
ELASTIC SYNCHRONIZATION FOR

EFFICIENT AND EFFECTIVE DISTRIBUTED

DEEP LEARNING

XING ZHAO

A THESIS SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

JULY, 2020

© XING ZHAO, 2020

Abstract

Training deep neural networks (DNNs) using a large-scale cluster with an efficient

distributed paradigm reduces the training time from weeks on a single server to

hours. However, an “efficient” distributed paradigm developed only from system

engineering perspective is most likely to hindering the model from learning since it

fails to consider the intrinsic optimization properties of machine learning. In this

thesis, we present two efficient and effective models in the parameter server setting

based on the limitations of the state-of-the-art distributed models such as staleness

synchronous parallel (SSP) and bulk synchronous parallel (BSP) models.

We introduce dynamic staleness synchronous parallel (DynamicSSP) model

that adds smart dynamic communication to SSP, improves its communication effi-

ciency and replaces its fixed staleness threshold (a hyperparameter) with a dynamic

threshold in a given range. DynamicSSP converges faster and to a higher accu-

racy than SSP in the heterogeneous environment. Having recognized the impor-

tance of bulk synchronization in training via experiments of running large DNNs on

large datasets, we also propose the elastic bulk synchronous parallel (ElasticBSP)

ii

model which shares the proprieties of bulk synchronization and elastic synchroniza-

tion. We develop fast online optimization algorithms with look-ahead mechanisms

to materialise ElasticBSP. Empirically, ElasticBSP achieves the convergence

speed 1.77 times faster and an overall accuracy 12.6% higher than BSP.

iii

To my father for all the years of your love and support.

In memory of my mother

who always believed in my ability to be successful in the academic arena.

You are gone but your belief in me has made this journey possible.

iv

Acknowledgements

I am grateful for my supervisor Prof. Aijun An for her continuous support and

guidance throughout my Master’s program, and for providing me the opportunity

to work on the elastic deep learning project with IBM. I am also thankful for my

committee member Prof. Ruth Urner for her support, guidance and fruitful conver-

sation on the optimization problem of the distributed deep learning.

It is a pleasant experience for me to work and collaborate with my peer students,

faculty and IBM researchers during the program of my Master’s. For the work in

this thesis, I enjoyed working with Bao Xin Chen, Prof. Manos Papagelis and my

IBM colleague, Junfeng Liu. I very appreciated Manos for spending tremendous

time on the collaboration of my project with IBM which resulted in a new chapter

of this thesis. Thank you to all of the graduated students in the data mining lab for

creating a friendly environment. You all will make me miss our lab’s weekly seminar

meeting and the interesting conversations.

v

Table of Contents

Abstract ii

Dedication iv

Acknowledgements v

Table of Contents ix

List of Tables x

List of Figures xviii

List of Abbreviations xix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Thesis Structure . 7

vi

2 Basic Background 9

2.1 Topology of distributed computing system 9

2.1.1 Centralized Distribution Structure 10

2.1.2 Decentralized Distribution Structure 11

2.2 Parameter Server Framework . 11

2.2.1 Model Parallelism . 12

2.2.2 Data Parallelism . 15

2.3 Iterative Convergence Optimization — SGD 15

2.4 Parallel SGD . 16

2.5 Convergence Speed in Wall-clock Time Unit 17

3 Literature Review 19

3.1 Parallel Paradigms for Distributed Training 19

3.1.1 Bulk Synchronous Parallel (BSP) 21

3.1.2 Asynchronous Parallel (ASP) 23

3.1.3 Stale Synchronous Parallel (SSP) 25

4 Challenges of Optimization for Distributed Deep Learning 27

4.1 Optimization for Distributed Deep Learning 27

4.2 Optimizing Synchronization and Limitation 30

5 Dynamic Stale Synchronous Parallel Model 33

5.1 Introduction . 33

vii

5.2 Contributions . 35

5.3 Outline . 36

5.3.1 Problem statement . 36

5.3.2 Assumption . 37

5.3.3 Method . 38

5.4 Theoretical Analysis . 43

5.5 Experiment . 45

5.5.1 Experiment setup . 45

5.5.2 Results and Discussion . 46

5.5.3 Demystify the Difference . 51

5.5.4 Cluster with mixed GPU models 53

5.6 Related Work . 54

5.7 Epilogue . 57

6 Elastic Bulk Synchronous Parallel Model 59

6.1 Introduction . 59

6.2 Background . 66

6.2.1 Synchronization Cost Model 66

6.3 ElasticBSP Model . 69

6.4 The Problem . 71

6.4.1 Problem Definition . 74

6.4.2 Choosing Z∗ for ElasticBSP 76

viii

6.5 Methodology . 78

6.5.1 Exhaustive Search Methods 79

6.5.2 Search by ZipLine . 83

6.5.3 ZipLine Optimizations . 88

6.6 Experimental Evaluation . 91

6.6.1 ZipLine Performance . 92

6.6.2 Distributed Deep Learning using ElasticBSP 97

6.7 Related work . 105

6.8 Epilogue . 110

7 Conclusion 111

7.1 Summary of Contributions . 111

7.2 Future Directions . 113

Bibliography 127

ix

List of Tables

4.1 Training a DNN model w with n workers for T iterations on the

parameter server framework. Each worker has mini-batch size m. . . 30

5.1 Time in seconds to reach the targeted test accuracy in training. The

maximum test accuracy of BSP and SSP with s=3 is 0.67. Trained

ResNet-110 on CIFAR-100 with two workers for 300 epochs. Each

worker has either GTX1080 Ti or GTX1060. 55

6.1 Summary of computation and space complexities of methods. 91

6.2 Synthetic datasets with varying number of n and R. 91

6.3 Search accuracy comparison on dZ∗ — the least waiting time in

milliseconds/ms found by algorithms. 94

6.4 Computation time of algorithms in microseconds/µs. 95

x

List of Figures

2.1 Topology of distributed computing system. Parameter server frame-

work is in centralized distribution structure. 9

2.2 Parameter Server Framework for Data Parallelism. A deep learning

model is replicated to all the workers whereas the model parameter w

is maintained and updated by the parameter server (PS). The training

dataset is partitioned into subsets and each subset is assigned to

each worker. In each iteration, workers first compute the gradient

∆w based on w and its assigned subset, then send ∆w to the PS.

PS aggregates ∆w from all the workers, then updates w and sends

updated w′ to each worker for the next iteration. 13

2.3 Model Parallelism and Data Parallelism. 13

3.1 Vanilla BSP. All the workers have to wait for each other for synchro-

nization at the end of every iteration. Barrier represents the weight

synchronization. A superstep represents the interval between two

contiguous weight synchronizations. 21

xi

3.2 (a) shows how staled gradients δ bring noise to the weight update.

The noise may drift the weight convergence away from the optimal

direction (e.g., local minima of loss function). (b) Suppose we have

two sets of workers for training. Each column lists the iterations of

each worker completed at time t. The set with smaller iteration dif-

ference has fewer staled gradients added to the weight. The staleness

of gradients is bounded by the iteration difference. 24

3.3 Stale synchronous parallel with the staleness threshold s = 3. The

fastest worker, Worker 1 has to wait at iteration 8 till the slowest

worker, Worker 2 reaches iteration 5. 25

xii

5.1 Prediction module finding the least waiting time for the fastest worker

via iteration time intervals of workers. A solid line represents a

boundary to stop the fastest workers continuing new iterations for

synchronization and a dash line represents the end of waiting when

the slowest worker completes its running iteration. The solid line is

drawn upon a fastest worker sends a push request to the server and

waits for the OK signal from the server. Once OK is received, it pulls

the new updated weight from the server and starts a new iteration

where the dash line is drawn. The dash line also indicates the time

that the slowest worker receives a new updated weight via pull re-

quest and starts a new iteration. Worker1 is the fastest worker and

the workern is the slowest worker. The colored block represents one

iteration time. Following SSP, worker1 has to stop at the red solid

line. DynamicSSP compares each r value and finds the r∗ which

gives the least waiting time. Here, r∗ = 3 if r ∈ R = [0, 4]. Dynam-

icSSP allows worker1 to run 3 more iterations and stop at the green

solid line. 34

5.2 Iteration intervals measured by timestamps of push requests from

workers. A dotted line represents the time for a push request from

a worker to the server. An interval consists of communication period

(blank block) and gradient computation period (solid block). 37

xiii

5.3 Distributed paradigms comparison on downsized AlexNet, ResNet-

50 and ResNet-110 training for 300 epochs. Downsized AlexNet is

trained on CIFAR-10 and both ResNets are trained on CIFAR-100.

Average SSP on the right column is derived by averaging SSPs with

threshold from 3 to 15 on the left column. Faster convergence to a

targeted high accuracy indicates less training time is required for the

paradigm. 50

5.4 Trained ResNet-110 on CIFAR-100 with two workers on a mixed GPU

cluster for 300 epochs. GTX1060 and GTX1080 Ti are assigned to

individual worker. Our DSSP converges faster and achieves higher

accuracy than SSP. 54

6.1 Vanilla BSP and our proposed ElasticBSP. Each barrier represents

the time of weight synchronization among workers and a superstep

represents the time between barriers. In BSP the superstep is fixed

to a number of k iterations and all workers have to wait for each other

at the end of their k iterations (k = 1 is shown, which is typical).

In ElasticBSP, the time the barrier is imposed varies and each

superstep can allow a different number of iterations per worker. These

values are determined at runtime by our proposed ZipLine method

that achieves minimum overall waiting time of all workers. 61

6.2 The flow of prediction and synchronization of ElasticBSP. 63

xiv

6.3 Iteration intervals measured by timestamps of push requests from

workers. A dotted line represents the time a push request arrives

at the server from a worker. An iteration interval consists of gradi-

ent computing period (solid block) and communication period (blank

block). All workers’ ending timestamps can be mapped onto a time-

line. Each timestamp on the timeline is associated to one of the

workers. A set which is represented by the bracket always keep n

unique values (colors) of workers. ZipLine scans the points from left

to right on the timeline, takes one color point into the set per iteration. 68

xv

6.4 Predicting the time to synchronize. The sky blue triangles in the

first column are the starting points of the predicted future iterations

at which we have learned the most recent iteration intervals of all

workers. Each dot represents the ending time of an iteration. Work-

ers (labelled from 0 to 9) have unique color. Starting from them, we

predict next R=15 future iteration intervals of the 10 workers. The

objective is to find the dots of distinct colors that are closest to each

other (i.e., dots vertically aligned near any time-spot). Three strate-

gies are shown for comparison: ZipLine (min d in red squares), a

random barrier pick (rnd d in grey blue diamonds) and classic BSP

(bsp d in sky blue triangles).min d, rnd d and bsp d represent the

overall workers’ waiting time cost in milliseconds in wall-clock time.

ZipLine has the minimum cost (599ms). 72

6.5 ZipLine scans the points (push timestamps) on the timeline as in

Figure 6.7 and evaluates all 141 possible sets Z (each of which con-

sists of distinct workers) of the example in Figure 6.4 in ascending

order. For each set Z, the overall worker waiting time dZ is obtained

and plotted on y-axis. ZipLine finds the optimal set Z∗ that mini-

mizes dZ∗ (i.e., 599 milliseconds) which lies at the 97th combination

(highlighted in red). 73

xvi

6.6 (a) shows how staled gradients δ bring noise to the weight updates.

The noise may drift the weight convergence away from the optimal

direction (i.e., to poor local minima of the loss function). (b) Sup-

pose we have two optimal solutions Z∗A and Z∗B. Each column lists

the number of iterations each worker has completed in each solu-

tion. Both solutions Z∗A and Z∗B have equal dZ . The solution with

the smaller iteration difference diter (i.e., 4) introduces fewer staled

gradients to the model weights and therefore is preferred. 77

6.7 ZipLine scans all elements on the timeline, from left to right, one

element at a time. When a solution Z of n distinct elements is formed,

dZ is computed. At the end of the process the optimal solution Z∗ is

found that yields the minimum d∗Z . If multiple solutions exhibit the

same d∗Zs, then the solution Z that occurred first (chronologically) is

selected by Corollary 3. In this example, d6 and d10 have the same

minimum value — Z6 associated with d6 is chosen as the optimal

solution. 82

xvii

6.8 A plot of the cost dZ of candidate solutions Z evaluated by ZipLine.

As ZipLine iteratively scans the elements of Ω from the leftmost to

the rightmost element on the timeline, we compute the cost of each

candidate solution Z and its cost dZs (the smaller the cost dZ the

better the solution Z). The run is based on the SmallR dataset of

Table 6.2, for n=1,000 and R=15. There are 15,000 elements in Ω.

ZipLine evaluates a total of 13,795 candidate solutions, FullGridScan

15000 candidate solutions and GridScan only 15 candidate solutions.

We only plot the dZ values that have a cost of less than 1600 millisec-

onds; we highlight the optimal dZ∗ and a few sub-optimal dZs. Red

triangles indicate dZ∗ . 94

6.9 Computation time cost comparison of ZipLine and its variants. The

cost of ZipLine and its variants increases as the number of workers

n and the value of parameter R increases. Both ZipLineOpt and

ZipLineOptBS outperform the basic ZipLine. For larger values of R

(R ≥ 100), ZipLineOptBS outperforms ZipLineOpt. 95

6.10 Downsized AlexNet on CIFAR-10 dataset (n = 4) 98

6.11 ResNet-50 on CIFAR-100 dataset (n = 4) 99

6.12 ResNet-110 on CIFAR-100 dataset (n = 4) 100

6.13 VGG-16 on ImageNet 1K dataset (n = 4) 102

xviii

List of Abbreviations

ADMM Alternating Direction Method of Multipliers

ASP Asynchronous Parallel

BSP Bulk Synchronous Parallel

CNN Convolutional Neural Networks

DNN Deep Neural Networks

DRAM Dynamic Random-Access Memory

DSSP Dynamic Stale Synchronous Parallel

ElasticBSP Elastic Bulk Synchronous Parallel

GPU Graphics Processing Unit

ML Machine Learning

PS Parameter Server

xix

P2P Point to Point

SGD Stochastic Gradient Descent

SIMD Single Instruction Multiple Data

SSP Stale Synchronous Parallel

xx

Chapter 1

Introduction

1.1 Motivation

Deep learning is a popular machine learning technique and has been applied to

many real-world problems, ranging from computer vision to natural language pro-

cessing. However, training a deep neural network is very time-consuming, especially

on large models and big data. It has become difficult for a single machine to train

a large model over large datasets. A popular solution is to distribute and paral-

lelize the training process across multiple machines using the parameter server

framework. Like other job scheduling problems in distributed computing system,

deep leaning tasks are also bottle-necked by the job dependencies in terms of the

hardware utilization (i.e., computational) efficiency. It relies on the iterative con-

vergent process (i.e., stochastic gradient descent works effectively in practice)

1

to search the optimal parameters of the learning model.

Using stochastic gradient descent (SGD), a deep leaning model converges

after a certain large number of iterations in each of which the model parameters

(i.e., weights) are updated with the gradients of the lost function based on a mini-

batch of samples. In distributed computing, SGD is running in parallel on multiple

workers (machines) therefore the weight updates have to be synchronized per iter-

ation so that all the workers can receive the same weights after the weight update.

This weight synchronization per iteration ensures data (weights) consistency in dis-

tributed environment. It is also known as synchronous SGD [1] [2] in which the gra-

dients from all workers are aggregated on the parameter server before the weights

are updated per iteration. Its flip side is asynchronous SGD [3] [4] in which all

workers running independently and no synchronizations are scheduled in training.

The weights are updated on the parameter server once the gradients are available

from any of the workers. We call this asynchronous weight update. asynchronous

parallel (ASP) [3] [5] is a straight distributed scheme of asynchronous SGD.

Synchronous SGD is strictly followed in bulk synchronous parallel (BSP)

model [6]. BSP makes the distributed system logically functioning as a single server,

thus it guarantees the convergence of the model and can be used directly (or with

minimum modification) by many non-parallel applications. This property endorses

BSP the predominate model used in practice. Nonetheless, in BSP workers may

take different computing time to calculate the gradients on a mini-batch due to

2

their hardware configurations. The straggler makes the faster workers waiting for

its completion of computing the gradients in an iteration. Consequently it elongates

the training time and brings down the hardware utilization (more idling time for

the faster workers). Meanwhile, the iteration throughput (the number of iterations

processed per time unit) drops as well.

This raises the challenge of how to design an efficient synchronous parallel model

for distributed deep learning training. Ho et al. [7] proposed stale synchronous

parallel (SSP) which allows some constrained asynchronous parallel along the

iterations in training. It allows workers running independently but uses a staleness

threshold s to control that the fastest worker cannot run more than s iterations

ahead of the slowest worker (the straggler). Thus, weight synchronization happens

between the fastest and the slowest workers when the threshold s is exceeded, oth-

erwise asynchronous weight updates dominate the iterative convergent process in

training and render SSP behaves as ASP. However, asynchronous weight updates

generate staled gradients which are harmful to the convergence [7] [8] and may lead

to divergence [9]. For example, the gradients computed by the straggler based on

the weights from the 2nd iteration are updated to the weights of the 5th iteration of

the fastest worker which changes the direction of the original step. Intuitively, we

know asynchronous parallel (ASP) maximizes the hardware utilization of all

workers. Its high computational efficiency expectedly brings down the training time

since all workers are running independently across the entire training and no weight

3

synchronizations are required. Yet theoretically, ASP lacks convergence guaran-

tee [10] because of the staled gradients we mentioned. Despite BSP guarantees the

convergence, it has the straggler problem. SSP tries to mitigate the straggler prob-

lem by adding some elasticity to BSP. It relaxes the rigid requirement of BSP that

all the workers have to wait for each other by the end of each iteration for weight

synchronization by allowing weight synchronization happens only when the stale-

ness threshold is exceeded between the fastest worker and the slowest worker and

only requiring weight synchronization takes place between both types of workers.

1.2 Contributions

From system engineering’s perspective, ASP is the ideal choice to achieve the maxi-

mum hardware utilization. From machine learning’s perspective, BSP is the safe and

stable model to use for distributed training for deep learning. The core determinant

that creates such a dilemma lies in the iterative convergent optimization process

(i.e., SGD) used in deep learning model training. The purpose of this thesis is to

speed up the convergence speed of the iterative convergent process, SGD in paral-

lel and thereby develop efficient distributed training for deep learning with elastic

synchronization. We materialize the elasticity by developing dynamic and adap-

tive online techniques which aim to elevate the efficiency of the prior synchronous

parallel models of distributed training (i.e., SSP and BSP) while maintaining or

even improving the convergence speed and the final accuracy by taking advantage

4

of the fault torrent property of machine learning [11]. What’s more, the staled gra-

dients are generated from slower workers during the training of a large number of

iterations in the heterogeneous distributed computing environment. We design the

elasticity following the theoretical analysis on the impact of the dynamic changing

of the staled gradients in training on the convergence of DNN models to ensure the

efficacy of our proposed models.

In this thesis, we explore three different types of the state-of-the-art distributed

parallel models (i.e., BSP, SSP and ASP) used in practice and their scheduling to

the iterative convergent process of parallel SGD (including synchronous and asyn-

chronous SGD) in training. In particular, we analyze the elasticity that SSP has

comparing to BSP and the trade-offs between SSP and BSP. Then, we extend the

elasticity of SSP further and propose DynamicSSP by adding run-time informa-

tion of workers to the elasticity. Unlike SSP which simply counts the number of

iterations of workers to compute the staleness threshold, DynamicSSP is aware

of the workers’ computational capacity on a mini-batch at run-time and therefore

adjusts the threshold dynamically with the goal of minimizing the idling time of the

fastest worker.

Having observed the behavior and the performance of DynamicSSP, we try

to interpret the role of staled gradients is playing in parallel SGD: a regularizer

by adding gradient noise to the optimization of the objective function. When the

staled gradients are accumulated to a large amount in training, they postpone the

5

convergence and even causes the convergence uncertain. But with careful controlling

on the degree of the staleness and the amount of the staled gradients, the convergence

rate can be boosted and are prone to reach a higher accuracy in practice.

In the extensive experiments on evaluating DynamicSSP, we observed SSP

and ASP were struggling to learn and converging very slow on the large-sized DNN

models (e.g., Vgg-16 [12]) on the large dataset (e.g., IMAGENET-1K [13]). To the

contrary, BSP achieved a steady increasing convergence (learning) curve on the test

accuracy. Hence, we start considering to design a distributed parallel model like

BSP but having the ability of controlling the dynamic changing of staled gradients

generated by slower workers in training, in particular, limiting the degree of staleness

and the amount of staled gradients using synchronization. In addition, we want

to take advantage of the dynamic technique from DynamicSSP that reduces the

waiting time of the fastest worker in training.

Accordingly we propose ElasticBSP which converges faster and to a higher ac-

curacy than BSP empirically. In the case of training large deep neural networks (with

fully connected layers) on the large dataset where ASP, DynamicSSP and SSP fail

to learn or deliver the same convergence rate as BSP, ElasticBSP demonstrates its

superior performance than those including BSP in the experiments. ElasticBSP

is a novel synchronization model for scaling the training of distributed deep learning

models. ElasticBSP replaces the strict synchronization requirement of other BSP-

like models with an online decision making about the best time to impose the next

6

synchronization barrier. The model guarantees the convergence when the number

of iterations in training is large. The empirical evidence shows that ElasticBSP

offers strong generalization ability as BSP but better accuracy.

Parts of the thesis have been published in the following conference papers:

• Zhao, X., An, A., Liu, J., & Chen, B. X. (2019). Dynamic Stale Synchronous

Parallel Distributed Training for Deep Learning. In Proceedings of the 39th

IEEE International Conference on Distributed Computing Systems, pp. 1508-

1517 (ICDCS 2019). [14] (included in Chapter 5)

• Zhao, X., Papagelis, M., An, A., Chen, B. X., Liu, J., & Hu, Y. (2019). Elastic

Bulk Synchronous Parallel for Distributed Deep Learning. In Proceedings

of the 19th IEEE International Conference on Data Mining, pp. 1504-1509

(ICDM 2019). [15] (included in Chapter 6)

1.3 Thesis Structure

The thesis consists of 7 chapters.

• Chapter 1 introduces the motivation of this thesis and briefs our contributions.

• Chapter 2 introduces the basic background of the distributed environment for

deep learning, and describes the optimization process for distributed DNN

training and the definition of convergence speed based on wall-clock time unit.

7

• Chapter 3 reviews the three essential yet prevalent state-of-the-arts distributed

paradigms in practice — BSP, ASP and SSP.

• Chapter 4 discusses the challenges of optimizing the parallel models for efficient

yet effective distributed training and points out the synchronizations in dis-

tributed deep learning could be optimized with respect to the elasticity.

• Chapter 5 presents Dynamic Stale Synchronous Parallel model which provides

dynamic online staleness threshold determination based on the information

collected from workers so that this model can adapt to the local environment

at run time.

• Chapter 6 introduces Elastic Bulk Synchronous Parallel model which finds the

optimal synchronization time for all workers at run time and offers significantly

better convergence speed and accuracy than Bulk Synchronous Parallel model

empirically.

• Chapter 7 concludes the thesis by addressing the significance of the presented

works, illuminating the insight of staled gradients in the SGD optimization,

and provides potential future direction on the topic of this thesis.

8

Chapter 2

Basic Background

2.1 Topology of distributed computing system

The distributed computing system can be designed in two topology structures: cen-

tralized structure and decentralized structure.

Data Parallelism and Model Synchronization

• Decentralized and Centralized Distribution Frameworks

3

Machine1 Machine2

Machine3

Decentralized Distribution

Machine4

Machine1 Machine2

Machine3 Machine4

Centralized Distribution

Figure 2.1: Topology of distributed computing system. Parameter server framework is in
centralized distribution structure.

9

2.1.1 Centralized Distribution Structure

In centralized structure, client machines only communicate to server machine. Client

machine is also known as worker in distributed machine learning literature [11]

[16] [17]. This structure uses the least communication connections among available

machines (n− 1 connections for n machines) and can be easily scaled to a large size

of a server farm. The most unpleasant drawback of this structure is the single point

of failure where the only server goes offline. The common workaround in practice

is to have standby backup servers ready for failover and or to distribute a logical

server into multiple physical servers. Even with standby backup servers for failover,

a single point of failure will cause the loss of the gradients of the current computing

iterations from all the workers on the server side. Re-transmission of gradients from

all the workers is required. To satisfy the parallel (iterations) tasks with continuous

dependency (between the current gradients and the previous weights) and the highly

computation-intensive training for deep learning where each iteration is expensive

to compute for a large model, both aforementioned workarounds are necessary in

the design of the distributed training system for deep learning. For example, the

ring structure [18] of parameter servers in MXNet [19] is able to resist the server

failure. In the ring structure, weights, i.e., the original ring is first segmented into k

parts, then each part are replicated to m copies (m rings). m rings share the same

center point. Each ring is shifted in different directions to ensure their each k part

is partially overlapped with its neighbours of the other m− 1 rings. Thereafter, the

10

shifted m rings are segmented into n parts where n is the number of servers and

each server is in charge of maintaining each part.

2.1.2 Decentralized Distribution Structure

In decentralized structure, machines communicate to each other directly and no

centralized server exists in the structure. The communication connections cost of

the structure grows in polynomial (n
2−n
2

connections required for n machines). Thus,

its scaling cost is expensive. This structure has other names: P2P (point to point)

and C2C (client to client). Its worst case, full mesh where all machines are connected

to each other, is infeasible to scale due to the cost of n2−n
2

. Partial mesh is usually

encouraged in practice where each machine only connected to few others. It has

been the topic of much research on the optimization of partial mesh of decentralized

structure as the prevailing of the distributed deep learning for large scaled network,

for example, [20] and [21].

In this thesis, we focus on the centralized distribution structure into which the

parameter server framework is categorized.

2.2 Parameter Server Framework

Parameter Server Framework [3, 7, 18, 22, 23] has been widely adopted to the dis-

tributed training platform [17, 22, 24, 25] for deep learning since 2012 [3] in which

11

it is called DistBelief that uses large clusters with more than 5000 computers to

distribute the training of large deep neural networks. The framework (see Figure

2.2) consists of multiple workers and a logical server which can be distributed into

multiple physical servers for load balancing [26] in the case that the number of

workers and the size of the training model are too large. Workers are all connected

to the server and are responsible for the heavy computing tasks such as convolu-

tional computing and backpropagation. The server usually maintains the globally

shared weights by aggregating gradients from all the workers and updating the global

weights. No complicated computing tasks are executed on the server. It provides

a central storage for the workers to upload their computed gradient updates (by

the push operation) and fetch the up-to-date global weights (by the pull opera-

tion). The parameter server framework supports two approaches on the deep neural

networks (DNNs) distributed training: model parallelism and data parallelism [27].

Figure 2.3 illustrates a comparison on both parallelisms.

2.2.1 Model Parallelism

Model parallelism is to partition a large size DNN model into small parts and dis-

tribute the small parts to multiple computing resources (workers) for parallel train-

ing (see Figure 2.3). Each worker computes the gradients for the server based on

its assigned model partition and training data. In [3], a large size DNN model is

segmented into 144 partitions and trained in 32 machines concurrently. Due to

12

Parameter Server Framework

PS

M1 M2

∆"

"# = " +&∆"

"′

M3

Worker1 Worker2 Worker3Dataset

5
Figure 2.2: Parameter Server Framework for Data Parallelism. A deep learning model is
replicated to all the workers whereas the model parameter w is maintained and updated
by the parameter server (PS). The training dataset is partitioned into subsets and each
subset is assigned to each worker. In each iteration, workers first compute the gradient
∆w based on w and its assigned subset, then send ∆w to the PS. PS aggregates ∆w
from all the workers, then updates w and sends updated w′ to each worker for the next
iteration.

Distributed Training for Deep Learning

Machine1

Machine3Machine2

Machine4

Model Parallelism

Machine1 Machine2

Machine3 Machine4

Data Parallelism

2 Figure 2.3: Model Parallelism and Data Parallelism.

13

the complicated dependencies between layers of parameters in contemporary DNNs,

the nature of the iterative convergent optimization method (e.g., stochastic gradi-

ent descent) [11] and predominant use of multiple GPUs [23] [28] [29] [30], it is

rather difficult to decouple the parameters of inter-layers or intra-layers for efficient

concurrent training such as Vgg [12], ResNet [31] and Transformer [32].

The use of GPUs accelerates the DNNs training speed since GPU is specialized

in SIMD (single instruction multiple data) parallel processing for large data. How-

ever, GPU has the data loading bottleneck [33] (overhead) on batching and moving

the data in and offload from its computing girds (GPU shared memory) to com-

puter global memory (DRAM). Additionally, the inter computer communication is

bottle-necked by the connection bandwidth. It takes too long for some partitions

in one computer to waiting for the output of their dependent partitions in another

computer in just one time forward computing, not to mention that one iteration

consists of forward and back-propagation computing for the gradients as well as

large size DNN models training require a large number of iterations to converge.

Model parallelism approach will only be advantageous when partitions of a model

have loose dependency and can be trained almost concurrently such as the linear

classifiers of which features can be assumed independent from each other. Other-

wise, model parallelism is rather difficult to gain any benefit for large DNNs due

to the dependency between layers. Thus, model parallelism has been rarely seen in

practice for distributed deep learning. In this thesis, we focus on data parallelism.

14

2.2.2 Data Parallelism

Data parallelism (see Figure 2.3) has been prevailed in industry [34] [35] and imple-

mented in many applications (e.g., Malt [36], SparkNet [37] and Poseidon [17]). It

is very effective to handle the large size of the training data and easy to implement.

The popular deep convolutional neural networks [13] [31] benchmark datasets such

as COCO [38] has data size 44GB and IMAGENET-1K [39] has data size 150GB.

Data parallelism replicates the entire DNN model to each worker but shards the

training data into equal size (depend on the number of workers) and uniformly as-

signs each data shard to workers (see Figure 2.2). During the training, each worker

trains the replica model using its assigned data shard, sends the computed gradients

to the server (via push operation) and retrieves the most recent updated weights

from the server (via pull operation). The server maintains a global model weights

and updates the weights with the received gradients.

2.3 Iterative Convergence Optimization — SGD

In training, a DNN model searches the optimal parameters by minimizing the loss (of

loss function) based on the given training data via the iterative convergent process,

stochastic gradient descent (SGD) — the most effective optimizer used in practice

for deep learning. SGD iteratively updates the model parameters w [40] as follow:

wt = wt−1−η · (gt−1 +∂Φ(wt−1)). t represents the tth iteration, g is the gradients of

15

the chosen loss function with respect to the parameters w and Φ is the regularizer.

In each iteration t, gt is computed based on the loss function l and a mini-batch

of the training data such that gt = 1
m

∑m
i=1 ∂l((xi, yi),w

t)) where m is the size of a

mini-batch.

2.4 Parallel SGD

Parallel SGD [40] refers to SGD running in a distributed environment where the

model (weight parameters) updates become tricky and complicated. Assuming a

distributed environment and the data parallelism approach of a parameter server

framework are used as shown in Figure 2.2, the entire DNN model is replicated to

n workers, while the server maintains globally shared weight parameters. During

the training, each worker trains the replica model using its assigned data shard,

sends the computed gradients to the server (via a push operation) and retrieves

updated weights from it (via a pull operation) per iteration. Different schemes

of scheduling these communication operations of workers and the weight updates

on the server will result in different learning performance of DNN models such as

the convergence speed and the accuracy. We will introduce different communication

schemes between workers and the server and discuss their performances with respect

to the convergence in Section 3.1. Before that, we need to clarify the notion of

convergence speed we use in the distributed parallel computing setting.

16

2.5 Convergence Speed in Wall-clock Time Unit

Conventionally, convergence speed [41] (also known as rate of convergence) is to

measure how fast a model approaches its limit (with respect to accuracy or loss) in

a number of iterations (by iteration unit). The less iterations required by a model

to reaching its limit (regardless a good or bad solution), the better convergence

speed the model has1. Convergence speed is one of the two crucial metrics to deter-

mine the efficacy of an optimizer. The other one is generalization which evaluates

the performance of the model on new data. An optimizer demonstrates consistent

good performance on different models and different datasets is considered having

strong generalization ability [42]. This notion of generalization is orthogonal to the

computing environment so we continue using it as is in the distributed setting.

The original notation of convergence speed was used to measuring the learning

efficacy for machine learning in a non-parallel computing setting. Later, it was used

for measuring learning performance of DNN models running serial SGD on a sin-

gle computer. For distributed deep learning, a DNN model is trained in multiple

computers (or workers). In data parallelism, a DNN model is replicated to each

worker and the gradients of each worker are sent to the parameter server on which

the weight updates is executed. As workers are sending gradients to the parameter

server without synchronization per iteration, the weight updates on the server be-

1Note that a good convergence speed does not imply a good final accuracy. A fast convergence
may end up at a very low accuracy or high loss due to the complexity of the model and or a
problematic optimizer.

17

come random since weight update occurs whenever gradients of any worker arrive.

One weight update (on the server) no longer represents an iteration of the entire

system and is decoupled from the local iterations of all the workers. Thus, it is not

reasonable to use convergence speed of original notion as a metric to evaluate DNN

models in distributed setting. It is also not realistic to compute convergence speed

of original notion for distributed deep learning since one worker may run more itera-

tions than another in any time. Therefore, we cannot use the conventional measure

of convergence speed used on a single computer for the parallel SGD in a distributed

parallel computing setting. Instead of measuring the convergence speed based on

iteration unit — the original notion, we define convergence speed of distributed

parallel computing setting measures the speed a DNN model approaches its limit

(convergence) of test accuracy based on wall-clock time unit (a time period).

18

Chapter 3

Literature Review

3.1 Parallel Paradigms for Distributed Training

There are three essential and prevalent distributed paradigms for updating the model

parameters under data parallelism using parallel SGD in training. They are Bulk

Synchronous Parallel (BSP) [6], Stale Synchronous Parallel (SSP) [7] [43] and Asyn-

chronous Parallel (ASP) [3] [5] [44]. BSP is predominantly practised in industry and

is supported by Pytorch, TensorFlow and MXNet. ASP is supported in TensorFlow

and MXNet. SSP is exclusive to Petuum. Other state-of-the-art methods are only

available in the research field and are immature to the industry practice.

Historically, BSP-like paradigms generally exist in many parallel and concur-

rent computing programs for managing the multiple concurrent threads in an intra-

computing setting (i.e., single machine). Each thread computes few lines of code in

19

parallel but has to wait for other threads at a join point because of the dependency

of the lines of code in context. This join point can be considered as a synchroniza-

tion point of threads. The idea has also been successfully implemented into the

distributed computing system with multiple machines. Meanwhile, its drawback —

the waiting time of processing units (e.g., threads) is also inherited and gets worse

when running concurrent threads in the inter-computing setting (i.e., multiple ma-

chines to which threads are distributed). A strangler (the slowest machine) makes

the others wait for it at the synchronization point, which is noxious. The goal of

SSP and ASP is to increase the computing time (for iterations) or to reduce the

waiting time (of workers) by allowing more weight updates on the server without

weight synchronization within a time period (which increases iteration through-

put) and decreasing the workers’ waiting time for communication in the parameter

server setting [45]. The waiting time for communication can be further divided

into the waiting time for synchronization of workers and the data (i.e., parameters)

transmission time between workers and the server. We cover BSP, ASP and SSP

paradigms respectively in detail in the next section and discuss their limitations.

Aiming to solve the limitations, we propose our synchronization models in Chapter

5 and Chapter 6 respectively.

20

worker1

worker2

worker3

worker4

BSP time interval per iteration for each worker

barrier barrier barrier barrier

computing
time

communication
time

Superstep1 Superstep2 Superstep3 Superstep4

Figure 3.1: Vanilla BSP. All the workers have to wait for each other for synchronization
at the end of every iteration. Barrier represents the weight synchronization. A superstep
represents the interval between two contiguous weight synchronizations.

3.1.1 Bulk Synchronous Parallel (BSP)

In BSP, the server updates the weight w in two steps: First, it aggregates the

gradients gp, p ∈ [1, n] from n workers in iteration t− 1 such that gt−1 = 1
n
Σn
p=1g

t−1
p .

Second, it updates the weight wt−1 for next iteration t,

wt = wt−1 − η · (gt−1 + ∂Φ(wt−1)) (3.1)

. After the weight update, it signals n workers that the weight wt is available to

pull. Synchronization of workers is necessitated but costs extra time on waiting for

the straggler; that is because of the first aggregation step in which the server does

not reduce the gradient gt−1 until it receives gradient gt−1p from all n workers. After

the second step, all the workers receive the same (synchronized) weights. In this

21

way, the server is controlling the gradient updates and makes parallel SGD logically

function as serial SGD on a single computer. This property makes BSP easily be

implemented into any existing serial SGD applications. The synchronization in BSP

guarantees the data consistency of w as shown in Figure 3.1. This strategy works

very well when all the workers have similar speed. However, the waiting time (in

the first step) contribute an inevitable overhead to the training when workers have

difference processing speed on an iteration.

With respect to the popularity, BSP is the predominant distributed model in

applications of many disciplines other than ML [46] [47]. Its most profound ap-

plication in the distributed framework field is MapReduce [48] [49]. Most general

propose frameworks such as Hadoop [50] and Spark [51] all use MapReduce-like

parallel training. That is, all machines (also called workers in distributed training

framework) have to wait for each other to finish the computing and updates by the

end of each iteration for synchronization. A significant amount of time is wasted in

such model when workers have different processing speed.

Nonetheless, since ML has the fault tolerant property [11] (that is, it is robust

against minor errors in intermediate calculations) when it uses the iterative conver-

gent optimization algorithm such as stochastic gradient descent (SGD) [40], a more

flexible paradigm that uses less (i.e., sparse) synchronizations can be applied. This

property is crucial to the topic of speeding up the distributed deep learning and is

therefore taken into the consideration in the design of our proposed models.

22

3.1.2 Asynchronous Parallel (ASP)

ASP [3] [5] [44] is an alternative approach on updating the weight w. It is based on

the idea of the workers working independently and the server updating the weights

immediately as soon as any gradient becomes available. In this fashion, weight

synchronization is not required in training and the waiting time of workers is thus

eliminated. With no synchronizations, the weight updates on the server become

asynchronous gradient updates which is potentially harmful to the convergence. See

the examples in Figure 3.2(a) and 6.3. It appears as if ASP is better than BSP since

it eliminates the control costs and the waiting time overhead. Besides, the number

of weight updates of ASP becomes n times more than that of BSP for n workers

(by equation 3.1 and 3.2), which means ASP enjoys larger iteration throughput.

However, the weight updates become chaotic:

wt = wt−1 − η · (gs−1p + ∂Φ(wt−1)), p ∈ [1, n], s ≤ t (3.2)

Here t represents the iteration of the fastest worker(s) whereas s is the iteration of

the slower worker(s). The gradients computed at iteration s = t − c by the slower

worker(s) then become stale for c iterations, where c denotes the iteration difference;

c also represents the staleness value of the staled gradients of the slower worker(s).

If c is large, the staled gradient functions as noise in the iterative weight updates

(see Figure 6.6(a)); when there are many c-staled gradients present, it renders the

23

Workers Set A Set B

p1 13 3

p2 20 5

p3 10 1

p4 12 3

p5 17 2

Iteration
difference:
max – min

10 4 ✓

Suppose we have two sets of
workers for training. Each column
lists the iterations of each worker
completes at time t. The set with
smaller iteration difference has less
staler gradients adding to the weight.

Assume workers p2 and p3 of Set A receive same
weight w" from the parameter server after one
synchronization.

#"

#"

$"
#%

p2

p3

server

$%
#&

$"
#'∗

$&
#)∗

$) #*

$'
#+∗

$* #,∗

δ. = Cost′(w.) , w.7% = w. + η : δ. where η is learning step
* indicates noise is added.

Staled gradients $ brings noise to the weight update.
The noise causes drift, may delay the convergence or
lead to divergence if cumulated noise is proportionally
large.

(a) (b)

Figure 3.2: (a) shows how staled gradients δ bring noise to the weight update. The noise
may drift the weight convergence away from the optimal direction (e.g., local minima of
loss function). (b) Suppose we have two sets of workers for training. Each column lists
the iterations of each worker completed at time t. The set with smaller iteration difference
has fewer staled gradients added to the weight. The staleness of gradients is bounded by
the iteration difference.

convergence uncertain [10]. Without synchronization, w is not consistent to workers

in training, each worker may receive different w at each iteration. Consequently,

their gradients are computed based on different w since g = ∂l(x, y;w) where l

represents the loss function and (x, y) is the training data. It appears as if workers

with different w are converging towards different directions. From optimization

perspective, gradients in ASP at any time step are pointing to dissimilar directions,

the convergence rate may be slow down [7] or divergence may happen. Staled

gradients may drift the convergent step away from the original route of reaching

local minima or global minimum.

24

Worker 1

Stale Synchronous Parallel (SSP)

1 2 3 4 5 6 7 8 9 10

Worker 2

Worker 3

Worker 4

Staleness threshold 3

Iteration

Wait here until
Worker 2 reaches

Iteration 5

0

6Figure 3.3: Stale synchronous parallel with the staleness threshold s = 3. The fastest
worker, Worker 1 has to wait at iteration 8 till the slowest worker, Worker 2 reaches
iteration 5.

3.1.3 Stale Synchronous Parallel (SSP)

SSP [7] [43] is a combination of BSP and ASP or a compromised solution of BSP

to save some waiting time of the fastest worker. It allows workers running inde-

pendently but ensures that the fastest workers do not run β iterations more than

the slowest workers as shown in Figure 3.3. In other words, SSP uses a threshold

β to constrain the iteration difference c among workers at any time step during the

training so that c ≤ β where c = t− s in equation 3.2. Note that β has to be fixed

to a small number, otherwise SSP might behave as ASP. Since c is bounded by a

small β, the harm that the staled gradients introduce to the convergence is reduced

or upper bounded by β. In [7] authors provide theoretical analysis to prove that

SSP guarantees convergence for a large number of iterations with a small β.

25

SSP model works as follow: it counts the number of iterations of each worker

has completed. When the fastest worker is running at its t iteration and the slowest

worker is running at its t− β− 1 iteration, the fastest worker has to waiting for the

slowest worker reaches its t−β iteration. In this way, SSP manages a synchronization

between the fastest worker and the slowest worker by setting a synchronization

barrier to stop the fastest worker running further upon the excess of the threshold.

After the synchronization, the two workers compute the gradients based on the same

weight w in a new iteration. Since β is small, the model converges near the late

stage of the training for a large number of iterations [7].

26

Chapter 4

Challenges of Optimization for

Distributed Deep Learning

4.1 Optimization for Distributed Deep Learning

In the previous chapter, we learned the advantages and the limitations of the three

prevalent distributed models under the parameter server framework. When it comes

to the accuracy, any given distributed model will be upper bounded by BSP and

be lower bounded by ASP because of the rigorous synchronization principle of BSP

and zero synchronizations requirement of ASP, in other words, the amount and the

degree of the introduced staled gradients in training. Likewise, ASP upper bounds

and BSP lower bounds any given distributed synchronous model with respect to the

training time for a fixed epoch task. Should one simply set the goal of achieving the

27

shortest (fastest) training time to complete a fixed epoch task, ASP is the winner.

But that is not the goal we want to achieve due to the potential divergence of ASP

we discussed in Section 3.1.2. In addition, large DNN models with fully connected

layers can barely learn anything under ASP empirically which we will demonstrate

in Section 6.6.2.

Ideally, we want to develop a distributed synchronous model that achieves high

final test accuracy (as BSP) and fast speed to completing a fixed epoch task (as

ASP). In reality, it is infeasible to implementing the advantages of both BSP and

ASP into one hybrid distributed model due to their respective paradoxical intrinsic

proprieties (contradictory nature of job schedules on the workers). Quite a few

approaches in the literature only manage to either speed up the convergence of

BSP [1] [41] [52] [53] or improve the accuracy of ASP [5] [54] [55] [56]. For instance,

SSP [7] is a compromised version of BSP which trades off the accuracy for the speed

by allowing workers partially running ASP under a staleness threshold restriction.

Nonetheless, in this thesis we will work on balancing the quality of iteration [7]

and the quantity of the iterations within a time period (e.g., a period between

consecutive synchronizations) to improve the convergence speed without sacrificing

the accuracy. Remember the fault tolerant propriety of machine learning [11] we

mentioned in Section 3.1.1. Also remind equations 3.1 and 3.2. It costs (waiting)

time to maintain the quality of iteration as we see all the workers waiting for each

other per iteration in BSP for the consistency of weight updates (i.e., consistent

28

steps to the convergence). However, we can approximately maintain the quality of

a large portion of the iterations of the entire system in training by ensuring a large

portion of the workers not dropping below the minimum necessary synchronizations

(or the maximum threshold of the fault tolerance of machine learning) so that the

convergence speed is increased without sacrificing the accuracy (quality of learning).

We expect that this may cause the increase of accuracy per iteration slows down

(such as a slower learning curve) compared to the original one (of using BSP) and

the final accuracy falls a little below the original one at convergence.

Knowing the importance of the quality of iteration (i.e., the quality of weight

updates determined by the dense of synchronizations), we also ought to point out

that increasing the iteration throughput does not necessary improve the quality of

iteration. A fallacy that some system engineers believe is: to speed up the DNN

model training is to increase the iteration throughput. Here we compare the number

of weight updates on a training model given a fixed number of iterations T and

the mini-batch size m and the total number of worker n in Table 4.1. It shows

increasing the iteration throughput does not increase the accuracy since ASP can

have the maximum iteration throughput in an ideal distributed environment but has

problem to learn with zero synchronizations (which introduce a significant amount

of staled gradients) in training.

29

Paradigms # updates to w # samples per update Synchronizations Accuracy Training time
BSP T nm T high maximum
ASP nT m 0 low minimum

Table 4.1: Training a DNN model w with n workers for T iterations on the parameter
server framework. Each worker has mini-batch size m.

4.2 Optimizing Synchronization and Limitation

The extra training time cost of the distributed deep learning in the parameter server

setting comes from the synchronizations (which introduce the waiting time). It gets

worse when the size of the workers is scaling up. With BSP, the most restrictive

synchronization policy is employed (all workers have to wait for each other at the

end of each iteration) which yields the maximum waiting time of the workers. To

the contrary, ASP does not require synchronization at all which costs minimum (i.e.,

zero) waiting time of the workers. To speed up the training while not sacrificing

the accuracy, we can optimize the synchronizations in training — to reduce the

frequency of synchronization without harming the accuracy (thanks to the fault

tolerance property of ML). Since the frequency of synchronization determines the

amount and the degree of staled gradients as we mentioned in Section 3.1 and too

many staled gradients may cause the divergence, we can maximize the sparsity of the

synchronizations to a level where the number of staled gradients are limited to not

jeopardising the convergence1. For example, BSP has the densest synchronizations

in training so that it has zero staled gradients and achieves the highest accuracy

1The exact level of the sparsity of the synchronizations and the “hard” limit point of staled
gradients are left as open questions for the future work since they are non-trivial and specific to
the optimization area.

30

compared to any distributed model. SSP reduces the synchronizations to a level of

sparsity where the staled gradients are limited to (or bounded by) the user specified

threshold β, e.g., no staled gradients are staler than β iterations in training. In

SSP, synchronization occurs between the fastest and the slowest workers in every

β iterations, as a result, SSP converges faster but to a lower accuracy than BSP

with a small β for a large number of iterations [7]. Nonetheless, the sparsity of the

synchronizations in SSP is not yet optimized for at least two reasons. First, the

threshold β is a fixed hyperparameter which requires fine-tuning. Second, the local

(workers) computational capacities are varied in reality and not yet considered in

determining the optimal synchronization time point of minimizing the waiting time

of the fastest worker. We claim the threshold can be dynamically determined based

on the workers’ computational capacities at run time so that the waiting time of

the fastest worker can be minimized. Hence, we introduce DynamicSSP model in

Chapter 5 which optimizes the sparsity of the synchronizations in SSP or further

minimizes the waiting time of the fastest worker. DynamicSSP enables dynamic

threshold determination that adapts to the running environment by incorporating

the information of the workers’ computational capacities at run time.

Having observed the performance of DynamicSSP, SSP and BSP models in a

variety of experiments, we learn the importance of the synchronizations in training

to the convergence and the final test accuracy. Empirically, higher frequency of

(dense) synchronizations usually gives better accuracy but has slower convergence

31

speed, that is, more training time is required to reach a desired accuracy due to the

waiting time of workers. SSP relaxes the rigid synchronization principle of BSP and

imposes synchronizations only on the fastest and the slowest workers upon excess

of the staleness threshold. The bulk (i.e., all workers) synchronization is absent in

SSP. In the case of training a large DNN model with fully connected layers on a

dataset with high dimensional samples, BSP is the only one that is able to train

such DNN models and converge to a high test accuracy despite the cost of waiting

time. Empirically the DNN model with fully connected layers shows its sensitiv-

ity to the staled gradients [14] [15]. Therefore, the bulk synchronization is crucial

to such DNN models training. This observation gives us light to develop a novel

distributed paradigm based on BSP that keeping the notion of bulk synchroniza-

tion whilst optimizing the sparsity of the synchronizations. Thereupon, we propose

ElasticBSP model with the aforementioned two properties in Chapter 6.

32

Chapter 5

Dynamic Stale Synchronous

Parallel Model

5.1 Introduction

In Section 3.1, we introduced BSP, ASP and SSP models. We know that SSP is an

intermediate solution between BSP and ASP. It is faster than BSP, and guarantees

convergence, leading to a more accurate model than ASP. However, in SSP the

user-specified staleness threshold is fixed, which leads to two problems. First, it

is usually hard for the user to specify a good single threshold since user has no

knowledge which value is the best. Choosing a good threshold may involve manually

searching in an integer range via numerous trials. Also, a DNN model involves many

other hyperparameters (such as the number of layers and the number of nodes in

33

each layer). When these parameters change, the same searching trials have to be

repeated again to fine-tuning the staleness threshold. Second, a single fixed value

may not be suitable for the whole training process. An ill-specified value may cause

the fastest workers to wait for longer time than necessary.

worker1

workern

Potential waiting times for the fastest worker

waiting waiting

the recorded run time of a worker to compute a mini-batch

the predicted time of a worker to compute a mini-batch

SSP DSSP
sL = 1

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

Figure 5.1: Prediction module finding the least waiting time for the fastest worker via
iteration time intervals of workers. A solid line represents a boundary to stop the fastest
workers continuing new iterations for synchronization and a dash line represents the end
of waiting when the slowest worker completes its running iteration. The solid line is drawn
upon a fastest worker sends a push request to the server and waits for the OK signal from
the server. Once OK is received, it pulls the new updated weight from the server and starts
a new iteration where the dash line is drawn. The dash line also indicates the time that the
slowest worker receives a new updated weight via pull request and starts a new iteration.
Worker1 is the fastest worker and the workern is the slowest worker. The colored block
represents one iteration time. Following SSP, worker1 has to stop at the red solid line.
DynamicSSP compares each r value and finds the r∗ which gives the least waiting time.
Here, r∗ = 3 if r ∈ R = [0, 4]. DynamicSSP allows worker1 to run 3 more iterations and
stop at the green solid line.

For example, Figure 5.1 shows that if the threshold is exceeded at the red solid

line, the waiting time for the fastest worker if it starts waiting right away is more

than the waiting time if it continues but starts waiting at the green solid line. In

fact, the waiting time for it to start waiting at the yellow solid line is the minimum

of the three. However, we have to make sure that the difference in iterations between

34

the fastest and slowest workers is not too large. Otherwise, too many staled updates

may delay the convergence of the ML model [16].

5.2 Contributions

To solve these problems, we propose an adaptive SSP scheme named Dynamic

Stale Synchronous Parallel (DSSP). Our approach dynamically selects a

threshold value from a given range in the training process based on the statistics

of the real-time processing speed of distributed computing resources. It allows the

threshold to change over time and also allows different workers to have different

threshold values, adapting to the run-time environment. To achieve this purpose,

we design a synchronization controller at the server side to determine how many

iterations the current fastest worker should continue running at the end of its itera-

tion upon the excess of the lower bound of a user-specified staleness threshold range.

The decision is made at run time by estimating the future waiting times of workers

based on the timestamps of their previous push requests and selecting a time point

in the range that leads to the least estimated waiting time. In this way, we enable

the parameter server to dynamically adjust or relax the synchronization of workers

during the training based on the run-time environment of the distributed system.

In addition, although experiments have been reported on parameter servers with

a variety of ML models, experiments of comparing DNN models under different

distributed paradigms are rarely seen in the literature. In this Chapter, we look

35

into four distributed paradigms (i.e., BSP, ASP, SSP and DSSP) and compare their

performance by training three DNN models on two image datasets using MXNet [22]

which provides BSP and ASP. We implemented both SSP and DSSP in MXNet,

report and analyze our findings from the experiments.

5.3 Outline

In this chapter, we propose the Dynamic Stale Synchronous Parallel (DSSP) syn-

chronization method. Instead of using a single and definite staleness threshold as

in SSP, DSSP takes a range for the staleness threshold as input, and dynamically

determines an optimal value for the staleness threshold during the run time. The

value for the threshold can change over time and adapt to the run-time environment.

5.3.1 Problem statement

Given a lower bound and an upper bound of staleness thresholds sL and sU , DSSP

finds an optimal threshold s∗ ∈ [sL, sU] for a worker dynamically, which yields the

minimum waiting time for the worker to synchronize with others, based on the

iteration time collected from each worker at the run time.

In other words, DSSP finds an integer r∗ ∈ R, where R = [0, rmax], rmax = sU−sL

and r∗ = s∗− sL. That is, DSSP finds an optimal spot on the time line R to bound

the workers for synchronization. Empirically we can find a r = s− sL that is close

36

to r∗, which is the same as finding s ∈ [sL, sU] close to s∗.

5.3.2 Assumption

An iteration interval of a worker is the time period between two consecutive updates

(i.e., push requests) the server receives from the worker. We can measure the length

of an iteration interval of a worker by using the timestamps of the push requests

sent by the worker (see Figure 5.2).

worker1

worker2

worker3

worker4

time interval per iteration for each worker

t1,1

t2,1

t3,1

t4,1

t1,2

t2,2

t3,2

t4,2

t1,3

t2,3

t3,3

t4,3

Ii = ti,j ti,j1 = ti,j+1 ti,j

iteration interval

computing
time

communication
time

Figure 5.2: Iteration intervals measured by timestamps of push requests from workers. A
dotted line represents the time for a push request from a worker to the server. An interval
consists of communication period (blank block) and gradient computation period (solid
block).

We assume that the iteration intervals of a worker in continuous iterations in a

short time period are very similar. That is, for contiguous iterations of a worker in

a short time period, each iteration has the similar processing time which includes

computing gradients over a mini-batch, sending gradients to and receiving updated

37

weights (parameters) from the parameter server.

5.3.3 Method

The proposed DSSP method is described in Algorithm 1. The algorithm contains

two parts: one for workers and the other for the server. Each worker is assigned

a partition of the training data, and computes parameter updates (i.e., gradients)

iteratively with the partition using the stochastic gradient descent (SGD) method.

In each iteration, a mini-batch of the partition is used to compute the gradients

based on the current local weights. The worker then sends the gradients to the

server through a push request and waits for the server to send back the OK signal.

After receiving OK, the worker pulls the weights from the server and replaces its

local weights with the global weights from the server. The training at the worker

continues with the next mini-batch of the data partition based on the new weights.

On the server side, once the server receives a push request from a worker p, it

updates its weights with the gradients from worker p. It then determines whether

to allow worker p to continue. If yes, it will send worker p an OK signal; otherwise,

it postpones sending the OK signal until the slowest worker catches up.

To determine whether to allow a worker p to continue, the server stores the

number of push requests received from each worker and finds the slowest worker. If

the number of push requests of worker p is no more than sL iterations away from

the slowest worker, the server allows worker p to continue by sending OK to worker

38

Algorithm 1 Dynamic Staled Gradient Method

Worker p at iteration tp
1: Wait until receiving OK from Server
2: pull weights ws from Sever
3: Replace local weights wtp with ws

4: Gradient gtp ← 1
m

∑m
i=1 ∂lloss((xi, yi), w

tp)
. m: size of mini-batch M and (xi, yi) ∈M

5: push gtp to Server

Server at iteration ts
- Upon receiving push request with gtp from worker p;
- rp stores the number of extra iterations worker p is allowed beyond sL, initialized

to zero at the very beginning;
- ti stores the number of push requests received from worker i so far

1: tp = tp + 1
2: Update the server weights wts with gtp . If some other workers send their updates

at the same time, their gradients are aggregated before updating wts

3: if (rp > 0) then
4: rp = rp − 1
5: Send OK to worker p
6: else
7: Find the slowest and fastest workers based on array t
8: if (tp − tslowest ≤ sL) then
9: Send OK to worker p

10: else
11: if tp is the fastest worker then
12: rp ← synchronization controller (clockpushp , rp)

. clockpushp : timestamp of push request from worker p
13: if (rp > 0) then
14: Send OK to worker p

15: Wait until the slowest worker sends the next push request(s) so that
tp− tslowest ≤ sL. After updating the server weights wts with (aggregated)
gradients, send OK to worker p

39

p (Lines 7-9 in Algorithm 1). Otherwise, if worker p is currently the fastest worker 1,

the server calls the synchronization controller procedure to determine whether it

allows worker p to continue with extra iterations.

1The reason we call the procedure only for the current fastest worker is to save the server’s
computation time.

40

Algorithm 2 synchronization controller

Input: pushtp: timestamp of push request of worker p for sending its iteration t’s
update to the server

Output: r∗, number of extra iterations that worker p is allowed to run
{Table A stores the timestamps of two latest push requests by all workers, where
A[i][0] stores the timestamp of the latest push request by worker i and A[i][1]
stores the timestamp of the second latest push request by worker i}

1: A[p][1]← A[p][0]
2: A[p][0]← pushtp
3: Find the slowest worker from table A
4: Compute the length of the latest iteration interval of worker p:

Ip ← A[p][0]−A[p][1]
5: Compute the length of the latest iteration interval of the slowest worker:

Islowest ← A[slowest][0]−A[slowest][1]
6: Simulate next rmax iterations for worker p based on Ip and A[p][0] by storing

the rmax simulated timestamps in array Simp so that:
7: Simp[0]← A[p][0]
8: Simp[i]← Simp[0] + i× Ip where 0 < i ≤ rmax
. rmax: the maximum extra iterations allowed

9: Repeat the above step for the slowest worker and store the rmax simulated times-
tamps in array Simslowest with Simslowest[0]← A[slowest][0] + Islowest

10: Find the simulated time point r∗ for the index of Simp[r] that minimizes
|Simslowest[k]− Simp[r]| for all k ∈ [0, rmax] and r ∈ [0, rmax]

11: return r∗

41

Algorithm 2 describes the synchronization controller procedure. It stores in table

A the timestamps of the two latest push requests from all workers, and uses the

information in A to simulate the next rmax iterations of worker p and the slowest

worker, where rmax is the maximum number of extra iterations allowed for a worker

to be ahead of the slowest worker beyond the lower bound of the staleness threshold.

With the simulated timestamps, it finds a time point r∗ in the range of [0, rmax]

that minimizes the simulated waiting time of worker p (Line 8 in Algorithm 2).

The value r∗ is returned to the caller (the Server part of Algorithm 1) and stored

as rp for worker p. For example, in Figure 5.1, suppose worker n is the slowest

worker and we are currently processing worker 1 (i.e., p = 1). The green boundary

yields the least waiting time for worker 1. Then worker 1 should continue running 3

more iterations once sL is exceeded. In this case, 3 is the r∗ returned to the server

procedure of Algorithm 1. If 0 is returned, it indicates that the current iteration

yields the least waiting time, and the worker should wait for the slowest worker at

the current iteration.

In future iterations when worker p sends a push request, if rp > 0, the server

sends the OK signal right after updating the global weights with the gradients sent

by the worker and decreases rp by 1. In this way, even if worker p is not the fastest

worker in that iteration of the server, as long as its rp > 0 (due to being the fastest

worker in a previous iteration), it can still perform extra iterations beyond sL. Thus,

our method is flexible in that different workers may have different thresholds, and

42

also the threshold for a worker can change over time, depending on the run-time

environment.

5.4 Theoretical Analysis

In this section, we prove the convergence of SGD under DSSP by showing that DSSP

shares the same regret bound O(
√
T) as SSP from [7]. That is, SGD converges in

expectation when the number of iterations T is large under DSSP. We first present

the theorem of SSP. Based on the theorem, we show that DSSP has a bound on

regret. Therefore, DSSP supports SGD convergence following the same conditions

as SSP.

Theorem 1 (adapted from [7]. SGD under SSP).

Suppose function f(w) :=
∑T

t=1 ft(w) is a convex function and ∀ft(w) is also con-

vex. We use iterative convergent optimization algorithm (gradient descent) on one

component ∇ft at a time to search for the minimizer w∗ under SSP with the

staleness threshold s and P workers. Let vt := −ηt∇ft(w̃t) where ηt = σ√
t

and

σ = F

L
√

2(s+1)P
. Here w̃t represents the noisy state of the globally shared weight.

F and L are constants. Assume ft are L-Lipschitz with constant L and the dis-

tance D(w‖w′) between two multidimensional points w and w′ is bounded such that

43

D(w‖w′) := 1
2
‖w −w′‖22 ≤ F 2 where F is constant. We have a bound on the regret

R[X] :=
T∑
t=1

ft(w̃t)− f(w∗) ≤ 4FL
√

2(s+ 1)PT (5.1)

Thus, R[X] = O(
√
T) since limT→∞

R[X]
T

= 0

Theorem 2 (SGD under DSSP). Following all

conditions and assumptions from Theorem 1, we add a new term R = [0, sU − sL],

the range of the staleness threshold. Let r ∈ R and r ≥ ∀r′ ∈ R. We have a bound

on the regret

R[X] :=
T∑
t=1

ft(w̃t)− f(w∗) ≤ 4FL
√

2(sL + r + 1)PT (5.2)

Thus, R[X] = O(
√
T) since limT→∞

R[X]
T

= 0

Proof. Since we follow all conditions and assumptions from Theorem 1, we need

to show the newly added range R does not change the regret bound of SSP. In

DSSP, the threshold is dynamically changing between sL and sU where r ∈ R and

R = [0, sU − sL]. We know that SSP with threshold sL has a bound on regret

according to (5.1). We only extend the threshold sL of Theorem 1 to sL + r where

r is the largest number from R. Suppose we set a fixed threshold s′ for SSP, then

our DSSP can be deducted to SSP when we set s′ = sL + r. Thus, we have a upper

bound on regret of SSP with threshold s′.

44

5.5 Experiment

We evaluate the performance of DSSP compared to other three distributed paradigms.

We aim to find whether DSSP converges faster than SSP on average and whether it

can maintain the predictive accuracy of SSP.

5.5.1 Experiment setup

Hardware

We conducted experiments on the SOSCIP GPU cluster [57] with up to four IBM

POWER8 servers running Ubuntu 16.04. Each server has four NVIDIA P100 GPUs.

Each server has 512 GB ram and 2×10 cores. The servers are connected with

Infiniband EDR. Each server connects directly to a switch with dedicated 100 Gbps

bandwidth.

We also set up a virtual cluster with a mixed GPU models by creating two

Docker containers running Ubuntu 16.04 on a server with NVIDIA GTX1060 and

GTX1080 Ti. The server has 64 GB ram and 8 cores. Each container is assigned

with a dedicated GPU.

Dataset

We used CIFAR-10 and CIFAR-100 datasets [58] for image classification tasks. Both

datatsets have 50,000 training images and 10,000 test images. CIFAR-10 has 10

45

classes, while CIFAR-100 has 100 classes.

Models

We used a downsized AlexNet [13], ResNet-50 and ResNet-110 [31] as our deep

neural network structure to evaluate the four distributed paradigms. We reduced

the original AlexNet structure to a network with 3 convolutional layers and 2 fully

connected layers to achieve faster convergence within 24 hours (which is the time

limit we are allowed to run for each job on the SOSCIP cluster). We set the staleness

threshold sL = 3 and the range R = [0, 12] for DSSP which is equivalent to the

corresponding threshold range [3, 15] for SSP.

We ran each paradigm on 4 servers. Each server represents a worker which has

4 GPUs. Each GPU loads a copy of the DNN model. Thus, there are 16 replica

models for 4 workers. Each worker collects the computed gradients from 4 GPUs by

the end of every iteration and sends the sum of the gradients to the parameter server.

One of the 4 servers is also elected to run the parameter server when the training

starts from the very beginning as defined in MXNet. We ran each experiment three

times and chose the medium result based on the test accuracy.

5.5.2 Results and Discussion

We used batch size 128, learning rate 0.001 in 300 epochs to train the downsized

AlexNet on CIFAR-10. Figure 5.3a shows that DSSP, SSP and ASP converge much

46

faster than BSP, and that DSSP and SSP converge to a higher accuracy than ASP.

BSP is the slowest to complete the 300 epochs. The performance of DSSP and

averaged SSP are similar, with DSSP converging a little bit faster to a bit higher

accuracy. DSSP and averaged SSP complete 300 epochs almost at the same time.

Note that this result is expected because the result of averaged SSP is the average

over the results from 13 different threshold values from 3 to 15, and when its thresh-

old is large, it is very fast, much faster than DSSP with a threshold range of [3,15].

However, a larger threshold of SSP incurs more staler gradients, which implies more

noises and decreases the quality of iterations [7]. Theoretically, as the threshold s

of SSP increases, the rate of convergence decreases per iteration update [7]. Figure

5.3b compares DSSP with individual SSPs with different threshold values. It shows

that DSSP converges a bit faster to a higher accuracy than almost all of the SSPs

except for one.

For ResNet-50 and ResNet-110 training on CIFAR-100, we used batch size 128,

learning rate 0.05 and decay 0.1 twice at epoch 200 and 250 in 300 epochs for both.

In Figure 5.3c, DSSP has the same convergence rate as ASP and SSP, and they

converges much faster than BSP although BSP completes 300 epochs faster than

others on both ResNets. Again, DSSP converges a little faster and archives a bit

higher accuracy than averaged SSP in Figure 5.3e. Four distributed paradigms on

both ResNets behave in an opposite way compared to the downsized AlexNet which

has fully connected layers in terms of the time taken to complete 300 epochs. The

47

order from fastest to slowest is BSP, SSP, DSSP and ASP.

Based on the empirical results, we observe two opposite trends of ASP, DSSP,

SSP and BSP with respect to their performance. The trends can be classified by

the architecture of DNNs: ones that contain fully connected layers and ones that do

not. Note that we do not count the final fully connected softmax layer as the fully

connected layer over the discussion.

DNNs with fully connected layers (AlexNet)

DSSP converges to a higher test accuracy faster than ASP, BSP and average SSPs in

its corresponding staleness threshold range. ASP has the largest iteration through-

put and its convergence rate is close to DSSP but it usually converges to a very

low accuracy (the lowest of four paradigms) and diverges sometimes (see Figure

5.3a). DSSP performs between SSP and BSP in terms of final test accuracy. In

this category, our DSSP converges faster than SSP and ASP to a higher accuracy.

We know BSP guarantees the convergence and its accuracy is the same as using

a single machine. Thus, it has no consistency errors caused by delayed updates.

Given abundant time of training, BSP can reach the highest accuracy among all

distributed paradigms. We do not discuss BSP in detail here since our focus is to

show the benefits that our DSSP brings compared to SSP and ASP, both cost less

training time than BSP.

48

DNNs without fully connected layers (ResNet-50, ResNet-110)

DSSP converges faster than average SSP in its corresponding range on very deep

neural networks. ASP appears to be a strong rival but it has no guarantee to con-

verge as addressed in Section 3.1.2. BSP delivers the highest iteration throughput.

However, it converges slower and to a lower accuracy than other three paradigms

mostly (see Figure 5.3c, 5.3e). The iteration throughputs of ASP, DSSP, SSP and

BSP are in ascending order. In this category, the convergence rate of DSSP, ASP

and SSP are very close. DSSP performs slightly above the average SSPs where the

threshold s starts from 3 to 15 (see Figure 5.3d, 5.3f).

49

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10 110 210 310 410 510 610 710

Ac
cu

ra
cy

Training time in seconds

BSP

ASP

DSSP s=3, r=12

Average SSP s=3 to 15

(a) All paradigms run on downsized AlexNet

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10 110 210 310 410 510 610

Ac
cu

ra
cy

Training time in seconds

SSP s=3
SSP s=4
SSP s=5
SSP s=6
SSP s=7
SSP s=8
SSP s=9
SSP s=10
SSP s=11
SSP s=12
SSP s=13
SSP s=14
SSP s=15
DSSP s=3, r=12

(b) DSSP and SSPs run on downsized AlexNet

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

200 700 1200 1700 2200 2700

Ac
cu

ra
cy

Training time in seconds

BSP

ASP

DSSP s=3, r=12

Average SSP s=3 to 15

(c) All paradigms run on ResNet-50

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

200 700 1200 1700 2200 2700

Ac
cu

ra
cy

Training time in seconds

SSP s=3
SSP s=4
SSP s=5
SSP s=6
SSP s=7
SSP s=8
SSP s=9
SSP s=10
SSP s=11
SSP s=12
SSP s=13
SSP s=14
SSP s=15
DSSP s=3, r=12

(d) DSSP and SSPs run on ResNet-50

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

400 1400 2400 3400 4400 5400 6400

Ac
cu

ra
cy

Training time in seconds

BSP

ASP

DSSP s=3, r=12

Average SSP s=3 to 15

(e) All paradigms run on ResNet-110

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

600 1600 2600 3600 4600 5600 6600

Ac
cu

ra
cy

Training time in seconds

SSP s=3
SSP s=4
SSP s=5
SSP s=6
SSP s=7
SSP s=8
SSP s=9
SSP s=10
SSP s=11
SSP s=12
SSP s=13
SSP s=14
SSP s=15
DSSP s=3, r=12

(f) DSSP and SSPs run on ResNet-110

Figure 5.3: Distributed paradigms comparison on downsized AlexNet, ResNet-50 and
ResNet-110 training for 300 epochs. Downsized AlexNet is trained on CIFAR-10 and
both ResNets are trained on CIFAR-100. Average SSP on the right column is derived by
averaging SSPs with threshold from 3 to 15 on the left column. Faster convergence to a
targeted high accuracy indicates less training time is required for the paradigm.

50

5.5.3 Demystify the Difference

Below we answer two questions:

1. Why does the iteration throughput have the opposite trends for ASP, DSSP,

SSP and BSP on DNNs with and without fully connected layers?

2. Why do pure convolutional neural networks (CNNs) receive a higher accuracy

from DSSP, SSP and ASP than BSP?

We temporarily name DNNs with fully connected layers as DNNs and pure CNNs

as CNNs for the convenience of discussion.

To answer the first question, we observe the difference between the two types

of DNNs (with or without fully connected layers): ¬ A fully connected layer re-

quires more parameters than a convolutional layer which uses shared parameters [59].

DNNs with fully connected layers have a large number of model parameters that

need to be transmitted between workers and the server for updates. Convolutional

layers require intensive computing time for matrix dot product operations while

computing for fully connected layers involves simple linear algebra operations [60].

CNNs that only use convolutional layers take a lot of computing time, while their

relatively smaller-size model parameters cost less data transmission time between

workers and the server than DNNs. Moreover, when the ratio of computing time

and communication time per iteration is small, less time can be saved per iteration

for workers since computing time per iteration (or one mini-batch) is fixed for a

51

model per worker. To the contrary, when the ratio is large, the communication time

per iteration for each worker can be shifted by asynchronous-like parallel schemes

and more time can be saved. Therefore, DSSP, SSP and ASP take less training time

on DNNs whereas BSP costs the least training time on CNNs.

To the second question, the answer lies in the difference between fully connected

layers and convolutional layers. Fully connected layers are easy to overfit the data

set due to its large number of parameters [61]. Thus, any error introduced by

staled updates can cause many parameters diverge in non-uniform convergence [11].

Informally, fully connected layers overfit to the errors injected by delayed updates

or noise. Convolutional layers have less parameters due to the use of filters (shared

parameters). For image classification tasks, a commonly used trick to train CNNs on

a small data set is to increase the data by distorting the existing images and saving

them [62] since CNNs are able to tolerate certain scale variations [63]. Distortion can

be done by rotating the image, setting one or two of RGB pixels to zero or adding

Gaussian noise to the image [64]. It is basically to introduce noise to images so that

CNN models receive enhanced training and the predictions are improved. The errors

caused by (not too) staled updates can give the same effect to the training model as

the distortion. Figures 5.3c, 5.3e are good evidence to support that. Furthermore,

[65] empirically shows that adding gradient noises improves the accuracy for training

very deep neural networks which also happened in our ResNet-110 experiments (in

Figure 5.3e).

52

5.5.4 Cluster with mixed GPU models

The results of DSSP and SSPs on ResNet-110 (see Figure5.3e) do not show a sig-

nificant difference on convergence rate on a homogeneous environment where GPUs

are identical. Nonetheless, on the heterogeneous environment where we have one

GTX1060 and one GTX1080 Ti running on each worker, DSSP converges faster

and to a higher accuracy than SSP. We repeated the exact same experiments on

ResNet-110 as earlier: use the same hyperparameters setting, run 3 trials on each

paradigm and choose the medium one based on the test accuracy. Figure 5.4 and

Table 5.1 show that DSSP can reach a higher accuracy significantly faster than SSP.

The heterogeneous environment is very common in industry since new GPU mod-

els come to the market every year while the old models are still in use. ASP can fully

utilize the individual GPU and achieves the largest iteration throughout. However,

ASP also introduces the most staled updates among all distributed paradigms. It

may converge to a lower accuracy than DSSP when the GPU models’ processing

capacities are significantly different since the iterations between the fastest worker

and the slowest worker are dramatically different. In contrast, DSSP has consistent

performance regardless the running environment since it adapts to the environment

by adjusting the threshold dynamically for every iteration of workers.

53

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ac
cu

ra
cy

Training time in seconds

BSP
ASP
SSP s=3
SSP s=6
SSP s=15
DSSP s=3, r=12

Figure 5.4: Trained ResNet-110 on CIFAR-100 with two workers on a mixed GPU cluster
for 300 epochs. GTX1060 and GTX1080 Ti are assigned to individual worker. Our DSSP
converges faster and achieves higher accuracy than SSP.

5.6 Related Work

There are variety of approaches to optimizing the distributed paradigms under the

parameter server framework. Generally, they can be categorized into three basis

streams: BSP, ASP and SSP. Chen et al. [1] try to optimize the BSP by adding

few backup workers. That is to train N workers in BSP, they add c backup workers

so that there are N + c workers during the training. By the end of each iteration,

the server only takes the first N arrived updates and drops the c slower arrived

updates from the stranglers for weight synchronization. In this case, the training

54

Distributed Time to reach Time to reach

Paradigm 0.67 accuracy 0.68 accuracy

BSP 6159.2 −

ASP 2993.1 3017.2

SSP s=3 5678.2 −

SSP s=6 5703.8 6908.2

SSP s=15 5564.9 7255.6

DSSP sL=3, r=12 3016.4 3046.3

Table 5.1: Time in seconds to reach the targeted test accuracy in training. The maximum
test accuracy of BSP and SSP with s=3 is 0.67. Trained ResNet-110 on CIFAR-100 with
two workers for 300 epochs. Each worker has either GTX1080 Ti or GTX1060.

data allocated to the c random slower workers are partially wasted in each iteration.

Hadjis et al. [66] optimize ASP from machine learning’s perspective. It ad-

justs the momentum based on the degree of asynchrony (staleness of the gradients).

Then, it uses the tuned momentum to mitigate the divergent direction that staled

gradients introduce. Meanwhile, model parallel computing is applied here for better

performance where a DNN model is split into two parts: convolutional layers and

fully connected layers. Both parts are computed parallelly and concurrently.

Zhang and Kwok [67] propose to use asynchronous distribution to optimize syn-

chronous ADMM algorithm. However, it uses partial barrier to make the fastest

workers wait for the slowest workers and bounded delay to guarantee that the it-

erations among workers do not exceed a user specified hyperparameter τ which is

equivalent to the staleness threshold s of SSP in [7]. Then, all these make the ap-

proach rather close to SSP than ASP optimization. Bounded delay also appears

55

in [16] and is elaborated in the rest of this section.

Li et al. [16] introduce bounded delay which is similar to SSP except that it

takes all workers’ iterations into account instead of letting each worker count its

own iteration. In order to keep the ML model (global weights) consistent, itera-

tions in sequence are allowed to run concurrently in parallel under the dependency

restriction. Iteration t depends on iteration t− k if iteration t requires the result of

iteration t− k in order to proceed. In the bounded delay approach, the number of

bounded iterations k is specified by the user, similar to the staleness threshold s in

SSP. k means that for a continuous k iterations, every iteration is independent of

each other, and they can run concurrently in parallel without waiting for each other.

When k is exceeded, the fastest iteration t has to wait for the slower iterations be-

hind t−k. Imagine iterations are pre-assigned to workers as tasks, then the bounded

delay is equivalent to SSP. For example, we have iterations {I1, I2, I3, I4, I5, I6} and

two workers P1 and P2. Each iteration Ii completes a min-batch of samples. P1

receives {I1, I3, I5}, P2 receives {I2, I4, I6}. If k = 3, then I4 depends on I1, I5 de-

pends on I2, I6 depends on I3. So P2 at I4 has to wait for P1 finishes I1. P1 at I5

has to wait for P2 completes I2. Bounded delay is rather an inflexible scheme by

pre-scheduling tasks to workers. Although the authors briefly claim that more con-

sistent paradigms can be developed based on the dependency constraint, no further

exploration is provided in their paper. Our work extends this direction and presents

a flexible scheduling approach in which k is dynamically assigned at the training

56

time. In our dynamic bounded delay paradigm, every optimal bound k yields the

least waiting time for workers by optimizing the synchronization frequency. For the

continuous k iterations in which every iteration is independent is adjusted dynami-

cally in the running time to reduce waiting time of coming iterations which depend

on the earlier ones.

5.7 Epilogue

In this chapter, we introduce Dynamic Staleness Synchronous Parallel (DSSP). Our

approach improves SSP in the sense that with DSSP a user does not need to provide

a specific staleness threshold which is hard to determine in practice, and also that

DSSP can dynamically determine the value for the threshold from a range using

a lightweight method according to the run-time environment. This does not only

alleviate the burden of an exact manual staleness threshold selection or multiple

trials of hyperparameter selection, but it also provides flexibility of selecting different

thresholds for different workers at different times. We provided theoretical analysis

on the expected convergence of DSSP which inherits the same regret bound of

SSP to show that DSSP converges in theory as long as the range is constant. We

evaluated DSSP by training three DNNs on two datasets and compared its results

with other distributed paradigms. For DNNs without fully connected layers, DSSP

achieves higher accuracy than BSP and slightly better accuracy than averaged SSP.

For DNNs with fully connected layers, DSSP generally converges faster than BSP,

57

ASP and averaged SSP to a higher accuracy even though BSP can eventually reach

the highest accuracy if it is given more training time. Unlike ASP, DSSP ensures

the convergence of DNNs by limiting the staled delays. DSSP gives significant

improvement than SSP and BSP in a heterogeneous environment with mixed models

of GPUs, converging much faster to a higher accuracy. DSSP also shows more

stable performance on either homogeneous or heterogeneous environment compared

to other three distributed paradigms. Furthermore, we discussed the difference in

the trends of four distributed paradigms on DNNs with and without fully connected

layers and the potential causes.

The most interesting observation from the comparison between DSSP and SSP

is that we found DSSP restricting the staleness of the gradients in a range can boost

the accuracy in training empirically. Note that the distribution of the staleness of

the gradients exists over the entire training on both DSSP and SSP. Assuming the

distribution is Gaussian distribution, it is moving along the timeline of the training

on either DSSP or SSP. This triggers our curiosity and we wonder what would

happen to the accuracy if we cut off the distribution at some time point or clear all

the staled gradients by applying a weight synchronization on all workers (i.e., bulk

synchronization) similar to BSP. In this way, regardless what type of distribution of

the staleness is, it will be segmented by a synchronization operation which clears all

the staled gradients. Hence, we introduce Elastic Bulk Synchronous Parallel model

that does these in the next chapter which will fulfill our curiosity.

58

Chapter 6

Elastic Bulk Synchronous Parallel

Model

6.1 Introduction

The BSP model guarantees the convergence on training the DNN model since it is

logically functioning as a single server. However, it introduces a large waiting time

overhead due to having to wait for the slowest worker in every single iteration (a mini-

batch). On the other hand, the ASP model does not perform any synchronization,

so waiting time for synchronization is minimal, however, it is risky to be used due

to its asynchronous scheme that renders the convergence uncertain [10]. The SSP

model offers an intermediate solution to the above two extremes. It guarantees

the convergence [7] when the number of iterations is large and the user specified

59

threshold s is small. However, it depends on manually fine-tuning the s hyper-

parameter which is non-trivial and is blind to the computational capacity of workers.

Motivated by the limitations of the current state-of-the-art synchronization mod-

els, we introduce Elastic Bulk Synchronous Parallel model (ElasticBSP) in this

chapter. ElasticBSP aims to relax the strict synchronization requirement of BSP

(as shown in Figure 6.1). The key properties of ElasticBSP are the following:

• The server deals with sequential decision making regarding the best time that

the next synchronization barrier should be imposed (a time when the minimum

waiting time for the entire system is achieved). The decision is based on a

prediction model that utilizes information about the most recent time interval

of each worker available to the server to predict its future intervals. The

prediction is based on an online optimization with lookahead and assumes

a specific limit R on how many future intervals for each worker should be

considered. The need for a specific limit comes from the need to control the

algorithm’s run time, since that can increase exponentially as the lookahead

limit R increases.

• The model guarantees the convergence when the number of iterations is large.

The convergence guarantee follows the theoretical analysis of SSP [7], where

a small iteration difference s exists in some period τ (a superstep). In the

case of ElasticBSP, the iteration difference is bounded by the lookahead

limit R in some period τ that is defined by the next optimal time. By the

60

end of the period τ , the synchronization barrier is posed to all the workers

where gradients aggregation is carried out on the server, similarly to BSP.

The model weights are synchronized and will be available to all workers in the

next iteration.

worker1

worker2

worker3

worker4

ElasticBSP time interval per iteration within a Superstep for each worker

barrier barrier

Superstep1 Superstep2

worker1

worker2

worker3

worker4

BSP time interval per iteration for each worker

barrier barrier barrier barrier

computing
time

communication
time

Superstep1 Superstep2 Superstep3 Superstep4

computing
time

communication
time

Figure 6.1: Vanilla BSP and our proposed ElasticBSP. Each barrier represents the time
of weight synchronization among workers and a superstep represents the time between
barriers. In BSP the superstep is fixed to a number of k iterations and all workers have
to wait for each other at the end of their k iterations (k = 1 is shown, which is typical).
In ElasticBSP, the time the barrier is imposed varies and each superstep can allow a
different number of iterations per worker. These values are determined at runtime by our
proposed ZipLine method that achieves minimum overall waiting time of all workers.

The decisions of ElasticBSP are the solutions to an online optimization with

lookahead problem [68]. As such, the time a synchronization barrier is imposed varies

61

and each superstep can permit a different number of iterations per worker, offering

elasticity (see Figure 3.1). The waiting time is not determined by a fixed iteration

difference between the fastest and the slowest workers (as in SSP), but based on the

optimal time to synchronize in order to minimize the waiting time. In addition, the

synchronization time is always bound within the lookahead limit R, so it will not

behave as the ASP model.

From system engineering perspective, we will let the running environment deter-

mine the period τ to achieve the minimum waiting time for the entire system. Thus,

ElasticBSP is adaptable to its running environment. Unlike SSP, we remove the

hyperparameter s for user and instead use our one-pass algorithm to decide s dynam-

ically at run time. We propose an efficient method that fast solves the optimization

problem and materializes the ElasticBSP model named ZipLine. ZipLine con-

sists of two phases. First, R future iteration intervals of each worker are predicted

at run time based on their most recent intervals, assuming a stable environment

(the lookahead). Then, a one-pass algorithm operates over the predicted intervals

of all workers and determines the next optimal synchronization time (i.e., a time

that minimizes the overall workers’ waiting time overhead). The algorithm can

effectively balance the trade-off between accuracy and convergence speed to accom-

modate different environments or applications. ZipLine finds the optimal τ ∗ which

gives the least waiting time of all the workers. Consequently, τ ∗ determines s and

can be considered as the upper bound of s. Thus, the convergence guarantee of

62

Monitoring phase

R = 8

Predicted barrier

Prediction phase

Monitoring phase

Predicted barrier

Prediction phase

Figure 6.2: The flow of prediction and synchronization of ElasticBSP.

ElasticBSP is provided by SSP [7] when the number of iterations is large and τ

is small. Notably, ElasticBSP, materialized by the proposed optimized version of

ZipLine, converges faster and achieves higher accuracy than BSP, SSP and ASP

for large-sized DNNs.

The flow of prediction and synchronization of ElasticBSP (as shown in Figure

6.2) consists of two phases: (i) the monitoring phase, and (ii) the prediction phase.

The purpose of the monitoring phase is to allow the server to learn the iteration

interval of all the workers. It requires at least two push requests per worker. The

prediction phase consists of predicting the R future iterations of each worker and

using ZipLine to get the optimal time to impose the next synchronization barrier.

Once a synchronization occurs, the two phases repeat again. This example in Figure

6.2 illustrates that even of one of the workers (round orange) has different speeds

63

between synchronizations (it gains faster speed in the lower figure), ElasticBSP

can still find the optimal next synchronization time, since it always uses the most

recent history of workers.

It is important to note that ElasticBSP focuses on optimization of the dis-

tributed training of DNN models assuming the parameter server framework and can

be applied to other distributed machine learning methods based on gradient descent

optimization. As such, it is orthogonal to other DNN optimization techniques, such

as learning rate optimization [69].

The major contributions of this work are as follows:

• We propose ElasticBSP, a novel synchronization model for scaling the train-

ing of distributed deep learning models. ElasticBSP replaces the strict syn-

chronization requirement of other BSP-like models with an online sequential

decision making about the best time to impose the next synchronization bar-

rier. The model guarantees convergence when the number of iterations of the

training phase is large.

• We propose ZipLine, a one-pass algorithm that can efficiently materialize the

ElasticBSP model. ZipLine performs online optimization with lookahead

to decide the next best synchronization time. It outperforms sensible baselines

that exhibit polynomial time complexity.

• We propose two optimizations of ZipLine, namely ZipLineOpt and Zi-

64

pLineOptBS. The former is an algorithmic optimization that relies on a

pruning technique to reduce the search space of the solution. The latter is an

implementation optimization that employs an advanced data structure offering

fast search operations and manages to achieve linearithmic time complexity.

• We present a thorough experimental evaluation of our ElasticBSP model

materialized by the ZipLine on four deep learning models (vary in size and

structure) on three popular image classification datasets (vary in class size,

sample size and image resolution). The results show that ElasticBSP con-

verges much faster than BSP and to a higher accuracy than BSP and other

state-of-the-art alternatives. In particular, ElasticBSP demonstrates a su-

perior performance on the large-sized DNNs with respect to convergence speed

and accuracy.

The remainder of the chapter is organized as follows. Section 6.2 provides a brief

background of the state-of-the-art synchronization models and their limitations un-

der the parameter server framework. Section 6.3 introduces our proposed Elas-

ticBSP synchronization model and its properties. Section 6.4 formally defines the

problem of interest and provides problem analysis. In Section 6.5, we first present

algorithmic details of sensible baselines; then we present our proposed method Zi-

pLine, and its two optimized variants ZipLineOpt and ZipLineOptBS that can

materialize ElasticBSP. Section 6.6 presents a thorough experimental evaluation

of the methods. We review the related work in Section 6.7 and we conclude in

65

Section 6.8.

6.2 Background

In this section, we first present a synchronization cost model of training a deep learn-

ing model, assuming the parameter server framework; in particular, cost related to

the wall-clock idle time of processors. Then, we briefly present state-of-the-art syn-

chronization models employed by the server for achieving parallel SGD computation

through synchronous (or asynchronous) data communication between the server and

workers, and discuss their main advantages and limitations.

6.2.1 Synchronization Cost Model

In the parameter server framework, the server becomes aware of a worker’s iteration

intervals through the timestamps of the worker’s push requests. Formally, given a

worker p ∈ [1, n], a single iteration interval T piter consists of computing time T pcomp

and communication time T pcomm (see examples in Figure 3.1 and 6.3). In addition,

we know that the communication time can be broken down into data transmission

time T ptrans and waiting time T pwait until the synchronization occurs. During data

transmission, a worker sends gradients to the server and the server sends weights

back to the worker. We ignore lower level communication (e.g., TCP/IP) since the

size of the exchanged data is significantly smaller than that of gradients and weights.

66

The time cost of a single iteration of worker p is:

γpiter = γpcomp + γptrans + γpwait (6.1)

where γpiter, γ
p
comp, γ

p
trans and γpwait represent the associated length of a period T piter,

T pcomp, T
p
trans and T pwait respectively. Note that γpcomp is a constant since the hardware

computational capacity is fixed and the batch size does not change — each iteration

computes a single batch. Also, γptrans is a constant since workers are training the

same model and both the weights and the gradients are of the same data size. On the

other hand, γpwait is a variable that can be controlled by the parameter server. Recall

that each worker has to wait for the signal from the server to pull the weights after

a synchronization (aggregation) operation in BSP. Let us denote as tp the time point

that the worker p started waiting and tsync the time point that the synchronization

completes (i.e., imposed barrier ends). Then T pwait = [tp, tsync] and its length γpwait =

tsync−tp. Therefore, from the optimization perspective, for n workers in a distributed

system, the cost of applying one synchronization barrier b at time tsync is dominated

by the longest waiting time of any of the n workers, say τ bwait = max(γpwait), p ∈

[1, n] for a superstep τ ending with a barrier b. Assuming that there is a set B

of synchronization barriers defined by |B| synchronization timestamps during the

67

worker1

worker2

worker3

worker4

time interval per iteration for each worker

t1,1

t2,1

t3,1

t4,1

t1,2

t2,2

t3,2

t4,2

t1,3

t2,3

t3,3

t4,3

iteration
interval

computing
time

communication
time

timeline

4 unique colours

Figure 6.3: Iteration intervals measured by timestamps of push requests from workers. A
dotted line represents the time a push request arrives at the server from a worker. An
iteration interval consists of gradient computing period (solid block) and communication
period (blank block). All workers’ ending timestamps can be mapped onto a timeline.
Each timestamp on the timeline is associated to one of the workers. A set which is
represented by the bracket always keep n unique values (colors) of workers. ZipLine
scans the points from left to right on the timeline, takes one color point into the set per
iteration.

training period, the synchronization cost function of n workers is defined as:

csync = c(n,B) =

|B|∑
b=1

τ bwait (6.2)

We aim to find the optimal set B:

B∗ = argmin
B

csync (6.3)

68

6.3 ElasticBSP Model

Motivated by the limitations of BSP, SSP and ASP synchronization models in the pa-

rameter server setting as we described in Section 3.1 and the observations on the per-

formance of DSSP, we propose Elastic Bulk Synchronous Parallel (ElasticBSP), a

novel synchronization model that has the premise to ameliorate drawbacks of current

models, without sacrificing their benefits.

ElasticBSP offers elasticity in the sense that the distance between two conse-

quent synchronization barriers (or any period τ) is not fixed (as in BSP), but it is

determined online (at runtime). In addition, the waiting time is not determined by

a fixed iteration difference between the fastest and the slowest workers (as in SSP),

but based on an optimal synchronization time that minimizes the overall worker

waiting time.

The key properties of ElasticBSP are:

• The server deals with online sequential decision making regarding the optimal

time that the next synchronization barrier should be imposed (a time when

the minimum waiting time for the entire system is achieved). Each decision

is the solution of an online optimization with lookahead problem that utilizes

information about the most recent time interval of each worker available to

the server to predict their R future intervals (the lookahead). The need for a

specific limit R comes from the need to control the algorithm’s run time, since

69

that can increase exponentially as R increases. A bound in R also ensures that

ElasticBSP does not behave as the ASP model, but provides convergence

guarantee and accuracy (similar to SSP).

• The convergence guarantee of the model follows the theoretical analysis of SSP

[7], where a small iteration difference β exists in some period τ (a superstep).

In the case of ElasticBSP, the iteration difference is bounded by the limit R

to some period τ that is defined by the next best synchronization time. By the

end of the period τ , the synchronization barrier b is posed to all the workers

where gradient aggregation is carried out on the server, similarly to BSP —

the model weights are then synchronized and will be available to all workers

in the next iteration.

Consider the illustrative example of Figure 6.4, where n=10 workers need to

synchronize. The server first predicts the R=15 future iteration intervals for each

worker (dots in distinct color) based on their latest two contiguous push timestamps.

Intervals between dots of the same color represent iteration intervals of a worker.

Then, a decision needs to be made about the optimal time to impose a synchroniza-

tion barrier that minimizes the overall waiting time for the 10 workers in wall-clock

time. The squared dots (in red) in the example represent the intervals of each worker

that inform the optimal synchronization time (minimum waiting time), determined

by the distance between the leftmost and rightmost red square dots. In particular,

the rightmost red square dot is where a barrier b shall be imposed. In Figure 6.4,

70

worker 9, representing the leftmost red dot, will be the first to arrive in the barrier b

and wait for the synchronization to occur. Note that for each worker, the respective

red square dot might represent a push timestamp that occurs at a different iteration

than that of other workers. In ElasticBSP, the server maintains this information

and learns the best time to signal the workers to perform a pull operation and

synchronize the weight parameters. In Figure 6.4, pull will be broadcasted by the

server shortly after the rightmost red square dot, which represents the time that the

slowest worker (i.e., worker 4) uploaded the gradients to the server, and therefore

aggregation of gradients is possible.

6.4 The Problem

In this section, we formally define the problem of interest. Part of the originality of

our work can be attributed to the fact that we formalize the problem as an online

optimization with lookahead problem. Online optimization with lookahead is an op-

timization paradigm that utilizes a limited preview of future input data (lookahead)

to inform sequential decision making under incomplete information. For distributed

deep learning, this optimization paradigm provides a better description of a param-

eter server’s informational state than other well-established synchronization models

that assume nothing is known about the future. Specifically, the solution to the

optimization problem will provide a prediction of the optimal time t∗sync to impose

the next synchronization barrier b. That is possible assuming a stable cluster run-

71

0

1

2

3

4

5

6

7

8

9

1.552E+12

W
or

ke
r i

d

Unix epoch time in ms

min_d=599ms rnd_d=746ms bsp_d=1079ms 0 1 2 3 4 5 6 7 8 9

Figure 6.4: Predicting the time to synchronize. The sky blue triangles in the first column
are the starting points of the predicted future iterations at which we have learned the
most recent iteration intervals of all workers. Each dot represents the ending time of
an iteration. Workers (labelled from 0 to 9) have unique color. Starting from them,
we predict next R=15 future iteration intervals of the 10 workers. The objective is to
find the dots of distinct colors that are closest to each other (i.e., dots vertically aligned
near any time-spot). Three strategies are shown for comparison: ZipLine (min d in red
squares), a random barrier pick (rnd d in grey blue diamonds) and classic BSP (bsp d
in sky blue triangles).min d, rnd d and bsp d represent the overall workers’ waiting time
cost in milliseconds in wall-clock time. ZipLine has the minimum cost (599ms).

ning environment – a realistic assumption as we discuss very soon. Our approach is

fundamentally different to current approaches that either strictly control the time to

impose a synchronization barrier (i.e, BSP) or determine it based on ad hoc runtime

decisions (i.e, SSP).

Recall that during execution the parameter server receives push requests coming

from n workers. Once a request is received, the server keeps record of the worker p

and associates it with a timestamp representing the time of the request. Most data

72

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

W
ai

tin
g

tim
e

in
 m
s

x1
00

0

Potential combinations of workers' time points for synchronization

Z*
↓

Figure 6.5: ZipLine scans the points (push timestamps) on the timeline as in Figure 6.7
and evaluates all 141 possible sets Z (each of which consists of distinct workers) of the
example in Figure 6.4 in ascending order. For each set Z, the overall worker waiting time
dZ is obtained and plotted on y-axis. ZipLine finds the optimal set Z∗ that minimizes
dZ∗ (i.e., 599 milliseconds) which lies at the 97th combination (highlighted in red).

centers follow the high availability (99.999% available time) criteria practice [70].

Therefore, it is realistic to assume a stable running environment, where the dura-

tion of subsequent iterations of a worker (including batch processing and gradient

computing) are unlikely to fluctuate in the foreseeable future.

This assumption allows to heuristically predict the R future iteration intervals

of each worker (see Figure 6.3 and 6.4), based on their most recent iteration interval

history. For instance, if a worker p arrives at time t and presents an iteration interval

γpiter, then the future R iterations will be predicted to occur at time t + γpiter, t +

2 · γpiter, . . . , t + R · γpiter. Given the R future iteration intervals of each worker,

then the problem is to determine the best time in the future to impose the next

73

synchronization barrier – a time that will minimize the waiting time for all workers.

Note that this assumption is not limiting our approach. In practice, if a worker

does not behave in a predictable way, say due to a failure, it will be taken out

of the distributed computation (and will be ignored by our method). Similarly,

if a minor fluctuation in the duration of an interval occurs, for example due to a

network glitch of any of the workers, our method might be affected by an erroneous

prediction which might cause a sub-optimal imposition of a synchronization barrier.

Nonetheless, that error will not be carried forward to the next decision. That is

because we always use the most up-to-date history of worker time intervals to find

the time to impose the next synchronization barrier. As such, the effect to the

overall approach will be negligible (if any).

6.4.1 Problem Definition

Consider the parameter server framework and let n workers. For each worker

p ∈ [1, n], the server predicts R future iteration intervals and stores a set Sp =

{ep1, e
p
2, ..., e

p
R}, where epi , i ∈ [1, R] represents the ending timestamp of the i-th it-

eration of worker p. We only need to store ending timestamps (and no starting

timestamps), as they are the only ones required for determining a synchronization

time. From each of the n sets Sp, p ∈ [1, n], we pick one element epj , j ∈ [1, R] to

construct a new set Z = {epj}, p ∈ [1, n] of |Z| = n ending timestamps (one for each

worker). The smaller timestamp in Z (min(Z)) represents the faster worker and the

74

larger timestamp in Z (max(Z)) represents the slowest worker, respectively. Then,

the difference dZ = max(Z) − min(Z) represents the waiting time of the fastest

worker. Note that tsync = max(Z) represents the time to impose the synchroniza-

tion barrier b and dZ represents the waiting time overhead related to the current

barrier b; that is because other workers’ waiting times are overlapped by the fastest

worker’s (i.e., dZ = τ bwait). As it becomes clear, any set Z can determine the time

tsync and represents one candidate solution to the optimization problem. From the

space of all candidate combinations of Z, we are looking for the optimal one Z∗ (as

shown in Figure 6.5) that exhibits the minimum dZ∗ and determines the optimal

t∗sync at which we will impose the next synchronization barrier b. The following

formalizes the problem.

Problem 1. Given n workers, each represented by a set Sp = {ep1, e
p
2, ..., e

p
R}, where

epi is the ending time of the i-th future iteration of worker p, p ∈ [1, n] and R ∈ N,

find a solution Z containing one element from each Sp, such that dZ is minimized.

Hence, our objective function is:

Z∗ = argmin
Z

dZ

Knowing Z∗, we can determine the optimal time t∗sync = max(Z∗) to impose the

next synchronization barrier b. At the end of the distributed training of a model,

a set B of synchronization barriers will have been imposed and the overall waiting

75

time overhead can be derived by (6.2).

6.4.2 Choosing Z∗ for ElasticBSP

It is possible that more than one Z∗ exists among all possible Z combinations derived

from the n sets Sp (see example in Figure 6.8). From a machine learning perspec-

tive (i.e., considering an iterative convergence optimization), the Z∗ with the earliest

(smallest) timestamp is preferred for ElasticBSP. Figure 6.6 illustrates the reason

by depicting two cases. Figure 6.6(a) illustrates how SGD is working asynchronously

under the parameter server setting. For instance, two workers are shown with differ-

ent processing speeds on a mini-batch (one iteration), where worker p2 runs faster

than worker p3. If a synchronization between p2 and p3 happens at every iteration

following BSP, then no delayed gradients updates are introduced. On the contrary,

in the case of asynchronous gradient updates, noise might be injected (i.e., staled

gradients with large staleness value [7]) to SGD and lead to divergence, especially

when the noise is accumulated over a large number of iterations. Intuitively, synchro-

nizing as early as possible reduces the staled gradients and decreases their staleness.

Theorem 3 and Corollary 3.1 formalize on this intuition. In a nutshell, in the case

of asynchronous gradient updates, the longer it takes for a synchronization barrier

to be imposed, the more stale the gradients will be, potentially rendering the weight

convergence uncertain. In Figure 6.6(b), there are 5 workers and two equivalent op-

timal solutions Z∗ are considered (Z∗A and Z∗B). In each solution, a different number

76

Workers # iterations completed

!"
∗ !$

∗

p1 13 3

p2 20 5

p3 10 1

p4 12 3

p5 17 2

%& %'(∗ (=%')∗) %')∗ (=%'(∗)

%*+,- 10 4 ✓

Suppose we have two sets of
workers for training. Each column
lists the iterations of each worker
completes at time t. The set with
smaller iteration difference has less
staler gradients adding to the weight.

Assume workers p2 and p3 of !"
∗ receive same

weight w/ from the parameter server after one
synchronization.

0/

0/

1/
02

p2

p3

server

12
03

1/
04
∗

13
05
∗
15

06

14
07
∗

16
08
∗

δ: = Cost′(w:) , w:C2 = w: + η F δ: where η is learning step
* indicates noise is added.

Staled gradients 1 brings noise to the weight update.
The noise causes drift, may delay the convergence or
lead to divergence if cumulated noise is proportionally
large.

(a) (b)

Figure 6.6: (a) shows how staled gradients δ bring noise to the weight updates. The
noise may drift the weight convergence away from the optimal direction (i.e., to poor local
minima of the loss function). (b) Suppose we have two optimal solutions Z∗A and Z∗B. Each
column lists the number of iterations each worker has completed in each solution. Both
solutions Z∗A and Z∗B have equal dZ . The solution with the smaller iteration difference diter

(i.e., 4) introduces fewer staled gradients to the model weights and therefore is preferred.

of iterations have been completed by each worker since last synchronization. In Z∗A,

the iteration difference diter between the faster and slower workers is 10, whereas in

Z∗B the difference is 4. According to Figure 6.6(b), Z∗B will have fewer staled gradient

updates than Z∗A, because its iteration difference diter (i.e., 4) is smaller than that

of Z∗A (i.e., 10). We show that if the workers have different processing speed (on an

iteration), then the iteration difference diter among them increases as asynchronous

gradient updates last longer (i.e., the synchronization barrier is imposed at later

time). Therefore, if multiple Z∗s with the same dZ∗ exist, we prefer to impose a

synchronization barrier represented by the earliest time t∗sync.

Theorem 3 (The earlier the synchronization barrier is imposed, the less

staler the gradients). Consider two workers pi and pj, i, j ∈ [1, n] and i 6= j,

77

and their iteration intervals tpi and tpj , respectively, where tpi < tpj (i.e., pi is faster

than pj). Let the difference of the number of iterations they complete within a

time period t be given by diter = t
tpi
− t

tpj
. Then, within a time period t′ > t, it is

diter
′
> diter, where diter

′
is the iteration difference within t′.

Proof. Suppose we have two workers pi, pj, i, j ∈ [0, n], i 6= j and their iteration

intervals being tpi = λtpj , λ ∈ (0, 1) (i.e., pi being faster than pj). Within a time

period t, their iteration difference is given by diter = t
tpi
− t

tpj
=

t(tpj−tpi)
tpi tpj

= t(1−λ)
tpi

¬.

Within a longer time period t′ = t + k, k > 0, their iteration difference is given by

diter
′

= (t+k)(1−λ)
tpi

. Therefore, for a longer run time t′ > t, the iteration difference

is given by − ¬ = k(1−λ)
tpi

> 0 since λ ∈ (0, 1).

Intuitively, if a synchronization period (a superstep) lasts longer, then a larger

iteration difference among workers is introduced by asynchronous gradients updates.

Corollary 3.1. Since less staler gradients have less negative impact to the rate of

convergence [7], early synchronization is preferred in asynchronous parallel training

phase for better convergence with respect to the rate and the accuracy.

6.5 Methodology

To address Problem 1, we first investigate a brute-force approach, naive search.

Since naive search cannot scale to a large number of workers, we develop an opti-

mized version of it named FullGridScan. Then, we introduce our method ZipLine

78

and its optimized variants ZipLineOpt and ZipLineOptBS. Table 6.1 summarizes

the computation and space complexity of the different approaches.

6.5.1 Exhaustive Search Methods

Naive search. In order to find the minimum difference dZ∗ , a straightforward

approach is to use a brute-force search method. The method determines the optimal

solution Z∗ by first constructing all candidate solutions Z. Each Z contains one

element from each set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈ [1, n], R ∈ N. Since there are n sets

Sp (one for each worker), and each set Sp has R elements, there are Rn candidate

solutions in total. Then, for each candidate solution Z, it computes its dZ value. The

solution Z∗ for which the minimum value dZ∗ is yielded, is the optimal solution. The

computation complexity of naive search is O(Rn). The space complexity is O(Rn)

to store the Rn possible solutions.

79

Algorithm 3 GridScan - finds the set Z∗ with minimum dZ∗

1: procedure mindSet(M)
. the n×R Matrix M with predicted points

2: Z∗ ← ∅
. the set Z∗ takes n elements with unique worker id p, p ∈ [1, n]

3: dZ∗ ←∞
4: find the row Mpb with the smallest initial time Mpb,1 from set {Mp,1}
.Mpb,1 = min({Mp,1}), p ∈ [1, n], {Mp,1} the first column of M

5: for each point e ∈ worker Mpb do
6: Z ← ∅
7: add e to Z
8: for each worker Mp ∈M,Mp 6=Mpb do
9: for each point Mp,i ∈Mp do

10: Mp,min ← argminMp,i
|Mp,i − e|

. the shortest distance point to e
11: add Mp,min to Z

12: dZ ← max(Z)−min(Z)
. compute minimum maximum difference of Z

13: if dZ < dZ∗ then
14: Z∗ ← Z
15: dZ∗ ← dZ
16: return Z∗ . the set with dZ∗

80

GridScan. Since naive search is not practical, we present an optimized heuristic

brute-force method, GridScan (Algorithm 3). GridScan will eventually serve as

the basic component of FullGridScan. Let the future R iteration timestamps of n

workers form a n × R matrix M, where each row of the matrix Mp represents a

worker p, p ∈ [1, n] and each row element Mp,i = epi , i ∈ [1, R] represents each of

the R predicted iteration interval points (timestamps). Now, observe that for any

designated element in M, we can search for elements belonging to the remaining

rows that have timestamps close to the timestamp of the designated element (as

shown in line 10). Then, the elements found in the remaining rows along with the

original designated element form a candidate solution Z, for which we can obtain

dZ . Accordingly, we can consider a designated row, and we can iteratively consider

all its R elements and define R candidate solutions Z, each one associated to each of

the designated elements of the designated row. Following this procedure, the optimal

solution Z∗ will be the one that exhibits the minimum dZ∗ . To guarantee we do not

miss any early element (on the timeline), we set the designated row to be that with

the minimum (earliest) timestamp (i.e., Mp,1) (see line 4). Finding the designated

row costs Θ(n). The total computation complexity is O(R2n). The outer loop

iterates over the R elements of the designated row and the inner loop iterates over

the R elements of each of the remaining n−1 rows to construct candidate solutions.

During the search, we only need to maintain the currently best solution Z∗ (i.e., n

elements) and the associated dZ∗ . Therefore, it requires storage space θ(n). Along

81

timeline

set Zmset Z1

d1 dmd6 d10

ZipLine searching for the set Z* with the minimum difference d*

Figure 6.7: ZipLine scans all elements on the timeline, from left to right, one element at
a time. When a solution Z of n distinct elements is formed, dZ is computed. At the end
of the process the optimal solution Z∗ is found that yields the minimum d∗Z . If multiple
solutions exhibit the same d∗Zs, then the solution Z that occurred first (chronologically)
is selected by Corollary 3. In this example, d6 and d10 have the same minimum value —
Z6 associated with d6 is chosen as the optimal solution.

with the storage of the Rn elements of the matrix M, the space complexity is

O(Rn).

FullGridScan. In GridScan, R candidate solutions Z are constructed, each

associated with a dZ . Due to its design, it is possible that GridScan will miss some

solutions with a smaller dZ . In order to discover potentially better solutions during

the search, we also implement FullGridScan. FullGridScan iterates over all n rows

(i.e., workers) of the matrix M, each time defining a designated row Mp, p ∈ [1, n]

and applying GridScan using Algorithm 3, but skipping line 4. Therefore, Full-

GridScan considers Rn candidate solutions compared to the R candidate solutions

considered by GridScan. As FullGridScan needs to apply GridScan n times, its com-

putation complexity is O(R2n2). The storage complexity of FullGridScan remains

the same as GridScan.

82

6.5.2 Search by ZipLine

We are now in position to describe ZipLine, our proposed method to solve the

optimization problem. ZipLine (Algorithm 4) determines the optimal solution Z∗

in two steps:

Step 1 (Initialization). We merge the elements of all sets Sp = {ep1, e
p
2, ..., e

p
R}, p ∈

[1, n], R ∈ N into a set Ω and sort them in an ascending order; recall that elements

epi represent timestamps so this is an ordering of timestamps over the time axis (line

3), where the leftmost element represents the earliest event. Ω serves as the looka-

head of the optimization problem. At the beginning of the method, we initialize Z

with n elements of Ω, each one coming from a different set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈

[1, n], R ∈ N (line 4-7); we pick the leftmost element of each Sp. Then, we compute

dZ of the candidate solution Z (i.e., the difference between minimum and maximum

elements of Z representing a worker’s waiting time). Initially, Z∗ = Z and dZ∗ = dZ .

Step 2 (Iterative procedure). Starting from the leftmost element the method

iteratively scans all elements of Ω one at a time, until Ω is empty (line 11-20). At

each iteration, the method constructs a candidate solution Z. Recall that a candi-

date solution Z must contain one element from each set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈

[1, n], R ∈ N (see Figure 6.7). As new elements are evaluated, the method only needs

to check the superscript value p of each element epi in the current solution Z. This is

to prevent adding an element to the solution that comes from the same set Sp (i.e.,

same worker p). Whenever a new element is added to a solution Z, the previous

83

element of that set Sp is removed/replaced. For each solution Z, the associated dZ

is computed. If dZ is smaller than the current dZ∗ , then Z∗ = Z and dZ∗ = dZ .

At the end of the process, after Rn iterations (the size of Ω), the optimal solution

Z∗ that exhibits the smaller d∗Z is found. At each iteration, the removal/replacement

operation of an element costs O(n). Therefore, the total computation complexity

of ZipLine is O(Rn2). The algorithm only uses Θ(n) space to store Z∗ and O(Rn)

for the storage of all elements in Ω, therefore the space complexity is O(Rn).

84

Algorithm 4 ZipLine - finds solution Z∗ with minimum dZ∗

1: procedure mindSet(Ω) . the merged set Ω
2: Z ← ∅
. the set Z takes n elements with unique p value, p ∈ [1, n]

3: Ω← sort(Ω)
. sort Ω in ascending order by element’s value (timestamp)

4: while |Z| < n do
5: ω ← the most left element of Ω

. ω is epi where i ∈ [1, R] and p ∈ [1, n]
6: add ω to Z
. old element of Z is removed if its p value is same as ω

7: Ω← Ω− ω
8: dZ ← max(Z)−min(Z)
. compute difference of minimum maximum elements of Z

9: Z∗ ← Z
10: dZ∗ ← dZ
11: while Ω 6= ∅ do

. the solution is obtained when Ω is empty
12: Z ← Z −min(Z) . Z is in ascending order as of Ω
13: while |Z| < n do
14: ω ← the most left element of Ω
15: add ω to Z
16: Ω← Ω− ω
17: dZ ← max(Z)−min(Z)
18: if dZ < dZ∗ then
19: Z∗ ← Z
20: dZ∗ ← dZ
21: return Z∗ . the set with dZ∗

85

ZipLine Optimality

We claim that our greedy algorithm, ZipLine, leads to an optimal solution and we

provide a formal proof of the claim.

Theorem 4. [ZipLine optimality] ZipLine leads to an optimal solution Z∗.

Proof. (Sketch) The proof is based on propositions of two lemmata. Lemma 5 claims

that ZipLine always finds a legal solution. Lemma 6 claims that there is not a better

one.

Lemma 5. ZipLine always finds a legal solution. A legal solution Z includes one

element from each set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈ [1, n], R ∈ N.

Proof. The proof is based on contradiction. Suppose that it did not. Then, there

will be at least two elements in Z that come from the same set Sp (i.e., two elements

of the same color). Recall that by its definition ZipLine always begins with a legal

solution Z that includes one element from each set Sp. As the algorithm scans new

elements it performs a removal/replacement operation. For every new element, the

algorithm first determines its color and then replaces it with the element of that

same color that is currently in hand. Since we assumed that there are at least two

elements in solution Z that come from the same set Sp, there must have occurred a

replacement operation where the replaced element was of a different color (and not

of the same color). However, this is an illegal operation/step. We have therefore

reached a contradiction – our assumption was wrong and our algorithm always finds

86

a legal solution.

Lemma 6. ZipLine produces a solution Z∗ that is no worse than other solutions

X. Otherwise, for any alternate solution X 6= Z∗, it holds that dX ≥ dZ∗ .

Proof. The proof is based on contradiction. Suppose there is an alternate legal

solutionX 6= Z∗ with dX < dZ∗ . SinceX is a legal solution, it consists of one element

from each set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈ [1, n], R ∈ N. We also know that X ⊂ Ω and

that elements in Ω are sorted, so let the elements xi ∈ X be x1 < x2 < ... < xn,

where i ∈ [1, n] and |X| = n. Therefore, it is dX = xn − x1. Now, assume there

exists o ∈ Ω, such that o /∈ X and xj < o < xk where j, k ∈ [1, n] and j < k. Note

that o is an element of a set Sp, p ∈ [1, n], R ∈ N, that is already represented in the

current solution X (i.e., element o’s color is identical to that of an xi ∈ X, where

i ∈ [1, n]). We distinguish two possible cases for o’s color:

• If o’s color is identical to that of x1 (or xn), then ZipLine would have replaced

x1 (or xn) with o and have formed a solution X∗ instead, where X∗ 6= X. That

would have resulted in a better solution, since now dX∗ < dX . Thus, X cannot

be the optimal solution in that case.

• If o’s color is identical to that of an element x ∈ X, where x1 < x < xn (i.e.,

x ∈ {x2, ..., xn−1}), then ZipLine would have either replaced x with o (or not)

to form a solution X∗. In either case, dX∗ = dX , so ZipLine would have found

a solution as good as X.

87

Thus, our assumption was wrong and ZipLine produces a solution Z∗ that is

no worse than other solutions X.

Lemma 5 and lemma 6 prove our claim stated in Theorem 4 that ZipLine leads

to an optimal solution Z∗.

6.5.3 ZipLine Optimizations

As ZipLine scans through new elements of Ω, a new candidate solution Z ′ is for-

mulated every time by replacing an element of the previous candidate solution Z

with the new element. Recall that a candidate solution Z must contain one element

from each set Sp = {ep1, e
p
2, ..., e

p
R}, p ∈ [1, n], R ∈ N. Satisfying this condition domi-

nates the cost of ZipLine. That is because once the replacement is done, the new

difference dZ′ of the solution Z ′ needs to be computed and that requires searching

for the potentially updated min(Z ′). If dZ′ is smaller than dZ∗ , then we store Z ′ to

Z∗ and continue. The replacement operation and the search of min(Z ′) in Z ′ take

O(n) to complete regardless using a hashtable or array data structure to store the

elements of a candidate solution Z ′. Thus, the cost of ZipLine becomes O(Rn2)

for scanning through the Rn elements in Ω. Below, we discuss two optimizations

that manage to effectively reduce the ZipLine cost to O(n log n), by reducing the

cost of the replacement operation and the search of min(Z ′) in Z ′ to O(log n). The

first optimization takes advantage of the fact that elements are sorted in the time

axis, from the earliest to the latest to prune the search space of finding the min(Z ′).

88

The second is an implementation optimization that utilizes a more efficient data

structure to boost the search process.

Search Space Pruning Optimization (ZipLineOpt)

We utilize an array data structure to store the elements of a candidate solution Z ′

in temporal order of arrival. When a new element of Ω is evaluated by ZipLine,

we know that the oldest element in the array has the minimum timestamp and the

most recently added element has the maximum timestamp.

To determine the min(Z ′) there are two cases:

(i) with probability α, α ∈ (0, 1), the oldest element in the array has the same

color as the newly added element, and therefore we simply remove the oldest element

and set the new minimum timestamp to be the one succeeding it in the array. After

adding the new element, we can compute dZ′ directly due to random access to the

array data structure. Thus, the cost of searching for min(Z ′) is reduced to O(1)

with probability α;

(ii) with probability 1 − α, α ∈ (0, 1), the oldest element in the array does not

have the same color as the newly added element, and therefore there is no need to

re-compute the dZ′ , since it is larger than dZ by Theorem 7.

Theorem 7. Suppose ei ∈ Z and e1 < e2 < ... < en where i ∈ [1, n] and |Z| = n and

let dZ = en− e1. Now, assume we add a new element e′, where e′ ≥ en to formulate

a new solution Z ′. To satisfy that |Z ′| = n, we need to remove the element ei from

89

Z that has the same color as e′. If i > 1 of the removed ei, then dZ′ ≥ dZ , where

dZ′ = e′ − e1.

Proof. Let d′ = e′ − en. We know d′ ≥ 0 as e′ ≥ en. By definition, dZ′ = e′ − e1 =

d′ + en − e1 = d′ + dZ ≥ dZ .

We still have to remove the element of the same color from the array data

structure. To do so, we need to traverse the array Z until the redundant element is

found and removed. This delete operation costs O(n) and occurs with probability

1− α. At last, we add the new element to Z ′ and move on to the next element on

Ω. We call this variant of ZipLine as ZipLineOpt. Since Ω has Rn elements, the

computation cost of ZipLineOpt becomes α · O(Rn) + (1−α) · O(Rn2). Table 6.4

shows that empirically it is the fastest when n ≤ 100.

Implementation Optimization (ZipLineOptBS)

To further optimize ZipLineOpt, we focus on the case of 1−α which requires O(n)

traversal of the array Z to remove the element of the same color as the newly added

element. The optimization is achieved by employing an auxiliary data structure

carrying extra information. Specifically, a tableM:n×R, similar to the matrixM

of GridScan in Section 6.5.1 that stores R future interval timestamps of n workers.

M is constructed and stored in memory when the set Ω is constructed, as shown

in Figure 6.4. For every element of Ω, its color (or worker id), its interval index i

(the ith future iteration of a worker p) and the timestamp associated to that index

90

Table 6.1: Summary of computation and space complexities of methods.

Algorithm Computation Space
GridScan (heuristic) O(R2n) O(Rn)
FullGridScan O(R2n2) O(Rn)
Zipline O(Rn2) O(Rn)
ZiplineOpt Best: O(Rn), Worst: O(Rn2) O(Rn)
ZiplineOptBS Best: O(Rn), Wrost: O(Rn log n) O(Rn)

Table 6.2: Synthetic datasets with varying number of n and R.

SmallR
n 10 100 200 400 600 800 1000
R 15 15 15 15 15 15 15

LargeR
n 10 100 200 400 600 800 1000
R 150 150 150 150 150 150 150

i are stored as an element of the matrix M. Thus, for any new element epi of Ω to

be added to Z, we can retrieve that worker’s previous element epi−1 fromM in O(1)

based on its worker id p ∈ [1, n] and iteration index i ∈ [1, R]. Once we get the

timestamp of the worker’s previous iteration epi−1, we can locate it in the array Z

by the timestamp value using a binary search (BS) algorithm, since the elements of

Z are sorted (in an ascending order). The BS reduces the search cost to O(log n).

Thus, the cost of the 1 − α case is reduced to (1 − α) · O(Rn log n). We call this

variant of ZipLine as ZipLineOptBS. The use of the auxiliary data structure M

with binary search (BS) allows ZipLineOptBS to bring the cost of ZipLine down

to α · O(Rn) + (1− α) · O(Rn log n), where α ∈ (0, 1).

6.6 Experimental Evaluation

In this section, we run experiments that aim to evaluate:

91

A. The runtime performance of the ZipLine algorithm and its variants compared

to two sensible baselines, FullGridScan and GridScan. We also evaluate the

scalability performance of ZipLine as a function of the number of workers n

and the parameter R.

B. The performance of the ElasticBSP model compared to the classic BSP,

ASP and state-of-art synchronization models, such as SSP. We are interested

to find which one converges faster and to a higher accuracy; also which one is

able to complete a fixed number of epochs faster?

6.6.1 ZipLine Performance

In this section, we try to answer item A by evaluating ZipLine and its variants with

the sensible baselines.

Dataset: To evaluate the performance of algorithms, we generate synthetic

datasets based on various realistic scenarios of the number of workers n and values

of the parameter R. For each worker we randomly define its iteration interval to

be in the range of 1000ms to 1500ms. Table 6.2 lists the different configurations

of datasets. SmallR (R = 15) is used to evaluate the performance of algorithms

as a function of the number of workers. LargeR (R = 150) is used to evaluate the

scalability of the algorithms as a function of R.

Environment: All experiments about ZipLine’s runtime performance are run

on a server with 24x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and 64GB ram.

92

The algorithms and the datasets generator are developed in C++11.

Zipline Ability to Find the Optimal Solution

We have provided theoretical results about the optimality of Zipline in Section

6.5.2. Here, we provide empirical evidence of Zipline’s ability to find the optimal

solution and compare it to the ones found by the competitive algorithms. We

experiment with the datasets of Table 6.2. For each run scenario, we compute the

dZ∗ of the solution Z∗ that each algorithm is able to find (Table 6.3), along with the

associated computation time cost (Table 6.4). The results reported are averages of

10 runs.

The results suggest that the family of the ZipLine methods always finds the

optimal solution Z∗ – same as the one found by the exhaustive method, FullGrid-

Scan. But, it is able to do so one or two orders of time faster (depending on the

ZipLine variant considered). This is because the search space of candidate solu-

tions evaluated by FullGridScan is much larger than that of ZipLine. On the other

hand, the GridScan heuristic, while is comparable to ZipLine in terms of speed,

consistently fails to find the optimal solution. Among the variants of ZipLine, Zi-

pLineOptBS adds some overhead compared to ZipLineOpt for smaller number

of workers, but as the number of workers increases is able to outperform it.

93

Table 6.3: Search accuracy comparison on dZ∗ — the least waiting time in milliseconds/ms
found by algorithms.

Number of workers (n) 10 50 100 500 1000 10 50 100 500 1000 Success
Predicted iterations (R) 15 15 15 15 15 150 150 150 150 150 rate
ZipLine 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
ZipLineOpt 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
ZipLineOptBS 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
FullGridScan 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
GridScan 599 1103 1345 1357 1405 518 1103 1253 1344 1401 30%

1405 1406 1403 1406 1405 1403

1350

1400

1450

1500

1550

1600

0 2000 4000 6000 8000 10000 12000

W
ai

tin
g

tim
e

in
 m
s

Potential combinations of workers' time points for synchronization

Figure 6.8: A plot of the cost dZ of candidate solutions Z evaluated by ZipLine. As
ZipLine iteratively scans the elements of Ω from the leftmost to the rightmost element
on the timeline, we compute the cost of each candidate solution Z and its cost dZs (the
smaller the cost dZ the better the solution Z). The run is based on the SmallR dataset of
Table 6.2, for n=1,000 and R=15. There are 15,000 elements in Ω. ZipLine evaluates a
total of 13,795 candidate solutions, FullGridScan 15000 candidate solutions and GridScan
only 15 candidate solutions. We only plot the dZ values that have a cost of less than
1600 milliseconds; we highlight the optimal dZ∗ and a few sub-optimal dZs. Red triangles
indicate dZ∗ .

ZipLine Scalability

The number of candidate solutions Z formed by elements of the Matrix M:n × R

increases exponentially to the number of workers n and polynomially to the value of

the parameter R (i.e., Rn), as described in Section 6.5.1. We have showed in Table

94

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

ov
er

he
ad

 /µ
s

x
10

00
00

Number of workers

ZipLine, R=15

ZipLine, R=150

ZipLineOpt, R=15

ZipLineOpt, R=150

ZipLineOptBS, R=15

ZipLineOptBS, R=150

Figure 6.9: Computation time cost comparison of ZipLine and its variants. The cost of
ZipLine and its variants increases as the number of workers n and the value of parameter
R increases. Both ZipLineOpt and ZipLineOptBS outperform the basic ZipLine. For
larger values of R (R ≥ 100), ZipLineOptBS outperforms ZipLineOpt.

Table 6.4: Computation time of algorithms in microseconds/µs.

Algorithm
10 Workers 100 Workers 1000 Workers

R=15 R=150 R=15 R=150 R=15 R=150
ZipLine 1.49e2 1.32e3 6.37e3 4.99e4 2.53e5 2.38e6
ZipLineOpt 0.90e2 8.08e2 2.46e3 1.93e4 9.39e4 7.78e5
ZipLineOptBS 1.24e2 1.15e3 2.65e3 2.30e4 7.68e4 5.66e5
FullGridScan 1.54e3 4.67e4 8.13e4 2.15e6 4.04e6 2.07e8
GridScan 1.68e2 5.50e3 1.11e3 4.38e4 7.45e3 2.57e5

6.4 that as the number of workers n increases, the computation time of FullGridScan

increases much faster than that of the ZipLine family of algorithms. We have also

discussed that for a fixed number of workers, as R increases the computation time

95

of FullGridScan increases much faster. To further elaborate on the behavior of

the ZipLine variants, in Figure 6.9 we provide an illustration of their run time

comparison (we don’t plot FullGridScan to improve the comparative analysis of

the ZipLine variants). It can be observed that when n is small (e.g., below 100),

ZipLineOpt is faster than ZipLineOptBS. But, as n increases (e.g., above 200),

ZipLineOptBS outperforms ZipLineOpt. That is because ZipLineOptBS has to

maintain two auxiliary data structures and accessing the second one (the table

M) introduces extra cost, compared to ZipLineOpt. However, this extra cost is

amortized into many scan iterations when the number of elements of Ω is large

(i.e.,Rn) (i.e., most iterations are very fast and only few of them are expensive).

Observe in Figure 6.9 that for R=150, ZipLineOptBS grows significantly slower than

ZipLineOpt. Same trend is depicted for R=15 as well – as n increases, ZipLineOptBS

outperforms ZipLineOpt. Therefore, we recommend to employ ZipLineOpt when

n is small (e.g., n ≤ 100) and employ ZipLineOptBS otherwise. Most research

and industrial labs can typically afford a deep learning cluster with 4 to 8 nodes

(workers), in which scenario ZipLineOpt is preferred. The GridScan heuristic can

serve as an alternative when one is willing to sacrifice accuracy (i.e., finding optimal

solution) to gain in scalability.

96

6.6.2 Distributed Deep Learning using ElasticBSP

We compare the performance of ElasticBSP with BSP, SSP and ASP 1 by train-

ing DNN models from scratch on a parameter server setting. For SSP, we set its

threshold parameter to s=3 to ensure it convergences and achieves higher accuracy,

as suggested by Ho et al. [7]. For ElasticBSP, we set R = {15, 30, 60, 120, 240}.

In case of training large-sized DNN models on large-scale dataset of higher image

resolution, we additionally consider R = {480, 960}. We run each experiment three

times and report the medium result of the overall test accuracy.

Platform: We implement ElasticBSP with ZipLineOpt into MXNet [22]

which supports the BSP and ASP models. When n ≤ 10, ZipLineOpt performs

the best in terms of run time.

Cluster Environment: The experiments are run on 4 IBM POWER8 ma-

chines. Each machine has 4 NVIDIA P100 GPUs, 512 GB ram and 2×10 cores.

The machines are connected with Infiniband EDR. Each server connects directly to

a switch with 100 Gbps bandwidth.

Datasets & DNN models: We first train the downsized AlexNet [13], ResNet-

50 and ResNet-100 [31] on two image classification datasets CIFAR-10 and CIFAR-

100 [58] with 28×28 pixels resolution. Then, we move on to train the large-sized

DNN model (VGG-16 [12]) on the large dataset ImageNet 1K [71] with 256×256

1BSP is generally practised in industry and is supported by Pytorch, TensorFlow and MXNet.
The latter two also support ASP. SSP is available in Petuum and we implement it into MXNet.
Other state-of-the-art methods are only available in the research field and are non-trivial to be
implemented into MXNet due to different architectures.

97

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 200 400 600 800 1000

A
cc

ur
ac

y

Training time in seconds

ASP

BSP

SSP, s=3

ElasticBSP, R=15

ElasticBSP, R=30

ElasticBSP, R=60

ElasticBSP, R=120

ElasticBSP, R=240

Figure 6.10: Downsized AlexNet on CIFAR-10 dataset (n = 4)

pixels resolution to see if ElasticBSP can also support industry ready applications.

Downsized-AlexNet on CIFAR-10

To train this DNN model, we set mini-batch size to 128, epoch to 400, learning rate to

0.001 and weight decay to 0.0005. As can be observed in Figure 6.10, ElasticBSP

converges faster and to higher accuracy than the rest of the synchronization models.

BSP converges to a higher accuracy than ASP and SSP, but is slower. Regarding

the effect of the parameter R of ElasticBSP, as R increases, ZipLineOpt requires

more computation time to determine the optimal synchronization time, for each

synchronization barrier imposed. As a result, ElasticBSP with larger R has larger

computation cost. This is done without any significant benefit to the accuracy,

98

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Training time in seconds

ASP

BSP

SSP, s=3

ElasticBSP, R=15

ElasticBSP, R=30

ElasticBSP, R=60

ElasticBSP, R=120

ElasticBSP, R=240

Figure 6.11: ResNet-50 on CIFAR-100 dataset (n = 4)

therefore smaller R values are preferred for smaller models. Irrelevant to accuracy,

the faster model to finish the 400 epochs is SSP, followed by ASP, ElasticBSP

(R={15, 30}) and BSP.

ResNet-50 and ResNet-110 on CIFAR-100

To train this DNN model, we set mini-batch size to 128, epoch to 300, learning

rate to 0.5 and decay to 0.1 at epoch 200 for both ResNet-50 and ResNet-110. The

results are shown in Figure 6.11 and Figure 6.12.

For ResNet-50 in Figure 6.11, ElasticBSP converges faster and to a slightly

higher accuracy than BSP. Besides, ElasticBSP converges to a slightly higher ac-

curacy than ASP and SSP. ResNet-110 has a similar model size to ResNet-50, but

99

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 1000 2000 3000 4000 5000 6000

A
cc

ur
ac

y

Training time in seconds

ASP

BSP

SSP, s=3

ElasticBSP, R=15

ElasticBSP, R=30

ElasticBSP, R=60

ElasticBSP, R=120

ElasticBSP, R=240

Figure 6.12: ResNet-110 on CIFAR-100 dataset (n = 4)

takes much more computing time due to its deeper convolutional layers. Thus, when

computation time is long and communication time is relatively short, there is little

opportunity to save on communication time during training. As is shown in Figure

6.12, ElasticBSP converges at a similar rate to BSP, but reaches to slightly higher

accuracy. Regarding the effect of the parameter R of ElasticBSP, as R increases

to 120, its training time becomes slightly larger than that of BSP due to extra

computation time required by ZipLineOpt to compute the time to impose a syn-

chronization barrier. ASP and SSP converge faster, but require more training time

than ElasticBSP and BSP. Recall that ASP and SSP have no bulk synchronization

barriers therefore have larger iteration throughput causing faster convergence than

ElasticBSP and BSP. But larger iteration throughput, introduces more frequent

100

communication between workers and server and leads to increased number of weight

updates. Meanwhile, weight updates have to be computed in order (as mentioned

in Section 6.2). Thus, their tasks are queued on the server, which introduces extra

delay. We further elaborate on this issue in Section 6.6.2.

On ResNet models, the faster model to finish the 300 epochs is ElasticBSP,

followed by BSP, SSP and ASP. An exception is the ElasticBSP (R={120, 240}),

which are slower than BSP on ResNet-110.

VGG-16 on ImageNet 1K

To train this DNN model, we set mini-batch size to 256, epoch to 192, learning rate

to 0.01, weight decay to 0.0005 and decay 0.2 at epoch 10, 15, 18. The results are

shown in Figure 6.13.

Compared to distributed paradigms with zero staled gradient updates, such as

BSP, ElasticBSP converges 1.77× faster and achieves 12.6% higher final accu-

racy. Compared to distributed paradigms with zero staled gradient updates, such

as BSP, ElasticBSP converges 1.77× faster and achieves 12.6% higher final ac-

curacy.Compared to distributed paradigms with staled gradients updates, Elas-

ticBSP is learning faster than SSP and ASP despite the fact that it also has staled

gradient updates during training. We also observe that while both SSP and ASP

complete the fixed 19 epochs faster than ElasticBSP, they fail to learn. This is

2The testing policy restricts a job’s running time to at most 24 hours, so the most epochs
VGG-16 can complete on ImageNet 1K is set to 19.

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

A
cc

ur
ac

y

Training time in seconds

ASP
BSP
SSP, s=3
DSSP, s=3, r=12
ElasticBSP, R=15
ElasticBSP, R=30
ElasticBSP, R=60
ElasticBSP, R=120
ElasticBSP, R=240
ElasticBSP, R=480
ElasticBSP, R=960

1.77x

Figure 6.13: VGG-16 on ImageNet 1K dataset (n = 4)

due to staled gradients that are constantly present in the training process. Note

that for a fixed training time or fixed number of epochs (e.g., 19), ElasticBSP

always converges to a higher accuracy than the other synchronization models.

VGG-16 is the largest model size in our analysis, containing 3 fully connected

layers (FCLs) that are very sensitive to the staled gradient updates, similarly to

AlexNet containing 2 FCLs in Figure 6.10 (both have similar learning curves). ASP

is unable to learn due to the large number of staled gradients allowed during training.

SSP can hardly learn despite it restricts the staleness of its gradients using within

a small fixed staleness threshold (e.g., 3).

Since VGG is the largest convolutional neural network model, we experimented

102

with additional two larger values of R for ElasticBSP (i.e., R = {480, 960}). We

wanted to see if increasing the computation time of ZipLine and possibly introduc-

ing larger c-staled gradients (introduced by a larger R) might harm the convergence

speed and accuracy of ElasticBSP. The results in Figure 6.13 show there is only

a small variance introduced by the different Rs, meaning that increasing the value

of R does not significantly harm the performance of ElasticBSP. This is due to

the fact that the computation time of ZipLine is rather negligible compared to the

data transmission time of the parameters.

On VGG-16 model, the fastest model to finish the 19 epochs is ASP, followed

by SSP, ElasticBSP and BSP. An exception is ElasticBSP (R=15), which is

slightly slower than BSP.

Lastly, we add DSSP to the comparison. Figure 6.13 shows DSSP with the

threshold range s ∈ [3, 15] is better than SSP but is inferior to ElasticBSP.

Discussion

The results above, run on different DNN size and model architectures, provide em-

pirical evidence that ElasticBSP converges to higher accuracy than BSP and can

require less training time. That is when R is not too large for the case of small-sized

DNNs, and not too small for the case of large-sized DNNs. As the size of the DNNs

with FCLs grows larger, ElasticBSP shows its superior performance with respect

to both converge speed and accuracy. Note that the variation in the performance

103

of ElasticBSP, BSP, SSP and ASP on different DNNs is expected. The down-

sized AlexNet and the VGG-16 are similar to each other, but different to ResNets;

AlexNet contains 2 FCLs and VGG-16 has 3 FCLs, whereas ResNets has no FCLs

and therefore fewer model parameters (i.e., smaller size). Training FCLs requires

much less computation time compared to convolutional layers (CVLs), while their

representation consists of many more parameters than CVLs leading to larger model

sizes. On the other hand, training convolutional neural networks without FCLs, such

as ResNets, requires much more computing time, but consumes less communication

time due to the smaller model size (compared to FCL networks). When the ratio of

communication time to computation time is small, there is less room to save on the

training time. More detailed analysis of the different behavior on DNNs with differ-

ent ratio of computation to communication time can be found in [41]. In addition,

FCLs are sensitive to the staled gradient updates since their representation consists

of a large number of parameters (many more than those of CVL representations that

consist of shared parameters [14]). Zhao et al. [14] provide a thorough rationale on

the different performances of ASP, BSP and SSP on distributed training of various

DNN models, with or without FCLs.

Another important observation that derives from Figure 6.13 is that Elas-

ticBSP is able to take advantage of the restricted staled gradient updates (via

elastically imposing synchronization barriers defined by ZipLine). Due to elastic-

ity, it is able to skip poor local optima and saddle points of other synchronization

104

methods. Poor local optima and saddle points are well-known obstacles to the model

learning using serial SGD. In effect, executing parallel SGD using ElasticBSP can

be considered as a hybrid model alternating behaviors of an ASP-like and a BSP-

like mode: An ASP-like mode occurs during a synchronization period (a superstep

τ) and a BSP-like mode occurs across different synchronization barriers b. Dur-

ing the ASP-like mode, staled gradients are generated by the stragglers that harm

the convergence, which is traded off for large iteration throughput. At the end of

each τ , a BSP-like mode is switched on which eliminates all the staled gradients by

imposing a weight synchronization to all workers. Such a periodic clearing of the

staled gradients mitigates any significant harm to the convergence. The length of

τ is limited by ZipLine following Corollary 3.1. Therefore, staled gradients with

small staleness value (due to small length of τ) functions as a regularizer preventing

the learning model being overfit to the training set.

6.7 Related work

Several important works closely related to our research have already been cited

throughout the manuscript. Here, we extend more on work that tries to mitigate the

slow down caused by the straggler problem of the BSP which is generally practised

in industry. These work use techniques from different areas, for instances, one

uses reinforcement learning to find the optimal scheme, one uses generative model

to predict the best synchronization time and one uses adaptive learning rate to

105

mitigate the harm of the staled gradients.

Preempting straggler jobs. A-BSP [52] handles the straggler problem by

terminating the iteration job corresponding to the slowest worker once the fastest

workers have completed their jobs. That way, the waiting time is eliminated. The

remaining data of the terminated job of the slowest worker is prioritized in the next

iteration. This design is limited to the CPU cluster where samples are processed one

after another. But in a GPU cluster, a batch of samples are processed all at once in

parallel – GPU takes a batch of samples per iteration and computes the gradients.

Decreasing the data of a batch (iteration) does not reduce the computation time of

GPU. Therefore, GPU does not support preempting jobs [33]. Terminating a job

means losing all the computed result on that batch of data.

Speculative execution to avoid stragglers jobs. Chen et al. [1] deal with

the straggler problem by adding k extra backup workers to the distributed training

with n workers. In this approach, k+ n workers are running to train the model. At

each iteration, the server only accepts the gradient updates of the n workers that

arrived faster and moves on to the next iteration. The gradients of the k slower

workers are dropped. While this approach saves on waiting time (as the n faster

workers are needed per iteration), the computing resources allocated to the k slower

workers are wasted.

Bayesian prediction for synchronization. Tend and Wood [53] use a large

complex generative model, Bayesian Distributed SGD (BDSGD), to predict the op-

106

timal synchronization time or barrier for workers via first predicting the current

run-time (iteration interval excluding communication time) of workers based on

their historical (run-time) data distributions, and then determine the optimal syn-

chronization barrier according to the predicted workers’ run-times. Yet it follows

Chen et al.’s approach [1] of dropping the gradients of the slower workers that ar-

rive after the predicted optimal synchronization barrier. BDSGD assumes there is a

correlation between run-times of workers in each synchronization. Thus, it predicts

the current run-time of each worker based on the posterior distributions (i.e., his-

torical run-times of workers). BDSGD requires pre-training on its generative model

for the run-time prediction and costs more computing resources per predication in

the actual DNN model training. Consequently, it increases the training time due

to its prediction time cost exceeds the workers’ run-time per synchronization. In

practice, it has to reuse the result of the synchronization prediction in every few

contiguous synchronizations to reduce the frequency of running the learned gener-

ative prediction model. BDSGD converges to a similar accuracy as BSP with its

complex prediction model. Our ElasticBSP converges to a significantly higher

accuracy than BSP on large DNNs despite it uses a greedy algorithm to solve the

optimization problem.

Sparse synchronizations. EASGD [72] first proposed to reduce the commu-

nication cost by allowing the workers to update weights locally per iteration and to

synchronize with the server only at a fixed communication period. However, with

107

fewer synchronizations, the divergence among local models can result in an error-

convergence [41]. ADACOMM [41] uses periodic-averaging SGD (PASGD) for bulk

synchronization in which workers are doing local updates for τ iterations before a

weight synchronization. That way, the communication cost of both uploading gra-

dients and downloading weights from the server occurs only once every τ iterations.

In practice, ADACOMM estimates the optimal τ for a bulk synchronization of lo-

cal weights based on the training loss, but does not address the straggler problem.

In contrary to ADACOMM’s approach of assigning the same τ to all workers, our

ElasticBSP predicts the optimal synchronization time for all workers, where each

worker can have a different τ .

Auto-synchronization. Zhu et al. [73] proposed to address the straggler prob-

lem using reinforcement learning (RL) in full automation by formulating the syn-

chronization policy as a RL problem. By using deep Q-learning algorithm [74], the

learned RL policies were able to speedup the training on shallow DNNs and small

datasets. Yet the authors admit the work has its limitations and it is not ready

for the real-world scenario. Our ElasticBSP uses the lightweight but effective

greedy algorithm to minimize the waiting time caused by the stragglers. There-

fore, we save the time cost of a few episodes required by RL on training the RL

model to learn the policies before it can be deployed to the actual DNNs training.

Besides, ElasticBSP demonstrates outstanding performance on large DNNs and

large datasets.

108

Dynamic soft synchronization. Other than BSP, the straggler problem also

exists in SSP despite that SSP was devised to solve the straggler problem in BSP.

DSSP [14] introduces the dynamic staleness threshold to minimising the waiting time

for SSP which uses a fixed staleness threshold. By predicting the future iterations

for the fastest and the slowest workers based on their most recent iterations, DSSP

finds the optimal staleness threshold between pre-defined lower and upper thresholds

of SSP per iteration for the fastest workers at run time to minimize the waiting time

of the fastest workers. The prediction of the future R iterations of workers based

on their most recent iteration history is also practised in our ElasticBSP.

Adjusting the learning rate of staled gradients. Dutta et al. [56] pro-

mote asynchrony (i.e., ASP) and provide a thorough analysis on the parallel SGD

with and without synchronization. They proposed an adaptive learning rate scheme

to accelerate the convergence speed in wall-clock time for ASP. Similar to Elas-

ticBSP, they measure iteration intervals (processing time) by using the consecutive

push timestamps of each worker. In [56], the harm that the staled gradients bring to

the convergence was diminished by tuning down the learning rate according to the

staleness value of the weight parameters at run time on the parameter server side.

However, the tuning process is expensive on the computing resources for large DNNs

and not scalable when the number of workers increases, since it requires the server

to always keep a copy of the recently read weight parameters for every worker. The

authors also confirm that the synchronization is critical to the convergence speed

109

and aim to increase the synchronization frequency in the future.

6.8 Epilogue

In this chapter, we introduce ElasticBSP for distributed DNN model training,

using the parameter server framework. Our model is orthogonal to other types of

DNN training optimizations. ElasticBSP is relaxing the bulk synchronization

requirement of BSP and allows asynchronous gradient updates to a certain extent

to ensure the quality of convergence and achieve higher accuracy. As a result, it

increases the iteration throughput of the workers, limits the staled gradients to a

small amount and their staleness values to a small number, which brings less harm to

the convergence [7]. ElasticBSP operates in two phases. First R future iterations

of each worker are predicted. Then, ZipLine (or any of its variants) is applied

to determine the time to impose the next synchronization barrier that minimizes

the overall workers’ waiting time overhead. ZipLine is a one-pass algorithm with

linearithmic complexity O(Rn log n) and adds a minimal overhead on the server,

so it can be easily ported on popular distributed machine learning frameworks.

The experimental results show that ElasticBSP provides faster convergence than

BSP for a number of DNNs while achieving higher (or comparable) accuracy than

other state-of-the-art synchronization models, including ASP, SSP and BSP, on

different datasets. Overall, our work provides theoretical and empirical evidence

that ElasticBSP offers better generalization.

110

Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis, we aim to improve the convergence speed (in time unit instead of

iteration unit) without sacrificing the accuracy for distributed deep learning in the

parameter server setting via dynamic deterministic optimization on the synchro-

nizations of weights of workers partially and entirely which increases the efficiency

of the distributed training. We do not merely consider developing the efficient com-

munication strategies but also include the convergence quality of DNN models such

as the final test accuracy a model converges to and the convergence speed. First,

we introduce the foundations of distributed deep learning in the parameter server

setting. Then, we introduce the optimization properties and the evaluation metrics

in the distributed training setting. In Chapter 5 we present the partial synchroniza-

111

tions determined by dynamic online adaptation on the staleness threshold within a

given range, named DynamicSSP (DSSP) which improves the convergence speed

and the accuracy of SSP in average. In particular, DSSP significantly outperforms

SSP in the heterogeneous environment with respect to the convergence speed and

the accuracy where workers have different computational capacities. Then, in Chap-

ter 6, having observed the important role of the bulk synchronizations is playing in

training large DNN models (with fully connected layers) based on numerous and

diversified experiments of SSP, DSSP and BSP in Chapter 5, we further develop

a novel distributed model inspired by BSP and DSSP, named ElasticBSP which

dynamically determines the optimal time point in an online setting for the bulk

synchronizations by considering the run-time information of the computational ca-

pacities of workers. Empirically, ElasticBSP converges faster to a higher accuracy

than BSP, SSP, DSSP and ASP by running diversified DNNs on different datasets

which also suggests ElasticBSP offers better generalization. In particular, Elas-

ticBSP outperforms the BSP on training large DNNs on ImageNet 1K with respect

to both convergence speed (×1.77 faster) and overall accuracy (12.6% higher). Fi-

nally, we also observe a small amount of not-too-staled gradients participating in

the weight updates in training serves as a regularizer adding gradient noise to the

steps (weight updates) which drives the DNN model exploring new area by random

steps (staled gradients) and skipping the poor local optima and the saddle point.

However, we leave the concrete theoretical analysis of this observation as an open

112

question for the future work since it is specific to the optimization problem and a

little off the topic we discuss in the thesis.

7.2 Future Directions

For the contemporary distributed Deep Learning training, the optimization of find-

ing the optimal balancing point between the accuracy and the convergence speed

remains an open question. There are many potential directions to finding a good

balance between improving the efficiency and maintaining the efficacy of the dis-

tributed training for DNNs.

Reinforcement Learning: Zhu et al. [73] proposed to address the straggler

problem using reinforcement learning (RL) in full automation by formulating the

synchronization policy as a RL problem despite it is limited to running shallow

neural networks on the low dimensional dataset. In Chapter 5, DSSP requires

hyperparameter sL and sU to be specified for the range of the staleness threshold.

ElasticBSP from Chapter 6 has hyperparameter R as the number of estimated

future iterations per worker. Such hyperparamters can be learned by RL in training

via RL model interacting with the environment such as rewarding the action which

produces the high accuracy and or the fast convergence speed. To learn an optimal

online scheduling policy to enabling a fully automatic online scheduling distributed

paradigm can be a promising future direction as the RL technique advances to

capable of predicting good or even optimal hyperparamters without supervision (no

113

human guidance).

Periodic Communication: Federated averaging learning (FEDAVG) [75] al-

lows workers independently run a fixed number of epochs before they communicate

to the parameter server for weight synchronization. The DNN model converges and

achieves a high accuracy with the weighted average updates approach of FEDAVG.

In Chapter 6, ElasticBSP follows the convention of the parameter server setting

that workers, as scalable distributed computing resources for heavy computing (e.g.,

convolutional computing and backpropagation), compute the gradients whereas the

parameter server is only in charge of the weight updates (light computing). Nonethe-

less, ElasticBSP is developed for dynamic distributed environment with elasticity.

It can be adapted to the periodic synchronization framework where each worker can

run different number of epochs per communication that is determined dynamically

based on workers’ computational capacities at run time. However, in FEDAVG

each worker has to run the same fixed number of epochs per communication uni-

formly over the entire training. To combine ElasticBSP and FEDAVG could be

an interesting future work to speed up the distributed deep learning as well as the

federated learning via balancing the number of communication and the waiting time

of workers.

Edge Computing for Distributed Online Deep Learning: Sahoo et al. [76]

attempt to improve the online deep learning (ODL) by proposing Hedge Backpropa-

gation (HBP) which allows learning DNNs on the fly in an online setting. However,

114

HBP requires a lot of auxiliary parameters for any given ordinary DNN structure.

Thus, it costs extra memory and computing time (on both feedforward and back-

propagation computing). This drawback cancels the advantages of HBP brings, and

hinders HBP to be deployed in practice. A feasible solution is to integrate HBP

to the distributed computing environment. Meanwhile, edge computing is being

known as the ideal environment for online learning by offering low latency and data

privacy [77]. A small DNN model can run on an edge device such as a smart phone

carried by an user. External computing help can come from nearby “central” edge

servers if required. It will be interesting to develop a distributed edge computing

platform to support distributed ODL so that we can have fast convergence sup-

ported by massive distributed edge computing as well as high accuracy achieved by

ODL technique. Furthermore, joint learning can be helpful to enhance the learning

model prediction (accuracy), for instance, in federated learning each DNN model

running on an edge device exchanges the information (i.e., feature representations)

with one another on some randomly selected central (edge) servers.

115

Bibliography

[1] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting dis-

tributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[2] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar,

B. Kaul, and P. Dubey, “Distributed deep learning using synchronous stochastic

gradient descent,” arXiv preprint arXiv:1602.06709, 2016.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,

P. Tucker, K. Yang, Q. V. Le, et al., “Large scale distributed deep networks,”

in NIPS, pp. 1223–1231, 2012.

[4] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asynchronous stochastic

gradient descent for dnn training,” in 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 6660–6663, IEEE, 2013.

[5] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to

parallelizing stochastic gradient descent,” in NIPS, pp. 693–701, 2011.

116

[6] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous parallel algo-

rithms,” Par. and Distr. Comput., vol. 22, no. 2, pp. 251–267, 1994.

[7] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,

G. Ganger, and E. P. Xing, “More effective distributed ml via a stale syn-

chronous parallel parameter server,” in Advances in neural information pro-

cessing systems, pp. 1223–1231, 2013.

[8] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd for dis-

tributed deep learning,” arXiv preprint arXiv:1511.05950, 2015.

[9] K. Lee and R. Bhattacharya, “On the relaxed synchronization for massively

parallel numerical algorithms,” in 2016 American Control Conference (ACC),

pp. 3334–3339, IEEE, 2016.

[10] Z. Zhou, P. Mertikopoulos, N. Bambos, P. W. Glynn, Y. Ye, L.-J. Li, and F.-F.

Li, “Distributed asynchronous optimization with unbounded delays: How slow

can you go?,” in ICML, pp. 1–10, 2018.

[11] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of distributed

machine learning on big data,” Engineering, vol. 2, no. 2, pp. 179–195, 2016.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

117

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in NIPS, pp. 1097–1105, ’12.

[14] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous parallel

distributed training for deep learning,” in ICDCS, pp. 1507–1517, 2019.

[15] X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “Elastic bulk

synchronous parallel model for distributed deep learning,” in 19th IEEE Inter-

national Conference on Data Mining (ICDM), pp. 1504–1509, 2019.

[16] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient

distributed machine learning with the parameter server,” in Advances in Neural

Information Processing Systems, pp. 19–27, 2014.

[17] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, et al., “Poseidon: An

efficient communication architecture for distributed deep learning on {GPU}

clusters,” in USENIX, pp. 181–193, 2017.

[18] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning

with the parameter server,” in OSDI, pp. 583–598, 2014.

[19] “Apache MXNet.” accessed 2018-08-01.

[20] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can de-

centralized algorithms outperform centralized algorithms? a case study for

118

decentralized parallel stochastic gradient descent,” in Advances in Neural In-

formation Processing Systems, pp. 5330–5340, 2017.

[21] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel

stochastic gradient descent,” arXiv preprint arXiv:1710.06952, 2017.

[22] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, et al., “Mxnet:

A flexible and efficient machine learning library for heterogeneous distributed

systems,” arXiv preprint arXiv:1512.01274, 2015.

[23] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “Geeps:

Scalable deep learning on distributed gpus with a gpu-specialized parameter

server,” in Europ. Conf. on Comp. Syst., p. 4, ACM, 2016.

[24] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep cap-

tioning with multimodal recurrent neural networks (m-rnn),” arXiv preprint

arXiv:1412.6632, 2014.

[25] J. Zhou, X. Li, P. Zhao, C. Chen, L. Li, X. Yang, Q. Cui, J. Yu, X. Chen,

Y. Ding, et al., “Kunpeng: Parameter server based distributed learning systems

and its applications in alibaba and ant financial,” in KDD, pp. 1693–1702,

ACM, 2017.

[26] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-Jaroodi, “A survey of

load balancing in cloud computing: Challenges and algorithms,” in 2012 Second

119

Symposium on Network Cloud Computing and Applications, pp. 137–142, IEEE,

2012.

[27] X.-W. Chen and X. Lin, “Big data deep learning: challenges and perspectives,”

IEEE access, vol. 2, pp. 514–525, 2014.

[28] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep

learning with cots hpc systems,” in ICML, pp. 1337–1345, 2013.

[29] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,

S. Satheesh, S. Sengupta, A. Coates, et al., “Deep speech: Scaling up end-to-

end speech recognition,” arXiv preprint arXiv:1412.5567, 2014.

[30] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolu-

tional sequence to sequence learning,” in Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 1243–1252, JMLR. org, 2017.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in IEEE CVPR, pp. 770–778, 2016.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, pp. 5998–

6008, 2017.

[33] M. Bauer, H. Cook, and B. Khailany, “Cudadma: optimizing gpu memory

bandwidth via warp specialization,” in SC, p. 12, ACM, 2011.

120

[34] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication quanti-

zation for data-parallel training of deep neural networks,” in Machine Learning

in HPC Environments, pp. 1–8, IEEE, 2016.

[35] N. Strom, “Scalable distributed dnn training using commodity gpu cloud com-

puting,” in Interspeech, 2015.

[36] H. Li, A. Kadav, E. Kruus, and C. Ungureanu, “Malt: distributed data-

parallelism for existing ml applications,” in Europ. Conf. on Comp. Sys., p. 3,

ACM, 2015.

[37] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training deep

networks in spark,” arXiv preprint arXiv:1511.06051, 2015.

[38] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

conference on computer vision, pp. 740–755, Springer, 2014.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee, 2009.

[40] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gra-

dient descent,” in Advances in neural information processing systems, pp. 2595–

2603, 2010.

121

[41] J. Wang and G. Joshi, “Adaptive communication strategies to achieve the best

error-runtime trade-off in local-update sgd,” SysML Conf, 2019.

[42] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dy-

namic bound of learning rate,” arXiv preprint arXiv:1902.09843, 2019.

[43] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R.

Ganger, P. B. Gibbons, et al., “Exploiting bounded staleness to speed up big

data analytics,” in USENIX, pp. 37–48, 2014.

[44] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:

Building an efficient and scalable deep learning training system,” in OSDI,

pp. 571–582, 2014.

[45] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing, “High-

performance distributed ml at scale through parameter server consistency mod-

els,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[46] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski, “Pregel: a system for large-scale graph processing,” in Proceed-

ings of the 2010 ACM SIGMOD International Conference on Management of

data, pp. 135–146, ACM, 2010.

122

[47] K. Siddique, Z. Akhtar, E. J. Yoon, Y.-S. Jeong, D. Dasgupta, and Y. Kim,

“Apache hama: An emerging bulk synchronous parallel computing framework

for big data applications,” IEEE Access, vol. 4, pp. 8879–8887, 2016.

[48] H. Senger, V. Gil-Costa, L. Arantes, C. A. Marcondes, M. Maŕın, L. M. Sato,

and F. A. Da Silva, “Bsp cost and scalability analysis for mapreduce opera-

tions,” Concurrency and Computation: Practice and Experience, vol. 28, no. 8,

pp. 2503–2527, 2016.

[49] M. F. Pace, “Bsp vs mapreduce,” Procedia Computer Science, vol. 9, pp. 246–

255, 2012.

[50] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of

open source tools for machine learning with big data in the hadoop ecosystem,”

Journal of Big Data, vol. 2, no. 1, p. 24, 2015.

[51] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

D. Tsai, M. Amde, S. Owen, et al., “Mllib: Machine learning in apache spark,”

The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[52] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization with

partial processing for iterative ml jobs on clusters,” in Proceedings of the 19th

Int. Middleware Conference, pp. 253–265, ACM, 2018.

123

[53] M. Teng and F. Wood, “Bayesian distributed stochastic gradient descent,” in

NIPS, pp. 6378–6388, 2018.

[54] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient

for nonconvex optimization,” in Advances in Neural Information Processing

Systems, pp. 2737–2745, 2015.

[55] H. Zhang, C.-J. Hsieh, and V. Akella, “Hogwild++: A new mechanism for

decentralized asynchronous stochastic gradient descent,” in 2016 IEEE 16th

International Conference on Data Mining (ICDM), pp. 629–638, IEEE, 2016.

[56] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale

gradients can win the race: Error-runtime trade-offs in distributed sgd,” in

AISTATS, pp. 803–812, 2018.

[57] “SOSCIP GPU.” accessed 2018-08-01.

[58] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” tech. rep., Citeseer, 2009.

[59] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object

localization using convolutional networks,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 648–656, 2015.

[60] A. Krizhevsky, “One weird trick for parallelizing convolutional neural net-

works,” arXiv preprint arXiv:1404.5997, 2014.

124

[61] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[62] L. Perez and J. Wang, “The effectiveness of data augmentation in image clas-

sification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[63] Y. Xu, T. Xiao, J. Zhang, K. Yang, and Z. Zhang, “Scale-invariant convolu-

tional neural networks,” arXiv preprint arXiv:1411.6369, 2014.

[64] L. Kang, P. Ye, Y. Li, and D. Doermann, “Simultaneous estimation of image

quality and distortion via multi-task convolutional neural networks,” in Image

Processing (ICIP), 2015 IEEE International Conference on, pp. 2791–2795,

IEEE, 2015.

[65] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and

J. Martens, “Adding gradient noise improves learning for very deep networks,”

arXiv preprint arXiv:1511.06807, 2015.

[66] S. Hadjis, C. Zhang, I. Mitliagkas, D. Iter, and C. Ré, “Omnivore: An op-

timizer for multi-device deep learning on cpus and gpus,” arXiv preprint

arXiv:1606.04487, 2016.

125

[67] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus opti-

mization,” in International Conference on Machine Learning, pp. 1701–1709,

2014.

[68] F. Dunke, Online optimization with lookahead. PhD thesis, Karlsruhe Institute

of Technology, 2014.

[69] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance

of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265,

2019.

[70] K. Benz and T. Bohnert, “Dependability modeling framework: A test procedure

for high availability in cloud operating systems,” in VTC, pp. 1–8, IEEE, 2013.

[71] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR, 2009.

[72] S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic

averaging sgd,” in NIPS, pp. 685–693, 2015.

[73] R. Zhu, S. Yang, A. Pfadler, Z. Qian, and J. Zhou, “Learning efficient parameter

server synchronization policies for distributed {sgd},” in ICLR, 2020.

[74] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning,” in AAAI, 2016.

126

[75] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al., “Communication-

efficient learning of deep networks from decentralized data,” arXiv preprint

arXiv:1602.05629, 2016.

[76] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning: Learning deep

neural networks on the fly,” in Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence (IJCAI-18), pp. 2660–2666, 2018.

[77] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceed-

ings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

127

