGGTGTTCTGCGGG GTTGGCGGGGGAGCG CAG------CCTTAC CCTTACACATTAGAG 1050

D16L	G
F60SS	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
SL8 201S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
E 207S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
E 2L	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
DROT 41S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
ES	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
MIDC 710S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
MAN 713L	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
MAN601S	
COLO	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
PA 4S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
TSH	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
CON 20S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
KRAP 5S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGG
KRAP 12L	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
DEN 20S	CAGYTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGG
DEN 54L	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGA
TJ 30L	CAGTTAATGAGAGYG TCGGCGGAGTTGCTG GGGAGGGGA
TJ 29S	CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGG
CHAM 4L	CAGTTAATGAGGGCG TCGGCGGAGTTGTTA GGGAGGGGA
WED 2S	CAGTTAATGAGGGCG TCGGCGGAGTTGTTA GGGAGGG
DIF	
PAN 2S	CAGTTAATGAGAGCG TCGGCGGAGTTGTTA GGGAGGG
SELECTION	
D16L	GCGAGCAAGACTGGA --------------- --- 1188
F60SS	GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
SL8 201S	GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
E 207S	GCSAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
E 2L	GCSAGCAAGACTGSA GTTACGAGCAGTGAA GCG 1188
DROT 41S	
ES	GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
MIDC 710S	GCGAGCAAGACTGGA GTTACGAGCAGTGAA GCG 1188
MAN 713L	GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
MAN601S	
COLO	GCGAGCAAGACTGGA RTTACGAGCAGTGAA GCG 1188
PA 4S	GCSAGCAAGACTGSA GTTACGAGCAGTGAA GCG 1188
TSH	GCGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
CON 20S	GCGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
KRAP 5S	GCSAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
KRAP 12L	GCGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
DEN 20S	GCCAGCAAGACTGCA GTTACGAGCAGTGAA --- 1188
DEN 54L	GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188
TJ 30L	GCCAGCAAGACTGCA GTTACGAGCAGCGAA GCG 1188
TJ 29S	GCCAGCAAGACTGCA GTTACGAGCAGCGAA GCG 1188
CHAM 4L	GCCAGCAAGACTGCA GTTACCAGCAGTGAA GCT 1188
WED 2S	GCGAGC--------- --------------- --- 1188
DIF --------------- --------------- --- 1188	
PAN 2S	GCGAGCAAGACTGCA GTTACGAGCAGTGAA --- 1188
SELECTIO	

GACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 (CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGGACGACGTACAAG
-------------GGAG GGGACGA CAGTGATGGATAAT CAGAYGATAGTGACG GTGAAGAGGCTGGAC 1155 AGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGACGACGIACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGC 1155
 CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 G GGAG GGGACGACGTACAAG GCGGTGATGGRTAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 AGYTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 AGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACCATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 AGTTAATGAGAGYG TCGGCGGAGTTGCTG GGGAGGGGAACSATG GGGACGACGTACAAG GCGGTKATGGATMAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 CAGTTAATGAGAGCG TCGGCGGAGTTGCTG GGGAGGGGAACSATG GGGACGACGTACAAG GCGGTKATGGATMAT CAGATGATAGTGACG GTGAAGAGGCTGGAC 1155 GG TCGGCGGAGTTGTTA GGGAGGGGAACGATG GGGACGACGTACAAG GCGGTGATGGATAAT CAGATGATAGTGACT GTGAAGAGACTTGAC 1155 ------------ ---

GCGAGCAAGACTGGA -------GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 GCSAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 CSAGCAAGACTGSA GTTACGAGCAGTGAA GCG 1188 GAA GCG 1188 GGAGCAAGACTGGA GTTACGAGCAGTGAA GCG 1188 --------------------------1188 GAA GCG 1188 GCGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 GCGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 CGAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 GCCAGCAAGACTGCA GTTACGAGCAGTGAA --- 1188 GCCAGCAAGACTGCA GTTACGAGCAGTGAA GCG 1188 CCAGCAAGACTGCA GTTACGAGCAGCGAA GCG 1188 GCCAGCAAGACTGCA GTTACCAGCAGTGAA GCT 1188 GAGC GCGAGCAAGACTGCA GTTACGAGCAGTGAA --- 1188

Figure B9: LRRK nucleotide alignment. Alignment of DNA sequences for exon 1 of LRRK obtained from 24 individuals from the genus, Turnera. Gaps in the alignment for sequences from SL8 201S (T. subulata) and ES (T. scabra) are also present, and are represented by a profusion of undefined bases (N 's) at the $622-896 \mathrm{bp}$ and $621-896 \mathrm{bp}$ positions, respectively. Base positions showing 100% identity across taxa are shown in blue. No identical sequences were identified in this alignment. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to a provisional Leucine-rich repeat receptor-like protein kinase multi-domain according to BLAST searches is indicated
by arrows at the base of the alignment (\uparrow). The length of the alignment (bp) is given in the right-most column (1188 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons)
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
THAM 4L
WED 2S
DIF
PAN 2S
SELECTION

TGGCTCCTTGCATTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTAATCTACACT AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTAATCTATACT AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCMTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTAATCTAYACT AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCMTTT GTATCCTTCTTCACC ATTGССTTССТССТС ACACTWATCTAYACY AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCMTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTWATCTAYACY AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTACACC AGAGAATCCTTGCCT ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTWATCTATACY AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTACACC AGAGAATCCTTGCCT ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTWATCTATACY AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTATACC AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTACACC AGAGAATCCTTGCCY ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTAYACC AGAGAATCCTTGCCY ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCСTTСTTCACC ATTGССТTССТССТС ACACTWATCTAYACY AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCATTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTATACC AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCATTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTTATCTATACC AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCMTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTAATCTAYACT AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACACTAATCTATACT AGAGAATCCTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCTTTCTTCACC ATTGCTTTCCTCCTC ACACTAATCTATACT AGAGAATCTTTGCCC ACCAAAACA---GCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACGCTAATCTATACT AGAGAATCCTTGCCC ACCAAAACTGCAGCC ACCAGCGCCACCATG 105 TGGCTCCTYGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTC ACGCTAATCTAYACY AGAGAATCCTTGCCC ACCAAAACTGCAGCC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTC GTATCCTTCTTCACC ATTGCCTTCCTCCTA ACACTAATCTACACT AGAGAATCCTTGCCT ACCAAAACA---ACY ACCAGCGCCACCATG 105 TGGCTCCTTGCYTTT GTATCСTTCTTCACC ATTGCСTTCСTССTC ACASTAATCTACACT AGAGAATCCTTGCCT ACCAAAAGA---ACC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTCTTCACC ATTGCCTTCCTCCTA ACACTAATCTACWCT AGAGAATCCTTGCCT ACCAAAACA---ACC ACCAGCGCCACCATG 105 TGGCTCCTTGCCTTT GTATCCTTTTTCACC ATTGCCTTCCTCCTC ACACTAATCTACACT AGAGAATCCTTGCCC ACCAAAACA---ACC ACCAGCGCCACCATG 105

ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCGCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCC 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCK 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCAWTKCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCAWTKCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCAATTCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTССТССАСTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCAWTKCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCB 210 ACCACCGCCAGCACC ACCGGGAAY---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAY---AAT GCACCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCY 210 ACCACCGCCAGCACC ACCGGGAACATTAAK GCACCATTGCCCACC RCAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC GCSGGGAAC---AAT GCRCCATTGCCCACC ACAGTCATCAACACA CTCCTCCACTACGCC TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCACCGCCAGCACC GCCGGGAAC---AAT GCACCMTTGCCCACC ACAGTCATCAACACA CTCCTCCACTAYGCM TCTAGATCAAACGAC ACCTTTCACATGCCT 210 ACCGCYGCCAGCACC ACCGGGAAC---AAT GCCCCATTGCCAACC ACAGTCATCAGCACA CTCCTCCACTATGCC TCTAGATCAAACGAY ASTTTTCACATGCCC 210 ACCACCGCCAGCACC ACCGGGAAC---AAT GCACCATTGCCAACC ACAGTCATCAACACA CTCCTCCACTACGCC TCTAGATCRAACGAC ACTTTCCACATGCCC 210 ACCGCCGCCAGCACC ACCGGGAAC---AAT GCCCCATTGCCAACC ACAGTCATCAACACA CTCCTCCACTATGCC TCTAGATCAAACGAC ACTTTTCACATGCCG 210 ACCACCGCCAGCACC ACCGGGAAC---AGT GCRCCCTTGGCCACC ACAGTCATCAACACA CTCCTCCACTATGCC TCCAGATCAAACGAC ACTTTTCACATGCCC 210

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TU 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 ACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCYTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CССАTCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC RCACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCY CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCYTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCTCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAATTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCTMTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCYTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCYYTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAAYTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCMYTA 315 TACAATGAAATCAAA CCCATCTCCGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTCGTTTTCGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCYGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTCGTTTTCGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCGGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTTGTTTTCGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 CACAATGAAATCAAA CCCATCTCTGATGCC CTCCGGAAATGCTCC TCTCCATGTAACTTT CTTGTTTTTGGCCTC ACACACGAGACCCCT CTMTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCGGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTAGTTTTTGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315 TACAATGAAATCAAA CCCATCTCTGATGCC CTCAGGAAATGCTCA TCTCCATGTAACTTT CTTGTTTTCGGCCTC ACACACGAGACCCCT CTCTGGAAAGCCCTA 315

AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCSGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCYGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCYGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCYGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCSGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAG GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAAYGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCGTACTATGAR GAGCTGCATCCYGAA GTTGATGTCTTTGAC GTCCAATACACRACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCGTACTATGAR GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACGACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAA GAGCTGCACCCTGAA GTTGACGTCTTTGAC GTCCAATACACAACC 420 AACCACAATGGACGC ACAGTCTTCATCGAA GAGAACCGCTACTAC GCAGCATACTATGAA GAGCTGCACCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCGGCATACTATGAA GAGCTGCACCCTGAA GTTGACGTCTTTGAC GTCCAATACACAACC 420 AACCACAACGGACGC ACAGTTTTCATCGAA GAGAACCGCTACTAC GCAGCATACTATGAA GAGCTGCATCCTGAA GTTGATGTCTTTGAC GTCCAATACACAACC 420
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
THAM 4L
WED 2S
DIF
PAN 2S
SELECTION

AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACMGAATAC AGAGAACTCATAGCC TCKGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAACTTGGGATT 525 AAGATGACMGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAARCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACMGAATAC AGAGAACTCATAGCC TCGGCCAAKGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAT TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATWGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAY TTGCTCYTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATWGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAY TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATWGCC TCGGCCAAGGAACAG ATACGCAACGAGTGC AGGCCTGTGCAGAAC TTGCTCTTCTCGGAG TGCAAGCTTGGGATT 525 AAGATGRCAGAATAC AGAGAACTCATTGCC TCGGCCAAGGAACAG ATACGCAACGAGTGC AGGCCTGTGCAGAAC TTGCTCTTCTCGGAG TGCAAGCTTGGGATT 525 AAGATGGGAGAATAC AGAGAACTCATAGCC TCGGCCARGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAC TTGCTCTTCTCTGAG TGCAAGCTTGGGATT 525 AAGATGGGAGAATAC AGAGAACTYATAGCC TCGGCCAAGGAACRG ATACGCAACGAATGC AGGCCTGTGCAGAAC TTGCTCTTCTCAGAG TGCAAGCTTGGGATC 525 AAGATGGGAGAATAC AGAGAACTCATAGCC TCGGCCAAGGAACAG ATACGCAACGAATGC AGGCCTGTGCAGAAC TTGCTCTTCTCTGAG TGCAAGCTTGGGATT 525 AAGATGACAGAATAC AGAGAACTCATAGCC GCGGCCAAGGAACAT ATACGCAACGAATGC AGGCCTGTGCAGAAC TTGCTCTTCTCAGAG TGCAAGCTTGGGATT 525 $+$

AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGATTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGAYTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGATTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGAYTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGATTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGATTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGATTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC САTGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTAYGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGRCAG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GASTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACAG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACAG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GATTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACCG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GACTGGGATGTGATC TTGATCGATGGGCCT CGAGGGGATGGACCG GAAGGGCCAGGGAGG ATGACACCAATCTTC 630 AATGACTTGCCTAAC CATGTCTACGAGGTG GATTGGGATGTGATC TTGATCGATGGGCCT CGCGGGGATGGACTG GAAGGGCCAGGGAGG ATGACACCGATCTTC 630

ACAGCTGGTGTTCTT GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTW GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTW GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTW GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTT GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTW GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CAYGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACRGCTGGTGTTCTW GCTAGAAGCAAGAAG GCYAGCAATGCCAAG ACTCACATATTTGTA YAYGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACRGCTGGTGTTCTA GCTAGAAGCAAGAAG GCYAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGRATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTACTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTCTA GCTCGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTA CACGATTATTACAGA GACGTGGAGAGGGTA TATGGGGATGAGTTC 735 ACAGCTGGCGTTCTA GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTG CACGATTATTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTT 735 ACAGCTGGTGTTCTA GCTCGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTG CACGATTATTACAGA GACGTGGAGAGGGTT TATGGGGATGAGTTC 735 ACAGCTGGTGTTYTT GCTAGAAGCAAGAAG GCTAGCAATGCCAAG ACTCACATATTTGTG CATGATTATTACAGA GACGTGGAGAGGGTT TATGGAGATGAGTTC 735

TTGTGCAGGGAGAAC TTGGTGGAACACAAT GACATGCTTGCA 777 TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAACACAAT GACATGCTTGC TTGTGCAGGGAGAAC TTGGTGGARCACAAT GACATGCTTGC TTGTGCAGGGAGAAC TTGGTGGAACACAAT GACATGCTTGC TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA ITGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACATGCTTGCA TGTGCAGGGAGAAC TTGGTGGAGCACAAC GACATGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAGCACAAT GACRTGCTTGCA TTGTGCAGGGAGAAC TTGGTGGAACACAAT GACATCCTTGCA TTGTGCAGGGAGAAC TTGGTGGAACACAAT GACATGCTTGCA 777

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

161
SL8 201S
E 207S
E 2L
ES
MIDC 710s
AAN $713 L$
COLO
A 45
SH
KRAP 12L
CON 20S
DEN 20S
J 30L
J 29S
CHAM 4I
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
2L
DROT 41S

MAN 601S
MAN 713L
COLO

RAP 5
RRAP 12L
DEN 20S
DEN 54L
J 30I
J 29S
WED 2S

PAN 2S SELECTION

Figure B10: IRX15L nucleotide alignment. Alignment of DNA sequences for
IRX15L obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Sequences for MAN 601 S
and ES were found to be identical at this locus. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to an uncharacterized plant-specific domain, and member of the polysaccharide biosynthesis domain superfamily, according to BLAST searches is indicated by arrows at the base of the alignment ($\mathbf{\top}$). The length of the alignment (bp) is given in the right-most column (777 bp , total, representing most of the gene). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

CСAAACTTCAAACCA СTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 ССАААСТТСАAACCA СТСАТGGAGAAATAT GTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATA GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 ССАААСТTCAAACCA CTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATW GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 ССАААСТTСАAACCA СTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 CCAAACTTCAAACCA CTCRTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 CСAAACTTCAAACCA CTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTRGCATTAAGT GGTTCACCCGATGAG 105
 ССАААСТTСАAACCA СTCRTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTGGCATTAAGK GGTTCACCCGATGAG 105 -------------- -------------- ---------------------1TTCAAGGAAA ATTATGCGCGGAATW GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 CСAAACTTCAAACCA CTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 CCAAACTTCAAACCA CTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105 CCAAACTTCAAACCA CTCGTGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCGATGAG 105
 CCAAACTTCAAACCA CTCATGGARAAATAT STCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTRGCATTAAGT GGTTCACCCGATGAG 105 CCAAACTTCAAACCA CTCATGGAGAAATAT CTCAACCTGTGCACA G|ACCTTTCGAGGAAA ATTATGCGCGGAATT GCTCTGGCATTAAGT GGTTCACCCGATGAG 105
 --1TTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCRATGAG 105 G|ACCTTTCAAGGAAA ATTATGCGCGGAATT GCTCTAGCATTAAGT GGTTCACCCRATGAG 105 CAAACTTCAAACCA CTCATGGAGAAATAT GTCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT TCTCTAGCATTACGT GGTTCACCCGATGAG 105 CCAAACTTCAAACCA CTCATGGAGAAATAT STCAACCTGTGCACA G|ACCTTTCAAGGAAA ATTATGCGCGGAATT KCTCTAGCATTAMGT GGTTCACCCGATGAG 105 ССАААСТТСАААССА СТСАТGGAGAAATAT GTCAACCTTTGCACA G|ACCTTTCAAGGAAA ATCATGCACGGAATT GCTCTGGCATTAAGT GGATCACCCGATGAG 105 CCAAACTTCAAACCA СTCATGGAGAAATAT GTCAACCTTTGCACA G|ACCTTTCAAGGAAA ATTATGCGTGGAATT GCTCTAGCATTAAGT GGATCACCCGATGAG 105 CСAAACTTCAAACCA СTCATGGAGAAATAT GTCAACCTTTGCACA G|ACCTTTCAAGGAAA ATCATGCTCGGAATT GCTCTAGCATTAAGT GGATCACCCGATGAG 105 ---AACTTCAAACCA СTCATGGAGATATAT GTCAACCTTTGCGCA G|ACCTTTCAAGGAAA ATTATACGCGGAATT GCTCTAGCATTAAGT GGATCACCTGATGAG 105 \uparrow

D16L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	T	CTTTCAAGCACAAAT	GT
F60SS	TTTGAAGGGGATATA	ACAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
SL8 201S	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
E 207S	TTTGAAGGGGATATA	KCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
E 2L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGtattacgcatt	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT
DROT 41S	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	СТTTCAAGCACAAAT	GGT
ES	TTTGAAGGGGATATA	RCAGGAGACGCATTT	TGG------------			83
MIDC 710S	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
MAN 601S	TTTGAAGGGGATATA	RCAGGAGACGCATTT	TG			--- 183
MAN 713L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
COLO	TTTGAAGGGGATATA	GCTGGAGACGCATTT	TGGGtattacgcatt	ATTGGTTACCCTGGT	СТTTCAAGCACAAAT	GGT 18
PA 4S	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 18
TSH	TTTGAAGGGGATATA	GCAGGAGACGCA				183
KRAP 5S	TTTGAAGGGGATATA	TCAGGAGACGCATTT	TGGGTATTRCGCATT	ATTGGTTACCCTGGT	CACAAWT	GGT 183
KRAP 12L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	СTTTCAAGCACAAAT	GGT 183
CON 20S	TTTGAAGGGGATATA	KCAGGAGACGCATTT	TGG			- 183
DEN 20S	TTTGAAGGGGATATA	KCAGGAGACGCATTT	TGG			183
DEN 54L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
TJ 30L	TTTGAAGGGGATATA	GCAGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
TJ 29S	TTTGAAGGGGATATA	GCMGGAGACGCATTT	TGGGTATTACGCATT	ATTGGTTACCCTGGT	CTTTCAAGCACAAAT	GGT 183
CHAM 4L	TTTGAAGGTGATATA	GCAGGAGACGCATTT	TGGGTATTGCGCATT	ATTGGTTACCCTGGT	ATTTCGAGCACAAAT	GGT 183
WED 2S	TTTGAAGGTGATATA	GCAGGAGACGCATTT	TGGGTATTGCGCATT	ATTGGTTACCCTGGC	CTTTCGAGCACAAAT	GGT 183
DIF	TTTCAAGGTGATATA	GCAGGAGACGCATTT	TGGGTATTGCGCATT	ATTGGTTACCCTGGT	CTTTCGAGCACAAAT	GGT 183
PAN 2S	TTTGAAGGTGATAGA	GCAGGAGACGCATTT	TGGGTATTGCGCATT	ATTGGCTACCCTGGT	CTTTCAAGCACAAAT	183

Figure B11: FSP nucleotide alignment. Alignment of DNA sequences for exons 6 and 7 of $F S P$ obtained from 24 individuals from the genus, Turnera. All non-coding, intronic sequence information has been excised from the alignment. Boundaries between exons are indicated by "|" symbols in the alignment. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) MAN 601 S and ES; and 2) MAN 713L, D16L, and PA 4S. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to an undefined oxidoreductase-related domain, according to BLAST searches is indicated by arrows at the base of the alignment (\uparrow). The length of the alignment (bp) is given in the right-most column (183 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTIO

AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCCGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCAAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGCGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAASTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAMTTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCKTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAASTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAASTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCVAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TATGCMAAGATGCTG 105 AAATCTCTGGTTGRA AAACTTGCTCTTAAC CTTCATGTGCCYGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTYG GAAGATACAATTAGT TATGCVAAGATGCTG 105 AAATCTCTGGTTGRA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTYG GAAGATACAATTAGT TATGCVAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAGT TAYGCAAAGATGCTG 105 AAATCTCTGGTTGAA AAAMTTGCTCTKAAY CTTCATGYGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GARGATACAATTAGT TAYGCAAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACGATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTG TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAAT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACGATTAGT TATGCCAAGATGCTG 105 AAATCTCTGGTTGAA AAACTTGCTCTTAAC CTTCATGTGCCTGTA TCTTGCAAAATCCGT TGTTTTCCAAAGTTG GAAGATACAATTAAT TATGCCAAGATGCTG 105

GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAAGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CACGGTCGAACGAGG GACGAGAAGGATGGG AAGAAATTTCGTGCC AATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGGG AAGAAATTYCGKGCC RATTGGAARGCTATC AAGGCTGTAAAAGAT 210 GAGGAWGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGGS AAGAAATTYCGKGCC RATTGGAARGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAARGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CACGGTCGAACRAGR GACGAGAAGGATGGG AAGAAATTYCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGGG AAGAAATTYCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTKTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAWGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGGS AAGAAATTYCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAWGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGSG AAGAAATTYCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTCCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAWGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACRAGR GACGAGAAGGATGGG AAGAAATTTCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAWGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGRACRAGR GACGAGAAGGATGGG AAGAAAWTYCGKGCC RATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGRACRAGR GACGAGAAGGATGGG AAGAAATTYCGKGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTTCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CAYGGTCGAACAAGA GACGAGAAGGATGGG AAGAAATTTCGGGCC GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAAGATGGG AAGAAATTCCGTGCT GATTGGAAGGCTATC AAGGCCGTAAAAGAT 210 GAGGAAGCTGGCTGC TYGCTTTTGGCTGTC CATGGTCGWACAAGA GACGAGAAAGATGGG AAGAAATTTCGTGCT GATTGGAAGGCTATT AAGGCTGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GACGAGAAAGATGGG AAGAAATTCCGTGCY GATTGGAAGGCTATC AAGGCYGTAAAAGAT 210 GAGGAAGCTGGCTGC TCGCTTTTGGCTGTC CATGGTCGAACAAGA GTCGAGAAGGATGGG AAGAAATTCCGTGCT GATTGGAAGGCTATC AAGGCTGTAAAAGAT 210
D16L
F60SS
SL8 201S
E 207 S
E 207 S
E 2 L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

GCCCTCAGAATCCCA GTGCTTGCCAAgGGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGGAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTCTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTKCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAAGGGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGSAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAAGGGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAAdGGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAAGGGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTYAGAATCCCA GTGCTTGCCAAGGGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA GGGG AACATACGTCAYATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTTTCGGCTGAGACT 315 GCCCTYAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTYAGAATCCCA GTGCTTGCCAA GGG AACATACGTCATATG GATGATGTTCGGRAC TGCTTGGAAGAGACT GGCACTGATGGGGTG CTYTCGGCTGAGACT 315 GCCCTCAGAATCCCA GTGCTTGCCAA CCCTCAGAATCCCW GTGCTYGCCAA CCCTCAGAATCCCA GTGCTYCCCAA GCCCTCAGAATCCCA GTGCTTGCCAA GCCCTCAGAATCCCA GTGCTGGCTAA GCCCTCAGAATCCCA GTGCTTGCCAA GCCCTCAGAATCCCA GTGCTTGCCAATGGG AACATACGTCATATG GATGATGTTCGGAAC TGCTTGGAAGAGACT GACACTGATGGGGTG CTTTCAGCTGAGACT 315

СTCCTCGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGGCAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCGGACCGCTGAG TGTGCTGTTGGTGGA GAAGAGAGCAGTGCA GATGGACAACTAGAC CAGGCTGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCGCTGAG TGKGCYGTTGGTGGA GAAGAGAGCAGTGYA GATGGRCAACTAGAC CAGGCWGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCRCTGAG TGGGCYGTTGGTGGA GAAGAGAGCAGTGYA GATGGRCAACTAGAC CAGGCWGATTTWTTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGRCAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGARAGCAGYGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GСTСTСTTTGCTGGA TTCCRGACCGCTGAG TGTGACGTTGGTGGA GAAGAGAGCAGTGYA GATGGACAACTAGAC CAGGCWGATTTATTG 420 СТССТСGAGAATCCA GСTСТСTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCGCTGAG TGKGCYGTTGGTGGA GAAGAGAGCAGTGYA GATGGACAACTAGAC CAGGCWGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGARAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACCGCTGAG TGGGCCGTTGGTGGA GAAGARAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCRCTGAG TGGGCYGTTGGTGGA GAAGAGAGCASTGYA GATGGACAACTAGAC CAGGCWGATYTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCGGACCACTGAG TGGGCYGTTGGTGGA GAAGAGAGCASTGYA GATGGACAACTAGAC CAGGCWGATYTATTG 420 CTCCTCGAGAATCCA GCTCTCTTTGCTGGA TTCCGGACCACTGAG TGGGCCGTTGGTGGA GAAGAGAGCACTGTA GATGGACAACTAGAC CAGGCAGATCTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCTGGA TTCCRGACCRCTGAG TGGGCYRTTGGTGGA GAAGAGAGCAGTGYA GATGGACAACTAGAC CAGGCWGATTTATTG 420 СТССТСGAGAATCCA GCTCTCTTTGCYGGA TTCCGGACCACTGAG TGGGCYGTTGGTGGA GAAGAGAGCASTGYA GATGGACAACTAGAC CAGGCWGATYTATTG 420 СTCCTCGAGAATCCA GCTCTCTTTGCYGGA TTCCGGACCACTGAG TGGGCCGTTGGTGGA GAAGAGAGCACTGTA GATGGACAACTAGAC CAGGCAGATCTATTG 420 СTCCTCGAGAATCCA GCTCTCTTTGCTGGA YTCCGGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTATTG 420 СTССTCGAGAATCCA GCTCTCTTTGCTGGA YTCCGGACCGCTGAG TGGGCCGTTGGTGGA GAAGAGAGCAGTGTA GATGGACAACTAGAC CAGGCAGATTTRTTG 420 СТССТTGAGAATCCA GCTCTCTTTGCTGGA TTCCGGACTGCTGAG TGGGCTGTTGGGGGA GAAGAGAGCAGTATA GATGGACAACTRGAC CARGCAGATTTGTTG 420 СTCCTCGAGAATCCA GCTCTCTTTGCCGGA TTCMGGACTGCTGAG TGGGCCGTTGGCGAA GAAGAGAGCAGTATA GATGGACAACTAGAC CAGGCTGATTTATTG 420 CTCCTYGAGAATCCA GCTCTCTTTGCTGGA TTCCAGACTGCTGAG TGGGCTGTTGGGGGA GAAGAGAGCAGTRTA GATGGACAACTAGAC CAGGCAGATTTGTTG 420 CTCCTCGAAAATCCA GCTCTCTTTGCTGGA TTCCGGACTGCTGAC TGGGCCGTCAGTGGA GAAGAGAGCAGTATA GATGGACAACTAGAC CAGGCAGATTTATTG 420

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4I
WED 2S
DIF
PAN 2S
SELECTION

GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG YTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCRTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCRTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGARTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGARTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAGTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGARTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAGTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAGTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAGTATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAC GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTWC CCTGTGCCGTGGAGA ATGATCCGTGCTCAT GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATTTAAAG CTTTGTGAAAAGTAC CCTGTGCCATGGAGA ATGATCCGTGCTCAT GTTCATAAGCTGTTG GGAGACTGGTTCAGG ATCCATCCTGAAGTA 525 GTGGAATATTTGAAG CTTTGTGAAAAGTAC CCTGTGCCRTGGAGA ATGATCCGTGCTCAT GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCCGAAGTA 525 GTGGAATATCTGAAG CTTTGTGAGAAGTAC CCTGTGCCGTGGAGA ATGATCCGTGCTCAT GTTCATAAGATGTTG GGAGACTGGTTCAGG ATCCATCCTGAAGTA 525

D16L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
F60SS	AGGCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
SL8 201S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
E 207S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	YATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
E 2L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTYAGAAAACTG	GGT	03
DROT 41S	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
ES	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
MIDC 710S	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
MAN 601S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
MAN 713L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
COLO	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
PA 4S	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
TSH	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	YATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
KRAP 5S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
KRAP 12L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
CON 20S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
DEN 20S	AGRCAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
DEN 54L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
TJ 30L	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
TJ 29S	AGACAGGATCTCAAT	GCACAATCCAAACTA	ACTTTTGAATTTCTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
CHAM 4L	AGACAGGATCTCAAT	GCACAATCCAGRCTT	ACTTTTGAATTTTTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
WED 2S	AGACAGGATCTCAAT	GCACAATCCAGACTA	ACTTTTGAATTTTTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603
DIF	AGACAGGATCTCAAT	GCACAATCCAGACTT	ACTTTTGAATTTTTA	TATGATTTGGTGGAT	CGTCTC		603
PAN 2S	AGACAGTATCTCAAT	GCACAATCCAGACTA	ACTTTTGAATTTTTA	TATGATTTGGTGGAT	CGTCTCAGAAAACTG	GGT	603

Figure B12: NRFP nucleotide alignment. Alignment of DNA sequences for exon 3 of NRFP obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. No identical sequences were identified in this alignment. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The region of the alignment that was found to be homologous to a dihydrouridine synthase-like FMN-binding domain, according to BLAST searches is indicated by arrows at the base of the alignment $(\boldsymbol{\uparrow})$. Conserved residues that form a phosphate binding site are indicated by boxes. The length of the alignment (bp) is given in the right-most column (603 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).
D16L
F60SS
SL8 201S
E 207 S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
SL8 201S
207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S

SELECTION

GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAAGAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCKGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTY TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATYAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC RACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGRTTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATYAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CRCCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CRCCAGCATCAAGCC AATAACAACAGCAGC AACAACAACAAC--- 105 GCTGCGTCWGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGC--- ARYAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACMACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACMACAGCAGC AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCAACAAAAC CACCAGCATCAAGCC AATAACAACAGC--- AACAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATYAGATTGCTT TCCCAGCAACAAAAC CACCARCATCAAGMC AATAACAACAGC--- ---ARCAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATYAGATTGCTT TCCCAGCAACAAAAC CACCARCATCAAGMC AATAACAACAGC--- ARCAACAACAAC--- 105 GCTGCGTCTGGGCTG GAAAGTGTTAACAAG CTCATYAGATTGCTT TCCCAGCACCAAAAC CACCAGCATCAAGAC ACTAACARCAGCAWC AACAACAACAACAAC 105 GCTGCGTCCGGGCTG GAAAGTGTTAACAAG CTCATCAGATTGCTT TCCCAGCATCAA--- - - - - - - - - GAC AMTAACAACAGCAKC AACAACAACAACAAC 105

 GCTGCGTCCGGGCTG GAAAGTGTTAACAAG CTCATCAGATTACTT TCTCAGCACCAA--- --------------- GAG AACAGCAACAGCAAC AACAACAACAAC--- 105

---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 -- AGTAATAACAGT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACART AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCRAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACART AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACART AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACART AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAАТААСААТ AАСАТTAACCACCAA TСАТСАТСАССТТСТ TСТTСTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTGATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCAAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTRATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCRAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAC AACACTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTAGCA 210 ---AGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCGAGCTCA AGAACAGCCTCCATG GAGATGGACATGGAC TGCAAGGCTGTTGCA 210 AACAGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCWAGCTCA AGAACAGCCTCCATG GAGATGGAYATGGAC TGCAAGGCTGTTGCR 210 AACRGTAATAACAAT AACATTAACCACCAA TCATCATCACCTTCT TCTTCTTCAAGCTCA AGAACAGCCTCCATG GAGATGGATATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AATACTAMCCACCCA TCATCTTCACCTTCT TCTTCTTCAAGCTCA AGAACAGCCTCCATG GAGATGGAAATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AСТАATAACCACCAA TCA---TCACCTTCT TCTTCTTCAAGTTCA AGAACAGCCTCCATG GAGATGGAAATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AATACTAACCACCAA TCATCTTCACCTTCT TCTTCTTCAAGCTCA AGAACAGCCTCCATG GAGATGGAAATGGAC TGCAAGGCTGTTGCA 210 ---AGTAATAACAAT AATAATAACCACCAA TCA---TCACCTTCT TCTTCCTCAAGCTCA AGAACAGCCTCCATG GAGATGGAAATAGAC TGCAAGGCTGTTGCA 210
D16L
F60SS
SL8 201S
E 207 S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
J 30 I
J 30L
TJ 29S
CHAM 4L
CHAM 4I
WED 2 S
WED 2
PAN 2S
SELECTION
D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
J 29S
CHAM 4L
WED 2S
DIF
PAN 2S SELECTION

GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGACC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACYGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACMAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACTGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC ARTACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGACC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGGCC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGACC AATACTCCTGYC--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCTCGCTTTAGA AGAGCTCCTGTGACC AATACTCCTGCC--- 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACCGGC CATGCGCGCTTTAGA AGAGCTCCTGTGATC AATAATAAT------ 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACSGGG CATGCTCGCTTTAGA AGAGCTCCTGTGATC AATACTCCTGCT--- 315 GATGTTGCTGTCTCC AAATTCAAGAGAGTC ATCTCGCTTCTGGGT CGAACCAGAACCGGC CATGCGCGCTTTAGA AGAGCTCCTGTGATC AATAATACT------ 315 GATGTTGCTGTCTCC AAGTTCAAGAGAGTC ATTTCTCTTCTGGGT CGAACCAGAACGGGC CATGCTCGCTTTAGA AGAGCTCCTGTGATC AATACTCCTGCTCCT 315
\qquad
CATGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CCTGTTCCTTCTACT ATAAGTAATGCCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CMTGTTCCTTCTACT ATAAGTAATRCCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CСTGCTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CMTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGYTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 ССТGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCA 420 ССТGTTCCTTCTACT ATAAGTAATRCCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CСTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCW 420 ССТGTTCCTTCTACT ATAAGTAATRCCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CCTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 ССТGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CСTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCWAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 ССТGСТССТТСТАСТ АТАAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGTTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CCTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCKATC CAGCAAATCCCTCCT 420 CCTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCTATC CAGCAAATCCCTCCT 420 CСTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCKATC CAGCAAATCCCTCCT 420 ССTGCTCCTTCTACT GTAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CCTGTTCCTTCTACT ATAAGTAATACCAAC ACAAGGCAAGAAAAC AGCCAAGCTCTTGAA ACAATTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CСTGCTCСTTCTACT ATRAGTAATACCAGC ACAAGGCAAGAAAAC AGCCAAGTTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CCTGCTCCTTCTACT ATGAGTAATACCAGC ACAAGGCAAGAAAAC AGCCAAGTTCTTGAA ACAAGTAAGGTTTAC TATGCTACACCGATC CAGCAAATCCCTCCT 420 CССGTTCCTTCTCCT ATTAATAATACCAAC CCAAGGCAAGCAAAC AGCCAAKTTGTTGAA GCTAGTAARGTGTAC TATGCGACTCCGATC CAGCAAATCCCTCCC 420 ССТССТGСTСТTССТ ATTCATAATAGCAAC CCAAGGCAAGAAAAC AGCCAAGTTCTTGAA ACAAGTAAGGTTTAT TATGCTACACCGATC CAGCAAATCCCCCCT 420 CCCGTTCCTTCTCCT ATGAATAATACCAAT CCAAGGCAAGTAAAC AGCCAAGTCCTTGAA ACTAGTAAGGTCTAT TATGCTACTCCGATC CAGCAAATCCCTCCC 420 CCTGCTCCTTCTCCT GTTAATACTAGCAAC CCAAGGCAAGAAAAC AGCCAAGTGCTTGAA GCTAGTAAGGTTTAT TATGCTACACCGATC CAGCAAATCCCTCCT 420

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 54L
DEN 20S
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
SELECTION

ACTCTTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACTATTAATTTC 525 АСТСТTССТGTGCCT AАTCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGTAAAGACTCATCC ACTACCATTAATTTC 525 ACTCTTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACYATTAATTTC 525 ССТСтTССТGTGCCT ААТСАССАССАСGAT TATGCTTCTGTGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 MСТСТТССТGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТТССТGTGССТ ААТСАССАССАСGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТТССТGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТTССТGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 AСTCTTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТTССТGTGCCT ААТСАССАССАСGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 ССТСТTССТGTGCCT AATCACCACCACGAT TATGCTTCTGTGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 ---СTTCCTATGCCT AATCACCACCACGAT TATGCTTCTRTGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 АСТСТTCCTGTGCCT AATCACCACCACGAT TATGCTTCTATGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 MCTCTTCCTRTGCCT AATCACCACCACGAT TATGCTTCTRTGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 AСTCTTCCTGTGCCT AATCACCACCACGAT TATGCTTCTRTGATG ATGMTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 AСTCTTCCTGTGCCT AATCACCACCACGAT TATGCTTCTRTGATG ATGMTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATTAATTTC 525 CCTCTTCCTRTGCCT AGTCACCACCACGAT TATGCTTCTGTGATG ATGCTGCCRAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCA ACCACCATTAATTTC 525 ССТСТTССТАТGССТ AGTCACCACCACGAT TATGCTTCTGTGATG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCM ACCACCATTAATTTC 525 ССТСТTCCAGTGCCT AATCACCACCACGAT TATGCYTCTGTGATG WTGATTCCAAAGACT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATAAATTTC 525 ССТСТTССАGTGCCT AATCACCACCACGAT TATGCTTCTATGGTG ATGCTGCCAAAGAGT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATAAATTTC 525 CATCTTCCAGTGCCT AATCACCACCATGAT TATTCTTCTGTGATG ATGATGCCAAAGACT AATGGGGTGATTGAG AGGAAAGACTCATCC ACTACCATAAATTTC 525 СТTСTTCCTGTGCCT AATCACCACCACGAT TATGCTTCCGTGGAG ATGCTGCCAAAGGGT AATGGTGTGATTGAG AGGAAAGACTCATCC ACTGCCATAAATTTC 525

TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСТTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСтTATTСтTССGСт GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСTTATTCTTCСGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAAYGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСTTATTCTTССGСТ GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСТTATTCTTCСGСТ GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСТTATTСTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCСGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCWTCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCWTCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCYTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TСTTATTСTTCСGCT GGGAATAACTCCTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAGCCATCATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAACAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAACCATCATCT TCATCGGCTTTTCAG AYTGCAAWTCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAACCATCATCT TCATCGGCTTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAACAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAACCATCATCT TCATCGGCTTTTCAG ATTGCAAATCTGTCT 630 TCTTATTCTTCCGCT GGGAATAACTCTTTC ATGTCTTCCTTGACG GGTGATAATGATAGC AAGCAACCATTATCT TCATCGGCCTTTCAG ATTGCAAATCTGTCT 630

D16L	CAGGTTTCTTCAGCT	GGTAAG 651
F60SS	CAGGTTTCTTCAGCC	GGTAAG 651
SL8 201S	CAGGTTTCTTCAGCY	GGTAAG 651
E 207S	CAGGTTTCTTTAGCT	GGTAAG 651
E 2L	CARGTTTCTTCAGCT	GGTAAG 651
DROT 41S	CAGGTTTCTTCAGCT	GGTAAG 651
ES	CAGGTTTCTTCAGCY	GGTAAG 651
MIDC 710S	CAGGTTTCTTCAGCT	GGTAAG 651
MAN 601S	CAGGTTTCTTCAGCY	GGTAAG 651
MAN 713L	CAGGTTTCTTCAGCT	GGTAAG 651
COLO	CAGGTTTCTTCAGCT	GGTAAG 651
PA 4S	CAGGTTTCTTCAGCT	GGTAAG 651
TSH	CAAGTTTCTTCAGCT	GGTAAG 651
KRAP 5S	CAGGTTTCTTCAGCT	GGTAAG 651
KRAP 12L	CAGGTTTCTTCAGCT	GGTAAG 651
CON 20S	CAGGTTTCTTCAGCT	GGTAAG 651
DEN 54L	CAGGTTTCTTCAGCY	GGTAAG 651
DEN 20S	CAGGTTTCTTCAGCY	GGTAAG 651
TJ 30L	CARGTTTCTTCRGCT	GGTAAG 651
TJ 29 S	CAGGTTTCTTCGGCT	GGTAAG 651
CHAM 4L	CAGGTTTCTTCAGCT	GGTAAG 651
WED 2S	CAGGTTTCTTCAGCT	GGTAAG 651
DIF	CAGGTTTCTTCAGCT	GGTAAG 651
PAN 2S	CAGATTTCTTCAGCT	GGTAAG 651

Figure B13: WRKY nucleotide alignment. Alignment of DNA sequences for exon 1 of $W R K Y$ obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. No identical sequences were identified in this alignment. Particular codon sites that were identified as positively/negatively selected by 2 or more site-by-site selection detection methods are underlined in the bottom-most sequence in the alignment. Below each underlined codon, the type of selection that was identified is indicated by a "+" or "-", suggesting the action of positive/diversifying and negative selection, respectively. The length of the alignment (bp) is given in the right-most column (651 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

Appendix C: Nucleotide Alignments for Control Genes

D16L
F60SS
SL8 201S
207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
PA 4S
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
WED 2S
DT
PAN 2 S
D16L
60SS
SL8 201S
E 207S
E 2L
DROT 41S
DRO
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12I
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29 S
CHAM 4L
NED 2S
DIF
PAN 2 S
D16L

GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTSTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCY TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTSTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCC TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCY TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCY TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCY TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCY TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCC TTGGTTCTTGCRATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGASTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACKGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGASTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCAATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCACGAG GTTGTGAAGAGGGCT TTGGTTCTTGCCATG GAAATCCGTACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGAGTCTCA TTCTTTCATCACGAG GTTGTGAAGAGGGCT TTGGTTCTTGCCATG GAAATCCGTACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGGGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT TTGGTCCTGGCCATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGGGTCTCA TTCTTTCATCATGAG GTTGTGAAGAGGGCT CTGGTTCTTGCCATG GAAATCCGGACTGCT 105 GATGCTTTTGAGGCC TGCAGGTCTATAAGG GAGCTAGGCGTCTCR TTCTTTCATCATGAG GTTGTGAAGAAGGCT TTGGTCCTTTCCATG GAAATCCGAACTGCT 105 GATGCTTTTGAGGCC TGCAGATCTATAAGG GAGCTAGGGGTCTCA TTCTTTCACCATGAG GTTGTGAAGAGGGCT TTGGTTCTTGCTATG GAAATCCGAACTGCT 105

GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTRATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTRATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTRTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCKTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCY GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTKWAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCRTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCRTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTCATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCC GAGAGCCTTGATGAT 210 GAACCACTCATATTG AAGCTGTTAAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCC GAGAGCCTTGATGAT 210 GAACCACTCATATTG AAGCTGTTGAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGGCTAGCG GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCTTCCGAAGAAGGC CTGATAAGTTCCAGC CAGATGGCAAAAGGT TTTGCTCGTCTAGCT GAGAGCCTTGATGAT 210 GAACCACTCATATTG AAGCTGTTGAAGGAA GCGTCTGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGGCTAGCT GAGAGCCTTGATGAT 210 GAACCACTTATATTG AAGCTGTTAAAGGAA GCATCCGAAGAAGGC CTGATAAGTTCCAGT CAGATGGCAAAAGGT TTTGCTCGTCTAGCC GAGAGCCTTGATGAT 210 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315

F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

60ss
SL8 201S
E 207S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713L
COLO
TSH
RRAP 5S
CON 20S
DEN 20S
DEN 54L
TJ 29S
HAM 4I
NED 2S
AN 2

D16L
F60SS
SL8 201S
E 207S
E 2L
ES
MIDC 710S
MAN 601 S
MAN 713L
COLO

RRAP 5
RRAP 12L
DEN 20 S
DEN 54L
J 30I
CHAM 4I
IF
PAN 2 S

СTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СТTGTTCTCGATATT CСATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATRCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СTTGTTCTCGATATT CСATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СТTGTTCTCGATATT ССАTCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAKGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCRAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAKGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAKGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAKGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTGTTCTCGATATT CCATCTGCRAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCWGCRAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTATTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 CTTGTTCTCGATATT CCATCTGCGAAATCC TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 31 СTTGTWCTCGATATT ССАTCTGCAAAATCT TTGTTCCAATCACTT GTCCCCAAGGCRATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 31 CTTGTTCTCGATATT CСATCTGCAAAATCT TTGTTCCAATCACTT GTCCCCAAGGCAATC TCCGAGGGATGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA З1 TTTGTGCTCGATATT CCATCTGCAAAATCT TTGTTCCAATCACTC GTCCCCGAGGCAATC TCCGAGGGTTGGCTT GATGCTTCCTTCTTG AAATCCTCGAGTGAA 315 CTTGTGCTCGATATT CCATCTGCAAAATCT TTGTTCCAATCACTC GTCCCCAAGGCAATC TCTGAGGGTTGGCTT GATGCTTCCTTCTTG AAATCCTCGTGTGAA 315 СTTGTGCTCGATATT CCATCTGCAAAATCT TTGTTCCAATCTCTC GTCCCCAAGGCAATC TCCGAGGGTTGGCTT GATGCTTCCTTCTTG AAATCCTCAAGTGAA 315 СTTGTGCTCGATATT CCATCTGCAAAATCT TTGTTCCAATCTCTC GTCCCCAAGGCAATC TCTGAGGGATGGCTT GATACTTCCTTCTTG AAATCCTCAAGTGAA 315

GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACY ATAATTCATGAGTAT TTTCTCTCYGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACY ATAATTCATGAGTAT TTTCTCTCCGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCRCCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCRCCA GTTGAGGATGAAAAG CTGAGRCGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCYGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGRCGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCYGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGRCGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGRCGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTYTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGRCGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCCGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCCGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGACGTTACAAG GAGGAAGCTGTTACT ATAATTCATGAGTAT TTTCTCTCTGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGAYGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCYGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGAYGTTACAAG GAGGAAGCTGTKACT ATAATTCATGAGTAT TTTCTCTCYGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCAGATGAC ATTCCCGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCAGATGAC ATTCCCGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCAGATGAC ATTCCTGAATTGATC 420 GATGGCCAGGCACCA GTTGAGGATGAAAAG TTGAGGCGTTACAAG GAGGAAGCTGTTACT ATAATTCACGAGTAT TTTCTGTCAGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCATGAGTAT TTTCTCTCAGATGAC ATTCCTGAATTGATC 420 GATGGCCTGGCACCA GTTGAGGATGAAAAG CTGAGGCGTTACAAG GAGGAAGCTGTGACT ATAATTCACGAGTAT TTTCTCTCAGATGAC ATTCCTGAATTGATC 420

D16L
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
AN

F0 SS
SL8 201S
e 207S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713I
COLO
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 2L
DROT 41S
E
MIDC 710S
MAN 601 S
COLO
PA 4S
RRAP 5S
KRAP 12L
CON 20S
DEN 20 S
TJ 30L
J 29S
NED 2S

CAGAGTCTTGAGGAT CTTGGGATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAGCTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCA 525 CAGAGTCTTGAGGAT CTTGGGATGCCTGAA TTTAACCCAGTTTTTC CTGAAAAAGCTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCA 525 CAGAGTCTTGAGGAT CTTGGGATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAACTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCG 525 CAGAGTCTTGAGGAT CTTGGGATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAACTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCG 525 CAGAGCCTTGAGGAT CTTGGAATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAGCTTATC ACACTTGCCATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCG 525 CAGAGTCTTGAAGAT CTTGGGATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAACTTATC ACACTTGCTATGGAC AGGAAGAACAGGGAG AAGGAAATGGCATCA 525 CAGAGCCTTGAGGAT CTTGGAATGCCTGAA TTTAACCCAGTTTTC CTGAAAAAACTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCG 525 CAGAGTCTTGAGGAT CTTGGGATGCCTGAA TTTAAYCCAGTTTTC CTGAAAAAACTTATC ACACTTGCTATGGAC CGGAAGAACAGGGAG AAGGAAATGGCATCG 525

GTTСТССТСТСАGСТ СТTСАТАTAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTССТСТСАGСT СТTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАTATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАTATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCСTСTCAGCT СTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАTATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАTATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СтTСАTATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT СTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTKGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT СTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCAGCY CTTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСY СТTCATATAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACRTCTTG 630 GTTСТССТСТСАGСТ СТTСАTATAGAGATC TTTTCAACAGACGAY ATTGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACG GCACTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCAACAGACGAC ATTGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACG GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАТАTAGAGATC TTTTCAACAGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTCTCCTCTCTGCT CTTCACATAGAGATC TTTTCAACAGATGAC ATAGTTAGTGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCTCTGGACATCTTG 630 GTTCTCCTCTCAGCT CTTCATATAGAGATC TTTTCRACTGATGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACC GCACTGGACATCTTG 630 GTTСТССТСТСАGСТ СТTСАТАTAGAGATC TTTTCAACAGACGAC ATAGTTAATGGCTTT GTCTTGCTTCTGGAA TCTGCAGAAGACACT GCACTGGACATCTTG 630
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
NED 2S
DIF
PAN 2S

GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT СССTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCCAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCCAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GACGATGTTTTGGCT CCCTTGAATCTAGAA GAGATTGCCAGCCGA TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTTCTT GCTAGGGCTGTGATT GACGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735 GATGCTTCAAATGAG CTTGCTCTTTTTCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTATCCGA TTGCCACCAAATTGC 735 GATGCTTCAAATGAG СTTGCTCTTTTCCTT GCTAGGGCTGTGATT GATGATGTTTTGGCT CCCTTGAATCTAGAG GAGATTGCTAGCCGG TTGCCACCAAATTGC 735

AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCSGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCSGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCSGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCSGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCVGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCGGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCACTTATTGCTGCM CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCACTTATTGCTGCM CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCACATGGCTAGA TCGCTTATTGCTGCC CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTTCACATGGCTAGG TCACTTATTGCTGCC CGTCATGCTGGTGAA AGG 798 AGTGGGAGTGAGACT GTGCGCATGGCTAGA TCGCTTATTGCTGCC CGTCATGCCGGTGAA AGG 798 AGTGGGAGTGAGACT GTTCACATGGCTAGA TCGCTTATTGCTGCA CGTCATGCCGGGGAA AGG 798

Figure C1: ECIP1 nucleotide alignment.

Alignment of DNA sequences for exon 3 of ECIP1 obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Sequences obtained for MAN 713L and ES were found to be identical at this locus. The length of the alignment (bp) is given in the right-most column (798 bp, total). The alignment is sectioned into groups of 5 bases (or 5 codons).

$\begin{aligned} & \text { D16L } \\ & \text { F60SS } \end{aligned}$
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
AN

F0 SS
SL8 201S
E 207S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713I
COLO
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 2L
DROT 41S
E
MIDC 710S
MAN 601 S
COLO
PA 4S
RRAP 5S
KRAP 12L
CON 20S
DEN 54L
TJ 30L
CHAM 4I
NED 2S
PAN 2S

CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTY 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAAYGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAACGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCATTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAACGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAACGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCWTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAAYGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAGG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATKYTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATKYTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTRAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CAYTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTRAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CATTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCGACATCCGTGGTC 105 CATGGNTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCTGTGGTT 105 CATGGGTATCAAAAG AAAGATTATGCTAAC AAAGAAAAGCTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCGACATCCGTGGTC 105 CATGGGTATCAAAAG AAAGATTATGCCAAC AAAGAGACACTTGAA GATCCCTCTTTGTAC CACTATGCCATCTTT TCTGATAATGTACTG GCAACATCCGTGGTC 105

GTCAATTCCACTGCA CGACATGCAAAACAT CCTGAGAAACATGTT TTCCATATAGTAACT GATAAACTGAACTTT GCTGCGATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCA CGRCATGCAAAACRT CCTGAGAAACATGTT TTCCATATAGTAACT GATAAACTGAACTTT GCYGCGATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCA CGRCATGCAAAACRT CCTGAGAAACATGTT TTCCATATAGTAACT GATAAACTGAACTTT GCYGCGATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCG CGACATGCAAAACAT CCTGAGAAACATGTT TTCCATATAGTAACT GATAAACTGAACTTT GCTGCGATGAGAATG TGGTTTATGATCAAT 210 GTCAATTCCACTGCG CGACATGCAAAACAT CCTGAGAAACATGTT TTCCATATAGTAACT GATAAACTGAACTTT GCTGCGATGAGAATG TGGTTTATGATCAAT 210 GTCAATTCCACTGCA CTACATGTAAAACAT CCTGAGAAACATGTT TTCCATATAGTCACC GATAAACTGAACTTT GCTGCTATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCG CTACACGTAAAACAT CCTGAGAAACATGTT TTCCATATAGTCACT GATAAACTGAACTTT GCTGCTATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCG CTACATGTAAAACAT CCTGAGAAACATGTT TTCCATATAGTCACC GATAAACTGAACTTT GCTGCTATGAGAATG TGGTTTATTGTCAAT 210 GTCAATTCCACTGCG CTACATGCAAAACAT CCTGAGAAACATGTT TTCCATATAGTCACC GATAAACTGAACTTT GCTGCTATGAGGATG TGGTTTATTGTCAAT 210

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S

TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCYGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCYGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TСTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 31 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 CTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 31 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCRGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCRGTT CTACGTCAATTGGAT TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTAAATTCC TCRTATTGTTCAGTT CTGCGTCAATTGGAA TCTTCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTAAATTCC TCRTATTGTTCAGTT CTGCGTCAATTGGAA TCTTCCAGGGTTAAG 315 TCTCCTGAGAAAGTT ACCGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCCTATTGTTCAGTT CTACGTCAGTTGGAT TCTGCCAGGGTTAAG 315 CTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGTTCAGTT CTACGTCAATTGGAA TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGTT ACYGTACAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCCTATTGTTCAGTT CTACGTCAGTTGGAA TCTGCCAGGGTTAAG 315 TCTCCTGAGAAAGCT ACAGTCCAGGTGGAG AATGTTGATGATTTC AAGTGGTTGAATTCC TCGTATTGCTCGGTT CTACGTCAATTGGAA TCTGCCAGGGTTAAG 315

GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAR TATTTGTCTATGCTG AATCATCTYAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTSAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCCATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTAGCTGCCGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCYATGCTG AATCATCTCAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCAGCTGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTATCTATGCTG AATCATCTTAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCAGCTGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTATCTATGCTG AATCATCTTAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCTGCTGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTTAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCTGTTGGG TCTGACAACCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTTAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCTGCTGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTTAGATTC 420 GAATACTATTTCAAG GCACATCATCCTTCC TCTCTTGCTGCGGGG TCTGACAATCTCAAG TATAGGAATCCAAAA TATTTGTCTATGCTG AATCATCTTAGATTC 420

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710s
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710s
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S

TACCTTCCTGAAGTG TACCCGAAGCTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCAGGGA 525 TACCTTССТGAAGTG TACCCGAAGCTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCAGGGA 525 TACCTTCCTGAAGTG TACCCAAAGCTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCAGGGA 525 TACCTTCCTGAAGTG TACCCAAAGCTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCAGGGA 525 TACCTTCCTGAAGTG TACCCAAAACTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCAGGGA 525 AССТТССТGAAGTG TACCCAAAACTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCATGGA 525 TACCTTCCTGAAGTG TACCCAAAACTAGAC AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACGCCTCTTTGGTCT ATTGATCTTCAGGGA 525 TAССТТССТGAAGTG TACCCAAAACTAGAG AAAATCCTTTTCCTG GATGATGATATTGTA GTGCAGAAGGATTTG ACACCTCTTTGGTCC ATTGATCTTCACGGA 525

ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTWTGAGAAT TTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTRATCCAAAYGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAACGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAACGCT 630 AAGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCG AAGATTTATGAGAAT TTTGATCCAAATGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAC TTTGATCCAAATGCT 630 ATGGTAAATGGTGCA GTGGAGACTTGCAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAATGCT 630 ATGGTAAATGGTGCG GTGGAGACTTGTAAG GAGAGTTTTCATAGG TTTGATAAGTATCTA AACTTCTCAAATCCA AAGATTTATGAGAAT TTTGATCCAAATGCT 630

Figure C2: GAUT3 nucleotide alignment. Alignment of DNA sequences for exon 6 of GAUT3 obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS and D16L; 2) MAN 601S, MAN 713L, and ES; and 3) PA 4S, DROT 41S, and CON 20S. The length of the alignment (bp) is given in the right-most column (663 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S

AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 ATATGTGGTTC
 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGR AAAGCYAYTATYCAT GTTGAAAATGTYGAT GAATTTAAGYGGCTT AACTCATCCTACTGC YCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGR AAAGCYAYTATYCAT GTTGAAAATGTYGAT GAATTTAAGYGGCTT AACTCATCCTACTGC YCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGR AAAGCYAYTATYCAT GTTGAAAATGTYGAT GAATTTAAGYGGCTT AACTCATCCTACTGC YCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCYACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCTACTATCCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCYACTATCCAT GTTGAAAATGTYGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGG AAAGCYACTATCCAT GTTGAAAATGTYGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCCGGG AAAGCCACTATCCAT GTTGAAAATGTCGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCYGGG AAAGCCACTATCCAT GTTGAAAATGTCGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTAAATCCTCCTGGG AAAGCCACTATTCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTGAATCCTCCTGGA AAAGCCACTATTCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCAGTTTTGCGACAG 105 AATATGTGGTTTCTC TTAAATCCTCCTGGG AAAGCCACTATTCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCCTACTGC CCRGTTTTGCGRCAG 105 AATATGTGGTTCCTC TTGAATCCTCCTGGG AAAGCCACTATTCAT GTTGAAAATGTTGAT GAATTTAAGTGGCTT AACTCATCGTACTGC CCAGTTTTGCGACAG 105

CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 СTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 СTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 СTTGAGTCTGCTGSA ATGAAAGAATMTTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCRAAGTATCTTTYG 210 СTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 СTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGSA ATGAAAGAATMTTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCRAAGTATCTTTYG 210 CTTGAGTCTGCTGSA ATGAAAGAATMTTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCRAAGTATCTTTYG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 СTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCGAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCRAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCRAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAGTATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCAAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGARTATTAC TTCAAAGCAAATCAT CCAACTTCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCAAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCCACATCTCTTTCA ACTGGCTCTTCAAAT CTGAAGTATCGGAAC CCAAAGTATCTTTCG 210 CTTGAGTCTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACATCTCTTTCA TCTGGCTCTTCAAAT CTCAAGTATCGGAAC CCAAAGTATCTTTCG 210 CTTGAGTSTGCTGCA ATGAAAGAATATTAC TTCAAAGCAAATCAT CYCACATCTCTTTCA ACTGGCTCTTCAART CTGAAGTATCGGAAC CCAAAGTATCTTTCG 210 CTTGAGTCTGCTGCT ATGAAAGAATATTAC TTCAAAGCAAATCAT CCAACATCTCTTTCA TCTGGCTCTTCAAAT CTGAAGTATCGGAAC CCAAAGTATCTTTCG 210

D16L F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2 S

ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAGAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAGAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCARAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCARAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCY CAAGTTTATCCCAAW TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAASTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAW TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCY CAAGTTTATCCCAAW TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCY CAAGTTTATCCCAAW TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAASTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCSAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTСTATCTCCCC CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCY CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCY CAAGTTTATCCCAAA TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCA CAAGTTTATCCCAAG TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCA CAAGTTTATCCCAAG TTGGATAAAATTCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCA CAAGTTTATCCCAAA TTGGATAAGATCCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTRACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTACCTCCCA CAAGTTTATCCCAAA TTGGATAAGATCCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCA CAAGTTTATCCCAAA TTGGATAAGATCCTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315 ATGCTTAATCATCTG AGGTTCTATCTCCCA CAAGTTTATCCCAAA TTGGATAAGATCTTG TTTCTGGACGATGAC ATTGTGGTTCAAAAA GACTTAACTGGATTA 315

TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCYGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCYGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCYGTGGATTTG AATGGRAAAGTAAAT GGAGCWGTGGRAACC TGTGGTGAAAGYTTT CATCGGTTTGATAAG TACCTAAAMTTTTCA AATCCTCATATWKCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGYTTT CATCGGTTTGATAAG TACCTWAACTTTTCA AATCCTCATATWGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCYGTGGATTTG AATGGRAAAGTAAAT GGAGCWGTGGRAACC TGTGGTGAAAGYTTT CATCGGTTTGATAAG TACCTAAAMTTTTCA AATCCTCATATWKCA 420 TGGTCYGTGGATTTG AATGGRAAAGTAAAT GGAGCWGTGGRAACC TGTGGTRAAAGYTTT CATCGGTTTGATAAG TACCTAAAMTTTTCA AATCCTCATATWKCA 420 TGGTCYGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCTGTGGATTTG AATGGGAAAGTAAAT GGAGCAGTAGAAACC TGTGGTGAAAGCTTT CACCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCTGTGGATTTG AATGGGAAAGTAAAT GGAGCAGTGGAAACT TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATCCTCATATTGCA 420 TGGTCGGTGGATTTG RATGGGAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCA AATMCTCATATTGCA 420 TGGTCCGTGGATTTG AATGGAAAAGTAAAT GGAGCAGTGGAAACC TGTGGTGAAAGCTTT CATCGGTTTGATAAG TACCTAAACTTTTCG AATCCTCATATTGCA 420

D16L	AGAAACTITGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
F60SS	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	65
SL8 201S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGRATGAAC	465
E 207S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
E 2L	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
DROT 41S	AGAAACTTTGATCC	AATGMTTGTGGATGG	GCATATGGGATGAAC	465
ES	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
MIDC 710S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
MAN 601S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
MAN 713L	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
COLO	AGAAACTTTGATCC	AATGMTTGTGGATGG	GCATATGGGATGAAC	46
PA 4S	AGAAACTTTGATCC	AATGMTTGTGGATGG	GCATATGGGATGAAC	46
TSH	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGRATGAAC	465
KRAP 5S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	46
KRAP 12L	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
CON 20S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
DEN 20S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
DEN 54L	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	46
TJ 30L	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	46
TJ 29S	AGAAACTTTGATCC	AATGCTTGTGGATGG	GCATATGGGATGAAC	465
CHAM 4L	AGAAACTTTGATCC	AATGCTTGTGGYTGG	GCATATGGCATGAAC	465
WED 2S	AGAAACTTTGATCC	AATGCTTGTGGGTGG	GCATATGGGATGAAC	465
DIF	AGAAACTTTGATCC	AATGCTTGTGGGTGG	GCATATGGCATGAAC	46
PAN 2 S	AGAAACTTCGATC	AAYGCTTGTGGGTGG	GCATATGGGATGAAC	465

Figure C3: GAUT1 nucleotide alignment. Alignment of DNA sequences for exon 4 of GAUT1 obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS and D16L; 2) MAN 601S, MAN 713L, MIDC 710S, KRAP 5S, KRAP 12L, and CON 20S; 3) DEN 54L and DEN 20S; and 4) E 2L and E207S. The length of the alignment (bp) is given in the right-most column (465 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

F0 SS
LL8 201S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713I
COLO
TSH
KRAP 5S
CON 20S
DEN 20S
DEN 54L
J 30L
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 2L
DROT 41S
E
MIDC 710S
MAN 601 S
COLO
PA 4S
RRAP 5S
KRAP 12L
CON 20S
DEN 54L
TJ 30L
CHAM 4I
ED 25
PAN 2S

СТTTCTCATGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC RCAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СТТТСТСАТGССАAG ССАGACTСААСТССС TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC RCAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 CTTTCTCATGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC GCAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СТTTСТСТTGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCKTTTGGAGCAGAC ACAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СТTTСТСWTGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC RCAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СТTTСТСАТGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCRGAC RCAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 CTTTCTCATGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC ACAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СТTTCTCATGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC ACAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 CTTTCTCATGCCAAG CCAGACTCAACTCCC TCAAAGAGGAGGAAT CCGTTTGGAGCAGAC ACAGAGAAAACACCG ACGAAAAAGAAAGCC GGGGATTCGAGGACT 105 СTTTCTCATGCCAAG CCAGACTCAACTCCC CTTTCTCATGCCAAG CCAGACTCAACTCCС СТTTCTCTTGCCAAG CCAGACTCAACTCCC СTTTCTCWTGCCAAG CCAGACTCAACTCCC СTTTCTCATGCCAAG CCAGRCTCAACTCCC СTTTCTCATGCCAAG CCAGRCTCAACTCCC TTTCTCATGCCAAG CCAGACTCAACTCC CTTTCYCATGCCAAG CCAGACTCAACTCCY СТTTCTCATGCCAAG CCAGACTCAACTCC СТСТСТСАTGCCAAG CCAGACTCAACTCCT TTTCTCATGCCAAG CCAGAGTCAACTCCT СТTTCTCATGCCAAG CCAGACACAACTCCT СТТТСТСАТGCCAAG CCAGAATCAACTCC СTTTCTCATGCCAAG CCAGACTCAACTCC СТСТСТСАTGCTAGG CCAGACTCAACTCCT TCAAAGAGGAGGAAC CCGTTTAGTGCAGAG ACAGACAAAACACCG ACAAAAAAGAAAGCA GGGGATTCAAGGACT 105

ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTACTCCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTACTCCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTMCTCCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACT---CCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACT---CCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACT---MCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 ССТGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACT---CCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCYGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACT---CCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 ССTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGAYCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCMGCTGTC AAGAAGAAAGYKAAT CCTACTWCTMCTYCM 210 CCTGAACGTAGTGGT GGACCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCAGCTGTC AAGAAGAAAGTGAAT CCTACTACTCCTYCM 210 CCTGAACGTAGTGGT GGATCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCCGGTGGC AAGAGGAAAGTGAAT CCTACTACTCCTCCA 210 CCTGAACGTAGTGGT GGATCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCCGGTGTC AAGAGGAAAGTGAAT CCTACTACTCCTCCA 210 ССTGAACATAGTGGT GGATCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCCGGTGTC AAGCGGAAGGTGAAT CCTGGTGCTACTCCA 210 CCTGAACGAAGTGGT GGATCAATTAGAAAG GCTGACATGTCCTAC CAGGGTTTGCGTGCT AACAAATCCGGTGTC AAGAGGAAAGTGAAT CCTAGTGCTACTCCG 210 CCTGAGCGTAGTGGT GGATCAATTAGAAAG GCTGACATGTCCTAC CAGGGATTGCGTGCT AACAAATCCGGTGTC AAGAGGAAAGTGAAT CCTGCTGCTACTCCA 210 CCTGAACGTAGTGGT GGATCAATTAGAAAG GCTGACATGTCTTAC CAGGGATTGCGTGCC AACAAATCCAGTGTC AAGAGGAAAGTGAAT CCTAGTGCTCCTCCA 210

D16	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGIT	GCCAAGAGAAAAGAA	AGCAGTG	
F60SS	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
SL8 201S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
E 207S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
E 2L	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
DROT 41S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	300
ES	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	
MIDC 710S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAG	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
MAN 601S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
MAN 713	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
COLO	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	300
PA 4S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	00
TSH	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	
KRAP 5	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGCGAGGG	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	0
KRAP 12L	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGCGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	300
CON 20S	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGCGAGGG	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	000
DEN 20S	AAACGTTATGGAGTA	GCYAAACCAAATGGG	ATAAAGCGYGAGGG	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCARTG	300
DEN 54L	AAACGTTATGGAGTA	GCCAAACCAAATGGG	ATAAAGCGCGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGACAAAAGCAGTG	300
TJ 30L	AAGCGTTATGGTGTA	GCTAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGGCAAAAGCAATG	0
TJ 29S	AAGCGTTATGGAGTA	GCTAAACCAAATGGG	ATAAAGCGTGAGGGA	AAAAGACCTGCTGTT	GCCAAGAGAAAAGAA	AAGGCAAAAGCAATG	300
CHAM 4L	AAACGTTATGGAGTA	GCTAAACCAGATGGG	GTAAAGCGTGAAGGA	AAAAGACCTGCTGTT	GCTAAGAGAAAAGAA	AAGGCAAAAGCAATG	300
WED 2S	AAACGTTATGGAGTG	GCCAAACCAAATGGG	GTAAAGCGTGAAGGG	AAAAGACCTGCTGTT	GCTAAGAGAAAAGAA	AAGGCAGAAGCAATG	0
DIF	AAACGTTATGGAGTA	GCTAAACCAAATGGG	GTAAAGCGTGAAGGA	AAAAGACCTGCCGTT	GCTAAGAGAAAAGAA	AAGGCAAAAGCAATG	0
PAN 2 S	AAACGTAATGGCG	GCTAAACCAAATGGG	G	AAAAGACCTGCTGTT	GCTAAGAGAAAGGAA	GC	300

Figure C4: RNABP34 nucleotide alignment. Alignment of DNA sequences for exon 6 of $R N A B P 34$ obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS and D16L; 2) MAN 601S, MAN 713L, and ES; and 3) KRAP 12L and KRAP 5S. The length of the alignment (bp) is given in the right-most column (300 bp , total).
The alignment is sectioned into groups of 15 bases (or 5 codons).
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
PAN 2S

F60SS
SL8 201S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713L
PA 4 S
TSH
KRAP 5S
CON 20S
DEN 20S
DEN 54 L
TJ 29 S
HAM 4I
PAN 2 S

D16L
F60S
SL8 201S
E 207 S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4I
PAN 2S

GTGATTGGGTTCTCW GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGYTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCA GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCW GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG STAGCAGAGCTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGYTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAS 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTRGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 ---ATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAMGAAGCCGATGG STAGCAGAGYTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGYTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG GTAGCAGAGTTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG STAGCAGAGYTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 ---ATTGGGTTCTCA GAGAGTTTGACAAAC TTGTATACCTCAGAG ATAAGAAGCCGATGG CTAGCAGAGCTTCTT GATGGTACATTMAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCW GAGAGTTTGRCAAAC TTGTATACCTCAGAG ATAAGATGCCGATGG CTAGCGGAGCTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCT GAGAGTTTGGCAAAC TTGTATACCTCAGAG ATAAGATGCCGATGG CTAGCGGAGCTTCTT GATGGTACATTCAAG TTRCCAAGCATAAAG 105 ---ATTGGGTTCTCA GAGAGTTTAGCAAAC TTGTATACCTCAGAA ATAAGATGCCGATGG CTTGCAGAGCTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105 GTGATTGGGTTCTCA GAGAGTTTAGCGAAC TTGTATACCTCCGAA ATAAGGTGCCGATGG CTAGCAGAGCTTCTT GATGGTACATTCAAG TTGCCAAGCATAAAG 105

GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TATTCRGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TMTKCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAY ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAY ATGTATATGAAGAGG TMTTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCAYAATGGCAT ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TMTTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TCTTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TCTTCAGGTAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TCTTCAGGWAAAAAT TACAGGAGATCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCACAATGGCAT ATSTATATGAAGAGG TMTTCRGGTAAAAAT TACAGGAGRTCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGRAACAAGAT ATCGCACAATGGCAT ATGTATATGAAGAGG TATTCAGGTAAAAAT TACAGGAGRTCATGC ATCGGTGGCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCRCAATGGCAT ATGTACATGAAGAGG TCTTCAGGTAAGAAT TACAGGAGATCRTGC ATCGGTGCCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCGCAATGGCAT ATGTACATGAAGAGG TCTTCAGGTAAGAAT TACAGGAGATCRTGC ATCGGTGCCCTTCAG ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCTCACAATGGCAT AGATATATGAAGAGG TCTTCAGGTAAGAAT TACAGGAGATCATGC ATCGGTGCACTTCAC ATATGGTATAATGAT 210 GAGATGGAACAAGAT ATCGCAAAATGGCAT AAATATATGAAGAGG TCTTCAGGTAAAAAT TACAGGCGATCATGC ATCGGTGCCCTTCAG ATATGGTATAACGAT 210

Figure C5: FMO1 nucleotide alignment. Alignment of DNA sequences for exon 6 of FMO1 obtained from 22 individuals from the genus, Turnera. No sequence was obtained for the individuals DIF (T. diffusa) and WED 2 S (T. weddelliana). Base positions showing 100% identity across taxa are shown in blue. Sequences obtained for MAN 601S, MAN 713L, and ES were found to be identical at this locus. The length of the alignment (bp) is given in the right-most column (261 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
PAN 2S
---AATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 СTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGSTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 СTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGSTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 СTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGAAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 ---AATAATGGCAAG AACGGGAAAGATGTT ACTAGAAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 ---AATAATGGCAAG AACGGGAAAGATGTT ACTAGAAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 --AATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGMAATCTTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 --AATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCYTGTGGSTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTCTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTCTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 --AATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCTTTCT TCTCCTCTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGGA 105 CTTAATAATGGCAAG AACGGGAAAGATGTT ACTAGCWATCWTTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGWAAGCAAGCCATA CCATCAGTGGTGGSA 105 ---AATAATGGCAAG AACGGGAAAGATGTT ACTAGCAATCATTCT TCTCCTGTGGCTTCT AAATCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGTGGTGGSA 105 TTAATAATGGCAAG AACGGGAAGGATGTT CCTTGCAATTTTTCT TCTCCTGTGGCTTCT AAGTCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGCRGTGGGA 105 CTTAATAATGGCAAG AACGGGAAGGATGTT CCTTGCAATTTTTCT TCTCCTGTGGCTTCT AAGTCTCCCGAACAT CGAAAGCAAGCCATA CCATCAGCRGTGGGA 105 CTTAATAATGGCAAG AACGGGAAGGATGTT ACTTGCAATCTTTCA TCTCCTATGGCTTCT AAGTCTCCCAAACAT GGGAAGCAAGCCATA CCATCAGTGGTAGGA 105

AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACRGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGYTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGYTGCAACACCTG CTTTCCTCTCACCAT 210 AАТСТTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTA CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AАTCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTA CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 ААТСТTGTGGAGGTA CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AАTCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTM CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTKTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTTCCTCTCACCAT 210 AАTCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGATGAC TTGTTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGMTTTT GATGAGCAGGATGAC TTGYTGCAACACCTG CTTTCCTCTCACCAT 210 AATCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGMTTTT GATGAGCAGGATGAC TTGYTGCAACACCTG CTTTCCTCTCACCAT 210 AGTCTTGTGGAAGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGACGAC TTGCTGCAACACCTG CTTTCCTCTCACCAT 210 AGTCTTGTGGAAGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTTCTGCTGCTTTT GATGAGCAGGACGAC TTGCTGCAACACCTG CTTTCCTCTCACCAT 210 AGTCTTGTGGAGGTC CAAACAGAGAAGGAA TATAAATGCCATAAA TGTACTGCTGCTTTT GATGAGCAGGATGAC TTGCTGCAACACCTG CTTTCCTCTCACCAT 210
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
PAN 2S

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
RRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
PAN 2 S

AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATMATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATMATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGGAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATMATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGMAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGRAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG CCCCTCAGGGAGGAA GTGATAATAAAAAAT GGGAAGTATGAATGT CAGTTTTGYAGAAAA CTTTTTGAAGAAAGG 315 AGAGCTCCAAAAAGG CTTAGATGTGAAGCG CCCCTCAGGGAGGAA GTGATAATAAAAAAT GGGAAGTATGAATGT CAGTTTTGYAGAAAA CTTTTTGAAGAAAGG 315 CGAGCTCCAAAAAGG CTTAGATGTGAAGCG TCCCTCAGGGAAGAA GTGATAATAAAAAAT GGAAAGTATGAATGT CAGTTTTGCAGAAAA CTTTTTGAAGAAAGG 315

CGTCGTTTTCACGGT CACCTCGGAAATCAC GTAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 GGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 GGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC --------- 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC GTAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 GGTCGTTTTCACGGT CACCTCGGAAATCAC --------- 354 CGTCGTTTTCACGGT CACCTCGGAAATCAC ATAAAGGAC 354 CGTCGTTTTCATGGT CACCTCGGAAATCAC ATAAAGGAC 354 GGTCGTTTTCATGGT CACCTCGGAAATCAC --------- 354 CGTCGTTTTCATGGT CACCTCGGAAATCAC ATA------ 354

Figure C6: MBD8 nucleotide alignment. Alignment of DNA sequences for exon 3 of MDB8 obtained from 21 individuals from the genus, Turnera. No sequence was obtained for the individuals DIF (T. diffusa), WED 2S (T. weddelliana), or CHAM 4L (T. chamaedrifolia). Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) SL8 201S and F60SS; and 2) MAN 713 L and MAN 601 S . The length of the alignment (bp) is given in the right-most column (354 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons)
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4 S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTYGTTCCTCWG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTYGTTCCTCWG TTTAAAAGRAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTTGTTCCTCTG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AWGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTASCCCAGAG TTGCTTGTTCCTCTG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTASCCCAGAG TTGCTYGTTCCTCWG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTAGCCCAGAG TTGCTTGTTCCTCTG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTAGCCCAGAG TTGCTTGTTCCTCTG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTYGTTCCTCWG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTTGTTCCTCTG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCTG TTTAAAAGAAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCTG TTTAAAAGAAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCTG TTTAAAAGAAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GATAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCССТССАСАС AAGCGCCATTCAAAG GAYAAGGGAAARCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGRAATCTC AATTTCAGATCACYG 105 TACATCCCTCCACAC AAGCGCCATTCAAAG GAYAAGGGAAARCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGRAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAACG GGCAAGGGAAAGCCA TCCCCTACCCCAGAA TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAACG GGCAAGGGAAAGCCA TCCCCTACCCCAGAA TTGCTCGTTCCTCAG TTTAAAAGGAATCTC AATTTCAGATCACCG 105 TAСATСССТССАСАС AAGCGCCATTCRAAG GACAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAACCTG AMTTTCAGATCRCCG 105 TACATСССТССАСАС AAGCGCCATTCAAAG GACAAGGGAAAGCCA TCCTCTACCCCAGAG TTGGTCGTTCCTCAA TTTAAAAGGAATCTG AATTTCAAATCACCG 105 TACATCCCTCCACAC AAGCGCCATTCAAMG GACAAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTTCCTCAG TTTAAAAGGAACCTG AATTTCAGATCRCCG 105 TACATCCCTCCACAC AAGCGCCATTCAAAT GACGAGGGAAAGCCA TCCCCTACCCCAGAG TTGCTCGTCCGTCAG TTTAAAAGGAATCTG AMTTTCAGATCACCG 105

AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGGTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGGTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGGTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGRTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTRTAGAT AGAAGYGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGYTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGRTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCGCCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGRTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCRCCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGRTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCRCCTCATGTT 210 AAACCTGGTRTAGAT AGAAGTGGAAAGATT ATCTATGMAGACAAT GCCATTAGTCGRTGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTGTAGAT AGAAGYGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGYTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGSTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTAGTCGATGG TTTGGTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGRTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTWSTCRATGG TTTGSTGTTGGTTTG GATGWCAATGRCCAG ATTCCACCTCATGTT 210 AAACCTGRTATAGAT AGAAGTGGAAAGATT ATCTATGCAGACAAT GCCATTWSTCRATGG TTTGSTGTTGGTTTG GATGWCAATGRCCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGTAAGATT ATCTATGCAGACAAT GCCATTACTCGATGG TTTGCAGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGGTATAGAT AGAAGTGGTAAGATT ATCTATGCAGACAAT GCCATTACTCGATGG TTTGCAGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGATAYAGAT AGAAGTGGAARGATT WTCTATGCAGACCAT GCCATTACTCGATGG TTTGCTGTTGGTTTG GATRACAATGACCAG ATTCCACCTCMTGTT 210 AAACCTGATGTAGAT AGAAGTGGAAAGATT TTCTATGCAGACCAT GCCATTTATCAATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCATCTCATGTT 210 AAACCTGCAACAGAT AGAAGTGGAAAGATT WYCTAYGCAGACCAT GCCATTACTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210 AAACCTGATATAGAT AGAAGTGGAAAGATT ATCTATGCAGACCAT GCCATTACTCGATGG TTTGCTGTTGGTTTG GATGACAATGACCAG ATTCCACCTCATGTT 210

| D16L | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| :--- | :--- | :--- |
| F60SS | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| SL8 201S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| E 207S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| E 2L | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| DROT 41S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| ES | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| MIDC 710S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| MAN 601S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| MAN 713L | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| COLO | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| PA 4S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| TSH | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| KRAP 5S | AGTCTTGAGCCTGTT TCTGTGGAA 234 |
| KRAP 12L | AGTCTTGAGCCTGTT TCTGTGGAA 234 |
| CON 20S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| DEN 20S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| DEN 54L | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| TJ 30L | AGTCTTGAGCCTGTT TCTGTGGAA 234 |
| TJ 29S | AGTCTTGAGCCTGTT TCTGTGGAA 234 |
| CHAM 4L | AMTCTTGAGCCTGTT TCTGTGGAA 234 |
| WED 2S | AATCTTGAGCCTGTT TCTGTGGAA 234 |
| DIF | AMTCTTGAGCCTGTT TCTGTGGAA 234 |
| PAN 2S | AATCTTGAGCCTGTT TCTGTGGAA 234 |

Figure C7: UNKN nucleotide alignment. Alignment of DNA sequences for exon 1 of $U N K N$ obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS, D16L, and SL8 201S; 2) MAN 601S and MAN 713L; and 3) TJ 29S and TJ 30L. The length of the alignment (bp) is given in the right-most column (234 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).
D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710S
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 207S
E 2L
DROT 41S
ES
MIDC 710
MAN 601S
MAN 713L
COLO
PA 4S
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
TJ 29S
CHAM 4L
WED 2S
DIF
PAN 2S

F0 SS
LL8 201S
E 207S
E 2L
DROT 41S
MIDC 710S
MAN 601S
MAN 713L
OLO
TSH
KRAP 5S
KRAP 12L
CON 20S
DEN 20S
DEN 54L
TJ 30L
CHAM 4L
WED 2S
DIF
PAN 2S

D16L
F60SS
SL8 201S
E 2L
DROT 41S
E
MIDC 710S
MAN 601 S
COLO
PA 4S
RRAP 5S
KRAP 12L
CON 20S
DEN 54L
TJ 30L
CHAM 4I
NED 2S
PAN 2S

GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCAYTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCAYTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGRAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAAGAAGG CATGGAAGATGCCCA CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAAMGAAGG CATGGAAGATGCCCR CTAACACCAGAGGAA GTTGGTCTYATGCTG AGAGCACTGGGTTTT GGAAGTGACKTTCAT ATATATGTGGCTTCA 105 GACAAAGAAMGAAGG CATGGAAGATGCCCR CTAACACCAGAGGAA GTTGGTCTYATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAACGAAGG CATGGAAGATGCCCG CTAACGCCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCTTCA 105 GACAAAGAACGAAGG CATGGAAGATGCCCG CTAACGCCAGAGGAA GTTGGTCTTATGCTG AGAGCACTGGGTTTT GGAAGTGRCGTTCAT ATATATGTGGCTTCA 105 GACAAAGAACGAAGG CATGGAAGATGCCCG CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCATTGGGTTTT GGGAGTGACGTYCAT ATATATGTGGCATCA 105 GACAAAGAACGAAGG CATGGAAGGTGCCCG CTCACACCAGAGGAA GTTGGTCTTATGCTG AGAGCATTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCATCW 105 GACAAAGAACGAAGG CATGGAAGATGCCCG CTAACACCAGAGGAA GTTGGTCTTATGCTG AGAGCATTGGGTTTT GGGAGTGACGTTCAC ATATATGTGGCATCA 105 GACAAAGAACGAAGG CATGGAAGATGCCCG CTCACACCAGAGGAA GTTGGTCTGATGCTG AGGGCATTGGGTTTT GGAAGTGACGTTCAT ATATATGTGGCATCA 105

GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT СTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAWATCT CTCTTCCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAM GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAWATCT CTCTTYCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAM GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTRAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GMACCACTGAAATCT CTCTTTCCYAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGACTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTGAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTRAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTGAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT СTСTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTMAWATCT CTCTTYCCCAATTTC CATACSAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGWGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGCGAAGAGACATTA GCACCACTAAAATCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAAATCT CTCTTYCCCAATTTC CATACSAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTMAAATCT CTYTTYCCCAATTTC CATACSAAAGAGACT TTGGCTACCAAAGAA GAGTTRGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAAATCT CTCTTTCCCAATTTC CATACAAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAAATCT CTCTTTCCCAATTTC CATACAAAAGAGAST TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGATACATTA GCTCCACTCAAAGCT CTCTTTCCGAATTTC CATACAAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAAACATTA GCACCACTCAAAGCT CTCTTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGATACATTA GCTCCACTCAAAGCT CTTTTTCCAAATTTC CATACGAAAGAGACT TTGGCTACCAGAGAA GAGTTGGCTCCATTT 210 GGTGAGGTATATGGA GGTGAAGAGACATTA GCACCACTCAAAGCT CTATTTCCCAATTTC CATACGAAAGAGACT TTGGCTACCAAAAAA GAGTTGGCTCCGTTT 210

D16L	CT	C	G	G	TTTGTCACTAACAAC	AACGGC	291
F60SS	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
SL8 201S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
E 207S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTG	TTTGTCACTAACAAC	AACGGC	291
E 2L	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTG	TTTGTCACTAACAAC	AACGGC	291
DROT 41S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTITATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	91
ES	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAA	AACGGC	91
MIDC 710S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
MAN 601S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAA	AACGGC	1
MAN 713L	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
COLO	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
PA 4S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
TSH	TTCGGATTTTCTTCT	CGAATGGCTGCACTM	GACTTTATTGTTTGT	GATGAAAGTGATGTK	TTTGTCACTAACAAC	AACGGC	291
KRAP 5S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
KRAP 12L	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
CON 20S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTITATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	29
DEN 20S	TTCGGATTTTSTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
DEN 54L	TTCGGATTTTSTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
TJ 30L	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	29
TJ 29S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTRTCACTAACAAC	AACGGC	291
CHAM 4L	TTCAGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	29
WED 2S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAGAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
DIF	TTCGGGTTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT	TTTGTCACTAACAAC	AACGGC	291
PAN 2S	TTCGGATTTTCTTCT	CGAATGGCTGCACTA	GACTTTATTGTTTGT	GATGAAAGTGATGTT			

Figure C8: POFUT nucleotide alignment. Alignment of DNA sequences for exon 9 of POFUT obtained from 24 individuals from the genus, Turnera. Base positions showing 100% identity across taxa are shown in blue. Groups of individuals with identical sequences at this locus are as follows: 1) F60SS, D16L, SL8 201S, PA 4S, and KRAP 12L; 2) MAN 713L and DROT 41S; and 3) COLO and MAN 601S. The length of the alignment (bp) is given in the right-most column
(291 bp , total). The alignment is sectioned into groups of 15 bases (or 5 codons).

Appendix D: Amino Acid-Based Phylogenies for Concatenated Total Data Alignments and Total Tssta1 Data Alignment

Figure D1: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid data for all genes. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrix-based amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (-7198.898) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter $=0.132)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1976 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Series/Subseries membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera.

Figure D2: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid data for all genes and a reduced number of taxa. This tree was computed specifically for analyses of Tsstal in HYPHY. The data used to compute this phylogeny is identical to that which was used to produce the tree in Figure 7, except that data from long-styled individuals was excluded. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrix-based amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest \log likelihood (-6595.560) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites $(5$ categories $(+G$, parameter $=0.116))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 16 amino acid sequences. The coding data was translated assuming a standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1922 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Series/Subseries membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera.

Figure D3: Molecular Phylogenetic analysis by Maximum Likelihood method using total amino acid data for
Tssta1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (717.946) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Not all supports are shown. Those that are not shown are < 50\%. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 34 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 116 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Series/Subseries/Genus membership is indicated to the right of the tree. Note that subseries Turnera and subseries Umbilicatae both belong to series Turnera

Figure E1: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for
APETALA2. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano nucleotide substitution model (1985). The tree with the highest log likelihood (-690.933) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying NeighborJoin and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 368 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al 2013).

Figure E2: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
APETALA2. Evolutionary relationships were inferred using the Maximum Likelihood method based on the WAG amino acid substitution model (Whelan and Goldman 2001). The tree with the highest log likelihood (-316.340) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are < 50\%. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95\% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 99 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Figure E3: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for Tssta1.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Kimura 2-parameter nucleotide substitution model (1980). The tree with the highest log likelihood (-768.753) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 16 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 369 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Figure E4: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
Tssta1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (452.768) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 16 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 123 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Figure E5: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for LEJ2.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-193.649) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 79 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Figure E6: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for LEJ2. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (101.548) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 23 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Figure E7: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for AP2D.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-682.672) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter $=0.121)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 349 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013)

FIGURE E8: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for AP2D. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (328.268) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 104 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013)

FIGURE E9: Molecular Phylogenetic analysis by Maximum Likelihood method using amino DNA for $\boldsymbol{R N A B P}$. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JukesCantor nucleotide substitution model (1969). The tree with the highest log likelihood (-536.459) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 223 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E10: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
$\boldsymbol{R N A B P}$. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (263.017) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 61 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E11: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for SCE1.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-330.698) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 176 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

9.0E-4

FIGURE E12: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
SCE1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the General Reverse Transcriptase (RTREV) amino acid substitution model (Dimmic, Rest, and Mindell 2002). The tree with the highest \log likelihood (-174.265) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 58 positions in the final data set.

Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E13: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FRA1.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-KishinoYano nucleotide substitution model (1985). The tree with the highest log likelihood (-853.086) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 478 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E14: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
FRA1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the General Reverse Transcriptase (RTREV) amino acid substitution model (Dimmic, Rest, and Mindell 2002). The tree with the highest \log likelihood (-468.914) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 147 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E15: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for LRRK.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-514.056) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 211 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E16: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
LRRK. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (213.401) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 55 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E17: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for
IRX15L. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano nucleotide substitution model (1985). The tree with the highest log likelihood (-1409.341) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.077))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 746 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

0.003

FIGURE E18: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
IRX15L. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (784.253) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 232 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E19: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FSP.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-202.304) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 86 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E20: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
$\boldsymbol{F S P}$. Evolutionary relationships were inferred using the Maximum Likelihood method based on the General Reversible Chloroplast (CPREV) amino acid substitution model (Adachi et al. 2000). The tree with the highest log likelihood (-107.347) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 25 positions in the final data set.

Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E21: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for NRFP.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-KishinoYano nucleotide substitution model (1985). The tree with the highest log likelihood (-980.419) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 563 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E22: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
NRFP. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (539.965) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 161 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E23: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for WRKY.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Kimura 2-parameter nucleotide substitution model (Kimura 1980). The tree with the highest log likelihood (-1433.993) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.278))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 591 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E24: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
WRKY. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (845.125) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G , parameter $=0.270)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 184 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E25: Molecular Phylogenetic analysis by Maximum Likelihood method using the total DNA data for all S-linked genes. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Kimura 2-parameter nucleotide substitution model (1980). The tree with the highest log likelihood (-8297.213) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are < 50\%. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites $(5$ categories $(+G$, parameter $=0.126))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 3872 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E26: Molecular Phylogenetic analysis by Maximum Likelihood method using the total amino acid data for all S-linked genes. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrix-based amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest \log likelihood (-4314.262) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.132)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1150 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E27: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for ECIP1.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-KishinoYano nucleotide substitution model (1985). The tree with the highest log likelihood (-1493.679) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.050))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 780 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E28: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
ECIP1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the LG amino acid substitution model (Le and Gascuel 2008). The tree with the highest log likelihood (-764.747) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are < 50%. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 249 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E29: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for GAUT3.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Tamura 3-parameter nucleotide substitution model (Tamura 1992). The tree with the highest log likelihood (-1256.347) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 651 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E30: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for GAUT3. Evolutionary relationships were inferred using the Maximum Likelihood method based on the LG amino acid substitution model (Le and Gascuel 2008). The tree with the highest log likelihood (-725.623) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 210 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E31: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for GAUT1.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-KishinoYano nucleotide substitution model (1985). The tree with the highest log likelihood (-723.836) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 439 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

5.0E-4

FIGURE E32: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
GAUT1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the LG amino acid substitution model (Le and Gascuel 2008). The tree with the highest log likelihood (-392.048) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 129 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E33: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for
$\boldsymbol{R N A B P 3 4}$. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano nucleotide substitution model (1985). The tree with the highest log likelihood (-710.727) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are < 50\%. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 291 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E34: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
RNABP34. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Dayhoff matrix based amino acid substitution model (Schwarz and Dayhoff 1979). The tree with the highest log likelihood (412.773) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 94 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E35: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for FMO1.
Evolutionary relationships were inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano nucleotide substitution model (1985). The tree with the highest log likelihood (-540.530) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. There were a total of 261 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E36: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
FMO1. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (348.872) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. There were a total of 87 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E37: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for MBD8.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-704.858) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. There were a total of 354 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E38: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
MBD8. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (447.942) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. There were a total of 118 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E39: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for UNKN.
Evolutionary relationships were inferred using the Maximum Likelihood method based on the Jukes-Cantor nucleotide substitution model (1969). The tree with the highest log likelihood (-410.424) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 212 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E40: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for
UNKN. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (222.025) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 58 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E41: Molecular Phylogenetic analysis by Maximum Likelihood method using DNA data for
POFUT. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano nucleotide substitution model (1985). The tree with the highest log likelihood (-530.617) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 281 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E42: Molecular Phylogenetic analysis by Maximum Likelihood method using amino acid data for POFUT. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrixbased amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (282.992) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 86 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

FIGURE E43: Molecular Phylogenetic analysis by Maximum Likelihood method using the total DNA data for all control genes. Evolutionary relationships were inferred using the Maximum Likelihood method based on the Tamura 3-parameter nucleotide substitution model (1992). The tree with the highest log likelihood (-5281.455) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites $(5$ categories $(+G$, parameter $=0.149))$. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 2654 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013)

FIGURE E44: Molecular Phylogenetic analysis by Maximum Likelihood method using the total amino acid data for all control genes. Evolutionary relationships were inferred using the Maximum Likelihood method based on the JTT matrix-based amino acid substitution model (Jones, Taylor, and Thornton 1992). The tree with the highest log likelihood (-2863.213) is shown. The tree is unrooted. Bootstrap support values (\%) are shown adjacent to the relevant nodes (1000 replicates). Not all supports are shown. Those that are not shown are $<50 \%$. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-wise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories $(+G$, parameter $=0.175)$). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 24 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. That is, fewer than 5\% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 826 positions in the final data set. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).

Appendix F: Supporting Likelihood Ratio Tests and Parameter Estimates

Table F1: Parameter estimates for LRTs comparing selection on S-linked and control genes. $\mathrm{dN} / \mathrm{dS}, \mathrm{dS}$, dN , and P (proportion of sites belonging to a given rate class) estimates for all rate classes (,,+- and neutral evolution) for all models are given. These estimates correspond to LRTs that were performed with default starting values for all parameters.

Almnt	Independent Model					Shared Positive Selection Strengths Model				Shared Positive Selection Proportions Model				Shared Positive Selection Regime Model				Shared Selection Parameters Model			
Tsstal	Rate Class	dN/dS	dS	dN	P	$\begin{gathered} \mathrm{dN} / \mathrm{d} \\ \mathrm{~S} \end{gathered}$	dS	dN	P	dN/dS	dS	dN	P	dN/dS	dS	dN	P	$\begin{gathered} \mathrm{dN} / \mathrm{d} \\ \mathrm{~S} \end{gathered}$	dS	dN	P
	+	2.371	2.2	5.4	0.0	3.201	1.855	5.938	0.011	2.352	2.256	5.307	0.013	3.092	1.819	5.624	0.012	2.898	1.808	5.24	0.01
	Neut	1.000	0.9	0.9	0.1	1.000	0.999	0.999	0.138	1.00	0.921	0.921	0.149	1.000	0.958	0.958	0.142	1.000	0.887	0.88	0.13
	-	0.200	8.9	0.1	0.0	0.021	9.059	0.187	0.050	0.021	8.961	0.785	0.051	0.021	9.033	0.190	0.051	0.078	0.509	0.40	0.79
	-	0.090	0.4	0.0	0.7	0.099	0.481	0.048	0.801	0.088	0.479	0.042	0.787	0.094	0.481	0.045	0.795	0.021	7.596	0.16	0.06
S - linked	+	7.550	0.5	4.1	0.0	3.201	1.065	3.409	0.020	8.076	0.550	4.444	0.013	3.092	1.332	4.119	0.012	2.898	1.808	5.24	0.01
	Neut	1.000	0.5	0.5	0.1	1.000	0.503	0.503	0.107	1.00	0.641	0.641	0.110	1.000	0.638	0.638	0.114	1.000	0.887	0.88	0.13
	-	0.460	0.5	0.0	0.7	0.052	0.599	0.031	0.773	0.047	0.590	0.027	0.777	0.044	0.589	0.026	0.777	0.078	0.509	0.40	0.79
	-	0.027	4.6	0.1	0.1	0.026	4.615	0.121	0.100	0.025	4.658	0.118	0.100	0.024	4.689	0.111	0.097	0.021	7.596	0.16	0.06

Table F2: Comparison of selection on S-linked and control genes. Four likelihood ratio tests were performed in order to determine if the genes of interest were experiencing different selective pressures when compared to a random assortment of control genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. Significant p-values are indicated in bold. p-values < 0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the control and S-linked gene data sets are significantly different with respect to the relevant constrained parameter(s). All four tests were completed twice, with random and default starting values for parameters, respectively. The results obtained using random starting values are shown below.

Parameters constrained in constrained model	Log Likelihood (Independent Model)	\# of Parameters (Independent Model)	Log Likelihood (Constrained Model)	\# of Parameters (Constrained Model)	DF	$\begin{gathered} \text { LRT } \\ \text { Statistic } \end{gathered}$	p-value
Shared distributions for all parameters	-22526.646	126	-22540.563	116	10	27.830	0.002
Shared selective regimes (dN/dS and proportions)			-22527.618	124	2	1.941	0.379
Shared strength of positive selection (dN/dS)			-22527.421	125	1	1.549	0.461
Shared proportion of positively selected sites			-22526.688	125	1	0.081	0.774

Table F3: Parameter estimates for LRTs comparing selection on Tsstaland all other \boldsymbol{S}-linked genes. $\mathrm{dN} / \mathrm{dS}$, dS, dN, and P (proportion of sites belonging to a given rate class) estimates for all rate classes (,+- , and neutral evolution) for all models are given. These estimates correspond to LRTs that were performed with default starting values for all parameters.

Almnt	Independent Model					Shared Positive Selection Strengths Model				Shared Positive Selection Proportions Model				Shared Positive Selection Regime Model				Shared Selection Parameters Model			
Tsstal	Rate Class	$\begin{gathered} \mathrm{dN} / \\ \mathrm{dS} \end{gathered}$	dS	dN	P	dN/dS	dS	dN	P	dN/dS	dS	dN	P	dN/dS	dS	dN	P	$\begin{gathered} \mathrm{dN} / \mathrm{d} \\ \mathrm{~S} \end{gathered}$	dS	dN	P
	+	118.6	0.0	6.6	0.0	14.931	0.351	5.240	0.010	121.636	0.067	8.089	0.005	14.876	0.465	6.924	0.004	3.084	0.645	1.99	0.06
	Neut.	1.000	0.0	0.0	0.0	1.000	0.047	0.047	0.000	1.000	0.049	0.049	0.000	1.000	0.051	0.051	0.000	1.000	0.0117	0.01	0.43
	-	0.000	0.6	0.0	0.6	0.000	0.623	0.000	0.690	0.000	0.641	0.000	0.701	0.000	0.645	0.000	0.703	0.021	29.319	0.61	0.01
	-	0.386	1.8	0.7	0.3	0.391	1.891	0.739	0.300	0.431	1.869	0.805	0.294	0.438	1.863	0.815	0.292	0.112	1.077	0.12	0.48
S - linked	+	13.16	0.7	9.9	0.0	14.931	0.677	10.103	0.004	13.155	0.751	9.874	0.005	14.876	0.677	10.065	0.004	3.084	0.645	1.99	0.06
	Neut.	1.000	0.8	0.8	0.1	1.000	0.828	0.828	0.183	1.000	0.825	0.825	0.183	1.000	0.828	0.828	0.183	1.000	0.0117	0.01	0.43
	-	0.020	24	0.4	0.0	0.020	24.506	0.488	0.200	0.020	24.528	0.488	0.020	0.020	24.51	0.488	0.02	0.021	29.319	0.61	0.01
	-	0.023	0.4	0.0	0.7	0.024	0.455	0.011	0.793	0.023	0.456	0.011	0.792	0.024	0.456	0.011	0.793	0.112	1.077	0.12	0.48

Table F4: Comparison of selection on Tssta1 and other S-linked genes. Four likelihood ratio tests were performed in order to determine if Tsstal had experienced different selective pressures when compared to other S-linked genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. p-values < 0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the Tsstal and S-linked gene data sets are significantly different with respect to the relevant constrained parameter(s). However, no significant results were obtained. All four tests were completed twice, with random and default starting values for parameters, respectively. The results obtained using random starting values are shown below.

Parameters constrained in constrained model	Log Likelihood (Independent Model)	\# of Parameters (Independent Model)	Log Likelihood (Constrained Model)	\# of Parameters (Constrained Model)	DF	LRT Statistic	p-value
Shared distributions for all parameters	-15402.412	94	-15401.649	84	10	-1.525	1.000
Shared selective regimes (dN/dS and proportions)			-15402.609	92	2	0.396	0.821
Shared strength of positive selection (dN/dS)			-15402.551	93	1	0.279	0.870
Shared proportion of positively selected sites			-15402.724	93	1	0.624	0.430

Table F5: Parameter estimates for LRTs comparing selection on $A P 2 D$ and all other S-linked genes. $\mathrm{dN} / \mathrm{dS}$, dS , dN , and P (proportion of sites belonging to a given rate class) estimates for all rate classes (,+- , and neutral evolution) for all models are given. These estimates correspond to LRTs that were performed with default starting values for all parameters.

Almnt	Independent Model					Shared Positive Selection Strengths Model				Shared Positive Selection Proportions Model				Shared Positive Selection Regime Model				Shared Selection Parameters Model			
AP2D	Rate Class	$\begin{gathered} \mathrm{dN} / \\ \mathrm{dS} \end{gathered}$	dS	dN	P	$\mathrm{dN} /$ dS	dS	dN	P	dN/dS	dS	dN	P	dN/dS	dS	dN	P	$\begin{gathered} \mathrm{dN} / \\ \mathrm{dS} \end{gathered}$	dS	dN	P
	+	12.7	0.4	6.34	0.0	2.480	1.904	4.722	0.030	9.372	0.532	4.983	0.057	2.396	1.614	3.868	0.059	2.539	1.691	4.29	0.01
	Neut.	1.00	1.1	1.16	0.1	1.000	1.057	1.057	0.185	1.000	1.031	1.031	0.181	1.000	0.847	0.847	0.0197	1.000	0.862	0.86	0.14
	-	0.10	0.3	0.03	0.7	0.094	0.318	0.030	0.725	0.082	0.339	0.028	0.702	0.054	0.317	0.017	0.683	0.085	0.487	0.04	0.78
	-	0.00	9.0	0.00	0.0	0.000	8.595	0.000	0.060	0.000	9.148	0.000	0.060	0.000	8.523	0.000	0.061	0.020	9.214	0.18	0.05
S - linked	+	2.05	0.7	1.57	0.0	2.480	0.651	1.614	0.062	2.154	0.770	1.658	0.057	2.396	0.683	1.636	0.059	2.539	1.691	4.29	0.01
	Neut.	1.00	0.0	0.05	0.5	1.000	0.054	0.054	0.531	1.000	0.059	0.059	0.539	1.000	0.056	0.056	0.535	1.000	0.862	0.86	0.14
	-	0.06	1.2	0.08	0.3	0.071	1.196	0.085	0.392	0.070	1.210	0.085	0.389	0.071	1.196	0.085	0.391	0.085	0.487	0.04	0.78
	-	0.00	31	0.27	0.0	0.010	30.646	0.297	0.015	0.009	30.773	0.277	0.015	0.009	30.62	0.289	0.015	0.020	9.214	0.18	0.05

Table F6: Comparison of selection on $A P 2 D$ and other S-linked genes. Four likelihood ratio tests were performed in order to determine if $A P 2 D$ had experienced different selective pressures when compared to other S-linked genes. For each model (constrained and independent), the log likelihood value and number of estimated parameters is provided. For each test, the corresponding degrees of freedom (DF) and LRT statistic are shown. Significant p-values are indicated in bold. p-values <0.05 suggest that the independent model fit is superior to that of the constrained model and, further, that the $A P 2 D$ and S-linked gene data sets are significantly different with respect to the relevant constrained parameter(s). All four tests were completed twice, with random and default starting values for parameters, respectively. The results obtained using random starting values are shown below.

Parameters constrained in constrained model	Log Likelihood (Independent Model)	\# of Parameters (Independent Model)	Log Likelihood (Constrained Model)	\# of Parameters (Constrained Model)	DF	$\begin{gathered} \text { LRT } \\ \text { Statistic } \end{gathered}$	p-value
Shared distributions for all parameters	-15345.260	127	-15364.038	117	10	37.555	0.000
Shared selective regimes (dN/dS and proportions)			-15347.426	125	2	4.331	0.115
Shared strength of positive selection (dN/dS)			-15346.918	126	1	3.315	0.191
Shared proportion of positively selected sites			-15346.596	126	1	2.672	0.102

Appendix G: Adaptive Branch-Site Random Effects Likelihood (aBS-REL) Results

Table G1: Adaptive Branch-Site REL tests of Lineage-specific selection on S-linked genes (excepting Tsstal). For each gene alignment, particular lineages that may have experienced episodic diversifying selection (EDS) were identified using Adaptive Branch-Site Random Effects Likelihood (aBS-REL) methods. Branch and node names are consistent with the phylogenetic tree depicted in Figure 8. Holm-Bonferroni-corrected p-values are given for each branch for each gene. No significant results were obtained.

Branch	Gene Alignment										
	APETALA2	LEJ2	AP2D	RNABP	SCE1	FRA1	LRRK	IRXII5L	FSP	NRFP	WRKY
D16L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DROT 41S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
MAN 601S	1.000	1.000	0.137	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
ES	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
SL8 201S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 13	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
F60SS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
MAN 713L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.476	1.000	1.000	1.000
Node 16	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
MIDC 710S	1.000	1.000	1.000	1.000	1.000	1.000	0.115	1.000	1.000	1.000	1.000
COLO	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 20	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PA 4S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
E2 L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TSH	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
E 207S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 27	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 25	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Continued from previous page.

Branch	Gene Alignment										
	APETALA2	LEJ2	AP2D	RNABP	SCE1	FRA1	LRRK	IRXII5L	FSP	NRFP	WRKY
Node 23	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 19	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 5	1.000	1.000	0.076	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
CON 20S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
KRAP 5S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
KRAP 12L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DEN 54L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 34	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 32	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 30	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DEN 20S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TJ 30L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TJ 29S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 38	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
CHAM 4L	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DIF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 41	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
WED 2S	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PAN 2S	1.000	0.991	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Node 44	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table G2: Adaptive Branch-Site REL tests of Lineage-specific selection on Tssta1. For each Tsstal alignment (reduced and total taxa), particular lineages that may have experienced episodic diversifying selection (EDS) were identified using Adaptive Branch-Site Random Effects Likelihood (aBS-REL) methods. Branch and node names are consistent with the phylogenetic trees depicted in Figures 9 and 10, respectively. Holm-Bonferroni-corrected pvalues are given for each branch. No significant results were obtained.

Alignment	Branch	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	Alignment	Branch	p-value	Alignment	Branch	pvalue
Tsstal (Reduced)	F60SS	1.000	Tssta1 (Total)	Node 12	1.000	Tssta1 (Total)	TOC139	1.000
	ES	1.000		ES	1.000		VEL	1.000
	Node 11	1.000		Node 11	1.000		BAH	1.000
	MAN601S	1.000		F60SS	1.000		Node 43	1.000
	Node 10	1.000		Node 10	1.000		Node 41	1.000
	SL8	1.000		DROT41S	1.000		Node 39	1.000
	Node 9	1.000		MIDC710S	1.000		Node 31	1.000
	COLO	1.000		COLO	1.000		Node 5	1.000
	Node 8	1.000		PA4S	1.000		GRAN9S	1.000
	PA4S	1.000		Node 21	1.000		Node 4	1.000
	DROT41S	1.000		Node 19	1.000		PAN2S	1.000
	MIDC710S	1.000		Node 17	1.000		Node 3	1.000
	Node 19	1.000		Node 9	1.000		WED2S	1.000
	Node 17	1.000		KRAP5S	1.000		Node 2	1.000
	Node 7	1.000		E207S	1.000		PCARO	1.000
	CON20S	1.000		CON20S	1.000		PSAR	1.000
	Node 6	1.000		Node 26	1.000		PREV	1.000
	KRAP5S	1.000		Node 24	1.000		Node 53	1.000
	Node 5	1.000		Node 8	1.000		PNAN	1.000
	TSH	1.000		TSH	1.000		Node 52	1.000
	Node 4	1.000		Node 7	1.000		VIS	1.000
	E207S	1.000		TJ29S	1.000		PLIC	1.000
	Node 3	1.000		Node 6	1.000		PMOR137S	1.000
	DEN20S	1.000		ORI	1.000		PDUART1S	1.000
	Node 2	1.000		AUR	1.000		Node 61	1.000
	TJ29S	1.000		Node 34	1.000		Node 59	1.000
	WED2S	1.000		OCC	1.000		Node 57	1.000
	PAN5S	1.000		Node 33	1.000		Node 51	1.000
	Node28	1.000		CUN	1.000		Node 49	1.000
Tssta1 (Total)	SL8201S	1.000		Node 32	1.000		EOD	1.000
	MAN601S	1.000		QUACO1S	1.000			

Appendix H: Tsstal in a Localized Population of T. scabra from the Dominican Republic (DROT)

DROT 2S
DROT 5S
DROT 6S
DROT 6
DROT 7 S
DROT 9S
DROT 10S
DROT 14 S
DROT 19S
DROT 20S
DROT 22S
DROT 25S
DROT 28S
DROT 31S
DROT 33S
DROT 39S
DROT 40S
DROT 41S

ATGTСАТССССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCСССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 10 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTСАТССССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCСССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105
 ATGTCATCСССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105
 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105

 ATGTСАТССССТАСС GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105
 ATGTCATCCCCTACC GGACGGGAGCTTACC ATCTATCTCTATCTC TTTTCTATTATTGCG GTCTTCCCATTTCTT ACTTCAGCCAGTAGC TCCTTGAAGTTTGAT 105

TATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 21 СТАTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СТАTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СТАTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СтАTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 СТАTTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210 CTATTTGGCAACATG TACAGAGTTCATGTC ATCAATGGCTTCAGC AGCAATGACCTGCCA TTTTTACTTCATTGT TGGTCAAGCAATGAC GATCTGGGGCACCAT 210

DROT 2S
DROT 5S
DROT 5S
DROT 6S
DROT 7S
DROT 9S
DROT 10S
DROT 14S
DROT 19S
DROT 20S
DROT 22S
DROT 25 S
DROT 28 S
DROT 31S
DROT 33S
DROT 39S
DROT 40S
DROT 41S

DROT 2S
DROT 5S
DROT 6S
DROT 7S
DROT 9 S
DROT 10S
DROT 14S
DROT 19S
DROT 20S
DROT 22S
DROT 25S
DROT 28S
DROT 31S
DROT 33S
DROT 39S
DROT 40S
DROT 41S

AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC САСTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315 AGTCTCTACATTGGC GGTGACTTTAACTTC CACTTTGGCCTCCGG ATTATACCTCCCTCT ACCCGTTTCTGGTGT GACATGAACCGCGGC CCAAAATATATTCCT 315

CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420 CAAGTTAGTGTGTTT GAGGAGGATGAAGTG CTGCATTTGTGCAGC CACACGCAGCAATGC TATTGGCGGGGGCAA GATAACGGACTCTAT TTCTGCAATGATAAC 420

DROT 2S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 5S	TССТССТАTTTCAAG TTGTATGACTGG
DROT 6S	TССТССТАTTTCAAG TTGTATGACTGG
DROT 7S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 9S	TССТССТАTTTCAAG TTGTATGACTGG
DROT 10S	TCСТССТАTTTCAAG TTGTATGACTGG
DROT 14S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 19S	TССТССТАTTTCAAG TTG
DROT 20S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 22S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 25S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 28S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 31S	TCCTCCTATTTCAAG TTGTATGACTGG
DROT 33S	TССТССТАTTTCAAG TTG
DROT 39S	TССТССТАTTTCAAG TTGTATGACTGG
DROT 40S	TCCTCСTATTTCAAG TTGTATGACTGG

Figure H1: Alignment of Tsstal sequences from 17 short-styled individuals belonging to a localized population of \boldsymbol{T}. scabra from the Dominican

Republic (DROT). Base positions showing 100% identity across taxa are shown in blue. Where sequence information is present, the sequences were found to be completely identical across individuals in the coding sequence for Tsstal. For some individuals, upstream sequence information was also obtained, from which some sequence differences between individuals could be identified (data not shown). The alignment is sectioned into groups of 15 bases (or 5 codons). The length of the alignment (bp) is given in the right-most column (447 bp, total).

Table H1: The degree of Tsstal sequence similarity between samples from a local population of \boldsymbol{T}. scabra (DROT) and T. panamensis (PAN 2S). The local population sample (DROT) consisted of 17 short-styled individuals of the species T. scabra from the Dominican Republic. The numbers of synonymous and nonsynonymous sites identified as being fixed between the two species and polymorphic within the population are shown below. McDonald-Kreitman tests and Tajima's D tests of neutrality could not be performed on the data due to the lack of polymorphism within the DROT population data set.

	Fixed	Polymorphic
Synonymous	17	0
Nonsynonymous	8	0

