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Abstract

Symmetry is fundamental to our understanding of the laws of nature. The simplicity that

is found in the symmetries that explain the most fundamental interactions is remarkably

beautiful. Physicists have worked hard and continue to work even harder to deepen the

understanding of nature with the hope of revealing higher symmetries, among them the

symmetry between electricity and magnetism, but one piece is still missing from this puzzle:

the elusive magnetic monopole.

This dissertation presents a search for magnetic monopoles produced at the Large

Hadron Collider in 8 TeV centre-of-mass energy proton–proton collisions using the AT-

LAS detector. The highly ionizing nature of monopoles was exploited to look for regions

of high ionization density in the Transition Radiation Tracker and energy deposits in the

Liquid-Argon electromagnetic calorimeter with very low lateral dispersion. The search used

7 fb−1 of data collected by a dedicated trigger for highly ionizing particles, which made the

ATLAS detector sensitive to monopoles with charge greater than the Dirac charge, in partic-

ular, twice the Dirac charge, for the first time. The results of the search were interpreted for

models of pair production of spin-0 and spin-1/2 monopoles through the Drell-Yan process.

A model-independent interpretation of the search is also presented. In the absence of an

observation of events that were consistent with the expected monopole signal, upper limits

on production cross section were set for all the scenarios considered. A model-independent

limit of 0.5 fb was set for monopoles in fiducial regions of high selection efficiency. Lower

mass limits were obtained for pair-produced spin-0 and spin-1/2 monopoles. This search ex-

cluded pair-produced spin-1/2 monopoles with the Dirac charge with mass below 1340 GeV,

the most stringent mass limit to date.
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Chapter 1

Introduction

This section briefly introduces the Standard Model of particle physics and the

physics of high-energy colliders. The theoretical status of magnetic monopoles

is described with emphasis on the results that motivate their experimental

searches. A review of the most common detection techniques and the results

of the most relevant experimental searches is also presented.

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is the theory that describes three of the four

known fundamental forces. These are the electromagnetic, weak and strong interactions.

The SM is a gauge theory invariant under transformations of the group SU(3)C×SU(2)L×
U(1)Y, where the SU(3)C describes the strong interaction between particles that possess

colour charge, and SU(2)L × U(1)Y describes the electroweak interactions. It was the

product of many contributions, with particular merit to those from S. L. Glashow [1], S.

Weinberg [2] and A. Salam [3], which set the foundations of the theory of electroweak

interactions and led to the discovery of its force carriers, the Z and W± bosons.
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Figure 1.1: Particle content of the SM model of particle physics [4]. The values of spin,
electric charge and approximate mass are also shown.

1.1.1 Particle content of the Standard Model

The particle content of the SM consists of the most fundamental constituents of matter

known to date, divided in two main categories: fermions and bosons. Fermions are particles

that obey the Fermi exclusion principle and have half-integer spin, in units of ~. Fermions

include leptons and quarks. Bosons, on the other hand, have integer spin. Most bosons in

the SM are vector bosons of spin-1 that represent the force carriers of the interactions, i.e.,

the photon (γ), the Z andW± bosons, and the gluon (g). Only the recently discovered Higgs

boson (H) is a spin-0 scalar. Leptons and quarks possess weak isospin and hypercharge,

interacting weakly and electromagnetically, except for the neutrinos, which are electrically

neutral. In addition to the weak interaction, quarks are subject to the strong interaction,

mediated by the gluons, as they possess colour charge.

Three lepton families or generations have been observed in nature comprising the charged

electron (e),1 muon (µ) and tau (τ) leptons and their respective neutrinos (νe,µ,τ ). In the

quark sector, three generations have been observed as well; each contains one down-type

1Historically, the electron has been noted as e, a symbol shared with the magnitude of the electron’s

electric charge. In this section the symbol e may be used for the electron; in the remaining sections and

chapters it will only represent the magnitude of the electric charge of the electron.
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and one up-type quark. The down-type quarks of the three generations are known as down

(d), strange (s) and bottom (b), while the up-type quarks are known as up (u), charm (c)

and top (t). A summary of the SM particles, including their associated spin, electric charge

and approximate mass is shown in Fig. 1.1. Each one of the particles mentioned above

has been observed to have an associated antiparticle, which differs only in the sign of the

intrinsic additive quantum numbers, e.g, electric charge (for non-neutral particles), colour

charge, lepton number.

1.2 Physics of proton–proton high energy collisions

The highest-energy particle accelerator currently in operation is the Large Hadron Collider,

which collides protons at energies in the TeV scale. Protons are baryons composed of two

u and one d quarks, which are known as the valence quarks. The high mass of the proton,

with respect to that of its valence quarks, is mostly due to the binding energy. Inside the

proton, valence quarks exchange gluons, which in turn may decay into quark–antiquark

pairs, known as sea quarks, and recombine into gluons. Collectively, the valence quarks,

sea quarks and gluons that form the proton are known as partons. When protons collide,

partons, one from each proton, interact via the interactions described by the SM. In an

inelastic collision, the interaction between these two constituents of the proton is known as

the hard scatter.

1.2.1 The underlying event

In addition to the hard scatter, additional processes take place involving the remnants of

the colliding protons. This is known as the underlying event. The partons involved in the

hard scatter and the byproducts of the interaction may also contribute to the underlying

event via initial and final state radiation. Although the underlying event mostly consists of

low-momentum-transfer processes involving the strong interaction, in some cases there may

be multiple parton interactions in which more than one parton from each proton participate

in hard scatter processes. The presence of the underlying event generates an increase in the
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charged-particle density in the detector, which has an effect on the measurements performed

by particle detectors in high-energy proton–proton collisions [5, 6].

Initial and final state radiation

In hadron colliders, the interacting partons possess colour charge leading to the spontaneous

emission of gluons before the hard scatter takes place. This process is known as initial state

radiation. On the other hand, the byproducts of a hard scatter may also radiate before

hadronization occurs. This is known as final state radiation.

1.2.2 Multiple collisions in an event

In order to increase the probability of a hard scatter in a collision, dense bunches of particles

are used. This may lead to multiple collisions in a bunch crossing, with a number of them

being actual hard-scatter interactions while others correspond to a pion exchange between

protons. Protons may collide elastically in what is known as a non-diffractive collision,

or may collide inelastically in a single- or double-diffractive collision in which one or both

protons dissociate into a mixture of particles. A third type of inelastic collision may also

occur: the central-diffractive collision in which the final state particles are produced in the

detector central region while the protons remain intact. These three inelastic processes

account for about 25–30% of the total inelastic cross section [7]. The additional inelastic

collisions that take place when two bunches of protons collide are known as pileup.

1.3 Magnetic monopoles

Elementary particles in nature have been observed to be electrically charged or neutral.

Only elementary particles that possess non-neutral electric charge have been observed to

interact electromagnetically.2 This interaction occurs between electrically charged particles

and electromagnetic fields, of which the photon is the quantum mechanical representation.

2Composite particles such as light neutral mesons have radiative decay modes. However, these decay

modes are a consequence of the interaction between the electrically charged constituents of the composite

particles.
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1.3.1 Magnetic monopoles and electromagnetism

The classical theory of electromagnetism, which describes the dynamics of electrically

charged particles and electromagnetic fields, is contained in Maxwell’s equations

~∇ · ~E =
ρe
ǫ0
, ~∇× ~E = −∂

~B

∂t
,

~∇ · ~B = 0, ~∇× ~B = µ0ǫ0
∂ ~E

∂t
+ µ0~je,

(1.1)

where ~E and ~B are the electric and magnetic fields, respectively, ρe the electric charge

density, and ~je the electric current density. In Maxwell’s equations, only electric charge

densities and electric current densities appear as sources of electric and magnetic fields.

The absence of a magnetic charge or a magnetic current density is not a prediction of the

theory but a result of experimental observation. In fact, Maxwell’s equations can be written

in a form that includes both the electric and magnetic components:

~∇ · ~E =
ρe
ǫ0
, ~∇× ~E = −∂

~B

∂t
− µ0~jm,

~∇ · ~B = µ0ρm, ~∇× ~B = µ0ǫ0
∂ ~E

∂t
+ µ0~je,

(1.2)

with ρm and ~jm the magnetic charge and current densities, respectively. A region of space

with magnetic charge density, ρm, has an integrated magnetic charge, g, giving rise to a

magnetic monopole. Monopoles can also be considered to be point particles with magnetic

charge density ρm = gδ(~x). Maxwell’s equations in the form of Eq. (1.2) are symmetric

under the following duality transformation:




~E

c ~B



 =





cos ξ sin ξ

− sin ξ cos ξ









~E′

c ~B′



 ,





cρe

ρm



 =





cos ξ sin ξ

− sin ξ cos ξ









cρ′e

ρ′m



 , (1.3)

where c is the speed of light and ξ is the transformation parameter.

This symmetry raises a fundamental question about the point of defining electric and

magnetic charges (and their corresponding current densities) if a simple transformation can

relate them. It makes no sense to define electric and magnetic charge individually. However,

one can define the ratio of magnetic to electric charge,

ρm
cρe

=
−(cρ′e) sin ξ + ρ′m cos ξ

(cρ′e) cos ξ + ρ′m sin ξ
, (1.4)
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and assume that it is the same for all particles. Under this assumption, a duality transfor-

mation can be chosen such that ξ = 0 and
ρm
cρe

= 0. Although taking this ratio as zero may

seem an arbitrary choice, experimental measurements on the magnetic charge of matter

have shown that g < 10−26gD and g < 10−24gD for nucleons and electrons, respectively [8],

where gD is the Dirac magnetic charge.3 Thus, the generalized form of Maxwell’s equations

(Eq. (1.2)) becomes the known magnetic monopole-free form of Eq. (1.1).

The observation of a magnetic monopole in nature would restore symmetry in Maxwell’s

equations, leading to the case in which the fields transform as ~E → ~B and ~B → − ~E, and

the sources as cρe → ρm and ρm → −cρe, for ξ = π/2.

1.3.2 Dirac monopoles

During the first half of the twentieth century, Dirac tried to establish whether magnetic

monopoles could be accommodated within the existing framework of electromagnetism and

quantum mechanics. His efforts lead to a prediction of great relevance for physics: the

existence of magnetic monopoles is compatible with quantum mechanics and explains the

observed quantization of electric charge [9, 10].

The Dirac string

The existence of a magnetic monopole of magnetic charge g requires the formulation of an

electromagnetic vector potential, ~A, from which a divergent magnetic field of the form

~B(~r) = ~∇× ~A =
µ0g

4πr2
r̂, (1.5)

can be obtained. Dirac proposed the vector potential of an infinitely thin solenoid extending

from −∞ to the origin as a solution. However, this potential, given by

~A(~r) =
µ0g(1− cos θ)

4πr sin θ
φ̂, (1.6)

3The magnetic charge, g, is commonly expressed in terms of the Dirac charge, gD, which is considered

as the elementary magnetic charge. See Sec. 1.3.2 on the Dirac monopole and the charge quantization

condition.
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is not defined along θ = π. This singularity, known as the Dirac string, poses no problem

as it is invisible, since the actual observable in classical electrodynamics is ~B, and ~∇ × ~A

gives a field of the same form as that of Eq. (1.5).

Other vector potential configurations that do not include singularities have been pro-

posed [11]. For instance, a vector potential that is defined separately for each hemisphere

could avoid singularities:

~A(~r) =























µ0g(1− cos θ)

4πr sin θ
φ̂, 0 ≤ θ ≤

π

2
,

−
µ0g(1 + cos θ)

4πr sin θ
φ̂,

π

2
≤ θ ≤ π.

(1.7)

This set of vector potentials also yields the magnetic field of a monopole. It is important

to note that no assumption on the spin of the monopole has been made so far. Thus, both

fermion-like and boson-like particles are Dirac monopole candidates. Also, in Dirac’s theory

of magnetic monopoles the mass of the monopole is not specified.

Charge quantization condition

In classical electrodynamics, the physical observables correspond to the electric and mag-

netic fields, ~E and ~B. The scalar and vector potentials are just defined as mathematical

tools. However, in quantum electrodynamics, these potentials acquire a much more rel-

evant role and their presence has physical consequences. This is clearly evident in the

Aharonov–Bohm effect [12], in which electrically charged particles in the presence of an

electromagnetic vector (or scalar) potential, but no electric or magnetic field, experience a

phase change that leads to physically observable quantum mechanical interference effects.

An electrically charged particle must therefore experience the presence of the Dirac string

from the vector potential in Eq. (1.5).

A point particle with electric charge q going around the Dirac string describing an

infinitesimally small loop will experience a change in its wave function’s phase given by

∆φ =
q

~

∫

~A · d~l = lim
θ→π

q

~

µ0g(1− cos θ)

4πr sin θ

∫ 2π

0
r sin θdφ =

µ0qg

~
. (1.8)
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The presence of the Dirac string is thus, in principle, detectable. In order to make the

string undetectable, as would be expected from a real monopole, the phase change has to

be a multiple of 2π. This requirement leads to a result of great importance: the existence of

a magnetic monopole requires the quantization of charge. This result, known as the Dirac

quantization condition, can be written as

qg =
nh

µ0
, (1.9)

where n is a non-negative integer.

It must be noted that Dirac’s quantization condition can be obtained by considering

the vector potential of Eq. (1.7) and requiring that the difference between the phase shifts

induced by the vector potentials of both hemispheres at θ = π/2 be a multiple of 2π [11].

Another way to derive Dirac’s quantization condition is to quantize the angular momentum

of a system of an electrically charged particle and a magnetic monopole [13]. The fact that

the charge quantization is achieved in several scenarios with magnetic monopoles reinforces

the importance of Dirac’s results.

Electric charge has been observed in nature quantized in units of the electron electric

charge, e [14], which is also the lowest absolute non-zero electric charge observed in nature.4

Thus, Eq. (1.9) can be rewritten in terms of e and the fine structure constant α = µ0e2c
4π~ ,

and in the lowest case, n = 1, the elementary magnetic charge, known as the Dirac charge

gD, can be obtained:

g =
n

2α
(ce)

n=1−−→ gD =
(ce)

2α
. (1.10)

An important result can be derived from Eq. (1.10): the Dirac charge, gD, is roughly

equivalent to 68.5 times the elementary electric charge, e.5

Schwinger monopoles

Decades after Dirac’s prediction of magnetic monopoles as a way to understand charge

quantization, Julian Schwinger revised the theory, in particular, he studied its relativistic

4Strongly interacting particles, such as quarks, possess fractional electric charges of ± 1

3
e and ±

2

3
e. How-

ever, their observation is restricted to bound states of quarks with electric charge quantized in units of e.
5In SI units the magnetic charge is expressed in A·m and the electric charge in A·s. In Gaussian units

both magnetic and electric charge are given in esu.
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invariance [15]. As a result, he found that the vector potential that represents a solution

for a magnetic monopole field is given by

~A(~r) = −µ0g
4πr

cot θφ̂. (1.11)

This vector potential leads to a quantization condition that restricts the integer n to even

values only, i.e.,

qg =
2nh

µ0
. (1.12)

This discrepancy appears from the use of a vector potential with an infinite discontinuity

or string along θ = 0 and θ = π, as opposed to the semi-infinite string used by Dirac.

The minimum magnetic charge of monopoles in Schwinger’s theory thus possesses twice the

Dirac charge, gD, which also has an impact on the magnitude of the magnetic coupling, as

described below.

Schwinger’s work also considered particles that carry both electric and magnetic charge [16].

The existence of such particles, known as dyons, leads to the following generalized quanti-

zation condition:

q1g2 − q2g1 =
2nh

µ0
, (1.13)

where q1, g1 and q2, g2 are the electric and magnetic charges of the two dyons.

Magnetic coupling to the photon

The strength of the coupling between the photon and the electron is given by the fine

structure constant, α. In analogy, a magnetic coupling constant, αm, which determines the

strength of the coupling of magnetic monopoles to the photon, can be defined by substituting

g2 = (ngD/c)
2 for e2, as shown in Fig. 1.2. This leads to

α =
µ0e

2c

4π~

e→g=ngD/c−−−−−−−→ αm =
µ0g

2
D

4π~c
n2. (1.14)

A direct consequence of the quantization condition of Eq. (1.10) is that the strength of

the magnetic coupling is at least four orders of magnitude greater than that of the fine

structure constant. For instance, for n = 1, the magnetic coupling constant is αm ≈ 34.24.

Such large coupling values along with the quantization condition have strong implications

in the understanding of the production of monopoles and their interactions with matter.
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e− e+α =
e2

4πǫ0h̄c
m m̄αm =

µ0g
2
D

4πh̄c
n2

Figure 1.2: Feynman diagram depicting the interaction vertices between electrons and pho-
tons (left) and magnetic monopoles and photons (right). The magnetic coupling is defined
in analogy to the fine structure constant.

1.3.3 Production of Dirac monopoles

A monopole–anti-monopole pair would be subject to a strong attractive potential at the

moment of its creation. Thus, monopoles could only be sought in atomic processes involving

energies of at least 500 MeV, as estimated by Dirac [10]. Such energy regimes have been

accessible at particle colliders for several decades now. The large magnitude of the magnetic

coupling limits the reliability of perturbative pair production cross section predictions at

colliders since higher-order contributions diverge. Therefore, only production models at first

order are assumed in scenarios with energies accessible by the current particle accelerators.

Drell-Yan production of monopoles

In searches for monopoles produced at hadron colliders, the leading-order Drell-Yan pro-

cess [17] is the most commonly used model. In this scenario, a quark and an antiquark from

the colliding hadrons interact via a Z boson or a photon producing a lepton pair. In order

to accommodate monopoles in the Drell-Yan mechanism, only a virtual photon is consid-

ered as no assumption on the weak interaction of monopoles is made. Although Drell-Yan

production is normally for fermion pair production, spin-0 particles can also be produced.

Figure 1.3 shows the Feynman diagrams of monopole–anti-monopole production assuming

the Drell-Yan mechanism for spin-0 (left) and spin-1/2 (right) monopoles. The monopole

coupling to the photon used in this scenario corresponds to that described in Sec. 1.3.2,

formulated in analogy to the fine structure constant and proportional to n2, with g = ngD.
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Figure 1.3: Feynman diagrams for pair production of spin-0 (left) and spin-1/2 (right)
monopoles assuming the Drell-Yan production mechanism in which the production of
monopoles is only mediated by a photon.

The Drell-Yan production model has been used as the benchmark in direct searches for

monopoles at particle colliders, thus this model was used in the interpretation of the results

of this search.

Monopole production via photon fusion

Additional leading-order spin-1/2 monopole production mechanisms in proton collisions have

been proposed, e.g., monopole production via photon fusion [18]. Figure 1.4 shows the

Feynman diagrams of the processes that contribute to the monopole production from photon

fusion. The predicted cross section of this production mechanism at a centre-of-mass energy

of 8 TeV is comparable to that of the Drell-Yan case and about 50 times larger at a centre-

of-mass energy of 14 TeV, making it a very important scenario to consider at the Large

Hadron Collider in Run 2. The production cross section of monopoles from photon fusion

has been calculated for spin-0 and spin-1 monopoles as well [19]. This production mechanism

has never been considered in direct searches for magnetic monopoles at particle colliders,

including this work.

1.3.4 Monopoles as topological defects

Monopoles are predicted by grand unified theories (GUTs) in which the U(1) group of

electromagnetism is embedded in a larger compact non-Abelian group. This was shown
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Figure 1.4: Feynman diagrams for pair production of spin-1/2 monopoles from photon fusion.

independently by ’t Hooft [20] and Polyakov [21]. This is also the case of the SM, which

consists of a SU(2)L × U(1)Y symmetry that breaks down to the U(1) symmetry of elec-

tromagnetism, giving rise to electroweak monopoles. However, it has been argued that

such a symmetry group does not admit monopole solutions when it undergoes spontaneous

symmetry breaking [22, 23].

In GUT models, the minimum of the scalar potential is degenerate. The symmetry of

the vacuum is broken when the vacuum state of the scalar field assumes a specific direction.

However, GUT models admit another solution in which the direction of the scalar field is

coupled to the spatial direction. This solution is known as the hedgehog configuration:

φa = v
ra

r
, a = 1, 2, 3. (1.15)

This solution is topologically stable despite not corresponding to the absolute minimum of

the scalar potential [20]. Equation (1.15) leads to a solution of the non-Abelian electro-

magnetic gauge potential, which represents the Coulomb-like non-Abelian field of a point

particle from which the Dirac string vector potential can be extracted [24].

Charge quantization in GUT models

In Dirac’s theory of magnetic monopoles, charge quantization is a consequence of the ex-

istence of monopoles. In GUT models the charge quantization condition arises if the U(1)

group of electromagnetism is embedded into a semi-simple non-Abelian group of higher

rank. These are in fact two ways of seeing the same situation. In GUT models where

the U(1) group of electromagnetism is a subgroup of a higher rank semi-simple group that

undergoes spontaneous symmetry breaking, there are monopole solutions. In GUT models,
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the non-Abelian analog of Dirac’s charge quantization condition reads just as Eq. (1.9) and

thus the minimum magnetic charge of GUT monopoles is the Dirac charge, gD.

Monopole mass in GUT models

Unlike Dirac’s theory of magnetic monopoles, GUT models have led to a prediction of the

mass of the monopole. This is obtained as the energy of the monopole configuration at

rest, which classically corresponds to the monopole mass. The energy of the monopole

configuration is composed of the energy of the Abelian field outside the monopole core,

Rc, which is related to the reciprocal of the mass of the vector boson of the model Rc ∼
(mX)−1 ∼ (ev)−1, and the energy of the scalar field inside the core [24]. The monopole

mass predicted by the GUT models is then approximately M ≈ 137mX . The mass of the

vector boson in GUT models is of the same order as the unification scale, i.e., 1016 GeV [25].

Thus, the mass of magnetic monopoles predicted by GUT models is of order 1018 GeV, well

outside the reach of particle colliders.

Monopoles in electroweak models

Magnetic monopoles within the framework of the SM are believed not to exist [22,23]. How-

ever, it has been proposed that monopole-like solutions are possible in the SM electroweak

sector [26]. These solutions, known as electroweak monopoles, obey Schwinger’s charge

quantization condition (Eq. 1.12) and thus have a minimum magnetic charge of 2gD.

Unlike GUT monopoles, electroweak monopoles do not have a well-defined mass in the

theory, just like Dirac monopoles. However, recent developments predict a monopole mass

of order 4—10 TeV [27]. Such monopoles could be produced at hadron colliders.

1.4 Passage of monopoles through matter

Magnetic monopoles interact with electromagnetic fields in a similar manner as electrically

charged particles. The force that a particle with electric and magnetic charge experiences
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in the presence of an electromagnetic field is described by the Lorentz force

~F = q
(

~E + ~v × ~B
)

+ g

(

~B − ~v ×
~E

c2

)

, (1.16)

with q and g the electric and magnetic charges, respectively. Due to the large electric charge

equivalent of the Dirac charge (gD ≈ 68.5(ce)), the interaction of a magnetic monopole with

an electric field is at least one order of magnitude stronger than that of a particle with the

electron charge. Conversely, an electron in an atomic orbital would experience the magnetic

field of a moving monopole of charge g with a strength βg, where β is the monopole velocity

relative to the speed of light. The appearance of the β factor in the interaction strength,

as indicated by the Lorentz force formula in Eq. (1.16), has strong implications in the

behaviour of the stopping power for magnetically charged particles.

1.4.1 Energy loss by ionization

The energy losses by ionization of electrically charged particles are described by the Bethe-

Bloch formula given by

−dE
dx

=
4πe4z2Ne

mec2β2

[

ln

(

2mec
2β2γ2

I

)

− β2 − δ

2

]

, (1.17)

where z is the charge of the projectile particle in units of e and βc its velocity, mec
2 the

electron rest mass, Ne and I are the electron density and mean ionization energy of the

material, and δ is a density effect correction that becomes relevant for ultrarelativistic

particles.

Magnetic monopoles ionize the medium through which they travel, depositing large

amounts of energy due to the strength of the interaction of orbiting electrons with the

magnetic field of monopoles. As a first approach, a simple substitution of βg for ze can be

done in order to study the interaction of monopoles with matter using formulas originally

intended for interactions between particles that possess electric charge, e.g., Eq. (1.17).

The energy losses of monopoles consist of two regimes: a high-momentum transfer or

close-interaction regime, which has been modelled by Kazama, Yang and Goldhaber (KYG)

by solving the Dirac’s equation of an electron in the magnetic field of a monopole [28],
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and a low-momentum transfer or distant-interaction regime, modelled using the dipole

approximation. Ahlen has put together a stopping-power6 formula based on the first-order

Born approximation that takes into account both close- and distant-interaction regimes

with an accuracy of about 3% for monopoles with β & 0.2 and γ . 100 [29]. The monopole

energy losses by ionization are thus given by

−dE
dx

=
4πe2g2

mec2
Ne

[

ln

(

2mec
2β2γ2

I

)

+
k(g)

2
− 1

2
− δ

2
−B(g)

]

, (1.18)

where g = ngD, k(g) is the KYG correction given by

k(g) =











0.406 |n| ≤ 1,

0.346 |n| ≥ 1.5,

(1.19)

which arises from the relativistic cross section calculated in Ref. [28], and B(g) is the Bloch

correction given by

B(g) =











0.248 |n| ≤ 1,

0.672 |n| ≥ 1.5,

(1.20)

which accounts for higher order effects for low-energy collisions in which the monopole

velocity approaches the orbital velocity of the electron. This stopping-power formula is

valid for relativistic factors γ . 100, beyond which spin effects and contributions from the

internal structure of nuclei become important.

At very low velocities, i.e., β < 0.01, the energy losses of monopoles are described by [30]

−dE
dx

= (45 GeVcm−1)n2β, (1.21)

with n = g/gD. This formula is just a lower limit on the energy losses as interactions with

the electron spin are not modelled. For velocities in the range 0.01 < β < 0.1, shell effects

may play a role. However, such corrections are small and the stopping power is modelled

by interpolating between the predictions of Eq. (1.18) and Eq. (1.21).

The energy losses by ionization of monopoles are considered independent of spin as the

energy involved in spin-flip transitions is negligible in the ranges considered. The monopole

6The stopping power corresponds to −dE/dx. Both names are used interchangeably in the literature and

herein.
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Figure 1.5: Energy loss per unit length, dE/dx, by an electrically charged particle with
|z| = 68.5 (left) and a magnetic monopole of charge |g| = 1.0gD (right) as a function of the
particle velocity, β, for different materials [31].

spin only becomes important at very low velocities, for which ionization has ceased due to

the β dependence of the magnetic field that the electron experiences [29].

Based on the stopping-power formulas for magnetically and electrically charged parti-

cles (Eqs. (1.17) and (1.18)), it can be seen that energy losses by ionization of a magnetic

monopole of charge |g| = 1.0gD are four orders of magnitude higher than those of an electri-

cally charged particle with |z| = 1. A comparison between the dominant terms of Eq. (1.18)

and Eq. (1.17) shows the main difference between the interactions of electrically and mag-

netically charged particles with matter. The absence of a dependence on the reciprocal of

the projectile velocity squared, 1/β2, in Eq. (1.18) means that magnetically charged parti-

cles deposit more of their kinetic energy at high velocities than electrically charged particles.

At low velocities, electrically charged particles deposit most of their kinetic energy, resulting

in what is known as a Bragg peak towards the end of their trajectory. On the other hand,

monopole energy losses decrease with decreasing monopole velocity. Figure 1.5 shows the

energy losses by ionization by an electrically charged particle of charge |z| = 68.5 (left) and

a magnetic monopole of charge |g| = 1.0gD (right) as a function of the particle velocity, β,

for different materials.
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1.4.2 Energy loss by bremsstrahlung and pair production

Magnetic monopoles passing through a medium may interact with the nuclei. Such collisions

would cause the monopole to accelerate, radiating photons and thus losing some kinetic

energy. The radiated photons may then produce an electron–positron pair in the presence

of an atomic nucleus in a process known as pair production. The process by which a charged

particle gives off a photon in the presence of nuclei is known as bremsstrahlung and accounts

for part of the energy losses of monopoles due to radiation, as described by [32]:

−dErad

dx
=























16

3

NZ2e2

~c

g4

mc2
, β ≪ 1,

16

3

NZ2e2

~c

g4

mc2
γ ln

(

233m

Z1/3me

)

, γ ≫ 1,

(1.22)

where m is the monopole mass, N and Z are the atomic density and number of the material

such that Ne = ZN . The ratio of energy losses by bremsstrahlung to energy losses by

ionization (Eq. (1.18)) can be written as

−dErad

dEion
=























4

3π

Zg2

~c

me

m

1

λ
, β ≪ 1,

4

3π

Zg2

~c

me

m

1

λ
γ ln

(

233m

Z1/3me

)

, γ ≫ 1,

(1.23)

where λ represents the factor multiplying the leading term of Eq. (1.18). It is important to

note that for a monopole of mass in the TeV range and charge |g| = 1.0gD the energy losses

by bremsstrahlung are at least three orders of magnitude lower than the energy losses by

ionization in the range γ < 10, which corresponds to realistic scenarios for production at

the Large Hadron Collider.

The magnetic field of a fast travelling monopole develops a transverse electric field

component that goes as

~E⊥ = −γ~β × ~B, (1.24)

and resembles a beam of photons under the equivalent photon approximation [33]. These

quasi-real photons may decay into electron–positron pairs in the presence of the field of a

nucleus or, to a lesser extent, an orbiting electron, contributing to the monopole energy
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Figure 1.6: Energy loss per unit distance, dE/dx, for a magnetic monopole of charge
|g| = 1.0gD and mass 1000 GeV in argon. Three energy loss mechanisms are shown: ioniza-
tion (solid-red line), bremsstrahlung (dashed-blue line) and pair production (dotted-green
line) [35].

losses. The energy of these photons, however, is not high enough to make energy losses

by pair production significant for realistic scenarios with relativistic factors γ < 10. Such

an energy loss mechanism is relevant in the case of ultrarelativistic monopoles in cosmic

radiation [34].

Figure 1.6 shows the energy losses of a monopole of mass 1000 GeV and charge |g| =
1.0gD in argon for the three different mechanisms discussed above: ionization, bremsstrahlung

and pair production. The contribution to the total energy losses from bremsstrahlung and

pair production in the range γ < 10 are negligible. Thus, it can be concluded that the

signature of a monopole produced at a particle collider would be dominated by ionization

of the traversed medium.

1.5 Monopole detection methods

The prediction of magnetic monopoles by Dirac [9] as an explanation to charge quantization

led to a number of searches involving several detection techniques. Later on, with the
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prediction of ’t Hooft-Polyakov [20, 21] monopoles in GUT models, the interest in such

particles grew even stronger.

Detection methods cover a range of techniques and technologies, mostly taking advan-

tage of the large ionization produced by monopoles as they pass through matter. In addition

to a highly ionizing signature, monopoles accelerate in the presence of magnetic fields in

a way that differs from that of particles with electric charge. Thus, monopoles could be

detected as anomalous tracks in detectors immersed in magnetic fields. The detection of

the divergent magnetic flux of a monopole, which would be the ultimate signature, setting

it apart from other highly ionizing particles possessing electric charge, remains the most

sensitive technique for monopoles that become bound in matter.

The existence of monopoles can also be tested indirectly by searching for deviations

from known physics processes that could be associated to interactions involving monopoles.

For instance, in SM processes in which photons, to which monopoles couple strongly, are

present, deviations from SM predictions may be observed.

This section describes some of the most common detection methods used in direct and

indirect searches for magnetic monopoles.

1.5.1 Direct detection methods

Monopoles would be detected directly when they interact with matter. The charge quan-

tization condition (Eq. (1.10)) predicts that the Dirac charge, gD, is approximately equiv-

alent to 68.5(ce). With such an electric charge equivalent, monopoles behave as highly

ionizing particles. The energy losses of monopoles in a medium are therefore large and it

is expected that they quickly deposit all their kinetic energy and become trapped in the

material, binding to atomic nuclei. Detection methods have been developed to detect the

presence of magnetic monopoles bound in matter and their passage through some active

material. Several detection techniques are described in this section. The list, although not

exhaustive, contains the most commonly used methods along with references to some of the

experimental searches that have used them.
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Monopoles bound in matter

Monopoles may have been produced in the early universe during a phase transition as de-

scribed in Sec. 1.3.4. Such monopoles may be freely accelerated by galactic magnetic fields,

some maybe even to relativistic speeds, while others may have become trapped in inter-

stellar matter, binding to nuclei with energies of order 100 keV [36]. Monopoles predicted

by GUT models bound in matter are expected to be found, among other possibilities, in

meteorites [37], lunar rocks [38] and in the earth’s crust [39].

Another type of monopole can also be found trapped in matter: those produced at

particle colliders. A monopole produced in a high-energy collision will require some kinetic

energy to make it past the first layers of inactive material before reaching active parts of the

detector. Thus, the probability of stopping in, for instance, the beampipe is high. Materials

surrounding the interaction points of high-energy particle colliders are also possible sources

of trapped monopoles [40, 41].

The most common method for detecting magnetic monopoles trapped in matter consists

of passing a sample of material, such as rocks or parts of a decommissioned particle detector,

through a superconducting loop coupled to a superconducting quantum interference device

(SQUID) magnetometer. A monopole would generate an increase in the magnetic flux

through the loop, inducing a persistent current in the system. A magnetic dipole, on the

other hand, would not induce a net current upon full passage through the loop. SQUID

magnetometers can detect variations in magnetic flux as small as a quantum of magnetic

flux φ0 = h/2e. In comparison, the total magnetic flux of a monopole with charge g = gD

is φg = µ0gD = h/e. Thus, a monopole of charge gD would have a total flux of two units of

quantum magnetic flux.

Although the induction technique has been used primarily for detection of monopoles

bound in matter, it has also been implemented to measure the flux of monopoles in cosmic

rays. One famous experimental result is that of Cabrera [42] who, using a SQUID magne-

tometer, measured a single candidate whose signal is consistent with the expected signal

from a monopole with charge gD.

Another technique for detection of monopoles bound in matter consists of applying a
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strong magnetic field on the matter sample in order to extract trapped monopoles. Such

monopoles once extracted would be detected by using a complementary method [43].

High ionization by monopoles

As described in Sec. 1.4.1, monopoles are highly ionizing particles with energy losses about

four orders of magnitude larger than those of a particle with unit electric charge. Most

particle detectors with capabilities to measure dE/dx are designed with singly electrically

charged particles in mind. Therefore, the passage of a monopole through such a detector

would produce a distinct signature. Fast moving monopoles lose large amounts of energy by

ionization, producing copious amounts of energetic δ-rays. This results in a large amount

of charge collected or light produced, depending on the detection mechanism, which can

be interpreted as a highly ionizing particle. Unfortunately, the energy losses of very slow

monopoles (β < 0.01) are not very well understood and it is expected that they become

bound to atomic nuclei [44].

Based on ionization only, the signature of a monopole is not unique since heavy objects

with large electric charge, (hypothetical objects or heavy nuclei) may yield a similar sig-

nal [45]. The measurement of energy losses by ionization is fundamental to most detection

methods. Detectors that measure dE/dx comprise semiconductor trackers, drift chambers

and scintillators, among others.

Heavy etching on nuclear track detectors

Plastic foils or nuclear track detectors (NTD) to identify highly ionizing particles are widely

used in searches for magnetic monopoles in cosmic rays [46,47] and produced at high-energy

particle colliders [48–50]. Plastic foils are placed surrounding the interaction points at

colliders in order to minimize the amount of material in which monopoles could become

trapped. When highly ionizing particles pass through a NTD, the plastic is damaged in a

way that reveals the value of the energy loss rate, dE/dx, which is closely related with the

magnitude of the electric or magnetic charge. The damage is created by the high ionization

and the non-ionizing energy losses due to displacement of atoms from the lattice [51].
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In order to make evident the damage created by the passage of a monopole, NTD foils

are etched by soaking them in a chemical bath that dissolves the damaged section of the

foil. The energy loss rate of the particle, dE/dx, can be determined from the geometry of

the resulting etch pit cones, which are studied under a microscope.

The NTD technology was used by Price et al. [52] in a balloon-borne experiment intended

to study objects with large electric charge in cosmic rays. The authors of Ref. [52] claimed to

have observed evidence for a moving magnetic monopole with charge 2gD. The results were

later reinterpreted as consistent with a slow (β ≈ 0.4) massive particle, a fast (0.7 . β . 0.9)

antinucleus with Z/β = −114, or an ultrarelativistic (β & 0.99) superheavy element with

110 . Z . 114 [53].

Anomalous tracks in magnetic fields

The interactions of monopoles with magnetic fields are described by Eq. (1.16). Unlike elec-

trically charged particles that experience a force in a plane perpendicular to the direction of

the magnetic field, monopoles are accelerated along the field. In order to measure the mo-

mentum of charged particles, tracking detectors are usually immersed in a known magnetic

field. Algorithms for track reconstruction generally assume that particles possess electric

charge and no magnetic charge, so that the momentum of the particle can be determined

from the track curvature. Magnetically charged particles, though, would follow trajectories

in a different plane, producing anomalous tracks. For instance, a particle tracker immersed

in a solenoid magnet that produces a field in the direction of the z-axis would typically

record tracks that follow spirals that approximate to circumferences in the r− φ plane and

straight lines in the r − z plane. On the other hand, a monopole would follow a parabolic

trajectory (assuming no energy losses) in the r−z plane and a straight line in the transverse

r − φ plane.

The actual trajectory of a monopole in a magnetic field differs from a perfect parabola

as the energy losses are considerable. Nevertheless, parametrizations of the expected trajec-

tory can be used in order to improve the detection efficiency. This technique has been used

in multiple searches at particle colliders [54, 55]. It must be noted that due to the copious
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amount of δ-rays produced by monopoles along their trajectory, track reconstruction algo-

rithms may have difficulties recognizing a pattern associated to a monopole-like particle in

high-granularity tracking detectors.

Other detection methods

In addition to the detection methods described above, there are a number of other techniques

used in monopole searches. In most cases, a combination of detection methods is used. Some

of them are listed below.

Time of flight Monopoles are expected to be heavy. GUT models predict monopoles

of mass ∼ 1016 GeV and lower mass limits from production at colliders imply that

monopoles must have a mass of at least hundreds of GeV (see Sec. 1.6). Therefore,

monopoles are expected to travel at non-relativistic velocities, which allows the use of

time-of-flight detectors. This technique has been used in triggering of monopoles [56,

57].

Cherenkov radiation Fast moving monopoles in cosmic rays can produce large amounts

of Cherenkov radiation leading to a clear signature [58]. In addition, even for monopoles

travelling at a velocity below the threshold for Cherenkov radiation, the production

of large amounts of energetic δ-rays, which produce Cherenkov light, occurs [59].

Nuclear emulsions Nuclear emulsions have been used to detect the passage of monopoles.

Tracks are recorded in thick emulsions and later developed. Results that could be

interpreted as possible evidence of monopoles in cosmic rays were obtained with this

technique [60].

1.5.2 Indirect detection methods

The existence of monopoles can be detected indirectly through the effect that they may have

in higher order contributions to known SM processes. For instance, the decay of a Z boson

produced at a particle collider could be mediated by monopoles, as shown in Fig. 1.7. This

process is well known when the particle involved is an electron as it is highly suppressed
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in the SM. Thus, a contribution from monopoles may be measured at particle colliders.

The reliability of results obtained using indirect methods is subject to discussion. The

magnitude of the magnetic coupling to the photon makes perturbation theory inapplicable.

Therefore, other approaches have to be used in the indirect detection of monopoles.

Z

γ

γ

γ

m

m

Figure 1.7: Feynman diagram of the process Z → γγγ, which can be mediated by fermions
and hypothetically by magnetic monopoles.

1.6 Previous experimental searches

The field of experimental searches for magnetic monopoles has been very active despite the

null results so far. The motivations are strong enough to encourage scientists to ingeniously

build experiments combining different technologies to achieve their purpose. Searches for

magnetic monopoles cover three main areas: monopoles in cosmic rays, monopoles bound in

matter and production of monopoles in high-energy collisions at particle accelerators. In the

absence of conclusive evidence of the existence of monopoles experimental searches report

upper limits on the monopole flux in cosmic rays, on the density of monopoles trapped

in matter and on the production cross section assuming a specific production mechanism.

Only a limited number of experiments have observed events that could be interpreted as

magnetic monopoles. A complete list of all the searches performed so far can be found in

Ref. [61]. The most relevant searches will be summarized in this section.
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1.6.1 Observation of monopole-like events

Several observations of events that could be interpreted as magnetic monopoles have been

made. The interpretation of the experimental results has been reassessed in some cases or

is not conclusive to claim the observation of a magnetic monopole. All the observations of

monopole-like events have been made by experiments studying cosmic rays.

Price et al. (1975) An experiment consisting of multiple layers of NTD foils comple-

mented with a layer of nuclear emulsion and a layer of Cherenkov radiator coupled

to a fast film was launched on a balloon to study heavy cosmic rays with Z ≥ 60.

An event consistent with a monopole of charge 2gD and mass greater than 200 GeV

travelling downwards to earth was observed [52]. However, this observation was later

reassessed when possible errors in the interpretation of the data from the NTD foils

and the nuclear emulsion became apparent. The observed signature is believed to be

from either a slow massive particle, a fast antinucleus or an ultrarelativistic heavy

element [53].

Cabrera (1982) An experiment based on the induction method was set up to detect

monopoles in cosmic rays in such a way that the passage through the superconducting

coils of a particle with charge gD would be measured as a total flux of 8φ0. The

experiment consisted of four coils, which along with the 2φ0 flux associated with a

single Dirac charge accounts for the 8φ0. One event with magnitude 8φ0 was recorded

in a total exposure time of 151 days. The event could not be associated with a spurious

detector response and remains the best candidate for an observation of magnetic

monopoles to date [42].

Anderson et al. (1983) A set of nuclear emulsion plates were placed in a Pb-Hg shield

1370 m underground, such that cosmic rays and local radiation would be completely

avoided. After developing the emulsion, seven tracks were observed that could not

be associated to expected background from α particles. A possible interpretation of

the results is that monopoles may bind to uranium nuclei naturally occurring in the

surroundings of the experimental site. Under the strong magnetic field the uranium
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nuclei would be sufficiently distorted to undergo fission [60].

Caplin et al. (1986) The observation of an unexplained event was made using an exper-

iment dedicated to detect monopoles. Based on the induction technique, this setup

would record a total magnetic flux of 2φ0 when a monopole of charge gD passes

through it. An event with a total flux of 0.83φ0 was observed, and in the absence

of obvious explanations leading to an experimental failure, the event remains as a

possible monopole event [62].

1.6.2 Searches for cosmic monopoles

During the phase transition described by GUT models in which the symmetry of the scalar

field broke down, magnetic monopoles must have been created. The density of these cos-

mological monopoles should have diminished as monopole–anti-monopole annihilation oc-

curred. GUT models predict a monopole density that is comparable with the baryon den-

sity [63], leading to the cosmological monopole problem, which results in a conflict between

cosmology and GUT models. Due to the large mass of GUT monopoles, a density com-

parable to that of baryons would yield a closed universe, contrary to the observations of

an expanding open universe. This problem is solved by assuming that the universe went

through an inflationary period (see Ref. [44] and references therein). The resulting monopole

abundance is then reduced to a level consistent with the experimental observations, and pos-

sibly even too low for an observation to ever happen. Nevertheless, the search for cosmic

monopoles is a very active field.

Cosmological monopoles are expected to have masses near the unification scale (of order

∼ 1016 GeV). Therefore, they are subject to the gravitational attraction of galaxies in

addition to their magnetic fields. Depending on the mass of the monopole one interaction

is dominant. For monopoles of mass greater than 1016 GeV, which is far too heavy to

be produced at high-energy colliders, the gravitational attraction becomes the dominant

interaction by which they gain kinetic energy. Lighter monopoles, on the other hand, gain

kinetic energy mostly by interacting with the magnetic field of galaxies.

A cosmological monopole would be accelerated to a galactic infall velocity of about
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β = 10−3. The interactions with matter of a monopole moving at such a velocity would be

too weak to be efficiently detected using techniques relying on high ionization. Also, based

on Eq. (1.21), the range of such a monopole in rock would be about 109 km and therefore

it would not stop to become trapped in terrestrial material. The accelerating effect that

the galactic magnetic field, of strength B ≈ 3 × 10−10 T, would have on a cosmological

monopole over the coherence length of about L ≈ 1019 m results in a velocity of

v =

(

2gDBL

m

)

≈ 10−2c. (1.25)

Due to the low speeds at which cosmological monopoles would move, most experimental

searches are sensitive to lower mass monopoles that would attain a higher velocity in the

galactic magnetic field and thus lose enough energy by ionization to be detected. Only

experiments that use the induction technique are sensitive to monopoles of all speeds and

therefore all masses as this search method depends only on the magnetic flux produced by

a magnetic pole.

Based on the energy that the galactic magnetic field would give to a cosmic monopole,

Parker set upper limits on the flux of cosmic monopoles [64, 65]. In order for the galactic

field not to be fully depleted in a period of 108 years, the flux of monopoles should be of

order ∼ 10−15 cm−2s−1sr−1. These phenomenological considerations result in a limit that

varies between 10−15 cm−2s−1sr−1 for mass . 1017 GeV and 10−13 cm−2s−1sr−1 for mass

≈ 1020 GeV. It sets a stringent upper limit that has been superseded by only a fraction of

the experiments searching for monopoles in cosmic rays [61, 65].

The MACRO experiment at the Gran Sasso laboratory was optimized for detecting

monopoles with a remarkably wide range of velocities, covering 4 × 10−5 < β < 1 [66]. A

combination of detection techniques was used to achieve sensitivity in such a wide range.

Layers of liquid scintillator sensitive to particles as slow as ∼ 10−4c were used to detect slow

moving monopoles. Streamer tubes filled with a mixture of helium and n-pentane were used

to record the signatures of highly ionizing monopoles in the range β > 10−3. In addition,

NTD foils were used to detect tracks produced by monopoles in various velocity ranges.

No monopole events were observed by MACRO. The combination of several analyses using

the different detection methods led to an upper limit on the flux of monopoles of charge
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|g| = 1.0gD of 1.4 × 10−16 cm−2s−1sr−1. This result was the first to produce limits below

the Parker limit covering such a wide range of monopole velocities.

The RICE experiment located at the south pole was originally designed to detect ultra-

high energy neutrinos [58]. However, it had the capability to detect relativistic monopoles

in the range γ & 107 with a sensitivity maximal for monopoles with γ & 108. In order to

achieve such relativistic factors, monopoles have mass in a intermediate range, i.e., m .

108 GeV. The RICE detection technique consisted of an array of radio antennas, which detect

the Cherenkov radiation produced by the cascades initiated by ultrarelativistic particles in

ice. The RICE experiment did not observe events consistent with magnetic monopoles of

charge |g| = 1.0gD. An upper limit on the monopole flux of order 10−18 cm−2s−1sr−1 for

monopoles with γ ≥ 108 was obtained. This result exceeded the previous limit by MACRO

by two orders of magnitude in its range of sensitivity. In addition to the RICE experiment,

the ANITA-II experiment also searched for ultra-relativistic monopoles using a balloon-

borne antenna to detect Cherenkov radiation produced in ice [67]. This experiment was

sensitive to monopoles of charge |g| = 1.0gD in the range γ ≥ 1010. In the absence of an

observation, an upper limit on the monopole flux was set to 10−19 cm−2s−1sr−1.

The ANTARES experiment was located in the western Mediterranean sea at a depth of

2475 m [59]. It consisted of an array of photomultiplier tubes, which detect Cherenkov radi-

ation produced by muons and electrons travelling through deep sea water. The ANTARES

detector was sensitive to up-going monopoles in the intermediate mass range m . 108 GeV

that have lost a significant amount of energy after passing through the Earth, i.e., β > 0.625.

The Cherenkov radiation resulting from the large number of δ-rays produced by monopoles

is the signal of interest. One event was observed by ANTARES, which was consistent

with the background-only hypothesis. Upper limits on the monopole flux were set to

1.3× 10−17 cm−2s−1sr−1 for monopoles of charge |g| = 1.0gD in the range β > 0.625.

The IceCube experiment is sensitive to relativistic magnetic monopoles in the range

β ≥ 0.51 [68, 69]. Located at the south pole, it can detect monopoles travelling through

ice at speeds below the Cherenkov threshold but producing large amounts of energetic

δ-rays. The Cherenkov light produced by these electrons is collected by photomultiplier
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Figure 1.8: Upper limits on monopole flux at Earth’s surface for monopoles of charge
|g| = 1.0gD as a function of the monopole kinetic energy and mass for various searches by
neutrino experiments [68].

tubes. A monopole event would be four orders of magnitude brighter than a muon event.

No such event was observed and an upper limit on the monopole flux was set at 1.55 ×
10−18 cm−2s−1sr−1. Figure 1.8 shows a summary of the upper limits on monopole flux at

Earth’s surface for monopoles of charge |g| = 1.0gD as a function of the monopole initial

kinetic energy and mass. This summary includes results by some of the neutrino experiments

sensitive to monopoles described above.

Searches for monopoles in cosmic rays include mostly monopoles with masses lower

than that of GUT monopoles, i.e., m . 1016 GeV. However, the most stringent limits on

monopole flux have been obtained for GUT monopoles that are accelerated gravitionally to

velocities in the range 10−5 < β < 0.04. An upper limit on the monopole flux ranging from

6 × 10−28 cm−2s−1sr−1 to 7 × 10−20 cm−2s−1sr−1 for monopoles of mass m > 1017 GeV

was obtained by the Super-Kamiokande experiment [70]. This search differs from all the

other neutrino observatories in that it does not attempt to detect the passage of monopoles

through the active volume of the detector. Instead, the search focuses on a predicted excess

of neutrinos from the sun arriving with an energy of 29.79 MeV. These low-energy neutrinos

are expected to be produced in the sun when monopoles accumulate and catalyze proton
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decays. The mechanism by which the proton decays is known as the Callan–Rubakov

process [71, 72].

1.6.3 Searches for monopoles bound in matter

A number of searches for monopoles trapped in matter have been performed setting up-

per limits on the monopole density for magnetic charges in various ranges. Most of these

searches use the induction technique and have found no evidence of monopoles in meteorites,

ferromagnetic materials and polar volcanic rocks, among other materials. The most strin-

gent upper limits on monopole density have been set to 2.0×10−7 g−1 for charges |g| > 0.6gD

and mass between 1014–1017 GeV [73]. Other searches have set mass-independent limits on

the monopole density of 6.9 × 10−6 g−1 for charges |g| > gD/3 [37] and 9.8 × 10−5 g−1 for

charges |g| ≥ 1.0gD [39].

1.6.4 Searches for production of monopoles at colliders

Magnetic monopoles have been sought at high-energy colliders for decades. However, the

monopoles that could be produced at colliders are restricted to masses within the energy

reach of the accelerators. Therefore, none of the current collider searches is sensitive to

GUT monopoles, not even to those in the intermediate mass range since the maximum

energy achieved by a collider is 13 TeV. The most relevant searches for monopoles have

been performed using data collected at e+e−, pp̄, e+p and pp colliders. These searches have

used a number of techniques to capture the signatures of monopoles as will be described

below.

Indirect searches for monopoles at colliders

Searches for magnetic monopoles have also been performed at colliders based on their

indirect effects. The L3 experiment at the LEP collider searched for the decay process

Z → γγγ, which is highly suppressed in the SM [74]. The existence of monopoles that

couple to the Z boson would enhance the cross section of this process. The observations

were consistent with the QED background expectation leading to a branching ratio limit
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of BR(Z → γγγ) < 0.8 × 10−5, which results in a lower limit on the monopole mass of

520 GeV.

The D0 experiment also performed an indirect search with data from the Tevatron at
√
s = 1.8 TeV [75]. In this search, the production of two high transverse energy photons

in elastic and inelastic collisions was considered. No events passed the selection criteria.

Therefore, lower mass limits of 610, 870 and 1580 GeV were obtained for spin-0, spin-1/2

and spin-1 monopoles of charge |g| = 1.0gD.

Searches at e+e− colliders

Two experiments searched for monopoles produced in e+e− collisions
√
s =91.1 GeV at

the LEP collider. The MODAL experiment [49] was a dedicated experiment that used

NTD foils around one of the LEP interaction points. Monopoles are expected to produce

tracks through the foils that fulfill certain criteria to be deemed as highly ionizing. No

monopole-like tracks in the NTDs were found. In 1992, MODAL set limits on the production

cross section assuming pair production with the Drell-Yan mechanism. This later became

the benchmark model for most of the searches at colliders. An upper production cross

section limit was set to 70 pb. The second experiment, using NTD foils wound around

the beampipe and other parts of the OPAL detector [48], achieving an almost 4π coverage,

was able to produce a more stringent cross section limit of 0.3 pb, assuming the Drell-Yan

mechanism. Due to the energy limitations of LEP, both experiments were only able to

rule out monopoles of mass m < 45 GeV. These results apply to monopoles of charge

|g| = 1.0gD and |g| = 2.0gD.

The limits from LEP were later exceeded by OPAL at LEP2 with data from e+e−

collisions at
√
s =206.3 GeV [76]. The detection techniques of this search varied from that

of previous searches at LEP. OPAL made use of its jet chamber to identify high ionization

deposits and trajectories that bent in a plane parallel to its solenoidal magnetic field. In the

absence of an observation, upper limits on production cross section were set to 0.05 pb for

monopoles of charge |g| = 1.0gD and masses in the range 45–102 GeV, assuming Drell-Yan

production. It can be concluded that the combination of the results from all LEP and LEP2
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searches effectively excludes monopoles of mass m < 102 GeV.

Monopoles at HERA

After the searches at LEP and LEP2, the H1 experiment collected data at the HERA

e+p collider at
√
s =300 GeV. The beampipe of H1 was examined to search for monopoles

produced in collisions that became trapped in it [40]. The induction technique was used to

detect the magnetic flux of monopoles through a superconducting coil coupled to a SQUID

magnetometer. No persistent currents consistent with a monopole signal were detected.

This search assumed a production process different from previous searches since Drell-

Yan production does not occur in e+p collisions. Pair production of monopoles through

photon–photon interactions was assumed. Two specific models were taken into account:

spin-0 monopoles produced in elastic collisions and spin-1/2 monopoles produced in inelastic

collisions. This search considered the effect of the solenoidal magnetic field in which the

beampipe was immersed to determine the acceptance of the search. The upper limits on

production cross section are mass- and charge-dependent as this search was sensitive to

charges 0.1–6.0gD. Upper limits vary from 0.06 pb to 2 pb in the mass range 5–140 GeV.

Direct searches at pp̄ colliders

At the Tevatron, three direct searches for magnetic monopoles produced in pp̄ collisions

have been performed. Analysis of samples from the D0 and CDF detectors exposed to

the byproducts of collisions at
√
s =1.8 TeV, including the D0 beampipe and part of the

CDF forward electromagnetic calorimeter, when passed through a superconducting coil

coupled to a SQUID magnetometer, led to new upper limits on production cross section [41].

The production model assumed by this search was the Drell-Yan mechanism. The upper

production cross section limits obtained are 0.6, 0.2, 0.07 and 0.2 pb for charges 1.0, 2.0,

3.0 and 60gD, respectively. From these cross section limits the corresponding lower mass

limits are 265, 355, 410 and 375 GeV, respectively. Two additional searches were performed

by the CDF experiment using data from collisions at
√
s =1.96 TeV [56, 57]. A different

approach was used in these searches in which a dedicated time-of-flight trigger sensitive to

32



10
-2

10
-1

1

10

10
2

10
2

10
3

√s/2 (GeV)

U
p

p
e
r 

c
ro

s
s
-s

e
c
ti

o
n

 l
im

it
 (

p
b

)

e
+
e

-

pp
pp

e
+
p

OPAL

CDF

E882

H1

L6-MODAL

ATLAS

Figure 1.9: Summary of upper limits on production cross section as a function of
√
s/2 for

several experiments that used data collected at different types of colliders [61].

monopoles with β > 0.2 was used. The selected events were analyzed using the outer central

tracker, in which large ionization and a trajectory consistent with a magnetically charged

particle was expected. No monopole events were observed by either search and therefore

upper cross section limits were set to about 10−2 pb, assuming the Drell-Yan mechanism

for monopoles of charge |g| = 1.0gD. Lower mass limits were set to 476 GeV [57].

Monopoles at the LHC

The collider search that has produced the most competitive limits so far was performed by

the ATLAS experiment with data from pp collisions at
√
s =7 TeV [77]. This search used

several ATLAS subdetectors, combining the measurements from the transition radiation

tracker and the electromagnetic calorimeter in order to identify highly ionizing monopoles

with mass in the range 200–1500 GeV. No monopole events were observed by ATLAS in the

selected dataset. This search was able to produce model independent results using fiducial

regions of high and uniform event selection efficiency, setting upper limits on production
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cross section of about 2 fb for monopoles of charge |g| = 1.0gD and mass in the range 200–

1500 GeV. In addition, assuming the Drell-Yan production mechanism, upper cross section

limits varying from about 0.2 pb to 0.02 pb for masses from 200 GeV to 1200 GeV were

obtained. A lower mass limit of 862 GeV was obtained assuming the Drell-Yan mechanism.

The work presented in this dissertation builds on the knowledge and techniques developed

for the search at ATLAS using data from pp collisions at 7 TeV.

Figure 1.9 presents a summary of the upper limits on production cross section obtained

by searches performed by several experiments with data from different types of particle

colliders.
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Chapter 2

The LHC and ATLAS

This chapter introduces the Large Hadron Collider and the ATLAS detector,

in particular, the Transition Radiation Tracker and the calorimeters, which

play an important role in the detection of magnetic monopoles. A brief de-

scription of the ATLAS trigger scheme and computing infrastructure is also

included.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [78] is the highest-energy particle collider ever built,

allowing frontiers of experimental high-energy physics to be pushed to new regimes. The

LHC is part of CERN’s accelerator complex, which delivers beams of particles to a number of

experiments that study the fundamental laws of physics. Designed as a discovery machine,

the LHC proved so in 2012 when the observation of a new particle consistent with the

Standard Model scalar boson was announced. A diagram of CERN’s accelerator complex is

shown in Fig. 2.1. The LHC has been designed to collide particles in three configurations:

proton–proton (pp), proton–lead ion (p+Pb) and lead ion–lead ion (Pb+Pb). Protons are

produced from a bottle of hydrogen gas by stripping the hydrogen atoms of their electrons,

and then accelerated though a chain that comprises linear and circular accelerators. Before

injection into the LHC, protons split in two beams that circulate in opposite directions

35



Figure 2.1: CERN’s accelerator complex [79].

colliding at four interaction points where the main LHC experiments are located: ATLAS,

ALICE, CMS, and LHCb.

The LHC is a circular collider that accelerates bunches of protons in a 27 km ring

producing collisions at a centre-of-mass energy of
√
s = 7 TeV and

√
s = 8 TeV during

the 2011 and 2012 runs, respectively. These two years along with the first two years of

operation, 2009 and 2010, in which collisions were produced at a centre-of-mass energy of
√
s = 0.9 TeV and

√
s = 2.36 TeV, respectively, are known as Run 1.
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2.1.1 LHC performance in Run 1

The operating conditions of the LHC during Run 1 pp collisions changed significantly from

2010 through 2012. Apart from the increase in centre-of-mass energy, the spacing between

proton bunches was reduced from 250 ns in 2010 to 50 ns in 2011 and 2012, which, combined

with high intensity (1.6 − 1.7 × 1011 protons per bunch in 2012), gave an instantaneous

luminosity peaking at 7.7× 1033 cm−2s−1 in 2012. As a consequence, the observed average

number of collisions per bunch crossing (〈µ〉), otherwise known as pileup, by ATLAS and

CMS was around 12 in 2011 and 20 in 2012. Table 2.1 summarizes the integrated luminosity

delivered by the LHC during the years 2010 through 2012. A more comprehensive status

report on the LHC operation during Run 1 can be found in Ref. [80].

Year
√
s [TeV] Integrated luminosity [fb−1]

2010 7 0.04
2011 7 6.1
2012 8 23.1

Table 2.1: Centre-of-mass energy and integrated luminosity delivered by the LHC during
the years 2010 - 2012.

2.2 The ATLAS detector

The ATLAS detector is a multipurpose particle detector located at one of the LHC in-

teraction points with a layout that resembles that of a cylinder [81]. Figure 2.2 shows a

three-dimensional rendering of the ATLAS detector layout.

The ATLAS detector is centred about the nominal interaction point, which is the origin

of the coordinate system in which the z direction is defined by the direction of the beam,

and the x-y plane is transverse to the beam with the x-axis pointing to the centre of the

LHC ring and the y-axis pointing upwards. The ATLAS detector is symmetric about the

z-axis with the azimuthal angle φ measured around the beam axis and the polar angle θ

measured from the beam axis. These two angles are expressed in radians hereafter. It also

has forward-backward symmetry with respect to the interaction point. The pseudorapidity
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Figure 2.2: Full three-dimensional rendering of the ATLAS detector (copyright © CERN).

is defined as

η = − ln

(

tan
θ

2

)

. (2.1)

The ATLAS detector comprises a charged particle tracker, known as the Inner Detector

(ID), immersed in a 2 T magnetic field produced by a thin superconducting solenoid, an

electromagnetic (EM) calorimeter, a hadronic calorimeter (HCal), and a muon spectrometer

(MS) immersed in a toroidal magnetic field produced by three superconducting toroidal

magnets (one barrel and two end-caps).

During Run 1 the ID was composed of three independent subsystems: the Pixel detector,

the Semiconductor Tracker (SCT) and the Transition Radiation Tracker (TRT). The ID

provides momentum measurements for charged particles with a transverse momentum (pT)
7

greater than approximately 0.5 GeV within the pseudorapidity range |η| < 2.5. In addition,

the ID is capable of providing electron identification for charged particle tracks within

|η| < 2.0. The two innermost subsystems, the Pixel and SCT, use silicon sensors while the

outer TRT is a Xe-based drift chamber composed of straw tubes. Figure 2.3 shows a side

7The transverse momentum pT is defined as the momentum in the plane transverse to the beam axis.
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Figure 2.3: Side view of the Inner Detector. The ID has azimuthal symmetry and forward-
backward symmetry with respect to the nominal interaction point. The labels PP1, PPB1
and PPF1 indicate the patch-panels for the ID services [81].

view of the barrel and end-cap regions of the ID.

The ATLAS calorimeter consists of several sampling detectors with full azimuthal cov-

erage and symmetry. The EM calorimeter is the closest to the interaction point, providing

energy measurement and particle identification for electrons and photons. The next layer

is a hadronic calorimeter that measures the energy of particle jets. A cut-away view of the

ATLAS calorimeter system can be seen in Fig. 2.4.

The muon spectrometer uses the deflection of muon tracks in a magnetic field generated

by three large superconducting toroid magnets to perform momentum measurements in

the pseudorapidity range |η| < 2.7. The MS uses four different technologies for two main

purposes: precision tracking and triggering. The monitored drift tubes and the cathode strip

chambers provide the precision tracking while the resistive-plate chambers and the thin-gap

chambers offer triggering capabilities in the pseudorapidity range |η| < 2.4. Figure 2.5

shows a cut-away view of the MS with its four different subsystems.

2.2.1 The Pixel detector

The Pixel detector is the innermost silicon tracker whose main purpose is to make measure-

ments with a spatial resolution of r − φ × z = 5 × 115 µm in the barrel and r − φ × r =
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Figure 2.4: Cut-away view of the ATLAS calorimeter system showing the liquid argon
detectors in yellow and the plastic scintillators in grey [81].

5× 115 µm in the end-caps [82]. The Pixel detector contributes to the measurement of the

transverse and longitudinal impact parameters, which allow for reconstruction of primary

vertices. In particular, the innermost layer is of great importance for identification of jets

of particles from b-quark decays.

The Pixel detector provides tracking in the pseudorapidity range |η| < 2.5 with full

coverage in φ. The active region consists of a central barrel, comprising three radial layers,

and two end-caps with three layers or disks each. It consists of 50 µm×400 µm silicon

sensors, adding up to approximately 80 million readout channels. The readout electronics

of the Pixel sensors allow for dE/dx measurements by integrating the time during which

the collected charge is above a given threshold [83].

2.2.2 The Semiconductor tracker

The SCT is a silicon detector surrounding the Pixel detector [81]. The SCT modules consist

of two micro-strip sensors, which are paired such that there is one sensor on each side. The

bottom and top sensors are misaligned by an angle of 40 mrad in order to achieve high
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Figure 2.5: Cut-away view of the ATLAS muon spectrometer system showing the four
different subsystems [81].

precision in the z-axis using fewer modules than the Pixel detector. The SCT provides

coverage in the pseudorapidity range |η| < 2.5 with a central barrel composed of four radial

layers and two end-caps made up of 9 disks each. The SCT has about 6 million readout

channels.

2.2.3 The Transition Radiation Tracker

The TRT is a drift chamber composed of straw tubes of 4 mm diameter with a gold-plated

tungsten wire (anode) of 31 µm diameter at the centre. The active gas of the TRT is a

Xe-based mixture, which absorbs transition radiation X-rays produced by electrons. The

TRT is a drift chamber in the proportional regime, i.e., the amount of charge collected is

proportional to the energy deposition in the chamber. Thus, it can be used to perform

dE/dx measurements [84]. The potential difference between the cathode (straw wall) and

the anode is kept at approximately 1600 V. The TRT is divided into three elements: one

central barrel covering the pseudorapidity range |η| < 1.06 and two end-caps covering

0.77 < |η| < 2.0. In the barrel, the straws have a length of 144 cm and are aligned with the
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Figure 2.6: Section of the ID barrel (copyright © CERN).

beam line in radial layers. The number of straws per layer increases with the radial distance

from the beam line. The barrel straws have a glass insert at η = 0 that effectively separates

the readout of one straw into two individual channels. Straws in the nine innermost layers

of the barrel are divided into three segments, with the central part not read out. This

reduces the active part of such straws to only the two segments at the extremes [85].8 A

section of the ID barrel showing the geometry of the TRT barrel is shown in Fig. 2.6.

In the TRT end-cap the straws of length 37 cm are oriented radially. The straws are

organized in disks grouped into two types of wheels. Type A wheels are those closer to the

interaction point, each one comprising eight disks of straws separated by 8 mm in z; there

are 12 type A wheels. The outer type B wheels, of which there are eight, are also composed

of eight disk of straws, but unlike the type A wheels, these are spaced by 15 mm. Figure 2.7

shows a section of the ID end-cap showing the geometry of the TRT end-cap.

The space between TRT straws is filled with a radiator material made of polypropylene

in the form of fibres in the barrel and of foils in the end-caps. Electrons with a momentum

8The length of the active segments of straws in the nine innermost layers in the barrel is 31.2 cm,

significantly shorter than the 72 cm long active segments of the straws in the outer layers.
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Figure 2.7: Cross section of the ID end-cap (copyright © CERN).

above 1 GeV produce transition radiation photons with energies between 5 and 30 keV as

they traverse the interfaces between air and radiator material. These transition radiation

photons are absorbed by the Xe-based gas mixture.

Readout of the TRT

The charge from ionization of the active gas mixture is collected by means of the 1.6 kV

electric field. The lighter electrons drift to the central anode while the heavier ions drift to

the straw walls. Electrons from ionization liberated at the point of closest approach to the

anode are the first to be collected, and their drift time is used to reconstruct the charged

particle trajectories. The collection time of ions can extend beyond 75 ns.

The signal pulses are discriminated by a front-end chip called the ASDBLR9 that also

amplifies, shapes and restores the baseline. The ASDBLR receives input from eight indi-

vidual straws [86]. This front-end chip has two discriminating thresholds: a 300 eV low

threshold (LT) used for track reconstruction purposes and a 6 keV high threshold (HT) for

electron identification. A second front-end chip called the DTMROC,10 which measures

the drift time when a trigger accept signal is received, uses 8 bits per 25 ns time slice, the

9Amplitude shaper discriminator baseline restorer chip
10Drift time measurement and readout chip
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design spacing between colliding proton bunches, to transmit the LT information from the

ASDBLR. This corresponds to a time binning of 3.125 ns [86]. For each 3.125 ns bin, a bit is

set to one if the signal was above the low threshold during the corresponding time window.

The HT signal from the ASDBLR is processed once per 25 ns time slice, thus only one bit

is transmitted every 25 ns. Similarly to the LT signal case, the HT bit is set to one if the

signal was above the high threshold at any point during the 25 ns time slice. After a trigger

accept signal is received, the DTMROC encodes the information corresponding to three

25 ns time slices, for a readout window of 75 ns, in the following way: for each 25 ns time

slice, the earliest “most significant bit” carries the HT information and the next eight bits

carry the LT information with the latest being the least significant bit. In total, there are

27 bits for each 3×25 ns window: three HT bits and 24 LT bits. The DTMROCs receives

the input from two ASDBLR chips (16 straws) and transmit a digitized signal. Figure 2.8

shows an example of the digitization of a TRT signal pulse by the DTMROC. The digitized

TRT data is read out by the read-out drivers (ROD), which reduce the size of the event

data, formatting them to fulfill bandwidth constraints. The data is then transmitted to

a readout buffer before being sent for Level-2 trigger reconstruction (see Sec. 2.2.6). The

TRT comprises a total of over 350 000 individual channels.

The time measured by the DTMROCs—time from the start of the 75 ns readout window

or, equivalently, trigger accept signal to the first LT bit high—is relative to the central

ATLAS clock. However, the drift time should be measured with respect to the time of

passage of the particle through the straw. Thus, a time known as T0 is subtracted from the

measured time to obtain the actual drift time. The time T0 corresponds to the time that it

takes a particle travelling at the speed of light to reach the straw. The corrected drift time

Tdrift = Tmeasured−T0 is used to determine the drift radius, which represents the distance of

closest approach to the central wire. Based on the measured drift radii, the reconstructed

output of the TRT are drift circles [87].
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Figure 2.8: TRT signal pulse in a 75 ns read-out window. Values of low- and high-threshold
bits are shown for the example pulse. Each bit corresponds to a time bin of 3.125 ns.

2.2.4 Calorimetry at ATLAS

The ATLAS calorimeter provides high resolution energy measurements with pseudorapidity

coverage in |η| < 4.9 and full coverage in φ. The calorimeter can be divided into two main

categories: an EM calorimeter closer to the interaction point, right outside the solenoid

magnet enclosing the ID, and a hadronic calorimeter. The two main technologies used in

the calorimeter are liquid argon (LAr) and scintillating tiles. The LAr technology is used

by the EM calorimeter barrel and end-caps, the hadronic calorimeter end-caps, and the

forward calorimeter. Only the hadronic barrel and extended barrel use the scintillating

tile technology. The combination of EM and hadronic calorimeters fulfill all the physics

performance requirements for which they were designed, i.e., large acceptance and full

azimuthal coverage with uniform response, precise energy measurements, and good particle

identification of electrons versus jets and photons versus π0 [81].

The electromagnetic LAr calorimeter

The EM LAr calorimeter [88] is the closest to the interaction point, surrounding the solenoid

magnet. It comprises one central barrel covering the pseudorapidity range |η| < 1.475
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Granularity ∆η ×∆φ versus |η|
Layer Barrel End-cap

Presampler 0.025×0.1 |η| < 1.52 0.025×0.1 1.5 < |η| < 1.8

First layer

0.050×0.1 1.375 < |η| < 1.425
0.025×0.1 1.425 < |η| < 1.5

0.025/8×0.1 |η| < 1.40 0.025/8×0.1 1.5 < |η| < 1.8
0.025×0.025 1.40 < |η| < 1.475 0.025/6×0.1 1.8 < |η| < 2.0

0.025/4×0.1 2.0 < |η| < 2.4
0.025×0.1 2.4 < |η| < 2.5
0.1×0.1 2.5 < |η| < 3.2

Second layer
0.025×0.025 |η| < 1.40 0.050×0.025 1.375 < |η| < 1.425
0.075×0.025 1.40 < |η| < 1.475 0.025×0.025 1.425 < |η| < 2.5

0.1×0.1 2.5 < |η| < 3.2

Third layer 0.025×0.1 |η| < 1.52 0.025×0.1 1.5 < |η| < 1.8

Table 2.2: Granularity of the EM LAr calorimeter versus |η| [81].

(|η| < 1.52 including the presampler barrel), and two end-caps in 1.375 < |η| < 3.2. The EM

calorimeter is a LAr detector with accordion-shaped lead absorbers and copper electrodes.

In the region |η| < 1.8, a presampler detector, consisting of an active LAr layer of 1.1 cm in

depth in the barrel region and 0.5 cm in the end-cap regions, is used to correct for the energy

lost by electrons and photons deeper in the calorimeter. The EM LAr calorimeter has two

to four layers as the presampler and the third layer cover only the pseudorapidity range

|η| < 1.8. Each layer has a different depth and is divided into cells in φ-η. The segmentation

of each layer is different and may depend on the pseudorapidity. Table 2.2 describes the

granularity of the EM LAr calorimeter versus |η| for all the four layers. Figure 2.9 shows a

wedge of the EM calorimeter near η = 0, where the four layers can be seen. It is important

to note the large differences in depth and segmentation. The total depth of the barrel region

at η = 0 is 24X0
11 and can be as deep as 38X0 in the end-caps. The second layer plays a

very important role in the measurement of electrons and photons, since the electromagnetic

cascade fully develops in it.

Electrons and ions from ionization of LAr by charged particles are collected by an applied

voltage between the copper plates. This voltage is η-dependent, varying between 1000 V

11The radiation length, X0, is defined as the average distance over which an electron passing through a

material has lost all but 1/e of its energy solely due to radiation losses.
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Figure 2.9: Section of the EM LAr calorimeter at η = 0. The granularity and depth of each
layer are indicated [89].

and 2500 V in the end-cap regions and fixed to 2000 V in the barrel region. The copper

electrodes are grouped into readout cells. Shaping, digitization and transmission of the

calorimeter signals is performed by the front-end electronics. The shaping of the pulses

removes the long tail from the detector response time. Sampling of the shaped signal is

performed every 25 ns, as can be seen in Fig. 2.10. The long detector response of the EM

LAr calorimeter makes it sensitive to contamination from collisions from the adjacent bunch

crossings [90].

The hadronic tile calorimeter

In the region |η| < 1.7, hadronic calorimetry is performed via plastic scintillating tiles as the

active medium and steel absorbers [91]. The tile calorimeter comprises one central barrel

covering the pseudorapidity region |η| < 1 and two extended barrels covering 0.8 < |η| < 1.7,

all located outside the EM LAr calorimeter. The scintillating tiles are arranged radially
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Figure 2.10: Amplitude as a function of time for a triangular pulse in a cell of the EM LAr
calorimeter and output of the front-end electronics after shaping. The solid black points
represent the sampling points every 25 ns [90].

pointing inwards to the beam axis, as shown in Fig. 2.11. Light produced in the scintillating

tiles is collected by wavelength-shifting fibres coupled to either side of the tiles, and read

out by two different photomultiplier tubes. This redundancy ensures response uniformity.

2.2.5 The muon spectrometer

Muons are the only charged particles expected to reach the outermost part of the ATLAS

detector where the MS is located. In addition to providing charged particle tracking, the

MS triggers on events that contain muon-like signals [81]. The MS is immersed in a toroidal

magnetic field produced by a central magnet in the pseudorapidity region |η| < 1.4 and by

two end-cap toroid magnets in 1.6 < |η| < 2.7. The MS comprises a number of subsystems

that perform the two main tasks. The Monitored Drift Tubes and Cathode Strip Cham-

bers provide precision measurements while the Resistive Plate Chambers and Thin-Gap

Chambers are part of the muon trigger system.
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Figure 2.11: View of a tile calorimeter module corresponding to a φ wedge, with the steel
absorber, scintillating tiles and radioactive source used for calibration [81].

2.2.6 ATLAS trigger system

The ATLAS trigger system is divided into three levels ranging from events selection based

on energy depositions in the calorimeters and the MS at the lowest level to event selection

using fully reconstructed physics objects at the highest level. Level-1 consists of hardware

triggers that select events with signatures from high-pT muons, electrons, photons, jets,

τ -leptons decaying hadronically, and transverse missing energy, Emiss
T . The Level-1 trigger

uses the calorimeters as well as subsystems of the MS such as the Resistive Plate Chambers

in the barrel and the Thin-Gap Chambers in the end-cap. The maximum rate that can be

handled by the Level-1 trigger is 75 kHz.

At Level-2, partial reconstruction of events selected by the Level-1 trigger is performed

based on Regions of Interest (RoI) defined by energy deposition in the calorimeters or hits

in the MS that indicate the possible existence of trigger objects in the event. The trigger

rate after L2 selection is reduced to below 3.5 kHz.

The final stage in the trigger system, the Event Filter (EF), uses full offline reconstruc-
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tion and analysis of the event to select events at a rate of approximately 200 Hz. At this

level, the use of the full detector granularity and precision, along with particle identification

tools, ensure high trigger selection efficiency.

Regions of interest in the calorimeter

In the ATLAS calorimeter, Level-1 RoIs are defined by transverse energy depositions in a

region of size ∆η ×∆φ = 0.4× 0.4 divided into trigger towers of size ∆η ×∆φ = 0.1× 0.1.

The core of the RoI is defined as the central ∆η × ∆φ = 0.2 × 0.2 region. Each RoI has

two energy components, electromagnetic and hadronic, that can be used as discriminants

in order to select events with specific topologies. Event selection is performed using flags

based on transverse energy thresholds, and multiplicity of trigger objects, among others.

For instance, an event can be selected if the total transverse energy in the RoI is above a

threshold, while the energy contained in the hadronic calorimeter in the ∆η×∆φ = 0.2×0.2

core and the energy outside the RoI core are below a given threshold [92]. The previous

example shows a Level-1 trigger designed for selecting isolated electrons or photons that

deposit most of their energy in the EM calorimeter. Figure 2.12 shows the trigger towers

along with the core and isolation rings used by electron and photon Level-1 triggers.

2.2.7 Computing infrastructure

The ATLAS experiment demands a large computing infrastructure in order to achieve suc-

cessful collision data collection and analysis. Collected data must be processed, recon-

structed and stored after being selected by the EF. In addition, Monte Carlo simulation of

numerous Standard Model processes and new physics signatures must be done to allow for

analysis of the collected data.

In order to satisfy these requirements, the ATLAS experiment takes advantage of the

World LHC Computing Grid (WLCG) [93]. The WLCG, or simply “the grid,” is a multi-tier

system in which the data, real and simulated, is distributed to computing centres around

the world in order to optimize the available resources.
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Figure 2.12: Trigger towers and RoI core and isolation rings used by electron and photon
Level-1 triggers [81].

The computing grid

Tier-0 is the first layer of the systems in which data collection, reconstruction of raw data,

detector calibration and alignment are performed. It consists of about 1000 cores and is

based at the CERN analysis facility and Wigner Research Centre for Physics where all

the reconstructed data is stored. Tier-1 facilities, of which there are about ten worldwide,

including the TRIUMF tier-1 in Canada, reprocess the data with improved calibrations

and store a fraction of the reconstructed collision data. Tier-2 sites dedicate most of their

resources to generation of simulated Monte Carlo data and user physics analysis. In ad-

dition, replicas of derived data formats are stored at tier-2 centres. The last stage in this

tiered architecture is tier-3, which is a collection of private computing clusters to which

users download further derived data formats to perform physics analysis.
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Figure 2.13: Graphical depiction of the ATLAS event data model from generation of simu-
lated events and collection of collision data to physics analysis results [94].

Event data model in ATLAS

Collision data events that are selected by the trigger system are stored in a raw format

containing byte streams before reconstruction. The equivalent format for simulated data is

known as raw data object (RDO). Reconstruction is performed with the ATLAS software

known as Athena, which integrates a number of software tools for data manipulation and

analysis. The output of the reconstruction is stored in event summary data (ESD) format.

Data files in this format are kept at tier-0 with a fraction of them replicated to tier-1.

Data in ESD format are reduced in order to produce more manageable files to be processed

with the ROOT analysis framework [95] that is used for user analysis. This final stage

can be performed with the Athena software or a combination of the Athena software and

ROOT [96]. Figure 2.13 shows the event data model from generation of events and data

collection to final physics analysis results.
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Chapter 3

Performance of the Transition

Radiation Tracker

This chapter presents studies on the performance of the TRT during Run 1

with a detailed comparison of simulation and data from the 2011 and 2012 runs

at energies of
√
s = 7 TeV and

√
s = 8 TeV, respectively. Special emphasis

is made on studies performed using electrons from J/ψ and Z decays.

3.1 Summary of TRT performance of Run 1

The TRT provides measurements with a nominal spatial resolution of 130 µm. These

spatial position measurements, known as TRT hits, are used by the track fitting software

to calculate the curvature of the trajectory of charged particles. From this, the transverse

momentum can be obtained. TRT hits are obtained by reconstructing drift circles, which

represent the radius of closest approach to the anode wire of the charged particle crossing

the TRT straw.

The TRT hits are classified in two main categories: LT hits used for tracking and HT

hits used for electron ID. Since all TRT pulses that give a signal above the HT level must

have passed the low threshold too, all HT hits are also LT hits. In addition to these
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categories, LT hits on track (hits associated to a fitted track) can be further classified in

precision hits and tube hits. A precision hit is a TRT drift circle that lies within 2σr of

a fitted track predicted position, with σr the expected position resolution. If a TRT drift

circle lies beyond 2σr of the fitted track predicted position, it is declared as a tube hit and

the drift radius is set to zero (corresponding to the centre of the straw) and its error set to

4/
√
12 mm. A hole is declared when there is a missing TRT hit in a straw expected to be

crossed by a charged particle, based on the fitted track.

The performance of the TRT can be studied by analyzing parameters such as the position

residuals, the straw efficiency and the HT hit probability. The position residual is defined

as the difference between the measured drift radius and the distance of closest approach of

the fitted track to the central wire. The expected position resolution, σ, is obtained from

the standard deviation of a Gaussian fit of the position residual distribution.

Electron ID is an important component of the TRT performance. The probability of

a particle producing a HT hit depends on the momentum of the particle and the amount

of radiator material traversed. The distribution of the radiator material varies along the

detector, with the end-cap type-B wheels having the largest amount of radiator material.

The material distribution in the ID is shown in Fig. 3.1.
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Figure 3.1: Material distribution in radiation lengths X0 in the ID as a function of the
absolute pseudorapidity |η| averaged over φ [97].
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3.1.1 Dataset

The TRT performance studies used two datasets: one from the 2011 pp run with low

instantaneous luminosity and another from the 2012 pp run with a higher instantaneous

luminosity. Period D from 2011 comprises data collected during the last two weeks of April

2011 with maximum average number of interactions per bunch crossing of about 〈µ〉=7.

This dataset was selected in order to minimize contamination from additional collisions in

the same bunch crossing. Period B from 2012 comprises data from the the first month

of data taking with maximum average number of interactions per bunch crossing of about

〈µ〉=25 as can be seen in Fig. 3.2. This dataset allows the study of the TRT performance for

cases with increased number of collisions in the same bunch crossing occur. The performance

studies used samples of muons and electrons to cover the cases of minimum ionizing particles

and particles that produce transition radiation. I performed the studies using electrons and

contributed to the studies using muons. Therefore, emphasis is made on the description of

the studies involving electrons.
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Figure 3.2: Peak average number of interactions per bunch crossing per day during the 2011
(left) and 2012 (right) pp run at

√
s =7 TeV and

√
s =8 TeV, respectively. Period D of 2011

corresponds to collision data collected from April 14, 2011 to April 28, 2011, and period B
of 2012 corresponds to collision data collected in early 2012.
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3.1.2 Monte Carlo samples for performance studies

In order to study the performance of the TRT, electron–positron pairs and µ+µ− pairs

from Z boson and J/ψ decays are used. A simulated sample of electron–positron pairs

from Z boson decays, produced at
√
s =7 TeV and

√
s =8 TeV with the Alpgen [98]

generator interfaced with Pythia [99] for hadronization and parton shower generation, is

used. Events in this sample have a minimum electron transverse momentum pT > 20 GeV.

In order to study low pT electrons, an additional sample with electron–positron pairs from

J/ψ meson decays was used. The J/ψ mesons in this sample were produced at
√
s = 7 TeV

and
√
s = 8 TeV with the Pythia [99] generator.

Simulated MC samples have been processed with the ATLAS simulation software up to

the Geant4 simulation stage, i.e., simulated energy deposits in the detector still have to

be converted into digital signals and then reconstructed into physics analysis objects.

3.1.3 Straw efficiency

The straw efficiency measures the probability of a LT hit from a charged particle passing

through a straw. This efficiency depends on the distance of closest approach of the charged

particle to the anode wire. The straw efficiency is given by

ǫstraw =
nhits

nhits + nholes
, (3.1)

where nhits is the number of hits on track and nholes is the number of holes on the same

track. This efficiency is calculated as a function of the fitted track-to-wire distance. In

order to study the TRT straw efficiency, muons from Z boson and J/ψ meson decays were

used. Muons from collision data were selected from two different datasets including low-

luminosity data from the 2011 run from collisions at
√
s = 7 TeV and high-luminosity

data from the 2012 run at
√
s = 8 TeV. These two datasets allow for studies of the straw

efficiency in low and high pileup conditions. Simulated muons were obtained from samples

of Z decays generated with Sherpa and J/ψ decays generated with Pythia [99] and centre-

of-mass energies of
√
s = 7 TeV and

√
s = 8 TeV. Figure 3.3 shows the straw efficiency

as a function of the track-to-wire distance for hits on track in the TRT barrel (left) and

56



S
tr

aw
 e

ffi
ci

en
cy

0.5

0.6

0.7

0.8

0.9

1
ATLAS Preliminary

>=6-8µ=7 TeV, <s
Barrel

Data 2011

Simulation

Track-to-wire distance [mm]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
at

a
M

C

0.8

1

1.2

S
tr

aw
 e

ffi
ci

en
cy

0.5

0.6

0.7

0.8

0.9

1
ATLAS Preliminary

>=6-8µ=7 TeV, <s
End-cap

Data 2011

Simulation

Track-to-wire distance [mm]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
at

a
M

C

0.8

1

1.2

Figure 3.3: Straw efficiency as a function of the track-to-wire distance for TRT hits on track
in the TRT barrel (left) and end-cap (right) regions using simulated and collision data with
low pileup, 6 < 〈µ〉 < 8, at a centre-of-mass energy of

√
s = 7 TeV [100].

end-cap (right) regions using simulated and collision data with low pileup, 6 < 〈µ〉 < 8, at

a centre-of-mass energy of
√
s =7 TeV. The straw efficiency is uniform and greater than

95% for track-to-wire distances up to ±1.5 mm, after which the straw efficiency drops due

to straw-edge effects where the ionization path is shorter.

The straw efficiency can also be studied as a function of the fitted track pseudorapidity

η. For this purpose, the straw efficiency as a function of the track-to-wire distance is

sliced in pseudorapidity bins and the straw efficiency averaged over all the track-to-wire

distance values in the range (−2, 2). Figure 3.4 shows the straw efficiency as a function of

the fitted track pseudorapidity η for muons in low (left) and high (right) pileup conditions

from collisions at
√
s = 7 TeV and

√
s = 8 TeV, respectively. A slight decrease in straw

efficiency is observed at the TRT barrel–end-cap transition region 0.77 < |η| < 1.06 where

the straws are arranged in two different ways and at the edges of the TRT acceptance

|η| ∼ 2. Nevertheless, TRT straw efficiency is high across all η ranges, and very important,

the straw efficiency remains high in high-luminosity conditions with pileup in the range

25 < 〈µ〉 < 30.
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Figure 3.4: Average straw efficiency as a function of the reconstructed muon track pseu-
dorapidity η for muons in low (left) and high (right) pileup conditions from collisions at√
s = 7 TeV and

√
s = 8 TeV, respectively [100].

3.1.4 High-threshold hit probability

The fraction of HT hits on track is a powerful discriminator for electron identification. A

typical HT hit produced by an electron has energy contributions from ionization of the TRT

active gas and absorption of transition radiation photons in the X-ray range, the latter being

the dominant contribution while only about 25% of the total comes from ionization produced

by the electron. This yields an energy deposition above the ≈ 6 keV high threshold. On

the other hand, a minimum ionizing particle would only lose energy through ionization,

depositing about 2.5 keV in a straw.

The intensity of the transition radiation produced by a particle crossing the interface

between two media is given by [101]

S =
α~

3

(ω1 − ω2)
2

ω1 + ω2
γ, (3.2)

where α is the fine structure constant, ω1 and ω2 are the plasma frequencies of the two

media, and γ = E/m the relativistic factor in natural units. The amount of transition

radiation produced per interface transition is in general low (S ≈ 10−2γ eV), therefore the

use of multiple interfaces increases the amount of radiation significantly. This is the case
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of the TRT, which uses a material made of polypropylene fibres. The opening angle with

respect to the particle trajectory at which the radiation is emitted is in general small and

goes as θ ≈ 1/γ. Thus, the radiation produced by a charged particle is expected to interact

with the same straws as the charged particle. For ultrarelativistic particles the energy is

mostly emitted in the X-ray region [101].

High-threshold hit probability for minimum ionizing particles

In order to study the probability for minimum ionizing particles to produce TRT HT

hits, muons from J/ψ and Z decays are used in order to cover a wide kinematic regime

5 GeV < p < 60 GeV. Muon pairs were required to have an angular separation of

∆R =
√

(∆φ)2 + (∆η)2 > 0.3, and transverse momentum pT > 5 GeV. Muons from

J/ψ decays are selected with a trigger requiring two muons with transverse momentum

pT > 4 GeV and restricted to the invariant mass range 3.0 GeV < mµ+µ− < 3.2 GeV.

Muon pairs from Z decays are selected using a single muon trigger with a transverse mo-

mentum requirement of pT > 18 GeV and restricted to the reconstructed invariant mass

range 75 GeV < mµ+µ− < 105 GeV. Muons with momentum p ≈ 60 GeV are below the

threshold needed for producing transition radiation (∼ 60 GeV corresponding to a Lorentz

γ-factor of ∼600). Since muons in the selected momentum range do not produce significant

transition radiation, their HT hit probability should be independent of the amount of ra-

diator material and its distribution in the detector. Figure 3.5 shows the HT probability

for muons as a function of the muon track pseudorapidity η for muons from J/ψ decays

with momentum 5 GeV < p < 20 GeV (left) and muons from Z decays with momentum

p < 60 GeV (right). The HT hit probability for minimum ionizing particles is below 10%

and fairly independent of the particle γ-factor in the range γ < 600. An increase in the HT

hit probability is observed in the TRT barrel–end-cap transition region 0.77 < |η| < 1.06

where the straws are arranged in two different ways.

The geometry of the TRT is such that the TRT barrel comprises 73 radial layers, with

layer one being the innermost. Layers 1-9 are the inner short straws [85]. In the TRT end-

caps, there are 160 straw disks or layers, with Layer 1 being the nearest to the interaction
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Figure 3.5: High-threshold hit probability for muons as a function of the muon track pseu-
dorapidity η for muons from J/ψ decays with momentum 5 GeV < p < 20 GeV (left)
and muons from Z decays with momentum p < 60 GeV (right) produced in low luminosity
collisions with 3 < 〈µ〉 < 9 at

√
s = 7 TeV [100].

point. Minimum ionizing particles such as muons with γ-factor γ < 600 should not produce

significant transition radiation. Therefore, the HT hit probability should be independent of

the amount of radiator material in the detector. Figure 3.6 shows the HT hit probability as

a function of the straw layer in the TRT barrel (left) and end-cap (right) for muons from Z

decays with momentum p < 60 GeV produced in low luminosity collisions with 3 < 〈µ〉 < 9

at
√
s = 7 TeV.

3.1.5 High-threshold hit probability for electrons

Electrons passing through the TRT with a momentum above ∼ 0.5 GeV (γ-factor ∼ 1000)

produce transition radiation when they cross the gas–radiator material interface. This

transition radiation, in the X-ray range, is then absorbed by the Xe-based gas mixture.

Transition radiation photons of up to 30 keV are the dominant contribution to the energy

deposited in the TRT straws by electrons. A large fraction of HT hits on track is then a

signature of electrons in the TRT and plays an important role in the particle identification

in the ATLAS detector. In order to study the probability for electrons to produce a TRT
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Figure 3.6: High-threshold hit probability for muons as a function of the straw layer in the
TRT barrel (left) and end-cap (right) for muons from Z decays with momentum p < 60 GeV
produced in low luminosity collisions with 3 < 〈µ〉 < 9 at

√
s = 7 TeV [100].

HT hit on track, electrons from J/ψ and Z decays produced in low luminosity conditions

at
√
s = 7 TeV are selected, covering a large momentum range from p = 5 GeV up to

approximately 200 GeV. Two different selection criteria have been used to filter only events

that correspond to electrons from Z and J/ψ decays.

Electrons from J/ψ decays

In order to select events with low momentum electrons, at least one of the following triggers
is required to be passed:

• EF_e9_tight_e5_tight_Jpsi,

• EF_2e5_tight_Jpsi,

• EF_e5_tight_e4_etcut_Jpsi_TRT,

• EF_e5_tight_e4_etcut_Jpsi_SiTrk,

• EF_e5_tight_e9_etcut_Jpsi,

• EF_e5_tight_e4_etcut_Jpsi.

These triggers are specific for selecting electrons from J/ψ decays. In addition to the

trigger requirement, the electrons must be labelled as Medium++ and have a minimum
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Figure 3.7: Reconstructed invariant mass me+e− (left) and transverse momentum pT (right)
of electrons from J/ψ decays in collision data and MC. Only events within the mass window
2.9 GeV < mee < 3.2 GeV are used for this study.

transverse momentum of pT > 5 GeV. The label Medium++ represents a series of selec-

tion criteria that ensure high electron selection efficiency while rejecting background from

jets that fake electrons and electron–positron pairs from photon conversions. Among the

Medium++ selection criteria there are calorimeter-based discriminants such as the ratio

of the transverse energy deposited in the hadronic calorimeter to the transverse energy de-

posited in the electromagnetic calorimeter, limiting the amount of hadronic leakage allowed,

measurements of the lateral particle shower shape, and energy deposition dispersion in the

first layer of the electromagnetic calorimeter. In addition, there are some tracking require-

ments: there must be at least one hit in the Pixel detector and at least one hit in the STC.

The transverse impact parameter, i.e., the radial distance from the beam line, must be less

than 1 mm. The absence of TRT requirements on the track quality of the electron ensure

that these studies are not biased by the electron identification selection criteria [102].

Electrons with pT > 5 GeV identified as Medium++ must have a b-layer hit (a hit in the

innermost layer of the Pixel detector) and be within the TRT pseudorapidity acceptance

|η| < 2.0. The final selection criteria are related to the electron–positron pair reconstructed

invariant mass me+e− and their separation ∆R =
√

(∆φ)2 + (∆η)2. Only events with a
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Figure 3.8: Reconstructed invariant mass me+e− (left) and transverse momentum pT (right)
of electrons from Z decays. Only events within the mass window 75 GeV < me+e− <
105 GeV are used for this study.

reconstructed invariant mass in the window 2.9 GeV < mee < 3.2 GeV are selected in order

to find agreement with the measured J/ψ mass of 3096.916 ± 0.011 MeV [61]. Finally,

the electron–positron pair must have a separation ∆R > 0.2. Both electrons from J/ψ

decays are used for the study of the TRT performance. Figure 3.7 shows the reconstructed

invariant mass me+e− and transverse momentum pT of the electrons from J/ψ decays. The

performance of the TRT and the accuracy of its simulation are studied using known particles

in specific momentum ranges. Therefore, it is not necessary to find perfect agreement

between collision data and MC—it is sufficient to select electrons in the same momentum

range.

Electrons from Z boson decays

In order to study electrons of higher momentum, electron–positron pairs from Z decays are

selected using the tag-and-probe method in which one electron (the tag) is identified using

very high quality requirements while the other (the probe) uses looser quality requirements.

Only the probe electrons are used for the study of the performance of the TRT. Only events

that passed the EF_e20_medium or the EF_e22_medium triggers are kept. These triggers
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Figure 3.9: High-threshold hit probability for electrons as a function of track pseudorapidity
η for electron pairs from J/ψ and Z decays with momentum 5 GeV < p < 20 GeV
(left) and p > 20 GeV (right) produced in low luminosity collisions with 3 < 〈µ〉 < 9 at√
s = 7 TeV [100].

require an energy deposition in the calorimeter of at least 20 GeV or 22 GeV and an ID

track geometrically matched to the energy deposition in the calorimeter.

The tag electron must have a transverse momentum pT > 22 GeV, be identified as

a Tight++ electron [102], and be geometrically matched to the object that passed the

trigger. Electrons identified as Tight++ must fulfill all the requirements of a Medium++

electron [102] and some additional criteria. The energy contained in the calorimeter in

a cone of radius ∆R = 0.2 around the direction of the electron, subtracting the electron

energy, must be less than 6 GeV. There must be an ID track geometrically matched to the

electron calorimeter cluster. The sum of the transverse momentum of all tracks in a cone

of radius ∆R = 0.4 around the electron ID track, excluding the electron track, must be less

than 6% of the electron transverse energy. Additional criteria requires at least 14 TRT hits

on track and a fraction of more than 30 % TRT HT hits on track.

The probe electron must have a transverse momentum pT > 15 GeV and be identified

as Loose++ [102]. This identification requirement corresponds to calorimeter only discrim-

inants ensuring that no bias on the TRT track quality is present on the probe electron.
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Figure 3.10: High-threshold hit probability for electrons as a function of the straw layer
in the TRT barrel (left) and end-cap (right) for electron pairs from J/ψ and Z decays
with momentum p > 20 GeV produced in low luminosity collisions with 3 < 〈µ〉 < 9 at√
s = 7 TeV [100].

Electron–positron pairs must have opposite charge, have a separation ∆R > 0.3 and

the reconstructed invariant mass should be in within 75 GeV < me+e− < 105 GeV, which

contains the measured value of m(Z) = 91.1876 ± 0.0021 GeV [61]. Figure 3.8 shows the

reconstructed invariant mass me+e− and transverse momentum pT of the electrons from Z

decays.

Figure 3.9 shows the probability to produce a TRT HT hit on track for electrons from

J/ψ decays (left) with momentum 5 GeV < p < 20 GeV and electrons from Z decays

(right) with momentum p > 20 GeV in low-luminosity conditions with 3 < 〈µ〉 < 9 at
√
s = 7 TeV. The HT hit probability is about 21% in the central region and increases to

about 35% at high |η|. The significant variations in TRT HT hit probability account for the

varying amount of radiator material an electron traverses as a function of its pseudorapidity.

Figure 3.10 shows the TRT HT hit probability for electrons from J/ψ and Z decays with

momentum p > 20 GeV produced in low-luminosity conditions with 3 < 〈µ〉 < 9 at
√
s = 7 TeV as a function of the straw layer in the TRT barrel (left) and end-cap (right).

The TRT end-caps comprise type A wheels that cover the straw layer numbers 1 to 96
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Figure 3.11: High-threshold hit probability for electrons and muons from J/ψ and Z decays
as a function of the relativistic γ factor for tracks with |η| < 0.625 (left) corresponding
to the TRT barrel region and 1.752|η| < 2.0 (right) corresponding to the end-cap wheels
type B. Data (solid symbols) and simulation (open symbols) are shown for low luminosity
running during 2011 [100].

and type B wheels that span from straw layer number 97 to 160. An increased amount of

radiator material is found in between layers of type B wheels, with respect to type A wheels,

due to the greater spacing between straw layers. The extra radiator material is reflected as

an increase in the TRT HT hit probability for electrons in end-cap straw layer numbers 97

and beyond.

High-threshold hit probability as a function of γ-factor

The intensity of the emission of transition radiation by electrically charged particles is

proportional to the relativistic γ factor, as seen in Eq. (3.2). Figure 3.11 shows the HT hit

probability for electrons and muons from J/ψ and Z decays, covering a range of γ values

from approximately 50 to 5 × 105. It is clear that the HT hit probability increases with

γ and has a turn-on point at around γ = 600. At very high γ values the production of

transition radiation reaches a maximum [101], causing the HT hit probability to stabilize,

as can be seen in the central pseudorapidity region. In the high-pseudorapidity region,

although the production of transition radiation reaches a maximum at high γ, the greater

amount of radiator material available causes the HT hit probability to continue rising. In

addition, Figs. 3.9 and 3.10 show that the amount of radiator material has a significant
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impact in the amount of radiation emitted. This is confirmed in Fig. 3.11 where the HT hit

probabilities are higher at higher absolute pseudorapidity values.
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Chapter 4

Simulation of monopole

interactions with the ATLAS

detector

This chapter describes expected signatures of magnetic monopoles in AT-

LAS, the generation of simulated signal monopole events, the simulation of

monopole interactions with the detector, and the reconstruction of physics

objects used in this search. In addition, Standard Model processes that may

mimic monopole signatures (i.e, background) are discussed.

4.1 Expected signatures of monopoles in ATLAS

Monopole interactions with matter differ from those of particles such as photons, electrons,

muons and hadrons with unit electric charge commonly used in measurements and searches

at particle colliders. The main differences, as described in Sec. 1.4, are the high ionization

produced by monopoles due to the high equivalent electric charge, the absence of an inverse

squared β dependence in the energy losses by ionization (Eq. (1.18)), and the dominance

of ionization over pair production and bremsstrahlung as energy loss mechanisms. These
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Figure 4.1: Kinetic energy below which monopoles become trapped in the ATLAS beampipe
as a function of absolute pseudorapidity, |η|, for various charges and masses [31].

determine the particular signature of monopoles in the ATLAS detector and become very

relevant in two subdetectors: the TRT and the LAr EM calorimeter.

4.1.1 High ionization in the Inner Detector

The beryllium beampipe surrounding the interaction point is the first piece of material

that monopoles must traverse before entering the ID. The density of solid-state beryllium

is three orders of magnitude higher than that of gaseous Xenon, the base gas of the TRT,

and comparable with that of LAr, the active material of the EM calorimeter. Therefore,

the energy losses are significant, causing monopoles with low kinetic energy to stop and

become trapped in the material. The kinetic energy below which a monopole would become

trapped in the ATLAS beampipe for monopoles of various charges as a function of absolute

pseudorapidity can be found in Fig. 4.1. In summary, monopoles of charge 2gD (the highest

charge considered herein) need about 10 GeV of kinetic energy to punch through the ATLAS

beampipe when produced within |η| ≤ 2, the limit of acceptance of the TRT.

In all three subsystems, the Pixel, the SCT and the TRT, the amount of charge collected

by the readout electronics is proportional to the ionization produced in the active materials.
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This is fundamental to understand the response of the ATLAS detector to monopoles.

Monopoles in the Pixel detector

The performance of silicon detectors is affected by the passage of highly ionizing particles.

The high-density cloud of electron–hole pairs created by the particle creates a space charge

effect that nullifies the external electric field. As a consequence, the collection of the charge

from ionization occurs after a time delay. In addition, due to the high ionization density,

recombination effects cause the collected charge to be less than the total created [103].

The Pixel detector, however, fails to detect monopoles for a different reason. The charge

signal collected by the detector elements is compared against a threshold and the time-over-

threshold is measured with an accuracy of eight bits. The threshold has been calibrated

so that a minimum ionizing particle will produce a time-over-threshold count of 30. When

the time-over-threshold count exceeds the overflow at 255, the data from the sensor is lost.

Thus, due to the very large ionization exceeding the overflow, the signal of monopoles is

lost [83].

Monopoles in the SCT

The SCT readout electronics, unlike the pixel detector, do not overflow for large energy

depositions. Thus, a measurable signal is produced by monopoles passing through the SCT

strips. Due to the high ionization density produced by monopoles along with energetic

δ-electrons, regions in the SCT with a high density of hits may be found. These hits can

be used to reconstruct electrically charged particle-like tracks along the trajectory of the

monopole. Figure 4.2 shows an event display of a simulated monopole event of charge

|g| = 2gD in the ATLAS detector. The ID is the central dark grey area. There is a region of

high density of tracks in the ID pointing almost vertically, aligned with a region in the TRT

with a large number of HT hits (red dots) and an energy deposition in the EM calorimeter

(green). Note that these ID tracks are reconstructed from SCT hits only and do not have

a TRT extension. This effect is explained in Sec. 5.2.1.
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Figure 4.2: Event display of a monopole of charge |g| = 2gD in the ATLAS detector. Note
the large density of tracks in the ID (dark grey central area) with no TRT extension. The
TRT HT hits are represented as red dots. The EM and hadronic calorimeters are green and
red, respectively.

Monopoles in the TRT

Magnetic monopoles ionize the Xe-based gas mixture in the TRT straws with an energy

deposition usually three to four orders of magnitude higher than that of a minimum ionizing

particle; this is enough to exceed the 6 keV high threshold. Unlike the pixel detector, the

TRT front-end electronics produce a measurable signal regardless of the magnitude of the

energy deposition. Thus, monopoles create TRT HT hits in the straws traversed.

As described in Sec. 1.5.1, close collisions between monopoles and atoms from the ab-

sorbing material give rise to high-energy δ-rays. In the mass and energy ranges considered

in this search, δ-rays can be produced with energies ranging from 0.1 MeV to over 100 MeV.

For example, a monopole of mass 500 GeV with kinetic energy of 300 GeV would produce

δ-rays with a maximum kinetic energy of approximately 2 MeV. Although, electrons with
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momentum less than 1 GeV are very unlikely to produce transition radiation, they may

continue to propagate and ionize the gas mixture in the TRT straws. In the presence of the

2 T solenoidal magnetic field, the trajectory of a δ-ray bends with a radius of curvature of

the order of millimetres. For instance, a δ-ray with kinetic energy of 2 MeV would have a

radius of curvature of 4 mm. The maximum propagation range from the monopole trajec-

tory for such an electron would be twice the radius of curvature, i.e., 8 mm. A single δ-ray

with a kinetic energy of a few MeV would only deposit about 2 keV in a straw – not enough

to exceed the high threshold–as it loses its energy mainly through ionization [61, Chap-

ter 32]. It is the energy deposition by several δ-rays in the same straw that exceeds the

high threshold.

The signature of monopoles in the TRT is, thus, a swath of TRT HT hits of width

approximately ±4 mm along the monopole trajectory. This can be seen in Fig. 4.2 for a

simulated monopole event of charge |g| = 2.0gD. Unlike minimum ionizing particles with

a HT hit probability of about 10% and electrons with a HT hit probability between 30%

and 40% [100], monopoles produce on average more than 70% HT hits in a region of width

±4 mm along their trajectory.

4.1.2 Energy deposition in the calorimeter

Prior to entering the EM calorimeter monopoles have to pass through the inner wall of

the cryostat enclosing the solenoid magnet and the EM calorimeter. The solenoid magnet,

which is present only in the barrel region, accounts for approximately 0.66 radiation lengths

at normal incidence, or about a third of the material in front of the EM calorimeter [81].

Shape of energy deposition

As described in Sec. 2.2.4, the EM calorimeter comprises a thin presampler and three main

layers. The presampler, first and third layer are thin in comparison with the second layer,

which is 16 radiation lengths in depth.

Ionization is the dominant mechanism by which monopoles lose their kinetic energy as

explained in Sec 1.4. Since the bremsstrahlung and pair-production phenomena are highly

72



suppressed, there is no formation of electromagnetic cascades in the LAr EM calorimeter,

rather, just a narrow cluster of energy deposition. Minimum ionizing particles, such as

muons and pions, also traverse the EM calorimeter without radiating, depositing some of

their kinetic energy in a narrow cluster. However, unlike monopoles, the energy deposition

of minimum ionizing particles is uniform along their trajectory and is about 3 GeV in total.

Monopoles ionize the LAr, depositing most of their energy in the innermost layers where

they travel at higher velocities. Therefore, energy depositions in the presampler and EM1

are very relevant in defining the signature of a monopole in the calorimeter. The energy

losses of monopoles are very low at low velocities, allowing them to slowly penetrate to outer

layers such as EM3 and even the hadronic calorimeter, depending on the initial energy

of monopoles and the amount of material traversed along their trajectory. Lower mass

monopoles with high kinetic energies may produce δ-rays in the EM calorimeter that are

energetic enough to propagate and radiate, broadening the shape of the energy deposition.

Electrons and photons also deposit most of their energy in the LAr EM calorimeter.

There are, however, major differences in the shape of the energy deposition with respect

to monopoles. Electrons pass through the thin presampler without initiating an electro-

magnetic cascade, which only starts in EM1 and fully develops in EM2, possibly ending in

EM3 or even leaking some energy into the hadronic calorimeter. Thus, most of the energy

deposition from electrons occurs in EM2 where the particle shower is mostly contained. A

similar situation occurs for photons, which initiate an electromagnetic cascade slightly later

than electrons.

Penetration depth

The penetration depth of monopoles is highly dependent on the magnetic charge since the

energy loss increases with g2. The calorimeter is the sensitive part of ATLAS responsible for

triggering, therefore, the likelihood of reaching it determines the sensitivity to monopoles

of this search. Monopoles of charge 0.5gD can make it to the central region of the EM

calorimeter with as little as 50 GeV of kinetic energy, while monopoles of charge 1.0gD

and 2.0gD need about 100 GeV and 600 GeV of kinetic energy, respectively. Such high
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minimum kinetic energy requirements limit the sensitivity to high-charge monopoles pro-

duced using realistic kinematic models in which regions above 500 GeV in the kinetic energy

spectrum correspond to very low production cross sections.

Low EM calorimeter energy threshold Level-1 triggers are necessary to select events with

highly ionizing monopoles that tend to stop early in the calorimeter. However, since these

low threshold triggers are designed to select events with electrons and photons that deposit

their energy in the EM calorimeter, these triggers usually apply a requirement that would

reject monopoles that deposit energy in the hadronic calorimeter. Monopoles of charge

0.5gD and at least 300 GeV of kinetic energy are able to penetrate to the central region

of the hadronic calorimeter, while monopoles of charge 1.0gD need at least 1300 GeV of

kinetic energy to reach the same part of the detector. Monopoles of charge g ≥ gD would

not reach the hadronic calorimeter for kinetic energies below 3000 GeV. A complete study

on the penetration depth of highly ionizing particles can be found in Ref. [31].

4.2 Simulation of monopoles in the ATLAS detector

In order to study the interactions of monopoles with the ATLAS detector, it is necessary

to generate simulated monopole events which are then processed using a Geant4-based

ATLAS detector simulation. This includes the equations of motion for magnetically charged

particles and the model of production of δ-rays by highly ionizing particles. Energy deposits

are digitized and reconstruction of physics objects is performed using the Athena software.

The uncertainties on the appropriate way to model the production of monopole–anti-

monopole pairs at colliders motivates the inclusion of model-independent studies covering

a wide range of masses. Also, Dirac’s quantization condition (Eq. (1.9)) predicts that the

fundamental magnetic charge is gD while Schwinger’s quantization condition (Eq. (1.12))

predicts 2gD. Therefore, monopoles of mass 200, 500, 1000, 1500, 2000 and 2500 GeV, and

magnetic charges |g| =0.5gD, 1.0gD, 1.5gD and 2.0gD are included in this search. Although

fractional magnetic charges are not predicted by the theories, there is no reason not to search

for them, and historically they have been included in previous searches (see Sec. 1.6). All

the simulated samples used in this analysis were produced as part of the mc12c production
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campaign, which reproduces the running conditions of the LHC and ATLAS detector during

the 2012 data taking period. The Geant4 simulation of the mc12c production campaign

was performed using the transform12 AtlasG4_trf with the ATLAS-GEO-21-02-02 version

of the simulateed detector geometry implemented in Geant4 [104], the conditions tag

OFLCOND-MC12-SIM-00 [105], which contains information relevant to the detector running

conditions, and the Geant4 physics list QGSP_BERT [106]. In the mc12c production cam-

paign digitization and reconstruction (see Secs. 4.2.3 and 4.2.4) were performed using a sin-

gle transform, DigiMReco_trf. This transform takes as input all the necessary configurables

such as the Geant4 detector geometry and offline conditions tags (ATLAS-GEO-21-02-02

and OFLCOND-MC12b-SDR-01 [107]), ATLAS software database release (DBRelease-26.9.1),

pileup profile distribution and trigger menu database configuration.

Digitization and reconstruction of simulated monopole samples of charge 2.0gD require

high amounts of available memory due to the high ionization levels. Memory limitations

arose during this stage of the Monte Carlo production. Although access to high-memory

queues was granted for the production of these samples, it was not possible to digitize

and reconstruct them in full. In all cases, at least 50% of the number of events in each

sample were processed successfully. No obvious bias was introduced to the digitized and

reconstructed monopole samples as the computing jobs would fail or succeed in a random

manner, which appeared to be related to the conditions of the machines to which the jobs

were assigned.

4.2.1 Event generation

Simulated monopole events are generated in two types of samples: single monopole events

allowing for a model-independent search and spin-1/2 pair-produced monopoles assuming

the Drell-Yan mechanism. Although monopoles are predicted by models with masses in

the TeV scale (see Sec. 1.3), their production mechanism is not well understood. This

is mainly a consequence of the large magnetic coupling to the photon. The Drell-Yan

production mechanism is used as a benchmark model that offers a scenario with realistic

12In the Athena software, transforms are scripts that execute the algorithms necessary to perform a

transformation from a data format to another in the data production chain.
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kinematics for monopoles produced in pp collisions at the LHC.

Single particle production

Single particle monopole samples are generated with flat kinetic energy, φ and η distributions

in the ranges 10 GeV < Ekin < 3000 GeV, −π < φ < π and −3 < η < 3, respectively. These

samples have 50 000 events with equal number of monopoles and anti-monopoles.

In the absence of a hard scattering process, no electrically charged particles from the

underlying event are present in the single monopole samples. However, additional proton–

proton interactions are overlaid to simulate pileup events, as described in Section 4.2.3.

Drell-Yan production

Pair-produced spin-1/2 monopoles in proton-proton collisions at a centre-of-mass energy

of 8 TeV using Drell-Yan kinematics are produced with the Monte Carlo leading-order

matrix element generator MadGraph5 [108]. The parton distribution function (PDF)

CTEQ6L1 [109] is used with the AU2 tune [110]. Samples of 22 000 events were gener-

ated for each mass and charge combination.

A requirement on the minimum transverse momentum, pT, of the generated particles

is imposed to ensure that only monopoles energetic enough to reach the EM calorimeter

are simulated, thus optimizing usage of computing resources. The exact requirement is

mass- and charge-dependent and was obtained from trigger efficiency curves by finding the

transverse momentum at which the efficiency becomes non-zero. These trigger efficiency

curves can be found in App. A. In order to keep a conservative approach, the minimum pT

was chosen about 50 to 100 GeV below the turn-on. See Sec. 5.1 for more on the trigger

used in this search. Table 4.1 summarizes the production cross sections and generator-level

minimum-pT requirements for each mass and charge point included in this search.

The generated four-vectors are processed by the Monte Carlo generator Pythia 8 [111],

which adds momentum smearing, parton shower and hadronization effects, and decays of the

byproducts of the simulated proton-proton collisions. The generated events are processed

by Pythia until 20 000 events have been successfully simulated.
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Charge |g| Mass [GeV] Cross section [pb] pT cut [GeV] Cross section [pb]
after pT cut

0.5gD

200 37.6 0 37.6
500 0.600 50 0.582
1000 6.71× 10−3 150 6.08× 10−3

1500 1.33× 10−4 200 1.19× 10−4

2000 2.24× 10−6 250 1.95× 10−6

2500 1.97× 10−8 300 1.62× 10−8

1.0gD

200 150. 150 53.5
500 2.40 200 1.52
1000 2.69× 10−2 250 2.03× 10−2

1500 5.33× 10−4 300 4.19× 10−4

2000 8.95× 10−6 350 6.81× 10−6

2500 7.86× 10−8 400 5.58× 10−8

1.5gD

200 339. 250 37.1
500 5.41 300 2.08
1000 6.05× 10−2 350 3.56× 10−2

1500 1.20× 10−3 400 7.73× 10−4

2000 2.01× 10−5 450 1.28× 10−5

2500 1.77× 10−7 550 9.28× 10−8

2.0gD

200 602. 500 4.37
500 9.62 550 0.729
1000 1.08× 10−1 650 2.05× 10−2

1500 2.14× 10−3 700 5.78× 10−4

2000 3.58× 10−5 750 1.01× 10−5

2500 3.15× 10−7 800 7.98× 10−8

Table 4.1: Cross sections of Drell-Yan produced spin-1/2 monopoles in proton-proton colli-
sions at

√
s = 8 TeV and generator-level minimum-pT requirements.

Dedicated samples to simulate pileup were generated with Pythia 8 using the PDF

MSTW2008LO with the A2MSTW2008LO tune [112, 113] for minimum-bias processes at

the LHC.

4.2.2 Simulation

A Geant4 [114] version of the ATLAS detector geometry and material density distribution

was used to simulate the interactions between the generated magnetic monopoles and the

detector material. Interactions between the ATLAS detector and other particles from the
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Figure 4.3: Profile histogram of the difference between pseudorapidity η of the calorimeter
cluster and the monopole’s truth η for monopoles of mass 500 GeV and various charges as a
function of the monopole truth kinetic energy Ekin. High charge monopoles with low Ekin

values do not possess enough energy to penetrate to the calorimeter, and therefore are not
reflected in these plots.

underlying event or pileup collisions are also simulated. The ATLAS geometry version

ATLAS-GEO-21-02-02 was used. This is the default of the mc12c production campaign.

Prior to 2010, the simulation of the passage of magnetically charged particles through

matter was not described in the Geant4 simulation of the ATLAS detector. Therefore, the

custom simulation package, Simulation/G4Extensions/Monopole, was developed. This

package instantiates the correct equations of motion for magnetically charged particles in

electromagnetic fields (Eq. 1.16), computes the energy deposition by monopoles with integer

and fractional magnetic charges in units of gD (Eq. 1.18) taking into account the generation

of δ-rays, and propagates monopoles in time. The Monopole simulation package is based

on that developed for the search for monopoles in 2011 data [77].

Monopole interactions with the magnetic field

The ID is enclosed in a solenoid magnet producing a field of 2 T parallel to the beam axis.

The trajectory of an electrically charged particle bends in the r− φ plane perpendicular to

the magnetic field while magnetically charged particles are accelerated (or decelerated) along

78



 [GeV] kinE

0 500 1000 1500 2000 2500 3000

(c
lu

st
er

,H
IP

)
φ∆

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

  D
m=500 GeV, g=-0.5g

  D
m=500 GeV, g=-1.0g

  D
m=500 GeV, g=-1.5g

  D
m=500 GeV, g=-2.0g

g < 0

 [GeV] kinE

0 500 1000 1500 2000 2500 3000

(c
lu

st
er

,H
IP

)
φ∆

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

  D
m=500 GeV, g=0.5g

  D
m=500 GeV, g=1.0g

  D
m=500 GeV, g=1.5g

  D
m=500 GeV, g=2.0g

g > 0

Figure 4.4: Profile histogram of the difference between azimuthal angle, φ, of the calorimeter
cluster and the monopole’s truth φ for monopoles of mass 500 GeV and various charges as a
function of the monopole truth kinetic energy Ekin. High charge monopoles with low Ekin

values do not possess enough energy to penetrate to the calorimeter, and therefore are not
reflected in these plots.

the direction of the magnetic field in the r−z plane. Such an acceleration along the direction

of the field causes the reconstructed calorimeter cluster produced by the monopole to be

misaligned in η with respect to the original orientation of the generated particle, ηtruth. This

can be seen in Fig. 4.3 for monopoles of mass 500 GeV and various charges. As expected,

positively charged monopoles bend in a direction opposite to negatively charged monopoles.

Higher charge monopoles experience a stronger interaction with the field causing a greater

bending. Lower kinetic energy monopoles bend more in η as their momentum is lower. On

the other hand, monopole trajectories are unaffected in the r− φ plane. As a consequence,

the φ coordinates of the calorimeter cluster and the original monopole are the same. This

is shown in Fig. 4.4.

Energy deposition by monopoles

Energy losses by ionization of magnetically charged particles are described by Eq. 1.18. This

equation is implemented in the Monopole simulation package. Figure 4.5 shows the energy

losses through ionization by magnetic monopoles of mass 1000 GeV and various charges as
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Figure 4.5: Energy losses by ionization for monopoles of mass 1000 GeV and various charges
as a function of speed-of-light fraction β.

a function of the monopole’s speed-of-light fraction β. Equation 1.18 also predicts that the

energy losses are proportional to g2. Figure 4.5 is consistent with this dependence. It must

be noted that, unlike electrically charged particles that deposit most of their kinetic energy

at low β, monopoles deposit more energy at high β. This means that magnetically charged

particles do not produce a Bragg peak. This is shown in Fig. 4.6 where the Bragg curve

in LAr of a magnetic monopole of mass 1000 GeV, charge |g| = 1.0gD and initial kinetic

energy Ekin = 1000 GeV is compared to that of an electrically charged particle of the same

mass and charge |z| = 68.5 (the electric equivalent of gD).

The KYG and Bloch corrections described in Sec. 1.4 exist for multiples of the Dirac

charge only. This search, however, includes fractional charges. Therefore, the values of the

KYG, k(g), and Bloch, B(g), corrections used in this search are

k(g) =











0.406, |n| ≤ 1

0.346, |n| ≥ 1.5

and B(g) =











0.248, |n| ≤ 1

0.672, |n| ≥ 1.5,

(4.1)

respectively. The energy losses by ionization of magnetically charged particles are simulated

by the class G4mplAtlasIonisation.
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Figure 4.6: Bragg curves in LAr for a magnetic monopole of mass 1000 GeV, charge |g| =
1.0gD and initial kinetic energy Ekin = 2000 GeV, and for an electrically charged particle
of the same mass and charge |z| = 68.5.

Production of δ-rays

Electrons from inner shells of the atoms of the ATLAS detector material are knocked off

by monopoles. These electrons are known as δ-rays or δ-electrons and usually have a

kinetic energy of a few keV, significantly more than the energy of an electron from ion-

ization. The δ-ray production model described in Ref. [115] is implemented in the class

G4mplAtlasIonisationWithDeltaModel. The energy with which the δ-rays are produced

is directly subtracted from the monopole’s kinetic energy. Energy losses by ionization of

δ-rays are simulated using the default Geant4 classes.

Time propagation of monopoles in ATLAS

Unlike electrically charged particles, the kinetic energy of a magnetic monopole is changed

by the solenoidal magnetic field as it is accelerated. In order to correctly propagate

monopoles in time, the monopole equation of motion has to be integrated over the changing

velocity at each step.

Propagation in time of monopoles has been validated in the TRT and the calorimeter.
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Figure 4.7: TRT hit distance from the interaction point as a function of time for magnetic
monopoles of mass 1000 GeV and charge |g| = 1.0gD from ten events randomly chosen in
a simulated sample. The red line shows the hit distance vs time expected for a particle
travelling at the speed of light.

Figure 4.7 shows the distance from the interaction point of TRT hits produced by monopoles

as a function of the hit time. Each line represents a pair-produced spin-1/2 monopole; there

are in total ten monopoles in this figure. Note that all monopoles travel through the TRT at

a speed lower than the speed of light. This figure, along with the TRT geometry described

in Fig. 2.3, shows which monopoles go through the TRT barrel, end-cap and transition

region. Also, the accelerating effect of the magnetic field can be observed for one monopole

trajectory.

In the ATLAS calorimeter, cluster times are reconstructed as the weighted average of

the calorimeter cells in the cluster using the square of the energy deposition in the cell as

the weight. Time information from presampler cells is not included in the time calculation.

The time of calorimeter clusters with energy deposition in the presampler only is, therefore,

set to zero. Figure 4.8 shows the cluster time for monopoles of mass 1000 GeV (left) and

2500 GeV (right). As expected, heavier monopoles travel on average at lower speeds than

lighter monopoles, arriving at the EM calorimeter later. Figure 4.9 shows the average

cluster time of monopoles of mass 1000 GeV and various charges as a function of the

82



Cluster time [ns]

0 10 20 30 40

A
rb

itr
ar

y 
un

its

-310

-210

-110

1

 D
 = 0.5gg m=1000 GeV,   

 D
 = 1.0gg m=1000 GeV,   

 D
 = 1.5gg m=1000 GeV,   

 D
 = 2.0gg m=1000 GeV,   

Cluster time [ns]

0 10 20 30 40

A
rb

itr
ar

y 
un

its

-310

-210

-110

1

 D
 = 0.5gg m=2500 GeV,   

 D
 = 1.0gg m=2500 GeV,   

 D
 = 1.5gg m=2500 GeV,   

 D
 = 2.0gg m=2500 GeV,   

Figure 4.8: Reconstructed time of calorimeter clusters produced by single monopoles of
mass 1000 GeV (left) and 2500 GeV (right), and various charges.

generated monopole’s β. In order to exclude geometrical effects, only monopoles generated

in the central region, |η| < 0.3, have been included in this figure. As the magnetic charge

increases, only monopoles generated with β ≈ 1 have enough kinetic energy to reach the

EM calorimeter before stopping.

Figure 4.10 shows the average cluster time as a function of the cluster η for single

monopoles of various masses and charges. Large η dependences are observed as the magnetic

charge decreases. Since monopoles of lower charge are generated with a broader β spectrum

than that of monopoles of higher charge (e.g., monopoles of mass 1000 GeV and charge

|g| = 2.0gD are mostly generated with β ≈ 1), the geometrical effects reflecting the amount

of detector material before the EM calorimeter become more obvious as the charge decreases.

Recombination effects in liquid argon

Charged particles passing through the EM calorimeter ionize the LAr. Electrons from

ionization are collected by means of an electric field applied between the copper electrodes,

and the energy deposition is deduced from the charge collected in each calorimeter cell. In

the case of monopoles, the ionization density is very high, allowing for electron-ion pairs to
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Figure 4.9: Average calorimeter cluster time for single monopoles of mass 1000 GeV and
various charges generated in |η| < 0.3 as a function of the monopole speed β.

recombine before they can be collected. This recombination effect leads to an underestimate

of the measured energy.

Birks’ law [116, 117] describes this phenomenon by relating the actual deposited and

collected charge in the calorimeter, and has been implemented in ATLAS in the form

Evis = E0

1 + A′k
ED

1 + k
ρED

dE
dx

, (4.2)

where Evis is the visible energy in the calorimeter, E0 the actual deposited energy and

dE/dx the energy deposited per unit length. The recombination effects depend on the

external electric field, ED, and the density of the LAr, ρ. In the EM calorimeter the

drift electric field is assumed to be uniform with a magnitude of 10 kV/cm. The Birks’

“constant” k = 0.0486 (kV/cm)(g/cm2)MeV−1 has been measured by the ICARUS TPC

collaboration [118]. The normalization parameter A′ is set to 1.51.

A correction to Birks’ law was developed using heavy-ion data in order to explain the re-

combination effects for very high dE/dx values as the ICARUS measurement only describes

well the recombination effects by particles with single electric charge [119].
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Figure 4.10: Average calorimeter cluster time for single monopoles of mass 1000 GeV (left)
and 2500 GeV (right), and various charges as a function of the cluster η.

4.2.3 Digitization of simulated signal

Simulated Monte Carlo samples are digitized using the ATLAS software. At this stage,

simulated energy depositions are converted to simulated digital signals that resemble the

output from the detector electronics. Digitization of simulated monopole signals is done

using the Athena software.

It is during the digitization stage that additional collisions are overlaid to simulate

the pileup conditions of the collected data. Simulated monopole samples are digitized

using the default pileup profile of the mc12b/mc12c production campaign. Since collisions

and simulated data do not have perfectly matching pileup profiles, a pileup reweighing is

performed at analysis level to account for these differences. Figure 4.11 shows the pileup

profile distributions of the collision data used in this search and the simulated data samples.

The high instantaneous luminosity of the LHC gives rise to two types of pileup: in-time

pileup from collisions in the same bunch crossing, and out-of-time pileup from collisions

from the previous or next bunch crossing. To account for both in-time and out-of-time

pileup, a quantity 〈µ〉 has been defined as the number of interactions per bunch crossing

averaged per luminosity block. A luminosity block is usually around a minute or two of
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Figure 4.11: Pileup profiles for the collision dataset used in this search and the mc12c

production campaign used for the simulated monopole samples.

data taking.

The mc12c pileup profile has been designed to emulate the conditions of the entire 2012

run. However, the dataset used in this search is just a subset of the full 2012 dataset

and its pileup profile therefore differs, as observed in Fig. 4.11. Due to complications with

the production of signal samples of monopoles of charge 2.0gD, centrally produced official

samples have a pileup profile that is truncated at 〈µ〉=18. This will be shown later to not

be a problem due to the very high ionization produced by such monopoles.

4.2.4 Event reconstruction

Digital signals from the ATLAS detector electronics and digitized simulated samples are

reconstructed on a event-by-event basis. Physics objects such as charged leptons, photons,

particle jets and missing transverse energy are identified at this stage from reconstructed

charged particle tracks and clusters of energy deposition in the calorimeter. Two basic

reconstructed objects are used in this search: TRT drift circles and calorimeter clusters of

topologically connected energy deposits. Reconstruction of simulated monopole samples is

done using the default ATLAS software.
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TRT hits and drift circles

As described in Sec. 2.2.3, the digital signals from the TRT front-end boards comprise 27

bits that span 75 ns (in 2012 the bunch spacing was 50 ns). The 27-bit readout contains

the data of three 25 ns (bunch spacing at design luminosity) slices, i.e., nine bits per slice.

The first bit in each slice is set to one if the TRT high threshold was exceeded while the

remaining eight bits contain the TRT LT information, each one representing an interval of

approximately 3.125 ns [86]. See Fig. 2.8 in Sec. 2.2.3.

Drift circles are reconstructed using the leading edge of the low-threshold component

of the signal, i.e., the first high bit in the 75 ns interval, which represents the drift time

of the electrons from ionization produced at the point of closest approach of the particle

passing through the straw. Not all reconstructed drift circles are kept. As part of the

TRT hit processing at the reconstruction stage an out-of-time pileup suppression algorithm

is used to reject TRT hits likely coming from neighbouring bunch crossings. Hits with a

trailing edge (last bit high) less than 11 ns are associated to the previous bunch crossing

and rejected, and hits with a leading edge greater than 60 ns are associated to the next

bunch crossing and rejected. Only TRT drift circles that are not rejected as out-of-time

pileup are considered as TRT LT hits. If a HT bit is high, the drift circle is also classified

as a TRT HT hit.

In this search the position of the centre of the straw that recorded a hit and the discrim-

inator output (LT or HT hit) are of more relevance than the actual precision measurement

provided by the TRT drift circles.

Calorimeter topological clusters

Clusters of energy deposition in the calorimeter are commonly used to measure the energy

of electrons, photons and jets. It is impossible to measure the energy of a monopole using

only the calorimeter, due to the large energy losses before reaching it. Thus, rather than

using the magnitude of the energy deposition in the search for monopoles, the shape of

the calorimeter cluster is used. Topological clusters are used for this purpose as they are

reconstructed in an energy density-based approach. In particular the CaloCalTopoClusters
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are used [120].

A topological cluster in ATLAS is a calorimeter object that is built based on the signal-

to-noise ratio of the cells that form it. Thus, the number of cells making up the cluster

is variable. The expected noise level is an η-dependent quantity defined as the quadratic

sum of the electronics noise at zero luminosity and the noise at high luminosity, which is

dominated by pileup [120].

Topological clusters are seeded by calorimeter cells for which the absolute-energy-to-

noise ratio is above four. Neighbouring cells in all directions, i.e., cells in the same and

neighbouring longitudinal layers, are added to the cluster if their absolute energy to noise

ratio is above two. When a cell is a neighbour to two different clusters, these are merged.

Finally, all neighbouring cells to those already added to the cluster are added so that the

tails of electromagnetic cascades and jets are not lost.

An additional step for splitting topological clusters is performed as it is very common in

ATLAS events to have overlapping particles. Local maxima are found by requiring that the

energy deposition in the cell be above 500 MeV and that at least four cells be included in the

cluster, all with energy deposition less than the local maximum. Each local maximum will

yield one cluster formed using the same algorithm just explained. At the boundary between

two clusters, cells can be shared among them. The energy of the shared cells, however, is

weighed so that no double counting of the energy is done.

One particularity of the cluster-splitting algorithm is that local maxima are restricted

to cells in the second and third layers of the EM calorimeter. Local maxima from the

presampler, first layer of the EM calorimeter and hadronic calorimeter are only used if they

do not overlap in η and φ with maxima found in the second and third layers of the EM

calorimeter.

Trigger reconstruction

Simulation of ATLAS triggers is performed at the reconstruction stage. The trigger recon-

struction runs over the simulated samples the same algorithms used online for data collec-

tion. This search uses a dedicated trigger for highly ionizing particles that was deployed
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during the last part of the 2012 run. This trigger was not part of the ATLAS software release

used for the mc12c official production. Therefore, a dedicated release, TrigMC-17.2.11.2.1,

containing the dedicated trigger and compatible with the mc12c production campaign, was

built to digitize and reconstruct all simulated samples used in this search. The Monte Carlo

trigger database used was MC_pp_v4_tight_prescales [121].

4.3 Possible background signals

A number of simulated Monte Carlo samples of Standard Model processes have been re-

processed to include the dedicated trigger. Due to the scale of the computing resources

needed to process all Standard Model processes that would be necessary to study all possible

background sources, only a limited number were made available to this search. These

include electron–positron pairs from Drell-Yan production, electrons from W boson decays

and high-pT multijet events.

4.3.1 High-energy electrons

Electrons with momentum above 10 GeV produce transition radiation in the TRT in the

form of X-rays. Photon absorption by the Xe-based gas mixture combined with the ion-

ization produced by the electrons generate TRT HT hits along their trajectories. The

probability of finding a TRT HT hit on a track produced by an electron is about 30%.

This probability increases in the TRT end-caps where there is a larger amount of radia-

tor material [100]. The amount of radiation emitted is proportional to the Lorentz factor

γ = E/m.

The electromagnetic cascade generated by high-energy electrons with energy around the

TeV scale is suppressed due to an increase of the formation length of the bremsstrahlung

photon [122]. Due to the very small longitudinal momentum transfer from the electron

to the nuclei of the detector material, the uncertainty principle δxδp ≥ ~/2 dictates that

the distance over which the bremsstrahlung photon forms must be long. In addition to

this effect, bremsstrahlung is further suppressed due to creation of electron–positron pairs
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from partially formed photons. The formation length can thus approach a radiation length.

Due to this bremsstrahlung suppression, high-energy electrons would be indistinguishable

from minimum ionizing particles in the first layer of the EM calorimeter, creating a narrow

cluster of energy deposition. The full cascade only develops in the deeper second layer.

Simulated Monte Carlo samples of electrons from W boson decays, and Drell-Yan pro-

duced electron–positron pairs binned in invariant mass from 20 to 3000 GeV were used to

study the performance of the selection criteria against possible background signals from

electrons.

4.3.2 High-pT jets

Events with high-pT jets from collisions with strong interactions may be a source of back-

ground. Such jets are generally contained in a narrow cone and have a high degree of

colinearity [123]. Electrically charged particles from high-pT jets may overlap and deposit

energy in the same TRT straws. If the number of overlapping particles is high enough, a

TRT HT hit will be registered.

Collimated jets from high-pT multijet events, mainly composed of minimum ionizing par-

ticles and neutral pions, may produce narrow energy depositions. Jets, however, penetrate

to the hadronic calorimeter, something that only occurs for very energetic monopoles.

Simulated Monte Carlo samples of strong 2-to-2 processes with minimum momentum

transfer of 1000 GeV were used to study the performance of the selection criteria for possible

background signals from high-pT multijet events.
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Chapter 5

Reconstruction of magnetic

monopoles in ATLAS

This chapter describes the reconstruction of magnetic monopoles based on

the signatures in the ATLAS detector. A description of the trigger used is

followed by the definition of the variables used for reconstruction of monopole

candidates. Studies on the performance of the selection variables are also

presented in this chapter.

5.1 Monopole trigger

The majority of experimental measurements and searches in proton-proton collisions at

the LHC experiments use triggers that select events with Standard Model objects such as

charged leptons, particle jets from processes involving the strong interaction and missing

transverse energy, which can be associated to neutrinos escaping the detectors undetected.

However, in some searches for physics beyond the Standard Model, the use of triggers that

select unconventional signatures may be required.

In this search a dedicated trigger has been used to select events with monopole-like

signatures. This trigger is based on the interactions described in Sec. 4.1. In particular, a
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Figure 5.1: Level-1 EM18VH trigger efficiency for monopoles of mass 1000 GeV and vari-
ous charges as a function of the monopole transverse kinetic energy, Ekin

T , for generated
monopole in pseudorapidity ranges |η| < 1.375 (left) and |η| > 1.375 (right).

region in the TRT with a large fraction of HT hits is used as a powerful discriminant to

select highly ionizing particles like magnetic monopoles. This trigger, known as the HIP or

HIP TRT trigger, is a dedicated Level-2 trigger seeded by a electron–photon Level-1 trigger

that requires energy deposition in the EM calorimeter.

5.1.1 Region of interest in the electromagnetic calorimeter

In the absence of any ID-based Level-1 trigger, the innermost part of the ATLAS detector

that can be used to select monopole events is the EM calorimeter. Monopoles are highly

ionizing particles, with energy losses several orders of magnitude greater than those of

minimum ionizing particles. Thus, the probability of reaching the EM calorimeter, let

alone depositing large amounts of energy, is low. It then becomes very important to use the

lowest energy threshold Level-1 trigger available to avoid the loss of monopoles that stop

early in the calorimeter, depositing only a small amount of energy.

At Level-1, calorimeter RoIs are defined as regions of size ∆η × ∆φ = 0.4 × 0.4. The

dedicated HIP trigger is seeded by the Level-1 EM18VH trigger [124], which has a variable

minimum transverse energy threshold that varies between 18 and 20 GeV, depending on the
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η coordinate. Since this Level-1 trigger was developed for selecting events with electrons or

photons, the maximum amount of energy deposition in the hadronic calorimeter is restricted

by applying a “hadronic veto.” Regions of interest with more than 1 GeV deposited in the

hadronic calorimeter in the ∆η×∆φ = 0.2×0.2 core of the RoI are rejected. The sensitivity

of this search is mainly determined by the probability of reaching the EM calorimeter and

passing the EM18VH trigger.

Figure 5.1 shows the EM18VH trigger efficiency as a function of the transverse kinetic

energy, Ekin
T = Ekin sin θ, of the generated monopoles in the EM calorimeter barrel and

end-cap regions. Due to the requirement on the maximum energy deposition in the hadronic

calorimeter, the trigger efficiency drops at higher Ekin
T values.

They key advantage of the HIP trigger is that it ensures the highest efficiency for

monopoles among the triggers currently available. This is achieved in part due to the

absence of any other requirements on the energy deposition in the calorimeter apart from

those mentioned above. Standard electron and photon triggers in ATLAS usually require,

at Level-2, energy deposition in the second layer of the EM calorimeter since shower-shape

variables based on information from this layer are used. The use of such Level-2 variables

would reduce the sensitivity of the search by failing to select monopoles that stop in the

presampler and the first layer. The HIP trigger does not use Level-2 trigger calorimeter

clusters and therefore retains acceptance for monopoles that would not be accepted by

standard electron and photon triggers.

5.1.2 Region of high ionization in the TRT

Events that pass the Level-1 EM18VH trigger are tested at Level-2 for high ionization in the

TRT, one of the main signatures of monopoles. A narrow region of TRT HT hits is expected

along the monopole trajectory, which should be in line with the energy deposition in the

calorimeter.

Based on the direction of the RoI identified the Level-1 EM18VH trigger, a wedge in the

TRT of size ∆φ = ±0.1 is defined. This matches the size in φ of the Level-1 RoI. The

wedge is divided into 20 bins of equal size. The bin with the highest number of TRT HT
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Figure 5.2: Number of TRT HT hits N trig
HT (left) and fraction of HT hits f trigHT (right) in a

narrow wedge of size ∆φ = ±0.015 for 7 fb−1 of data collected with the trigger, an expected
background process and two typical monopole samples.

hits becomes the centre of a narrower wedge of size ∆φ = ±0.015. This narrow wedge

constitutes the expected TRT region traversed by the monopole.

In order to discriminate signal from background, the number of TRT LT and HT hits

is counted and the fraction of HT hits computed. Figure 5.2 shows the number of TRT HT

hits, N trig
HT , and the fraction of HT hits, f trigHT , in the narrow wedge of size ∆φ = ±0.015.

The Level-2 trigger requires a minimum number of TRT HT hits N trig
HT > 20 and fraction

of HT hits f trigHT > 0.37. These requirements ensure a high trigger efficiency for signal

monopoles while achieving a good background rejection, as suggested by Fig. 5.2. The

N trig
HT distribution for collision data shows a double peak structure as it comprises events

with electrons with a TRT HT hit probability of about 30%13 and multijet events that can

have a large charged particle multiplicity in the narrow wedge of ∆φ = ±0.015, producing

a large number of TRT HT hits.

The Level-2 component of the HIP trigger is highly efficient with respect to Level-1. The

inefficiency introduced by the Level-2 TRT requirements occurs for monopoles found near

the turn-on point of the Level-1 trigger and is more significant for lower charges. Figure 5.3

13This probability yields an average of about ten TRT HT hits on track for electrons.
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Figure 5.3: Dedicated HIP trigger efficiency for monopoles of mass 1000 GeV and vari-
ous charges as a function of the monopole transverse kinetic energy, Ekin

T , for generated
monopole pseudorapidity |η| < 1.375 (left) and |η| > 1.375 (right).The efficiency represents
the combined efficiency of the Level-1 and Level-2 triggers.

shows the dedicated HIP trigger efficiency (Level-1 and Level-2 efficiencies combined) for

monopoles of mass 1000 GeV and various charges as a function of the monopole transverse

kinetic energy, Ekin
T .

Trigger efficiencies for pair-produced spin-1/2 monopoles generated using the Drell-Yan

model can be found in Table 5.1. The very low trigger efficiencies for pair-produced spin-1/2

monopoles of charge |g| = 2.0gD motivate their exclusion from this search. The efficiency

for the mass 1000 GeV charge |g| = 2.0gD sample is missing due to complications during

the official MC production that prevented its successful completion.

5.2 Reconstruction of magnetic monopoles

This search uses data from the electron–photon stream, which comprises events selected by

electron and photon triggers. The dedicated trigger is considered as a photon trigger as

it uses the EM18VH Level-1 trigger and has no additional tracking requirements at Level-2

or event filter. In order to reduce the size of the collision data files and background MC

from the electron-photon stream, these are processed using a software filter that selects
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Spin-1/2 |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 GeV 23.90 ± 0.30 3.84 ± 0.14 0.16 ± 0.03 0.002 ± 0.006
500 GeV 36.19 ± 0.34 15.87 ± 0.26 1.23 ± 0.09 0.03 ± 0.02
1000 GeV 33.97 ± 0.33 24.62 ± 0.30 3.74 ± 0.13 —
1500 GeV 32.55 ± 0.33 23.59 ± 0.30 3.60 ± 0.13 0.11 ± 0.03
2000 GeV 25.43 ± 0.31 18.11 ± 0.27 2.83 ± 0.12 0.06 ± 0.02
2500 GeV 16.57 ± 0.26 11.32 ± 0.23 1.71 ± 0.09 0.03 ± 0.02

Table 5.1: HIP TRT trigger efficiencies in percentages for spin-1/2 monopoles pair-produced
with the Drell-Yan model. The uncertainties on the trigger efficiencies are statistical. The
efficiency for the mass 1000 GeV charge |g| = 2.0gD sample is missing due to complications
during the official MC production that prevented its successful completion.

events that passed certain triggers and fulfilled specific conditions. The RPVLL (R-parity

violating and long-lived particles) filter used for this purpose selects, among others, events

that passed the dedicated HIP trigger.

The last step in the data size reduction chain is the production of a format for offline

analysis with the ROOT framework. Private ROOT ntuples contain preselected monopole

candidates that passed a set of preselection criteria that is highly efficient for monopole

events that passed the dedicated trigger. These preselection criteria are roughly optimized

based on the trigger used and the expected signature of a monopole. Samples of simulated

monopole events do not need to be processed using the RPVLL filter as their size is small

enough for storage and data analysis; the reduction to private ROOT ntuples is performed

directly on them.

A monopole candidate is defined, from an event passing the HIP trigger, as a region in the

TRT with a large fraction of TRT HT hits associated with a calorimeter cluster, as described

in Ch. 4. Preselected monopole candidates saved to private ROOT ntuples for further

analysis fulfill the following two requirements: a calorimeter cluster with transverse energy

greater than 16 GeV (this requirement ensures that the preselected cluster corresponds to

the RoI identified by the Level-1 EM18VH trigger), a TRT region with a number, NHT, and

fraction, fHT, of TRT HT hits in a narrow road exceeding 9 and 0.4, respectively (see

Sec. 5.2.1 for the description of the TRT hit counting algorithm used to determine NHT and

fHT). Calorimeter clusters and TRT regions that do not meet these criteria are discarded.
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Offline reconstruction of preselected magnetic monopoles in events selected by the HIP

TRT trigger is performed using the energy deposition in two detectors only: the TRT and

the calorimeter. The output of the TRT contains information about two different energy

thresholds, making it a great discriminant for monopoles. The SCT, on the other hand, does

not have an output with information on the ionization produced by the incident particle.

As mentioned in Sec. 4.1.1, the signal of monopoles in the Pixel detector would be lost due

to the length of the time-over-threshold overflowing the maximum number of bits allowed.

Therefore, the TRT is the only ID sub-detector used for the reconstruction of monopoles

in events that passed the trigger. Energy deposits in the EM calorimeter are used to select

monopole candidates based on the amount and shape of the energy deposition while energy

deposits in the hadronic calorimeter are used to ensure that inefficiencies introduced by the

Level-1 trigger are accounted for.

5.2.1 Monopole reconstruction in the TRT

In order to identify regions in the TRT with high energy deposition from monopoles and

associated δ-rays, an algorithm to count the TRT hits was developed based on that used

in the search for magnetic monopoles in the 2011 ATLAS dataset [77]. It is important

to note that no ID tracks with TRT extension have been observed in simulated monopole

events. A possible explanation for this is that the pattern finding algorithm of the track

reconstruction fails to identify TRT extensions due to the large number of TRT hits in a

broad region.14

High-threshold hit counting algorithm

Using the orientation of the calorimeter cluster, a wedge-shaped region in the TRT of size

∆φ = ±0.05 centred on the cluster’s azimuthal angle φclust is defined. Within this region a

smaller region is determined using information from the TRT HT hits only.

The peak (∆φ)max of the distribution ∆φ = φHT − φclust of TRT HT hits in the wedge

14The region of high ionization density is expected to be broad with respect to the usual signature of

charged particles such as electrons. However, this high ionization density region is in itself narrow, with a

width of the order of one cm
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Figure 5.4: An example of a simulated monopole trajectory and the TRT region constructed
for the hit counting in the barrel in the transverse plane. The blue lines represent the wedge
of size ∆φ = ±0.05 and the black lines depict the limits of the ±4 mm rectangular road.
Straws with TRT LT hits are coloured green and straws with TRT HT hits have black
markers overlaid. The right plot is a closeup of the rectangular road [77].

of size ∆φ = ±0.05 is determined, and a narrower wedge of size ∆φ = ±0.01 centred on

φ = φclust + (∆φ)max is defined. Based on the TRT HT hits in this narrower wedge, the

average value φavgHT is obtained. This value φavgHT is used in the construction of a region in

the TRT along the monopole trajectory in which the fraction of HT hits is computed and

used as a discriminating variable.

In the TRT barrel, where only information on the r and φ coordinates of the TRT hits

is available, a rectangular road of width ±4 mm centred on φavgHT is built. This road is

sufficiently wide to include two TRT straws (a TRT straws are 4 mm in diameter). Also,

the maximum range of a typical δ-ray falls within the width of the rectangular road, as

mentioned in Sec. 4.1.1. In the TRT end-cap, where only z and φ information is available,

a different type of road has to be constructed. A wedge-shaped road of size ∆φ = ±0.006

centred on φavgHT is defined. The angular width of this road is chosen so that it is ±4 mm at

the inner radius of the TRT end-cap wheels. An example of the rectangular road constructed

for a simulated monopole trajectory in the TRT barrel is presented in Fig. 5.4.

The numbers of TRT hits and TRT HT hits are counted in the road in order to calculate
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Figure 5.5: Graphic depiction of the TRT hit counting algorithm for a monopole in the TRT
barrel–end-cap transition region (blue line). The blue shaded areas represent the straws in
the barrel and the end-cap included in the hit counting algorithm [35].

the fraction of TRT HT hits over all hits, fHT. The geometry of the TRT is such that it is

only possible to know on which side, i.e., η < 0 or η > 0, the hit occurred. The information

of the exact η coordinate of the hit is not available. Thus, all hits on the same side of

the TRT as the calorimeter cluster are counted. In the region |η| < 0.1, it is difficult to

know through which side of the detector the monopole passed due to the propagation of

δ-rays and the possible bending of the monopole trajectory in the solenoidal magnetic field.

Therefore, the fraction of TRT HT hits is calculated independently in both positive and

negative barrels, and the maximum is taken as fHT provided there are at least ten TRT

hits on the corresponding side. If no side has at least ten TRT hits, hits on both sides

of the TRT barrel are included in the calculation of fHT. Similarly, in the barrel–end-cap

transition region, 0.77 < |η| < 1.06, the fraction of TRT HT hits is calculated independently

in both barrel and end-cap, and the maximum is taken as fHT provided there are at least

ten TRT hits on the corresponding detector element. If no detector element has at least

ten TRT hits, hits in both the barrel and the end-cap are counted and included in the
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Figure 5.6: Left: Distribution of the fraction of TRT HT hits, fHT, for spin-1/2 Drell-Yan
monopoles of mass m = 1500 GeV and various charges. Collision data and background MC
samples are also shown. Right: Distribution of the fraction of TRT HT hits, fHT, as a
function of calorimeter cluster pseudorapidity for single monopoles of mass m = 1000 GeV
and various charges.

computation of fHT. Figure 5.5 depicts the TRT hit counting algorithm for a monopole in

the TRT barrel–end-cap transition region. The blue shaded areas represent the straws in

the barrel and end-cap expected to have TRT HT hits.

Performance of the fraction fHT as a discriminating variable

As mentioned in Secs. 4.1.1 and 4.3, a large fraction of TRT HT hits, as produced by highly

ionizing monopoles and associated δ-rays, can also be observed in events with electrons and

overlapping minimum ionizing particles. However, based on the TRT HT hit probability

for electrons and muons [100], it is expected that fHT takes higher values for monopoles.

Figure 5.6 (left) shows the distribution of fHT for spin-1/2 Drell-Yan monopoles of mass m =

1500 GeV and various charges. The fraction fHT is higher for higher charge monopoles as

the ionization energy deposit is greater. The preselection requirement fHT > 0.4 described

above is highly efficient for monopole events. The fraction TRT HT hits, fHT, as a function

of calorimeter cluster pseudorapidity for monopoles of mass m = 1000 GeV and various

charges is shown in Fig. 5.6 (right).
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Figure 5.7: Profile histogram of the fraction of TRT HT hits, fHT, as a function of the aver-
age number of interactions per bunch crossing 〈µ〉 (left) and the number of primary recon-
structed vertices Nvtx (right) for pair-produced spin-1/2 monopoles of mass m = 1500 GeV
and various charges. The histogram for charge |g| = 2.0gD is truncated at 〈µ〉=18 due to
complications with the official production of the MC samples.

The narrow width of the roads used in the hit counting algorithm ensures robustness

against pileup since charged particles from additional collisions mainly produce TRT LT

hits. A larger number of TRT LT hits in the road makes the fraction fHT take lower values

as the number of TRT HT hits produced by a monopole is expected not to change with

pileup. Figure 5.7 shows the profile histogram of the fraction of TRT HT hits fHT as a

function of the average number of interactions per bunch crossing 〈µ〉 (left) and the number

of primary reconstructed vertices Nvtx (right). As the average number of interactions per

bunch crossing increases, the fraction fHT drops by a maximum of 5%. Therefore, it can

be considered as robust against pileup, ensuring that discriminating power is maintained

despite the changing instantaneous luminosity conditions during one run of data taking.

Removal of overlapping calorimeter clusters

Several calorimeter clusters with transverse energy ET > 16 GeV may be matched to the

same region in the TRT with a high fraction of TRT HT hits. Such is the case when the

topological clustering algorithm returns clusters that are very close in η and in φ, typically
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Figure 5.8: Number of preselected monopole candidates (left) and profile histogram of
the number of preselected monopole candidates as a function of pileup 〈µ〉 (right), in single
monopole events of various charges and massm = 1000 GeV. Collision data and background
MC samples are also shown. The profile histogram of the number of preselected monopole
candidates as a function of 〈µ〉 only includes events in which at least one monopole candidate
has been preselected.

within ∆η ×∆φ = 0.1× 0.1. Figure 5.8 shows the number of preselected monopole candi-

dates per event for single particle monopoles of mass m = 1000 GeV and various charges,

background MC samples and collision data. In single monopole events, only one preselected

candidate per event is expected. It is observed, however, that a fraction of single monopole

events have more than one preselected candidate. These additional preselected candidates

do not originate from clusters created by charged particles from pileup events since the

average number of preselected candidates per event in events with at least one preselected

candidate is fairly uniform across all 〈µ〉 values in the samples. Thus, the preselected can-

didate multiplicity is an effect of the clustering algorithm, which splits topological clusters

when more than one maximum of energy deposition is found. Multiple maxima can be

produced when the energy deposition is large and associated with energetic δ-rays that

propagate in the LAr calorimeter and radiate. This can be seen in Fig. 5.9 where higher

charge monopole events are associated with a set of clusters with a larger standard deviation

of the pseudorapidity coordinate η.
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Figure 5.9: Standard deviation of the distribution of the angular coordinates η (left) and φ
(right) of calorimeter clusters from preselected monopole candidates from single monopole
events with more than one preselected candidate for various signal MC samples. Collision
data are also shown.

Multiple monopole candidates in single monopole events is an undesirable situation as

it means that the same TRT region has been used in the formation of more than one pre-

selected monopole candidate. In order to identify which calorimeter clusters have been

associated to the same TRT region, their η and φ information is used. A set of clusters

is defined as associated to the same TRT region if the standard deviations of the pseudo-

rapidity and azimuthal angle satisfy σ(ηcluster) < 0.1 and σ(φcluster) < 0.05, respectively.

These distributions can be seen in Fig. 5.9. These selection criteria ensure that only clusters

associated with the same TRT region are taken into account in the overlap removal.

In order to ensure that there is only one calorimeter cluster associated to each TRT

region with a large fraction of TRT HT hits, the cluster with the highest summed energy

deposition in the presampler and EM1 is selected. This criterion is based on the expected

signature of a monopole in the calorimeter, which must deposit a large fraction of its

energy early in the calorimeter. Energetic δ-rays emitted along the monopole trajectory

may penetrate to EM2 and be reconstructed as a cluster without energy deposition the

presampler or EM1.
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Figure 5.10: Fraction of cluster energy deposited in the presampler (left) and EM1 (right) for
spin-1/2 monopoles of mass 1000 GeV and various charges. Collision data and background
MC processes containing electrons are also shown.

5.2.2 Monopole reconstruction in the LAr electromagnetic calorimeter

The Level-1 trigger requires a minimum transverse energy deposition of 18 to 20 GeV in

the calorimeter. A similar requirement is applied as part of the monopole reconstruction:

calorimeter clusters are required to have a minimum transverse energy deposition in the

LAr EM calorimeter, i.e., the summed transverse energy in the presampler, EM1, EM2 and

EM3 must be EEM
T > 16 GeV. In addition, only calorimeter clusters in the pseudorapidity

ranges |η| < 1.375 and 1.52 < |η| < 2.0 are considered. The requirement |η| < 2.0 is based

on the TRT coverage, which defines the Level-2 dedicated trigger acceptance. Clusters in

the LAr calorimeter barrel–end-cap transition region, 1.375 < |η| < 1.52, are rejected to

ensure robustness of the final selection variables (see Sec. 6.4.1).

The EM calorimeter was designed to measure the energy of electrons and photons. The

electromagnetic cascades produced by these particles develop fully in EM2, the deepest

layer, making it a crucial layer for their measurement. However, due to the suppression of

bremsstrahlung and the highly ionizing nature of monopoles, which leads to an early stop in

the calorimeter, the presampler and EM1 are the most relevant layers in this search. This is

the case in particular, when pair-produced spin-1/2 monopoles are considered, as the kinetic
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Figure 5.11: Fraction of cluster energy deposited in EM2 (left) and EM3 (right) for spin-
1/2 monopoles of mass 1000 GeV and various charges. Collision data and background MC
processes containing electrons are also shown.

energy spectrum of the generated monopoles is much softer than in the single monopole

case. Figures 5.10 and 5.11 show the fraction of the cluster energy deposited in each layer

for spin-1/2 monopoles of various charges. It must be noted that for charges |g| ≥ 1.0gD a

significant faction of the energy is deposited in the first layers. For lower charges, such as

|g| = 0.5gD, a significant fraction of the energy is deposited in EM2. A very small fraction

of the energy is deposited in the outermost layer, EM3, in all cases. Electrons, on the other

hand, do not deposit a significant amount of energy in the presampler; most of the energy

deposition occurs in the deeper layer EM2.

The transverse energy deposition by monopole candidates in the EM calorimeter must

be at least 16 GeV, thus, based on the large fraction of the cluster energy deposited in the

presampler and EM1, it is required that monopole candidates deposit at least 5 GeV in

the presampler or EM1. The “or” operator is necessary as the presampler only covers the

range |η| < 1.8. Also, lower charge monopoles may not deposit 5 GeV in the presampler

in some cases due to the shallow depth of this layer. This requirement rejects background

candidates that fulfill EEM
T > 16 GeV but do not have a significant energy deposition in

the presampler or EM1. Figures 5.12 and 5.13 show the energy deposited by monopoles of
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Figure 5.12: Energy deposition in the presampler (left) and EM1 (right) for monopoles of
mass 1000 GeV and various charges. Collision data and background MC processes contain-
ing electrons are also shown.
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Figure 5.13: Energy deposition in EM2 (left) and EM3 (right) for monopoles of
mass 1000 GeV and various charges. Collision data and background MC processes con-
taining electrons are also shown.

mass 1000 GeV and various charges in each layer of the EM calorimeter. It can be seen

that a requirement on the minimum energy deposition in the presampler or EM1 of 5 GeV

would not significantly affect the selection efficiency for monopole events.
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5.2.3 Hadronic energy deposition

The Level-1 trigger used as a seed by the dedicated HIP trigger rejects regions of interest

with a transverse energy deposition in the hadronic calorimeter greater than 1 GeV. In

order to ensure that all inefficiencies introduced by the Level-1 trigger hadronic veto are

properly accounted for, the monopole reconstruction algorithm rejects calorimeter clusters

with energy deposition in the hadronic calorimeter exceeding 1 GeV. The energy deposition

in the hadronic calorimeter is defined as the energy contained in the cluster cells belonging to

the tile calorimeter barrel and extended barrel. These two regions effectively cover the range

|η| < 1.7, allowing background from multijet events to fulfill this criterion despite energy

being deposited in the hadronic calorimeter end-cap, which extends beyond |η| = 1.7.

5.2.4 Lateral dispersion of energy deposition

A calorimeter cluster with very low lateral energy dispersion due to the highly suppressed

electromagnetic cascade is the main signature of a monopole in the EM calorimeter. In

order to measure the lateral dispersion, several variables were studied. The energy-weighted

cluster size, σR, based on the variable used in the search in 2011 data [77], was extended

to the presampler, EM1 and EM2. This variable was shown to be non-optimal due to

losses in signal–background discriminating power arising from the coarse segmentation in

the presampler (see App. B). A second variable that measures the fraction of the cluster

energy deposited in the highest energy cells was therefore designed. This variable, named

w (it stands for width for historical reasons), is constructed and optimized for the three

innermost layers of the EM calorimeter. The dispersion wi for each layer is defined as

wi =

∑N
n Ei

n

Ei
total

, (5.1)

where Ei
n is the n-th highest energy cell in layer i, where the index i represents the presam-

pler, EM1 or EM2, and N = 2, 4, 4 is the number of highest energy cells included in the

calculation of wi for the presampler, EM1 and EM2, respectively. The dispersion in each

layer, wi, is only computed if the total cluster energy in the layer is Ei
total > 5 GeV. This

requirement ensures that only layers traversed by the monopole candidate are taken into
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Figure 5.14: Signal efficiency as a function of wPre in the presampler for single monopoles
of mass m = 1000 GeV, and charge g = 1.0gD (left) and g = 2.0gD (right). Different cases
have been considered in which one to six cells are included in the calculation.
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Figure 5.15: Signal efficiency as a function of wEM1 in EM1 for single monopoles of mass
m = 1000 GeV, and charge g = 1.0gD (left) and g = 2.0gD (right). Different cases have
been considered in which one to six cells are included in the calculation.

account.

The number of cells included in the calculation of wi was optimized to account for the

differences in granularity between the three innermost calorimeter layers. A compromise

between signal efficiency, defined as the fraction of signal monopole candidates that pass
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Figure 5.16: Signal efficiency as a function of wEM2 in EM2 for single monopoles of mass
m = 1000 GeV, and charge g = 1.0gD (left) and g = 2.0gD (right). Different cases have
been considered in which one to six cells are included in the calculation.

a selection cut on wi, and signal–background discrimination was achieved in this process.

Figures 5.14 to 5.16 show the signal efficiency for single monopoles of charge |g| = 1.0gD

and |g| = 2.0gD and mass m = 1000 GeV as a function of a cut on wi. Figure 5.17 shows the

square root of the number of candidates from background MC events from electrons from

W± decays and Drell-Yan electron–positron pair production that pass a cut on wi. In order

to maximize the signal–background discrimination, it is necessary to choose the minimum

number of cells per layer to include in the calculation of wi. By doing so, clusters with

minimal lateral dispersion peak at one while broad energy depositions will peak at lower

values. In the absence of an electromagnetic cascade, an EM calorimeter cluster produced

by a monopole is expected to have very low lateral dispersion and thus its associated wi’s

peak at one.

The discrimination power of wi as a function of the number of cells and the cut on wi

can be estimated by measuring the sensitivity of wi to a monopole signal. The sensitivity

used in this optimization is described in Ref. [125] and is defined by the expression

ǫ(t)

a/2 +
√

B(t)
, (5.2)
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Figure 5.17: Square root of number of

candidates from background MC events

comprising contributions from electrons

from W± decays and Drell-Yan electron–

positron pair production that pass a cut

on wPre (top left), wEM1 (top right) and

wEM2 (bottom left). Different cases have

been considered in which one to six cells

are included in the calculation.

where ǫ(t) is the signal efficiency, defined as the number of candidates that pass the selection

criterion t with respect to the total number of preselected candidates, a is the number

of standard deviations corresponding to one-sided Gaussian tests at significance 95% (in

this case, 2σ was chosen), and B(t) is the number of background events satisfying the

selection criterion t. This definition of sensitivity suits this search as it is independent of

the (unknown) cross section of the signal, unlike other “significance-like” definitions such

as S/
√
B and S/

√
S +B. In this case the monopole signal efficiency has been compared

against background from events containing electrons from W± boson decays and Drell-
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Figure 5.18: Sensitivity as a function of wPre in the presampler for single monopoles of mass
m = 1000 GeV and charges g = 1.0gD (left) and g = 2.0gD (right). Different cases have
been considered in which one to six cells are included in the calculation.
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Figure 5.19: Sensitivity as a function of wEM1 in EM1 for single monopoles of mass m =
1000 GeV and charges g = 1.0gD (left) and g = 2.0gD (right). Different cases have been
considered in which one to six cells are included in the calculation.

Yan production of electron–positron pairs since electrons are expected to generate narrower

energy depositions in the calorimeter than jets from strong interactions. Figures 5.18 to 5.20

show the sensitivity as a function of a cut on wi for different numbers of cells. The ideal

number of cells to include in the calculation of wi is found when the sensitivity is maximal
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Figure 5.20: Sensitivity as a function of wEM2 in EM2 for single monopoles of mass m =
1000 GeV and charges g = 1.0gD (left) and g = 2.0gD (right). Different cases have been
considered in which one to six cells are included in the calculation.

so long as the efficiency is kept high for values of wi between 0.9 and 0.96. Values of wi

lower than 0.9 may increase the background while values higher than 0.96 may make the

search sensitive to large systematic uncertainties on the event selection efficiency.

From Figs. 5.14 and 5.18 it can be seen that for the presampler, the computation of

wPre using a single cell offers the best sensitivity. Unfortunately, the signal efficiency is

much lower than for the cases in which more than one cell is included. Based on this, wPre

is calculated using the two highest energy cells. For EM1, as shown in Figs. 5.15 and 5.19,

high sensitivity is achieved using four cells, which peaks at high wEM1, while keeping a

high signal efficiency. Therefore, four cells are used for the calculation of wEM1. Finally,

Figs. 5.16 and 5.20 show that in EM2, very high signal efficiency is achieved by including

four or more cells in the calculation of wEM2. Thus, four cells are chosen as it yields a higher

sensitivity.

Figure 5.21 shows the distributions of wi for single monopoles of mass m = 1000 GeV

and various charges, along with collision data and background MC samples. The coarse

segmentation of the presampler is reflected in the lower discrimination power observed for

wPre. Nevertheless, the expected backgrounds deposit very little energy in the presampler
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Figure 5.21: Cluster dispersion wi for the

presampler (top left), EM1 (top right)

and EM2 (bottom left) for spin-1/2 Drell-

Yan produced monopoles of mass m =

1500 GeV and various charges. Collision

data and background MC samples are also

shown.

and, in many cases, not even the 5 GeV necessary to define wPre. The layers EM1 and EM2

have a finer segmentation, allowing for a better discriminating power, in particular in EM1

in which multijet events take much lower values of wEM1.

The measurement of the calorimeter cluster energy dispersion used in this search is the

average of the individual wi. This average includes only those wi that have been defined,

i.e., the total cluster energy in the layer Ei > 5 GeV,

w =

∑

iwi

Ndefined
. (5.3)

Figure 5.22 (left) shows the distribution of w for monopoles of mass m = 1000 GeV and
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Figure 5.22: Cluster dispersion w (left) and profile histogram of its dependence on pileup
〈µ〉 (right) for spin-1/2 Drell-Yan produced monopoles of mass m = 1500 GeV and various
charges. Collision data and background MC are also shown.

various charges. The combination of wi offers an excellent discriminating power between

monopole signal and background.

As with the fraction of TRT HT hits, fHT, it is important that the cluster dispersion w is

robust against pileup, i.e., the measured lateral dispersion does not change significantly with

changing pileup conditions. In the EM calorimeter, out-of-time pileup must be considered

since the typical readout time of the electronics is greater than the 50 ns spacing between

bunches of protons during the 2012 pp run. The quantity 〈µ〉 takes into account both the

in-time and out-of-time pileup. Therefore, the dispersion w must be very robust against

it. This can be seen in Fig. 5.22 (right), which shows remarkable robustness to background

from additional collisions.

The cluster dispersion w can be affected by δ-rays that are energetic enough to radiate,

e.g., δ-rays with a energy above 20 MeV. In such case, the energy deposition will have

a greater lateral dispersion. Figure 5.23 shows that the degradation of the w variable is

more significant for lower mass monopoles. The maximum energy of a δ-ray produced by a
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Figure 5.23: Cluster dispersion w as a function of truth monopole Ekin
T for single monopoles

of charge |g| = 1.0gD and masses m = 200 GeV (left) and m = 1000 GeV (right).

monopole is described by

Emax
δ = 2mec

2 E
kin
mon

mmon

(

Ekin
mon

mmon
+ 2

)

, (5.4)

from where it can be deduced that lighter monopoles yield more energetic δ-rays. For

instance, a mass 200 GeV monopole with kinetic energy 1000 GeV would produce δ-rays with

a maximum kinetic energy of 36 MeV. Electrons with such energy are in the bremsstrahlung

regime in liquid argon. Thus, δ-rays produced by lower mass monopoles in the calorimeter

may have sufficient energy to propagate and radiate, generating an electromagnetic cascade

that affects the measurement of the lateral dispersion of the energy deposition, causing a

degradation of w.
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Chapter 6

Search for magnetic monopoles in

2012 8 TeV data

This chapter describes the search for magnetic monopoles in data from proton-

proton collisions at
√
s = 8 TeV with the ATLAS detector. A description of

the dataset is followed by a summary of the event selection criteria. The event

selection efficiencies are presented and a background estimate is performed

using collision data. Finally, the systematic uncertainties on the signal event

selection efficiency are discussed in detail.

6.1 Data sample

This search for magnetic monopoles was performed using a dataset of pp collisions at
√
s = 8 TeV collected at the ATLAS detector with the HIP trigger during the 2012 run,

comprising periods G, H, J and L, which span from eary October through November. The

data have been required to fulfill quality criteria by selecting only luminosity blocks present

in the good run list PHYS_Standard All_Good [126]. Good quality requirements include

LHC stable beams, all ATLAS subsystems operational and good data quality flags from

each subsystem. The total integrated luminosity of the dataset is 7.0 fb−1 with an uncer-
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tainty of 2.8% [127] (see Sec. 6.5). Details on the run condition stability can be found in

App. C.

Data from the electron–photon stream, of which the HIP trigger is part, is saved in ESD

format. These data are then further reduced by selecting events that pass some criteria.

This is performed by the RPVLL_DESD filter, which contains the DESD HIP filter whose

purpose is to select events that pass the HIP trigger.

6.2 Event selection criteria

The selection of events with monopole candidates exploits their unique signature in the

ATLAS detector. As described in Ch. 5, the reconstruction of magnetic monopoles relies

heavily on two subdetectors: the TRT and the LAr EM calorimeter. The event selection is

performed in three stages, starting from a preselection of monopole candidates in events that

passed the HIP trigger, followed by a tight selection that discriminates monopole candidates

based on the expected signature of monopoles in the calorimeter, and finally, selection of

candidate events based on the shape of the energy deposition in the LAr EM calorimeter

and the ionization in the TRT.

6.2.1 Signal region definition

The signal region was defined using the fHT and w discriminating variables described in

Secs. 5.2.1 and 5.2.2. In order to optimize the cut values that define the signal region, the

sensitivity of the search was maximized using the formula from Eq. (5.2). The background

contributions have been obtained from pseudo-data randomly generated in the w − fHT

phase space from the individual one-dimensional distributions of fHT and w in collision

data. In order to exclude the possibility of generating data points from the signal region

in the pseudo-data, only candidate events with w < 0.8 were used to generate the one-

dimensional fHT distribution and candidate events with fHT < 0.6 were used to generate

the one-dimensional w distribution. Figure 6.1 (left) shows the two-dimensional fHT versus

w distribution for the generated pseudo-data. By construction, the generated pseudo-data
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Figure 6.1: Left: Pseudo-data generated from individual one-dimensional distributions of
fHT and w. The signal region is excluded by using low-fHT and low-w control regions to
generate the pseudo-data. Spin-1/2 monopoles of mass 1000 GeV and charge |g| = 1.0gD
produced with the Drell-Yan model are also shown. Right: Number of events in pseudo-data
above a cut on w.

is uncorrelated. This is proven by calculating the Pearson correlation coefficient, which

returns a negligible correlation of 0.07% between selection variables.

The efficiency ǫ(t) is the event selection efficiency for the signal samples after the re-

quirements on fHT and w. The number of background events, B(t), corresponds to the

number of simulated MC background events after the requirements on fHT and w. As

mentioned earlier in Sec. 5.2.4, this approach for maximizing the sensitivity of a search is

independent of the cross section of the signal. This is ideal in order to optimize the signal

region using single particle monopole samples with uniform kinematical distributions and

spin-1/2 Drell-Yan produced monopoles whose production cross section is known, but not

fully reliable.

Due to the excellent discriminating power of w, as shown in Fig. 5.22, the expression

from Eq. (5.2) is maximal for values w > 0.97 where there are no contributions to B(t)

from the pseudo-data events, as shown in Fig. 6.1 (right). As a direct consequence of the

absence of background in w > 0.97, the sensitivity is maximal for fHT > 0.4, i.e., the signal

region would include all candidates above w > 0.97 since all candidates with fHT < 0.4

are rejected at the preselection stage. Thus, a selection criterion fHT < 0.4 is too loose
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and is equivalent to not applying any additional selection. It must be kept in mind that

this optimization is performed with pseudo-data obtained from control regions away from

where the signal is expected, i.e., w < 0.8 for the generation of pseudo-data for fHT, and

fHT < 0.6 for the generation of pseudo-data for w. Therefore, it is only representative of a

limited subset of the actual dataset used in the search. The use of a signal region defined by

w > 0.97 and fHT > 0.4 would therefore expose the search to possible background events

with fHT ≈ 0.4. In addition, the stability of the search may be compromised if the w cut is

too close to the bulk of the w distribution for the signal as the systematic uncertainties on

the event selection efficiency may blow up. Some of the systematic uncertainties are related

to the energy measurements in the EM calorimeter, afecting the measurement of the lateral

dispersion, w, as described in Sec. 6.5.

A small modification to the optimization is performed in order to avoid exposing the

search to backgrounds at low-fHT values close to fHT = 0.4 due to the very loose optimal

cut for fHT. It is required that there be at least one background event in the signal region.

Figure 6.2 shows the sensitivity (left), as defined in Eq. (5.2), as a function of fHT and w

for a sample of Drell-Yan produced monopoles of mass 1000 GeV and charge |g| = 1.0gD.
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The maximum of the sensitivity is used to select the cut values defining the signal region.

Also in Fig. 6.2, the points of maximal sensitivity are shown (right) for all mass and charge

points for which the search is sensitive; this includes both single monopole samples and

spin-1/2 Drell-Yan produced monopoles. As a compromise between the optimal values for

all signal samples, the signal region is defined by the following two requirements:

• fHT ≥ 0.7,

• w ≥ 0.94.

In order to perform an event-based search, only one monopole candidate per event is

kept. In the case of multiple candidates in the event, which is expected for pair-produced

monopoles, the one closest to the signal region is kept, i.e., the candidate with highest fHT.

Table 6.1 presents a summary of the event selection criteria used in this search.

Preselection

Trigger HIP trigger EF_g_nocut_hiptrtL2

Calorimeter
CaloCalTopoCluster

Cluster transverse energy ET > 16 GeV

TRT
Number of HT hits in narrow region NHT > 9
Fraction of HT hits in narrow region fHT > 0.4

Tight selection

Overlap removal One EM calorimeter cluster per TRT region

Calorimeter

EM transverse energy EEM
T > 16 GeV

EPre > 5 GeV or EEM1 > 5 GeV
Cluster pseudorapidity |η| < 1.375 or 1.52 < |η| < 2.0
Energy in hadronic calorimeter EHCal < 1 GeV

TRT Only one candidate per event is selected: maximum fHT

Final selection
TRT Fraction of HT hits in narrow region fHT ≥ 0.7

Calorimeter Cluster energy dispersion w ≥ 0.94

Table 6.1: Summary of the event selection criteria.

6.3 Event selection efficiency

The event selection criteria is highly efficient for signal events that pass the HIP trigger.

Tables 6.2 and 6.3 present the numbers of monopole candidates and events with at least

one monopole candidate for two typical samples. The main inefficiency comes from the HIP

trigger, in particular from the Level-1 component, which requires that the monopole reach
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 20326 40.65 40.65
Preselection 24263 — — 20278 99.76 40.56
Overlap removal 20281 83.59 83.59 20278 100.00 40.56
EEM

T > 16 GeV 20278 99.99 83.58 20276 99.99 40.55
EPre > 5 GeV OR EEM1 > 5 GeV 20276 99.99 83.57 20274 99.99 40.55
|η| < 1.375 OR 1.52 < |η| < 2.0 18319 90.35 75.50 18318 90.35 36.64
Hadronic veto EHCal ≤ 1 GeV 17276 94.30 71.20 17274 94.30 34.55
Max fHT candidate 17274 99.99 71.19 17274 100.00 34.55
w ≥ 0.94 17239 99.79 71.05 17239 99.79 34.48
fHT ≥ 0.7 17082 99.09 70.40 17082 99.09 34.16

Table 6.2: Numbers of monopole candidates and events with at least one monopole can-
didate after requiring each selection criterion for single monopoles of mass 1000 GeV and
charge |g| = 1.0gD. Relative efficiencies with respect to the previous selection criterion
and absolute efficiencies with respect to the total number of preselected monopoles or total
number of events in the sample are also presented in percentages.

the EM calorimeter depositing at least 18 GeV. Events with monopoles of charge |g| = 0.5gD

fail to pass the HIP trigger when they reach the barrel or extended barrel of the hadronic

calorimeter depositing more than 1 GeV. Events with such characteristics are rejected by

the Level-1 trigger. Tables for all samples can be found in App. D.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 26502 — —
HIP trigger — — — 6526 24.62 24.62
Preselection 11253 — — 6503 99.65 24.54
Overlap removal 10877 96.66 96.66 6503 100.00 24.54
EEM

T > 16 GeV 10794 99.23 95.92 6503 100.00 24.54
EPre > 5 GeV OR EEM1 > 5 GeV 10787 99.94 95.86 6503 100.00 24.54
|η| < 1.375 OR 1.52 < |η| < 2.0 10310 95.58 91.62 6242 95.97 23.55
Hadronic veto EHCal ≤ 1 GeV 10286 99.77 91.41 6242 100.00 23.55
Max fHT candidate 6242 60.68 55.46 6242 100.00 23.55
w ≥ 0.94 6222 99.69 55.29 6222 99.69 23.48
fHT ≥ 0.7 6193 99.53 55.04 6193 99.53 23.37

Table 6.3: Numbers of monopole candidates and events with at least one monopole candi-
date after requiring each selection criterion for spin-1/2 Drell-Yan produced monopoles of
mass 1000 GeV and charge |g| = 1.0gD. Relative efficiencies with respect to the previous
selection criterion and absolute efficiencies with respect to the total number of preselected
monopoles or total number of events in the sample are also presented in percentages.

A summary of the event selection efficiencies for all the spin-1/2 Drell-Yan monopole
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Drell-Yan spin-1/2 monopole event selection efficiencies [%]
Mass [GeV] |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 22.30 ± 0.29 3.51 ± 0.13 0.14 ± 0.03 —
500 33.50 ± 0.33 14.86 ± 0.25 1.16 ± 0.09 —
1000 27.82 ± 0.32 23.37 ± 0.30 3.64 ± 0.13 —
1500 23.65 ± 0.30 22.15 ± 0.29 3.53 ± 0.13 —
2000 16.68 ± 0.26 16.52 ± 0.26 2.79 ± 0.12 —
2500 9.79 ± 0.21 9.76 ± 0.22 1.61 ± 0.09 —

Table 6.4: Event selection efficiency for spin-1/2 monopoles produced assuming the Drell-
Yan model. Uncertainties are statistical only. Monopoles of charge |g| = 2.0gD produced
assuming the Drell-Yan model are excluded from the search due to very low trigger efficiency.

mass and charge combinations is presented in Table 6.4. Spin-1/2 monopoles of charge

|g| = 2.0gD produced with the Drell-Yan model are excluded from the search as the trigger

efficiency is too low, thus they are excluded from the summary. Single monopole samples

of charge |g| = 2.0gD are not excluded from the search and are used for model-independent

results.

6.3.1 Event selection efficiency maps

The event selection efficiency can be presented as two-dimensional maps in the kinetic

energy, Ekin, versus pseudorapidity, η, phase space, where Ekin and η are associated with

the generated monopoles.

The amount of material before the EM calorimeter barrel region (|η| < 1.375) is roughly

proportional to (sin θ)−1 while before the end-cap region (|η| > 1.52) it is roughly pro-

portional to (cos θ)−1. Therefore, in order to account for the material in front of the EM

calorimeter, event selection efficiency maps are defined in terms of the generated monopole’s

transverse kinetic energy, Ekin
T = Ekin sin θ. Figure 6.3 shows the event selection efficiency

map for single particle monopoles of mass 1000 GeV and charges |g| = 1.0gD (left) and

|g| = 2.0gD (right). Efficiency maps for the remaining single monopole samples used in the

search can be found in App. E.

In the EM calorimeter end-cap regions, event selection efficiency maps can be defined

in terms of the longitudinal kinetic energy, Ekin
L = Ekin cos θ, to account for the amount
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Figure 6.3: Event selection efficiency as a function of the transverse kinetic energy, Ekin
T , and

pseudorapidity, η, for single particle monopoles of mass 1000 GeV and charges |g| = 1.0gD
(left) and |g| = 2.0gD (right) [45].

of material before the EM calorimeter. This approach is used in the definition of fiducial

regions of high and uniform event selection efficiency, which are necessary for the model

independent results (see Sec. 6.3.3).

6.3.2 Extrapolation to spin-0 pair produced monopoles

The theory of magnetic monopoles proposed by Dirac does not impose any constraints on

the spin of the monopole [24]. Similarly, the spin of the so-called electroweak monopole is

not determined by the theory [26,27]. Therefore, there is no reason to restrict the search for

magnetic monopoles to spin-1/2 particles only. The interactions of monopoles with matter

are spin independent and thus so are their energy losses through the ATLAS detector. This

situation can be exploited to extend the search to spin-0 monopoles produced assuming the

Drell-Yan model without the need for full Geant4 simulation of the ATLAS detector and

reconstruction with the ATLAS software.

Extrapolation of model independent single particle results to spin-0 monopoles requires

event selection efficiency maps of fully simulated and reconstructed single monopoles in the

transverse kinetic energy, Ekin
T , versus pseudorapidity, η, space. The probability of selecting

an event with a monopole candidate can be extracted from this map for any production

model.
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In addition to the single monopole efficiency maps, the event generator-level four-vectors

of spin-0 monopoles assuming Drell-Yan production are necessary to calculate the event se-

lection efficiency for the model. The event selection efficiency associated to each spin-0

monopole in every generated event is extracted from the event selection efficiency maps

for the corresponding mass and charge using the generated monopole’s transverse kinetic

energy, Ekin
T , versus pseudorapidity, η, values. Each monopole is then passed with a prob-

ability equal to its associated selection efficiency. For models in which monopoles are pair

produced, an event is deemed as passed when at least one of the generated monopoles in

the event was successfully passed by the extrapolation algorithm. The event selection effi-

ciency is calculated as the number of generated events that passed over the total number of

generated events. More details on this method and its validation can be found in Ref. [128].

Charge |g| Mass [GeV] Cross sec. [pb] σspin-0/σspin-1/2 Charge |g| Mass [GeV] Cross sec. [pb] σspin-0/σspin-1/2

0.5gD

200 3.08 8.19× 10−2

1.5gD

200 27.7 8.17× 10−2

500 3.91× 10−2 6.52× 10−2 500 0.352 6.51× 10−2

1000 3.14× 10−4 4.68× 10−2 1000 2.82× 10−3 4.66× 10−2

1500 4.52× 10−6 3.40× 10−2 1500 4.07× 10−5 3.39× 10−2

2000 5.39× 10−8 2.41× 10−2 2000 4.85× 10−7 2.41× 10−2

2500 3.31× 10−10 1.68× 10−2 2500 2.98× 10−9 1.68× 10−2

1.0gD

200 12.33 8.22× 10−2

2.0gD

200 49.3 8.18× 10−2

500 0.156 6.50× 10−2 500 0.626 6.50× 10−2

1000 1.25× 10−3 4.65× 10−2 1000 5.02× 10−3 4.65× 10−2

1500 1.81× 10−5 3.40× 10−2 1500 7.23× 10−5 3.38× 10−2

2000 2.16× 10−7 2.41× 10−2 2000 8.63× 10−7 2.41× 10−2

2500 1.33× 10−9 1.69× 10−2 2500 5.30× 10−9 1.68× 10−2

Table 6.5: Cross section of Drell-Yan produced spin-0 monopoles in proton-proton collisions
at

√
s = 8 TeV and ratios with respect to Drell-Yan produced spin-1/2 monopoles.

Direct comparison of the production cross sections of spin-0 and spin-1/2 monopoles (see

Tables 6.5 and 4.1, respectively) produced with the Drell-Yan model show that production

of spin-1/2 monopoles is more likely by a factor of approximately ten for particles of mass

200 GeV up to a factor of approximately 60 for particles of mass 2500 GeV. The kinematics of

Drell-Yan spin-0 monopoles also differ from those of spin-1/2. In order to conserve angular

momentum, Drell-Yan spin-0 monopoles cannot be produced at rest. This implies that

the transverse kinetic energy spectrum is harder than that of Drell-Yan produced spin-1/2

monopoles [128].
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The extrapolated event selection efficiencies for spin-0 monopoles produced assuming

the Drell-Yan model are presented in Table 6.6. The event selection efficiencies for spin-

0 monopoles are higher due to the harder spectrum. Monopoles with higher transverse

momentum are more likely to penetrate to the EM calorimeter and deposit enough energy

to exceed the Level-1 threshold. The efficiencies obtained for spin-0 monopoles of charge

|g| = 2.0gD are below 1%, motivating their exclusion from the search, similarly to spin-1/2

monopoles produced with the Drell-Yan method.

Drell-Yan spin-0 monopole event selection efficiencies [%]
Mass [GeV] |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 42.5± 0.3 10.0± 0.2 0.40± 0.04 0.01± 0.01
500 53.8± 0.3 34.8± 0.3 4.1± 0.1 0.11± 0.02
1000 44.3± 0.3 51.1± 0.3 11.4± 0.2 0.39± 0.04
1500 36.5± 0.3 49.7± 0.3 13.8± 0.2 0.43± 0.04
2000 30.9± 0.3 41.6± 0.3 10.9± 0.2 0.32± 0.04
2500 22.9± 0.3 30.8± 0.3 6.9± 0.2 0.12± 0.02

Table 6.6: Event selection efficiency for spin-0 monopoles produced assuming the Drell-Yan
model obtained with the extrapolation method from single particle event selection efficiency
maps. Uncertainties are statistical only.

6.3.3 Selection efficiency in fiducial regions

The large coupling of magnetic monopoles to the photon prevents the use of perturbative

methods to calculate the production cross section and kinematics of monopoles at the LHC.

This introduces large uncertainties to the understanding of the production model. A model-

independent search for monopoles is therefore of major importance.

In order to provide results that are model independent, fiducial regions of high and uni-

form event selection efficiency were obtained using single particle monopole samples. These

regions can be used to study different monopole production models by taking into account

their kinematics. Fiducial regions were obtained for each mass and charge combination as

a function of the monopole kinetic energy and pseudorapidity. The size of the region as

a function of the kinetic energy depends on two factors: the minimum energy required to

penetrate to the EM calorimeter, which is related to the amount of material before the
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Figure 6.4: Event selection efficiency as a function of absolute pseudorapidity, |η|, and
monopole kinetic energy, Ekin

T or Ekin
L , with fiducial regions of high and uniform event selec-

tion efficiency overlaid for single monopoles of mass 1000 GeV and charge |g| = 1.0gD (top
row) and mass 1500 GeV and charge |g| = 2.0gD (bottom row). Three fiducial regions have
been defined to account for the detector geometry and material before the EM calorimeter.

EM calorimeter, and the maximum energy before penetrating to the hadronic calorimeter,

which would cause the Level-1 trigger to reject the event.

Based on the distribution of the amount of material before the EM calorimeter, as

explained in Sec. 6.3.1, a total of three regions were obtained in the absolute pseudorapidity

ranges |η| < 1, 1 < |η| < 1.375 and 1.52 < |η| < 2.0. The division of the EM calorimeter

barrel region into two separate regions accounts for inefficiencies introduced by the detector

geometry of the TRT, as the TRT barrel–end-cap transition region spans across 0.77 < |η| <
1.06. The fiducial regions in the EM calorimeter barrel region (|η| < 1 and 1 < |η| < 1.375)

are defined as a function of the transverse kinetic energy, Ekin
T , while the fiducial region

in the EM calorimeter end-cap region (1.52 < |η| < 2.0) is defined as a function of the
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Figure 6.5: Boundaries of the fiducial regions of high and uniform event selection efficiency
for single monopoles. The pseudorapidity boundaries (top left) are presented for three |η|
slices and the transverse or longitudinal kinetic energy boundaries are presented individually
for the fiducial regions in |η| < 1 (top right), 1 < |η| < 1.375 (bottom left) and 1.52 < |η| <
2.0 (bottom right).

longitudinal kinetic energy, Ekin
L .

An algorithm was implemented to identify the largest rectangles in the Ekin
T or Ekin

L

versus |η| space for which the average selection efficiency was greater than 90% with a

standard deviation lower than 12.5%. Figure 6.4 shows examples of the event selection

efficiency maps with the fiducial regions obtained for single monopoles of mass 1000 GeV

and charge |g| = 1.0gD and mass 1500 GeV and charge |g| = 2.0gD overlaid.

The size of the region is dependent on the charge and mass of the monopole and, in some

cases, no fiducial region was found. This situation occurs for monopoles of charge |g| = 0.5gD

that often pierce through the EM calorimeter reaching the hadronic calorimeter causing the

rejection of the event. Figure 6.5 shows the fiducial regions for all mass and charge points.
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|g| = 0.5gD
mass [GeV] Ekin

T,min Ekin
T,max Ekin

T,min Ekin
T,max Ekin

L,min Ekin
L,max

0.0 < |η| < 0.8 1.0 < |η| < 1.3 1.6 < |η| < 1.7

200 125 400 150 400 325 425

0.0 < |η| < 0.65 1.05 < |η| < 1.25 — < |η| < —

500 125 325 225 325 — —

0.15 < |η| < 0.55 — < |η| < — — < |η| < —

1000 200 275 — — — —

Table 6.7: Fiducial regions for monopoles of charge |g| = 0.5gD. The units of E
kin
T and Ekin

L

are GeV. The entries are blank for mass and charge points for which no fiducial region of
high and uniform event selection efficiency was found.

|g| = 1.0gD
mass [GeV] Ekin

T,min Ekin
T,max Ekin

T,min Ekin
T,max Ekin

L,min Ekin
L,max

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.6 < |η| < 1.95

200 350 1525 350 1300 900 1825

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.6 < |η| < 1.95

500 275 1750 275 1500 825 1700

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.55 < |η| < 1.95

1000 275 1525 275 1500 850 1450

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.6 < |η| < 1.95

1500 450 1375 325 1325 725 1350

0.0 < |η| < 0.7 1.0 < |η| < 1.35 1.55 < |η| < 1.95

2000 275 1325 400 1275 750 1225

0.0 < |η| < 0.7 1.05 < |η| < 1.35 1.6 < |η| < 1.95

2500 350 1250 450 1225 800 1225

Table 6.8: Fiducial regions for monopoles of charge |g| = 1.0gD. The units of E
kin
T and Ekin

L

are GeV. The entries are blank for mass and charge points for which no fiducial region of
high and uniform event selection efficiency was found.

The exact numerical values that define each region can be found in Tables 6.7 to 6.10.

6.3.4 Event selection efficiency in collision data

The numbers of monopole candidates and events with at least one candidate are presented

in Table 6.11. The relative and absolute efficiencies of each criterion are also presented. The

absolute selection efficiency is calculated with respect to the total number of preselected
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|g| = 1.5gD
mass [GeV] Ekin

T,min Ekin
T,max Ekin

T,min Ekin
T,max Ekin

L,min Ekin
L,max

0.15 < |η| < 1.0 1.0 < |η| < 1.35 1.75 < |η| < 1.9

200 825 1800 775 1500 1700 2625

0.0 < |η| < 0.9 1.0 < |η| < 1.35 1.55 < |η| < 1.95

500 600 2175 650 1500 1675 2775

0.0 < |η| < 0.95 1.0 < |η| < 1.35 1.55 < |η| < 1.95

1000 525 2100 575 1525 1450 2775

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.55 < |η| < 1.95

1500 500 2025 525 1525 1525 2775

0.0 < |η| < 1.0 1.0 < |η| < 1.35 1.55 < |η| < 1.95

2000 500 2025 500 1525 1325 2775

0.0 < |η| < 0.8 1.0 < |η| < 1.35 1.55 < |η| < 1.95

2500 425 2300 500 1500 1325 2775

Table 6.9: Fiducial regions for monopoles of charge |g| = 1.5gD. The units of E
kin
T and Ekin

L

are GeV. The entries are blank for mass and charge points for which no fiducial region of
high and uniform event selection efficiency was found.

|g| = 2.0gD
mass [GeV] Ekin

T,min Ekin
T,max Ekin

T,min Ekin
T,max Ekin

L,min Ekin
L,max

0.25 < |η| < 0.6 1.0 < |η| < 1.2 — < |η| < —

200 1200 1625 1425 1725 — —

0.1 < |η| < 0.7 1.0 < |η| < 1.3 1.75 < |η| < 1.85

500 1150 2450 1250 1600 2575 2850

0.05 < |η| < 0.8 1.0 < |η| < 1.3 1.75 < |η| < 1.85

1000 1075 2325 1150 1600 2525 2850

0.0 < |η| < 0.75 1.0 < |η| < 1.3 1.8 < |η| < 1.95

1500 950 2375 1050 1600 2325 2850

0.0 < |η| < 0.75 1.0 < |η| < 1.3 1.75 < |η| < 1.95

2000 875 2375 1000 1600 2275 2850

0.05 < |η| < 0.75 1.0 < |η| < 1.35 1.75 < |η| < 1.95

2500 850 2400 975 1525 2150 2850

Table 6.10: Fiducial regions for monopoles of charge |g| = 2.0gD. The units of Ekin
T and

Ekin
L are GeV. The entries are blank for mass and charge points for which no fiducial region

of high and uniform event selection efficiency was found.
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monopoles or with respect to the total number of events selected by the HIP trigger.

Selection Candidates
Rel. frac. Fraction of

Events
Rel. frac. Fraction of

of cand. presel. cand. of events total events

HIP trigger — — — 854130 — —
Preselection 650465 — — 603150 70.62 70.62
Overlap removal 606645 93.26 93.26 603150 100.00 70.62
EEM

T > 16 GeV 600358 98.96 92.30 597761 99.11 69.98
EPre > 5 GeV OR EEM1 > 5 GeV 591627 98.55 90.95 589103 98.55 68.97
|η| < 1.375 OR 1.52 < |η| < 2.0 501304 84.73 77.07 499544 84.80 58.49
Hadronic veto EHCal ≤ 1 GeV 498993 99.54 76.71 497401 99.57 58.23
Max fHT candidate 497401 99.68 76.47 497401 100.00 58.23
w ≥ 0.94 3 10−6 10−6 3 10−6 10−6

fHT ≥ 0.7 0 0.00 0.00 0 0.00 0.00

Table 6.11: Numbers of monopole candidates and events with at least one monopole candi-
date after requiring each selection criterion in the collision data. Also shown are the relative
fraction of candidates and events with respect to the previous selection criterion and frac-
tion of candidates and events with respect to the total number of preselected monopoles
candidates or total number of events selected by the HIP trigger.

6.4 Two-dimensional sideband data-driven background esti-

mation

The HIP trigger has been designed to select events that passed the Level-1 trigger, which

requires energy deposition in the EM calorimeter, and have a large fraction of TRT HT

hits. This trigger is very effective at selecting signal events in which a monopole penetrates

to the EM calorimeter. The HIP trigger rate is dominated by low transverse momentum

multijet events in which close-by charged particles within a jet hit the same TRT straws

generating a region of high ionization density. High transverse momentum multijet events

and events containing electrons are also among those selected by the HIP trigger. The main

background near the signal region, i.e., events with high ionization density in a narrow

region of the TRT and a energy deposition in the EM calorimeter with very low lateral

dispersion, comprises events containing high energy electrons.

Simulated MC samples of electrons from W boson decays and Drell-Yan produced

electron-positron pairs were used to study the performance of the selection variables. A

simulated MC sample of high transverse momentum multijet events was also used, but it
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Figure 6.6: Fraction of TRT HT hits, fHT, versus EM calorimeter cluster lateral dispersion,
w, for candidate events after tight selection for collision data (colour) and for monopoles of
mass 1000 GeV and charge |g| = 1.0gD (boxes). The quadrants A, B, C and D used for the
background estimate are also shown.

was found that its contribution to the background was negligible. Despite the availability

of some MC samples, a complete set of simulated background samples that include the HIP

trigger, which was deployed late in 2012, could not be reprocessed. Therefore, a MC-based

background estimate was not possible.

The background estimate in the signal region was performed directly from the data

collected by the trigger that passed the tight selection requirements. The two-dimensional

sideband method, otherwise known as the ABCD method, was used [129]. This data-driven

background estimate requires the definition of a signal region and three control regions. In

this search the control and signal regions are defined in terms of the fraction of TRT HT

hits, fHT, and the EM cluster lateral dispersion, w. Figure 6.6 shows the candidate events in

collision data after tight selection for the signal region along with the three control regions.

The control regions, labelled as B, C and D, are defined by fHT ≥ 0.7 and 0.83 < w < 0.94,

fHT < 0.7 and w ≥ 0.94, and fHT < 0.7 and 0.83 < w < 0.94, respectively. The signal

region, A, is defined by fHT ≥ 0.7 and w ≥ 0.94, as detailed in Sec. 6.2.1.
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The two-dimensional sideband background estimate method requires that the search use

sequential requirements—in this case, w and fHT. The background in the signal region is

predicted by scaling the number of events in control region C (low fHT and high w) using

as a constant the ratio of the number of events in the low-w regions B and D, i.e.,

N est
A =

(

NB

ND

)

NC. (6.1)

This particular version of the method assumes no signal leakage into the control regions

and no correlation between selection variables.

6.4.1 Correlation between final selection variables

The two-dimensional sideband method requires the two discriminating variables not be

correlated or be only slightly correlated. In the case of fHT and w, a small non-negligible

correlation exists. The Pearson correlation factor between the discriminating variables in

the data in the region w < 0.94 is 0.120. A separation of the data in pseudorapidity

slices shows that the correlation in the region |η| < 1.375 is small with a correlation factor

of 0.036, while in the EM calorimeter barrel–end-cap transition region, 1.375 < |η| < 1.52,

and in the region 1.52 < |η| < 2.0, the correlation factor is 0.200 and 0.152, respectively.

The large correlation in 1.375 < |η| < 1.52 is the main motivation to reject monopole

candidates in this region. After removing the EM calorimeter barrel–end-cap transition

region, the correlation factor between the discriminating variables, fHT and w, decreases

to 0.094. Figure 6.7 shows the profile histograms of fHT versus w in the region w < 0.94

for the three η slices mentioned above and the full detector excluding the EM calorimeter

barrel–end-cap transition region, 1.375 < |η| < 1.52.

The correlation between fHT and w can be studied by analyzing the behaviour of the

ratio of the number of events with fHT ≥ 0.7 over the number of events with fHT < 0.7

in bins of width ∆w = 0.01 as a function of w. An uncorrelated sample would yield a

uniform ratio across w. Figure 6.8 shows the ratio between the number of events with

fHT ≥ 0.7 and fHT < 0.7 for collision data after tight selection in the region w < 0.94. The

individual pseudorapidity slices are not correlated within statistical uncertainties. However,
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Figure 6.7: Profile histograms of fHT versus w for the EM calorimeter barrel (top left),
barrel–end-cap transition region (top right), end-cap (bottom left) and full detector (bottom
right). Collision data and Drell-Yan produced monopoles of mass 1000 GeV and charge
|g| = 1.0gD and |g| = 1.5gD are shown. Collision data in w < 0.94 only is presented.
Candidate events in the EM calorimeter barrel–end-cap transition region are excluded from
the full detector profile histogram. Thus, it represents the final dataset.

the combination of all the slices shows some correlation. Thus, it was concluded that the

correlation is of a geometrical origin.
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6.4.2 Correction to correlation between selection variables

Due to the geometrical correlation present in the collision data, a correction has to be intro-

duced in order to account for a possible under- or over-estimation of the true background.

The correlation can be described by the correction parameter c = (NAND)/(NBNC) [129].

The correction parameter can be determined using data from the region w < 0.94 such that

the background estimate in the signal region becomes

N est
A = c

(

NB

ND

)

NC. (6.2)

For a specific w bin, i, in Fig. 6.8, the value of the ratio in any other bin, j, with higher w

could be regarded as NA/NC. By comparing the ratios for all wj (all w bins with a value

higher that wi), a correlation correction factor ci,j can be obtained:

ci,j =
N j

BN
i
D

N i
BN

j
D

. (6.3)

A correction factor for each bin i is defined as the weighted average over all ci,j taking the

weight as the reciprocal square of the statistical uncertainty in each bin j. Figure 6.9 shows

the values of the correlation correction parameter, ci. It can be seen that the deviation from
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Figure 6.9: Correlation correction parameter for each bin wi obtained as outlined in the
text. The deviations from unity lead to an overall correction parameter of c = 1.0± 0.4.

unity is no larger than 40%, leading to c = 1.0± 0.4. This correction effectively introduces

a systematic uncertainty on the background estimate.

6.4.3 Background estimate

The number of candidate events in collision data in the control regions is presented in

Table 6.12. The background estimate assuming no signal leakage and accounting for an ex-

isting small correlation between the selection variables by means of a systematic uncertainty

is

N est
A =

(

NB

ND

)

NC = 0.43± 0.25 (stat.)± 0.17 (syst.). (6.4)

The uncertainty on the background estimate is dominated by the low statistics in quadrant

C.

Nobs
A NB NC ND N est

A

0 364 3 2527 0.43± 0.25 (stat.)± 0.17 (syst.)

Table 6.12: Number of observed candidate events in collision data in quadrants A, B, C
and D.

135



6.4.4 Background estimate using a maximum-likelihood fit

The model independent background estimate described in Sec. 6.4.3 does not account for

possible signal leakages into the control regions. Although in most cases the signal leakages

are of order 0.1% or negligible, for monopoles of charge |g| = 0.5gD the signal leakage into

region C can be considerably larger, reaching values of about 30%. This situation occurs

when the discrimination power of fHT is reduced due to the lower ionization produced by

such particles. In particular, the heavier the monopole the slower it travels through the

TRT producing a reduced amount of TRT HT hits in comparison with the higher charges.

Leakage into region B occurs when fast, low-mass monopoles produce copious amounts

of energetic δ-rays that propagate and radiate in the EM calorimeter increasing the lateral

dispersion of the calorimeter cluster, as pointed out in Sec. 5.2.4. The signal leakages into

quadrants B, C and D are presented in Table 6.13.

In order to account for model-dependent leakages the background estimate is performed

for each mass and charge sample by means of a maximum-likelihood fit. This is done with

the RooStat framework [130] as part of the limit-setting procedure. The number of events

in quadrants A, B, C, and D are modelled as

µA = σeffsig · µ+ µU ,

µB = σeffsig · bµ+ µUτB,

µC = σeffsig · cµ+ µUτC ,

µD = σeffsig · dµ+ µUτBτC · ccorr, (6.5)

where µ and µU are the number of expected signal and background events in the signal

region, σeffsig reflects the systematic uncertainty on the event selection efficiency for the signal,

and the parameters b, c and d represent the signal leakages into the control regions B, C

and D, respectively. The parameter τB (τC) is defined as the ratio of background events

in control region B (C) to the number of background events in the signal region. Finally,

the parameter ccorr represents the correlation correction factor, as explained in Sec. 6.4.2.

The correlation correction factor ccorr, was found to be ccorr = 1.0± 0.4. However, instead

of introducing a floating parameter into the limit-setting procedure, a fixed correlation
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Single monopole b c d

|g| = 0.5gD
m =200 GeV 1.6 2.3 0.0
m =500 GeV 1.2 4.3 0.0
m =1000 GeV 0.6 19.5 0.1
m =1500 GeV — — —
m =2000 GeV — — —
m =2500 GeV — — —

|g| = 1.0gD
m =200 GeV 8.9 3.3 0.1
m =500 GeV 0.7 1.6 0.0
m =1000 GeV 0.2 0.8 0.0
m =1500 GeV 0.1 0.9 0.0
m =2000 GeV 0.1 1.4 0.0
m =2500 GeV 0.1 1.9 0.0

|g| = 1.5gD
m =200 GeV 8.0 2.6 0.1
m =500 GeV 0.5 1.6 0.0
m =1000 GeV 0.1 0.9 0.0
m =1500 GeV 0.1 0.6 0.0
m =2000 GeV 0.1 0.7 0.0
m =2500 GeV 0.1 0.7 0.0

|g| = 2.0gD
m =200 GeV 19.0 1.4 0.2
m =500 GeV 0.4 1.6 0.0
m =1000 GeV 0.1 0.6 0.0
m =1500 GeV 0.1 0.3 0.0
m =2000 GeV 0.1 0.4 0.0
m =2500 GeV 0.0 0.5 0.0

DY spin-1/2 monopole b c d

|g| = 0.5gD
m =200 GeV — — —
m =500 GeV 0.3 3.4 0.0
m =1000 GeV 0.6 15.7 0.1
m =1500 GeV 0.7 25.5 0.2
m =2000 GeV 0.5 32.6 0.3
m =2500 GeV 0.6 34.5 0.3

|g| = 1.0gD
m =200 GeV 0.2 0.5 0.0
m =500 GeV 0.2 0.1 0.0
m =1000 GeV 0.1 0.4 0.0
m =1500 GeV 0.3 1.7 0.0
m =2000 GeV 0.3 4.7 0.0
m =2500 GeV 0.1 10.8 0.0

|g| = 1.5gD
m =200 GeV 0.5 1.4 0.5
m =500 GeV 0.0 0.0 0.0
m =1000 GeV 0.0 0.2 0.1
m =1500 GeV 0.0 0.3 0.0
m =2000 GeV 0.0 0.6 0.0
m =2500 GeV 0.3 4.2 0.0

|g| = 2.0gD
m =200 GeV — — —
m =500 GeV — — —
m =1000 GeV — — —
m =1500 GeV — — —
m =2000 GeV — — —
m =2500 GeV — — —

Table 6.13: Signal leakages into quadrants B, D and D in percentages, for single (left) and
Drell-Yan produced spin-1/2 (right) monopoles.

parameter was set to ccorr = 1.4, the maximum upward variation. The choice of this

correction parameter leads to more conservative limits. Nevertheless, the different choices

of ccorr = 0.6, ccorr = 1.0 or ccorr = 1.4 do not yield significant changes in the final results.

The free parameters of the fit are µ, µU , τB, τC and σeffsig, which are determined by

maximizing the likelihood function

L(NA, NB, NC , ND | µ, µU , τB, τC) =
∏

i=A,B,C,D

e−µiµNi

i

Ni!
(6.6)
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with respect to the observed number of events NA, NB, NC and ND in quadrants A, B, C

and D, respectively.

6.5 Systematic uncertainties

A number of systematic uncertainties that could affect the measurement of the signal event

selection efficiency have been considered, as described below. In most cases, the default

ATLAS simulation software was modified to reflect the conditions that would introduce a

systematic uncertainty on the signal event selection efficiency. and a new sample of 5000

events was fully simulated. This was done for each mass and charge point for both the

spin-1/2 Drell-Yan and the single monopole samples. When a change in the default ATLAS

simulation was not necessary, the systematic variation was introduced at the analysis level

allowing the use of the full statistics available in the nominal signal samples.

The relative uncertainties for spin-1/2 and spin-0 Drell-Yan monopoles of mass 1000 GeV

and charge |g| = 1.0gD are given in Table 6.14. Tables for the full set of Drell-Yan produced

monopoles can be found in App. G.

Variations of efficiencies due to different systematic uncertainties for single monopole

samples are shown in Table 6.15. The systematic uncertainties for single monopoles are

averaged over all mass points, as no mass dependence is expected due to the uniform

kinematic distributions used for generation of the samples. The variations in event selection

efficiency have been considered only within the fiducial regions defined in Sec. 6.3.3.

6.5.1 ATLAS detector material modelling

Due to the highly ionizing nature of monopoles, the event selection efficiency is sensi-

tive to material in the detector, in particular, to material before the EM calorimeter. A

version of the Geant4 ATLAS detector geometry designed specifically for detector ma-

terial studies was used to fully simulate 5000 events. This modified geometry, labelled as

ATLAS-GEO-21-06-01, has a material increase with respect to the default detector geometry

version used for the MC12c production campaign of 5% in the whole inner detector and 15%
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Spin-1/2 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Total Total
|g| = 1.0gD Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m=200 GeV ±3.71 ±(2 ± 3) +(6 ± 3) +(12 ± 3) +(3 ± 3) ±(7 ± 3) +(1 ± 2) 0 ± 2 +16 −9
m=500 GeV ±1.69 ±(3 ± 2) 0 ± 2 +(3 ± 2) −(7 ± 2) ±(0 ± 2) 0 ± 2 −(1 ± 2) +6 −8
m=1000 GeV ±1.28 ±(4 ± 2) −(3 ± 2) +(10 ± 2) −(10 ± 2) ±(2 ± 2) −(1 ± 1) −(3 ± 1) +12 −12
m=1500 GeV ±1.33 ±(8 ± 2) −(2 ± 2) +(13 ± 2) −(9 ± 2) ±(1 ± 2) +(1 ± 2) −(1 ± 2) +15 −13
m=2000 GeV ±1.59 ±(3 ± 3) −(1 ± 3) +(15 ± 3) −(9 ± 3) ±(3 ± 3) +(2 ± 2) −(3 ± 2) +16 −11
m=2500 GeV ±2.21 ±(9 ± 3) −(10 ± 3) +(9 ± 4) −(17 ± 3) ±(6 ± 3) +(6 ± 2) −(3 ± 2) +16 −24

Spin-0 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Extrapolation Total Total
|g| = 1.0gD Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m=200 GeV ±2.02 ±(2 ± 3) +(6 ± 3) +(12 ± 3) +(3 ± 3) ±(7 ± 3) 0 ± 2 0 ± 2 −10 +16 −13
m=500 GeV ±0.92 ±(3 ± 2) 0 ± 2 +(3 ± 2) −(7 ± 2) ±(0 ± 2) 0 ± 2 −(1 ± 2) −9.5 +6 −12
m=1000 GeV ±0.66 ±(4 ± 2) −(3 ± 2) +(10 ± 2) −(10 ± 2) ±(2 ± 2) −(1 ± 1) −(3 ± 1) −8.5 +12 −14
m=1500 GeV ±0.68 ±(8 ± 2) −(2 ± 2) +(13 ± 2) −(10 ± 2) ±(1 ± 2) +(1 ± 2) −(1 ± 2) −7.5 +15 −15
m=2000 GeV ±0.80 ±(3 ± 3) −(1 ± 3) +(15 ± 3) −(9 ± 3) ±(3 ± 3) +(2 ± 2) −(3 ± 2) −6.5 +16 −13
m=2500 GeV ±1.01 ±(9 ± 3) −(10 ± 3) +(9 ± 4) −(17 ± 3) ±(6 ± 3) +(6 ± 2) −(3 ± 2) −5.5 +15 −24

Table 6.14: Relative uncertainties on the signal efficiencies in percentages for Drell-Yan produced spin-1/2 (top) and spin-0
(bottom) monopoles of charge |g| = 1.0gD. The errors on the uncertainties are statistical. The total relative uncertainties
are calculated as quadratic sums of the individual relative uncertainties including the 2.8% uncertainty on the luminosity
measurement. Note that the δ-ray and material density uncertainties are taken as symmetric, as described in the text.
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Sample MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Total Total
Stat. material range cut high low Occ. xTalk (UP) (DOWN)

|g| = 0.5gD ±1.940 ±3.58 −1.15 −1.15 −0.27 ±0.35 +1.37 −1.58 +5 −5
|g| = 1.0gD ±0.289 ±0.43 +0.42 +0.52 +0.11 ±0.06 +0.67 −3.20 +3 −4
|g| = 1.5gD ±0.231 ±0.24 +0.27 +0.42 −0.02 ±0.33 +0.53 −2.56 +3 −4
|g| = 2.0gD ±0.431 ±0.85 −0.36 +0.32 −0.78 ±0.27 +0.46 −4.23 +3 −5

Table 6.15: Relative uncertainties on the signal efficiencies in percentages for single
monopoles in fiducial regions. The total relative uncertainties are calculated as quadratic
sums of the individual relative uncertainties including the 2.8% uncertainty on the lumi-
nosity measurement. Note that the δ-ray and material density uncertainties are taken as
symmetric, as described in the text.

relative increase of Pixel and SCT services, i.e., 10% extra on top of the 5% in the whole

inner detector. The relative systematic uncertainty, which is taken as symmetric, is shown

in Table 6.14 for Drell-Yan produced monopoles and in Table 6.15 for single monopoles.

6.5.2 Geant4 range cut for δ-rays

In order to conserve computational resources, Geant4 does not propagate low-energy δ-

rays, i.e., electrons with energy below a minimum kinetic energy threshold are not sim-

ulated explicitly. In this case, the corresponding energy loss is added to the energy loss

of the monopole continuously during the discrete step in the trajectory propagation. For

convenience, this kinetic energy threshold is controlled in Geant4 by the cut in range [131]

parameter. This parameter, defined as a distance, is internally converted to an energy,

which determines the minimum kinetic energy threshold for individual subsystems. For

our purposes, this parameter effectively dictates the fraction of energy explicitly deposited

by δ-rays relative to that deposited by the monopole. The range cut should be kept as

low as possible for the best simulation precision, as more low-energy δ-rays are explicitly

simulated. The default value of the range cut used in the ATLAS TRT simulation is 50 µm.

For each mass and charge sample, 5000 events were fully simulated using a range cut of

25 µm in the inner detector instead of 50 µm. The efficiencies were then recomputed. The

relative systematic uncertainty is shown in Table 6.14 for Drell-Yan produced monopoles

and in Table 6.15 for single monopoles.
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Figure 6.10: HIP correction to Birks’ Law as a function of dE/dx for various heavy ions for
ED = 7 kV/cm [132].

6.5.3 HIP correction to Birks’ Law

The precision of the HIP correction to Birks’ Law is limited by the uncertainties in the ex-

perimental heavy-ion data [132] used to derive the correction. The upper (lower) systematic

uncertainty on the HIP correction was obtained by fully simulating 5000 events using the

upper (lower) curves given in Fig. 6.10. The efficiencies were then recomputed. The relative

uncertainty is shown in Tables 6.14 for Drell-Yan produced monopoles and in Table 6.15

for single monopoles.

6.5.4 δ-ray production model

The monopole energy loss and δ-ray production models used in Geant4 are based on

Eq. 1.18, which has an associated uncertainty of about 3% [115]. The calorimeter cluster

lateral dispersion, w, and the fraction of TRT HT hits in the narrow region, fHT, could

be sensitive to δ-ray production. The δ-ray production can be modified in the Geant4

simulation package for monopoles. Therefore, 5000 events were fully simulated where the

production of δ-rays was suppressed by 3% for all monopole mass and charge samples. The

efficiencies were then recomputed. The relative uncertainty, which is taken as symmetric,

is shown in Table 6.14 for Drell-Yan produced monopoles and in Table 6.15 for single
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Figure 6.11: Comparison of the TRT occupancy as a function of the number of reconstructed
vertices for collision data and MC (left), and HIP trigger efficiency as a function of average
number of interactions per bunch crossing 〈µ〉(right).

monopoles.

6.5.5 TRT occupancy

The accuracy of the pileup description in the simulated MC samples is an important compo-

nent of this analysis as it affects the efficiency of the requirement on the fraction of TRT HT

hits, fHT. The occupancy is defined as the fraction of TRT channels that yield a signal, be

it from actual ionization or noise, in an event. Approximately four luminosity blocks from

the dataset used in the search were used to study the occupancy in data. A simulated MC

sample of electrons fromW decays was used to study the TRT occupancy in the simulation.

Both data and MC were processed by the DESD HIP filter, ensuring that events of similar

characteristics are compared.

Figure 6.11 (left) shows a comparison of the TRT occupancy as a function of the number

of reconstructed vertices for collision data and MC. The TRT occupancy is underestimated

in the simulation for low values of reconstructed vertices while it is overestimated for high

values. To assign the corresponding systematic uncertainty, at the analysis level the number

of low-threshold hits (those likely to come from pileup as opposed to the monopole or
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associated δ-rays) was scaled by a factor dependent on the number of reconstructed primary

vertices. This factor is determined as the ratio between data and simulation. For points

not represented in Fig. 6.11 (left) the average ratio of 0.92 was used. The event selection

efficiencies were then recomputed. The resulting relative uncertainty is shown in Table 6.14

for Drell-Yan produced monopoles and in Table 6.15 for single monopoles. Due to the overall

overestimation of the TRT occupancy in the simulation, the resulting relative uncertainty

yields a positive variation.

The efficiency of the HIP trigger in simulated data may also be affected by the accuracy

of the pileup description in the Monte Carlo. Figure 6.11 (left) shows an increase of about

30% in the TRT occupancy from events with low to high pileup. This increase in occupancy

as a function of pileup can be used to estimate the change in trigger efficiency due to a

mismodelling of the TRT occupancy in the simulation. As can be seen in Fig. 6.11 (right),

the change in trigger efficiency from low-pileup events to high-pileup events is negligible

for monopoles of charge |g| ≥ 1.0gD and about 40% for monopoles of charge |g| = 0.5gD.

Since this decrease assumes a change in TRT occupancy of 30%, a more realistic estimate

of the systematic uncertainty on the trigger efficiency due to the mismodelling of the pileup

is about 10%, as the actual average mismodelling of the TRT occupancy is only 8%.

6.5.6 LAr calorimeter cross-talk

This search uses a measure of the lateral energy dispersion as a calorimeter discriminant

between signal and background. Signal leakage between EM calorimeter cells, known as

cross-talk, may originate on the copper electrodes or through the readout electronics chain,

causing three different types of cross-talk in the EM calorimeter: inductive, resistive and ca-

pacitive. Presence of cross-talk in either the φ or η direction would affect the determination

of the energy deposition lateral dispersion.

Inductive cross-talk between neighbouring second-layer EM calorimeter cells has been

studied as well as inductive cross-talk between second-layer calorimeter cells and third-layer

calorimeter cells, as described in Ref. [133]. Cross-talk between neighbouring second-layer

EM calorimeter cells in η is of order 1.1% and 0.6% in the barrel and end-cap outer wheel,
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respectively. Cross-talk between second-layer calorimeter cells and third-layer calorimeter

cells in η is of order 0.9% and 1.2% in the barrel and end-cap outer wheel, respectively.

Resistive cross-talk exists between calorimeter cells in the first and second layers. This

cross-talk in η is of order 0.1% in both barrel and end-cap. Capacitive cross-talk in η

between calorimeter cells in the first layer is significant due to the high segmentation of the

layer and is of order 7.2% and 6.3% in the barrel and end-cap outer wheel, respectively. The

η cross-talk types described above have been implemented in the default ATLAS simulation.

In the φ direction, inductive cross-talk, i.e., cross-talk due to mutual inductance between

the cells, is present. The mean cross-talk between neighbouring second-layer EM calorimeter

cells in φ is of order 1.8% [133]. This φ cross-talk is not implemented in the ATLAS

simulation. In order to assess the systematic uncertainty introduced by the absence of

φ cross-talk in the ATLAS simulation, the cross-talk in the next-in-φ neighbour cell was

assumed as 1.8% and the lateral dispersion, w, recomputed with the new energy deposition

values. The event selection efficiencies were then recomputed for the signal samples. The

relative systematic uncertainties are shown in Table 6.14 for Drell-Yan produced monopoles

and in Table 6.15 for single monopoles.

6.5.7 Calorimeter arrival time

The Level-1 trigger becomes inefficient for energy depositions delayed by more than 10 ns

due to an increasing probability to be associated to the wrong bunch crossing. A delay

of less than 10 ns corresponds to β > 0.37 if the speed is constant. For the monopole

charges and masses considered in this search, the requirement that the monopole reach the

EM calorimeter automatically implies that the initial β is higher than 0.37. The monopole

slows down as it traverses the ATLAS detector. However, this occurs mainly as monopoles

enter the EM calorimeter and does not induce significant time shifts. It was concluded

that there is no significant efficiency loss due to time delays of EM calorimeter signals at

Level-1, and thus no systematic uncertainty is needed to account for possible inaccuracies

of the modelling of inefficiencies due to timing in the simulation.
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6.5.8 Extrapolation method for spin-0 monopole efficiencies

The method used to obtain the spin-0 monopole efficiencies [128] was applied to 22 000

generator-level Drell-Yan pair-produced spin-1/2 monopole events to predict the spin-1/2

efficiency. These results were then compared directly to the efficiencies obtained for fully

simulated spin-1/2 monopole samples. The difference is assigned as a systematic uncertainty

to the spin-0 Drell-Yan monopole efficiencies, in addition to the other systematic uncertain-

ties described in this section obtained for fully simulated spin-1/2 monopoles. The relative

uncertainty, which is taken as symmetric, is shown in Table 6.14.

6.5.9 Luminosity measurement

The uncertainty due to the luminosity measurement is 2.8%. It is derived, following the same

methodology as that detailed in Ref. [127], from a preliminary calibration of the luminosity

scale derived from beam-separation scans performed in November 2012. This is added in

quadrature to the uncertainties given in Table 6.14 for Drell-Yan produced monopoles and

in Table 6.15 for single monopoles.
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Chapter 7

Interpretation of the search

The interpretation of the results of the search for magnetic monopoles is pre-

sented in this chapter. Results for a model-independent search are presented.

In addition, the results are interpreted assuming pair production of monopoles

of spin-0 and spin-1/2 using the Drell-Yan model. Upper limits on production

cross section and lower mass limits are obtained for these models.

7.1 Cross section limits

In the absence of an observation of signal-like events in the collected data, upper limits

on production cross section were obtained. Using fiducial regions of uniform and high

selection efficiency with ǫ ≥ 90%, defined using single monopole samples, model-independent

production cross section limits were set. In addition, assuming a simplified Drell-Yan model

for pair production of spin-1/2 monopoles, upper limits on production cross section were also

set. Based on the results from single particle monopoles and the systematic uncertainties

on the event selection efficiency obtained for Drell-Yan spin-1/2 monopoles, upper limits of

production cross section were set for pair produced spin-0 monopoles assuming the Drell-

Yan model.

Cross section limits were obtained using the CLs method [134] with the RooStats frame-

work [130]. Lower mass limits assuming Drell-Yan production were set for spin-1/2 and
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spin-0 monopoles by comparing the observed limits on production cross section with the

theoretical predictions.

7.1.1 The CLs method

The limits on production cross section for monopoles obtained in this search were set using

the frequentist CLs method [134]. This method is particularly useful in searches with

low sensitivity that may be affected by fluctuations in the expected background. The CLs

method is a simple normalization of the confidence level observed for the signal+background

hypothesis, CLs+b, to the confidence level observed for the background-only hypothesis, CLb.

This is defined as

CLs =
CLs+b

CLb
, (7.1)

where the confidence levels CLs+b and CLb are defined as

CLs+b = P (q ≥ qobs|s+ b) =

∫

∞

qobs

f(q|s+ b), (7.2)

CLb = P (q ≥ qobs|b) =
∫

∞

qobs

f(q|b), (7.3)

with f(q|s+ b) (f(q|b)) the probability distribution function of the test-statistic and q the

observable variable, which in this case is the number of observed signal events, µ. For a

desired confidence level, e.g., 95% (α = 0.95), the CLs value is given by

CLs = 1− α = 0.05. (7.4)

The test-statistic used in this search is defined as the logarithmic likelihood ratio [135],

−2 lnλ(µ) = −2 ln(L(s+b)/L(b)), with the likelihood functions L(s+b) and L(b) as defined

in Eq. (6.6). The log likelihood is constructed for the case when µ ≥ 0, i.e., evidence of

magnetic monopoles can only be observed as an increase in the number of events in the

signal region over the expected background. Three cases are then considered:

−2 lnλ(µ) =



























−2 ln L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0,

−2 ln µ,
ˆ̂
θ(µ))

µ̂,θ̂(µ))
0 ≤ µ̂ ≤ µ,

0 µ < µ̂,

(7.5)
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where µ̂ and θ̂ are the maximum likelihood estimators of the maximized unconditional like-

lihood function, and
ˆ̂
θ is the value of θ that maximizes the likelihood for a given µ, i.e., the

conditional maximum likelihood estimator. The systematic uncertainties and signal leak-

ages are represented by θ. The presence of this nuisance parameter causes the probability

distribution function of the log likelihood ratio to broaden with respect to a log likelihood

ratio with fixed parameters. This is a consequence of the loss of information due to the

systematic uncertainties on the event selection efficiency.

7.2 Model-independent cross section limits

The results of the search for monopoles can be interpreted in a model-independent scenario.

This is achieved by defining fiducial regions in which the event selection efficiency is high

and uniform for single monopoles generated with uniform pseudorapidity, azimuthal angle

and kinetic energy spectra, as detailed in Sec. 6.3.3. The average event selection efficiency

of the fiducial regions is 90%, which along with the integrated luminosity of the analyzed

dataset, 7.0 fb−1, can be used to obtain upper limits on the production cross section for

single monopoles in fiducial regions.

Table 7.1 summarizes the upper limits on the number of signal events from which the

upper limits on production cross section are calculated. It was found that the model-

independent upper limit on production cross section is 0.5 fb−1. The systematic uncertain-

ties used for the limit setting were averaged over all the mass points for each charge, as

outlined in Sec. 6.5. The minor differences between mass/charge combinations are therefore

due only to the different signal leakages. Only results of mass and charge combinations for

which fiducial regions were found are presented.

7.3 Cross section limits on pair-production of monopoles

This search included two specific models in which monopoles are produced in monopole–anti-

monopole pairs: Drell-Yan production of spin-1/2 and spin-0 monopoles. A MC leading-

order matrix element generator (MadGraph5 [108]) was used to generate the monopole
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95% CL upper limit 95% CL upper limit
on number of signal events on production cross section [fb]

Mass [GeV] |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 2.96 3.02 3.02 3.09 0.47 0.48 0.48 0.49
500 3.02 3.02 3.09 2.96 0.48 0.48 0.49 0.47
1000 3.09 3.02 3.09 2.96 0.49 0.48 0.49 0.47
1500 — 2.96 3.02 2.96 — 0.47 0.48 0.47
2000 — 3.09 3.09 3.02 — 0.49 0.49 0.48
2500 — 3.02 3.02 3.02 — 0.48 0.48 0.48

Table 7.1: Upper limits on number of signal events and production cross section at 95%
confidence level for single monopoles in fiducial regions of high and uniform event selection
efficiency. Only results of mass and charge combinations for which fiducial regions were
found are presented.

events. Only leading-order calculations are used due to the large magnetic coupling to the

photon, which makes the production process highly non-perturbative.

7.3.1 Spin-1/2 pair production cross section

Table 7.2 presents the upper limits on the number of signal events and the corresponding

upper limits on production cross section of spin-1/2 monopole–anti-monopole pairs assuming

the Drell-Yan mechanism. Only results for mass/charge points with an acceptance greater

than 1% are shown. Figure 7.1 summarizes the cross section limits as a function of monopole

mass. This search was performed using MC samples that were processed with the full

ATLAS simulation, as described in Sec. 4.2.

Spin-1/2
95% CL upper limit 95% CL upper limit

on number of signal events on production cross section [fb]

Mass [GeV] |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 3.00 2.97 — — 1.92 12.02 — —
500 2.93 2.96 2.93 — 1.25 2.85 36.14 —
1000 3.08 2.86 2.87 — 1.58 1.75 11.28 —
1500 3.06 2.90 2.94 — 1.85 1.87 11.9 —
2000 3.06 3.02 2.79 — 2.62 2.61 14.31 —
2500 3.16 2.99 2.91 — 4.62 4.37 25.78 —

Table 7.2: Upper limits on number of signal events and production cross section at 95%
confidence level for spin-1/2 monopoles assuming Drell-Yan production. Only results for
mass and charge combinations for which the event selection efficiency was greater than 1%
are included in the search.
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Figure 7.1: Upper limits on production cross section at 95% confidence level for Drell-
Yan production of spin-1/2 monopoles as a function of monopole mass in various scenarios
(dashed lines with markers). No cross-section limit is shown for mass/charge points with
an acceptance lower than 1%. Overlaid on the plots are the leading-order theoretical cross
sections (solid lines) [45].

7.3.2 Spin-0 pair production cross section

Table 7.3 presents the upper limits on the number of signal events and the corresponding

upper limits on production cross section of spin-0 monopole–anti-monopole pairs assuming

the Drell-Yan mechanism. Only results for mass/charge points with an acceptance greater

than 1% are shown. Figure 7.2 summarizes the cross section limits as a function of monopole

mass. Event selection efficiencies were obtained by extrapolating results from single particle

samples using only generator-level four-vectors for spin-0 Drell-Yan monopoles, as described

in Sec. 6.3.2. Upper limits were set using the systematic uncertainties from spin-1/2 Drell-

Yan produced monopoles, as outlined in Sec. 6.5.8.
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Spin-0
95% CL upper limit 95% CL upper limit

on number of signal events on production cross section [fb]

Mass [GeV] |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD |g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD
200 2.95 3.06 — — 0.99 4.37 — —
500 3.01 2.97 3.04 — 0.8 1.22 10.58 —
1000 2.98 2.97 2.81 — 0.96 0.83 3.52 —
1500 3.07 3.07 2.91 — 1.2 0.88 3.01 —
2000 2.81 2.97 2.87 — 1.3 1.02 3.76 —
2500 2.87 3.08 2.91 — 1.79 1.43 6.03 —

Table 7.3: Upper limits on number of signal events and production cross section at 95%
confidence level for spin-0 monopoles assuming Drell-Yan production. Only results for mass
and charge combinations for which the event selection efficiency was greater than 1% are
included in the search.
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Figure 7.2: Upper limits on production cross section at 95% confidence level for Drell-
Yan production of spin-0 monopoles as a function of monopole mass in various scenarios
(dashed lines with markers). No cross-section limit is shown for mass/charge points with
an acceptance lower than 1%. Overlaid on the plots are the leading-order theoretical cross
sections (solid lines) [45].

7.3.3 Lower mass limits for pair-produced monopoles

Based on the cross section exclusion limits obtained for the monopole pair-production mod-

els, lower limits on the mass of the monopoles can be set. Lower mass limits were obtained
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by finding the mass for which the theoretical cross section prediction drops below the upper

cross section limit.

Drell-Yan Lower Mass Limits [GeV]
|g| = 0.5gD |g| = 1.0gD |g| = 1.5gD |g| = 2.0gD

Spin-1/2 1180 1340 1210 —
Spin-0 890 1050 970 —

Table 7.4: Lower mass limits (in GeV) at 95% confidence level in models of spin-1/2 (top) and
spin-0 (bottom) Drell-Yan monopole pair production. These limits are based upon leading-
order models, since the production mechanism is of a highly non-perturbative nature. No
limits are given for monopoles of charge |g| = 2.0gD as they were excluded from the search
due to their low acceptance.

Table 7.4 shows the lower mass limits for spin-1/2 and spin-0 monopoles produced as-

suming the Drell-Yan mechanism. These limits are valid only for the production models

considered, and therefore are limited by the accuracy of the theoretical cross section pre-

dictions. Nevertheless, these results can be directly compared with previous experimental

searches at colliders that used the same production mechanism. This is the case of the search

for spin-1/2 monopoles produced at the Tevatron by the CDF experiment, which obtained

a lower mass limit of 476 GeV for monopoles of charge |g| = 1.0gD [57], and the previous

search at ATLAS for spin-1/2 monopoles produced at the LHC in 7 TeV pp collisions, which

set a lower mass limit of 862 GeV for monopoles of charge |g| = 1.0gD [77].
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Chapter 8

Conclusion

Since their prediction by Dirac [9], magnetic monopoles have been a possible answer to

one of the most fundamental open questions in physics: the quantization of charge. The

prediction of monopoles by some electro-weak models [26] and grand unified theories [20,21],

in which charge is quantized, reinforces the case for experimental searches. The search for

magnetic monopoles has always been a field full of innovation, taking advantage of a number

of instrumental and analysis methods in order to cover all possible scenarios, ranging from

monopoles trapped in terrestrial or extraterrestrial rocks [37–39] to their direct production

at high-energy particle colliders [45, 56, 77].

This search for magnetic monopoles produced at the LHC in high-energy pp collisions

at a centre-of-mass energy of 8 TeV exploited their unique signature. Specific ATLAS

subdetectors, such as the TRT and the EM calorimeter, were used to identify regions of

high-ionization density, which constituted the main analysis objects. A dedicated trigger

was deployed to select events with a high ionization density in the TRT. This trigger al-

lowed for the search of monopoles with charge |g| ≥ 1.0gD. Analysis techniques to measure

the ionization density in the TRT and in the EM calorimeter were developed to recon-

struct monopole candidates in events that pass the dedicated trigger, achieving a very high

reconstruction efficiency.

No events with a signature consistent with that of a monopole were observed in the

7.0 fb−1 of pp data analyzed. This observation is consistent with the background expec-
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tation. In the absence of signal events in the collision data, upper limits on production

cross sections were set in three different scenarios. A model-independent limit of 0.5 fb was

obtained for monopoles with mass in the range 200 – 2500 GeV and charges |g| = 0.5gD,

|g| = 1.0gD, |g| = 1.5gD and |g| = 2.0gD in fiducial regions of high and uniform event

selection efficiency. Assuming pair production of spin-1/2 and spin-0 monopoles using the

Drell-Yan mechanism limits were also set. Based on the theoretical cross section predic-

tions, lower mass limits were set for pair-produced spin-1/2 and spin-0 monopoles of charge

|g| = 0.5gD, |g| = 1.0gD and |g| = 1.5gD. The limits obtained in this search represent the

most competitive limits on magnetic monopoles produced at high-energy particle colliders

to date.

This work contributes to the vast field of experimental searches for magnetic monopoles,

in particular, monopoles produced at high-energy colliders. It provides improvements in the

trigger and measurement of the energy deposition in the ATLAS EM calorimeter. Future

searches for monopoles produced at the LHC using the ATLAS detector will be based upon

these new developments and knowledge. The techniques developed for this work can also

be applied in the search for any type of highly ionizing particles, such as objects with large

electric charge, e.g., |z| ≥ 20 [45].
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Appendix A

HIP TRT trigger efficiency vs.

monopole pT

Figures A.4 to A.6 were used to determine the generator level minimum-pT requirements

for Drell-Yan produced spin-1/2 monopoles. This requirement is conservatively chosen as

the point 50 to 100 GeV below the turn on of the trigger efficiency curve.

 [GeV]
T

p
0 500 1000 1500 2000 2500 3000 3500

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 < 1.375 η
HIP TRT trigger

D
=0.5gg m=200 GeV,   

D
=1.0gg m=200 GeV,   

D
=1.5gg m=200 GeV,   

D
=2.0gg m=200 GeV,   

 [GeV]
T

p
0 500 1000 1500 2000

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 η1.375 <  
HIP TRT trigger

D
=0.5gg m=200 GeV,   

D
=1.0gg m=200 GeV,   

D
=1.5gg m=200 GeV,   

D
=2.0gg m=200 GeV,   

Figure A.1: HIP TRT trigger efficiency as a function of pT for monopoles of mass 200 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Figure A.2: HIP TRT trigger efficiency as a function of pT for monopoles of mass 500 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Figure A.3: HIP TRT trigger efficiency as a function of pT for monopoles of mass 1000 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Figure A.4: HIP TRT trigger efficiency as a function of pT for monopoles of mass 1500 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Figure A.5: HIP TRT trigger efficiency as a function of pT for monopoles of mass 2000 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Figure A.6: HIP TRT trigger efficiency as a function of pT for monopoles of mass 2500 GeV

in |η| < 1.375 (left) and 1.375 < |η| (right).
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Appendix B

Energy weighted cluster size σR

The search for magnetic monopoles by ATLAS with 7 TeV data [77] used an variable

measuring the energy-weighted lateral size of the EM calorimeter clusters. It was required

that monopoles reach the second layer of the EM calorimeter and thus the lateral size, σR

was implemented for EM2 only. The energy-weighted lateral size is defined as

σR =
√

σ2η + σ2φ (B.1)

with

σφ =





n
∑

i

(

Eiδφ
2
i

)

/
n
∑

i

Ei −
[

n
∑

i

(Eiδφi)

]2

/
n
∑

i

Ei





1/2

(B.2)

where n is a predefined number of cells over which the calculation is performed and δφ the

calorimeter cell size in φ. The formula for the size ση is equivalent to that of φ.

The current search uses a dedicated trigger that selects monopoles that stop in the

presampler and EM1, before reaching EM2. Therefore, were the lateral cluster size, σR, to

be used, it would have to be extended to the presampler and EM1. Such implementation

would be slightly different for each calorimeter layer as the granularity changes from layer

to layer. Additionally, the segmentation of the EM calorimeter is not constant in η forcing

n to vary in order to keep the surface area over which the calculation is done approximately

constant.

The lateral size, σR, was thus defined for the presampler, EM1 and EM2, and optimized
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Figure B.1: Energy weighted lateral size,

σR, of calorimeter clusters in the pre-

sampler (top left), EM1 (top right) and

EM2 (bottom) for single monopoles of mass

1000 GeV and various charges. Background

MC samples and collision data are also

shown.

to keep the surface area over which the size is calculated approximately constant. Figure B.1

shows the lateral size of the calorimeter clusters in signal, background MC and collision data.

The distributions of σR show that there are multiple spikes that cause the signal from

monopole and background events to mix. The double peak structure observed is due to the

coarse granularity of presampler and EM1. When a monopole deposits most of its energy

in two calorimeter cells only, σR takes a value proportional to the cell size limiting the

usability of this metric. Therefore, the use of the lateral size σR was dropped in favour of

the more robust cluster dispersion variable w.
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Appendix C

Run condition stability

It is important to ensure that the run conditions of the dataset used in the search are stable.

Although the dataset used in the search includes events of high quality recorded with the

ATLAS detector fully operational, runs with event rates that lie outside normal running

conditions should be checked for possible detector performance anomalies not considered

by the data acquisition quality group.

The total number of events that passed the HIP trigger is 876 895 for an integrated

luminosity of 7.0 fb−1, yielding an expected average of 125 270 events per fb−1. Figure C.1

shows the number of recorded events per fb−1 as a function of the run number. The

oscillations around 100 events/fb−1 reflect the beam conditions during the LHC fill. A fill

corresponds to an arrangement of bunches of protons injected into the LHC. Data collected

during a run at the beginning of a fill would have a lower event rate as the fraction of HT

TRT hits would be diluted by additional minimum ionizing particles produced in additional

collisions between protons in denser bunches. The event rate then increases as the density

of the bunches decreases during the fill. A particular case can be spotted for run 213816,

with a record number of events per fb−1 of about 490 000. The TRT log from the day points

out that the “TRT turned yellow due to high threshold hits occupancy in end-cap having a

spike.” A sudden increase in TRT HT hit occupancy would undoubtedly cause an increase

in the trigger event rate. Since this represents an instability of which the exact cause is

unknown, this run is excluded from the search. The integrated luminosity of this run is
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0.0472 fb−1, the loss of which has a negligible impact in the full dataset.
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Figure C.1: Number of events per fb−1 as a function of run number for the dataset collected
with the HIP trigger. The errors are statistical.
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Appendix D

Event selection cut-flow tables
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 49997 — —
HIP trigger — — — 5649 11.30 11.30
Preselection 6639 — — 5629 99.64 11.26
Overlap removal 5629 84.79 84.79 5629 100.00 11.26
EEM

T > 16 GeV 5604 99.55 84.41 5604 99.55 11.21
EPre > 5 GeV OR EEM1 > 5 GeV 5596 99.86 84.29 5596 99.86 11.19
|η| < 1.375 OR 1.52 < |η| < 2.0 5265 94.10 79.31 5265 94.10 10.53
Hadronic veto EHCal ≤ 1 GeV 3694 70.16 55.65 3694 70.16 7.39
Max fHT candidate 3694 100.00 55.65 3694 100.00 7.39
w ≥ 0.94 3624 98.10 54.59 3624 98.10 7.25
fHT ≥ 0.7 3542 97.72 53.35 3542 97.72 7.08

Table D.1: Event selection efficiency for single monopoles of mass 200 GeV and charge
|g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 4696 9.39 9.39
Preselection 5511 — — 4672 99.50 9.34
Overlap removal 4674 84.80 84.80 4672 100.00 9.34
EEM

T > 16 GeV 4648 99.46 84.35 4648 99.49 9.30
EPre > 5 GeV OR EEM1 > 5 GeV 4626 99.52 83.94 4626 99.52 9.25
|η| < 1.375 OR 1.52 < |η| < 2.0 4328 93.55 78.53 4328 93.55 8.66
Hadronic veto EHCal ≤ 1 GeV 2745 63.43 49.81 2745 63.43 5.49
Max fHT candidate 2745 100.00 49.81 2745 100.00 5.49
w ≥ 0.94 2708 98.63 49.13 2708 98.63 5.42
fHT ≥ 0.7 2594 95.80 47.07 2594 95.80 5.19

Table D.2: Event selection efficiency for single monopoles of mass 500 GeV and charge
|g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 49074 — —
HIP trigger — — — 3628 7.39 7.39
Preselection 4128 — — 3604 99.34 7.34
Overlap removal 3605 87.33 87.33 3604 100.00 7.34
EEM

T > 16 GeV 3570 99.04 86.49 3570 99.06 7.27
EPre > 5 GeV OR EEM1 > 5 GeV 3554 99.56 86.11 3554 99.56 7.24
|η| < 1.375 OR 1.52 < |η| < 2.0 3423 96.32 82.94 3423 96.32 6.98
Hadronic veto EHCal ≤ 1 GeV 1900 55.50 46.03 1900 55.50 3.87
Max fHT candidate 1900 100.00 46.03 1900 100.00 3.87
w ≥ 0.94 1886 99.24 45.68 1886 99.24 3.84
fHT ≥ 0.7 1569 83.22 38.02 1569 83.22 3.20

Table D.3: Event selection efficiency for single monopoles of mass 1000 GeV and charge
|g| = 0.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 3442 6.88 6.88
Preselection 4053 — — 3423 99.45 6.85
Overlap removal 3425 84.49 84.49 3423 100.00 6.85
EEM

T > 16 GeV 3396 99.16 83.78 3396 99.20 6.79
EPre > 5 GeV OR EEM1 > 5 GeV 3358 98.89 82.85 3358 98.89 6.72
|η| < 1.375 OR 1.52 < |η| < 2.0 3224 96.01 79.54 3224 96.01 6.45
Hadronic veto EHCal ≤ 1 GeV 1686 52.30 41.60 1686 52.30 3.37
Max fHT candidate 1686 100.00 41.60 1686 100.00 3.37
w ≥ 0.94 1683 99.79 41.52 1683 99.79 3.37
fHT ≥ 0.7 1325 78.73 32.69 1325 78.73 2.65

Table D.4: Event selection efficiency for single monopoles of mass 1500 GeV and charge
|g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 3345 6.69 6.69
Preselection 4130 — — 3336 99.74 6.67
Overlap removal 3337 80.80 80.80 3336 100.00 6.67
EEM

T > 16 GeV 3316 99.36 80.29 3316 99.39 6.63
EPre > 5 GeV OR EEM1 > 5 GeV 3281 98.96 79.45 3281 98.96 6.56
|η| < 1.375 OR 1.52 < |η| < 2.0 3121 95.11 75.56 3121 95.11 6.24
Hadronic veto EHCal ≤ 1 GeV 1503 48.17 36.39 1503 48.17 3.01
Max fHT candidate 1503 100.00 36.39 1503 100.00 3.01
w ≥ 0.94 1497 99.60 36.25 1497 99.60 2.99
fHT ≥ 0.7 1133 75.68 27.43 1133 75.68 2.27

Table D.5: Event selection efficiency for single monopoles of mass 2000 GeV and charge
|g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 49883 — —
HIP trigger — — — 3527 7.07 7.07
Preselection 4487 — — 3517 99.72 7.05
Overlap removal 3517 78.39 78.39 3517 100.00 7.05
EEM

T > 16 GeV 3478 98.89 77.52 3478 98.89 6.97
EPre > 5 GeV OR EEM1 > 5 GeV 3432 98.65 76.48 3432 98.65 6.88
|η| < 1.375 OR 1.52 < |η| < 2.0 3237 94.32 72.13 3237 94.32 6.49
Hadronic veto EHCal ≤ 1 GeV 1367 42.25 30.47 1367 42.25 2.74
Max fHT candidate 1367 100.00 30.47 1367 100.00 2.74
w ≥ 0.94 1354 99.06 30.19 1354 99.06 2.72
fHT ≥ 0.7 1045 77.16 23.29 1045 77.16 2.10

Table D.6: Event selection efficiency for single monopoles of mass 2500 GeV and charge
|g| = 0.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 49601 — —
HIP trigger — — — 23035 46.44 46.44
Preselection 26389 — — 22897 99.40 46.16
Overlap removal 22902 86.79 86.79 22897 100.00 46.16
EEM

T > 16 GeV 22902 100.00 86.79 22897 100.00 46.16
EPre > 5 GeV OR EEM1 > 5 GeV 22902 100.00 86.79 22897 100.00 46.16
|η| < 1.375 OR 1.52 < |η| < 2.0 20829 90.95 78.93 20824 90.95 41.98
Hadronic veto EHCal ≤ 1 GeV 20364 97.77 77.17 20359 97.77 41.04
Max fHT candidate 20359 99.98 77.15 20359 100.00 41.04
w ≥ 0.94 18485 90.80 70.05 18485 90.80 37.27
fHT ≥ 0.7 17878 96.71 67.75 17878 96.71 36.04

Table D.7: Event selection efficiency for single monopoles of mass 200 GeV and charge
|g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 21821 43.64 43.64
Preselection 25609 — — 21742 99.64 43.48
Overlap removal 21745 84.91 84.91 21742 100.00 43.48
EEM

T > 16 GeV 21744 100.00 84.91 21741 100.00 43.48
EPre > 5 GeV OR EEM1 > 5 GeV 21742 99.99 84.90 21739 99.99 43.48
|η| < 1.375 OR 1.52 < |η| < 2.0 19613 90.21 76.59 19611 90.21 39.22
Hadronic veto EHCal ≤ 1 GeV 18872 96.22 73.69 18871 96.22 37.74
Max fHT candidate 18871 99.99 73.69 18871 100.00 37.74
w ≥ 0.94 18722 99.21 73.11 18722 99.21 37.44
fHT ≥ 0.7 18398 98.27 71.84 18398 98.27 36.80

Table D.8: Event selection efficiency for single monopoles of mass 500 GeV and charge
|g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 20326 40.65 40.65
Preselection 24263 — — 20278 99.76 40.56
Overlap removal 20281 83.59 83.59 20278 100.00 40.56
EEM

T > 16 GeV 20278 99.99 83.58 20276 99.99 40.55
EPre > 5 GeV OR EEM1 > 5 GeV 20276 99.99 83.57 20274 99.99 40.55
|η| < 1.375 OR 1.52 < |η| < 2.0 18319 90.35 75.50 18318 90.35 36.64
Hadronic veto EHCal ≤ 1 GeV 17276 94.30 71.20 17274 94.30 34.55
Max fHT candidate 17274 99.99 71.19 17274 100.00 34.55
w ≥ 0.94 17239 99.79 71.05 17239 99.79 34.48
fHT ≥ 0.7 17082 99.09 70.40 17082 99.09 34.16

Table D.9: Event selection efficiency for single monopoles of mass 1000 GeV and charge
|g| = 1.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 18746 37.49 37.49
Preselection 22435 — — 18706 99.79 37.41
Overlap removal 18710 83.40 83.40 18706 100.00 37.41
EEM

T > 16 GeV 18707 99.99 83.38 18705 99.99 37.41
EPre > 5 GeV OR EEM1 > 5 GeV 18705 99.99 83.37 18703 99.99 37.41
|η| < 1.375 OR 1.52 < |η| < 2.0 16857 90.12 75.13 16855 90.12 33.71
Hadronic veto EHCal ≤ 1 GeV 15605 92.58 69.56 15604 92.58 31.21
Max fHT candidate 15604 99.99 69.55 15604 100.00 31.21
w ≥ 0.94 15578 99.84 69.44 15578 99.84 31.16
fHT ≥ 0.7 15420 98.99 68.73 15420 98.99 30.84

Table D.10: Event selection efficiency for single monopoles of mass 1500 GeV and charge
|g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 17189 34.38 34.38
Preselection 20779 — — 17157 99.81 34.31
Overlap removal 17161 82.59 82.59 17157 100.00 34.31
EEM

T > 16 GeV 17156 99.97 82.56 17155 99.99 34.31
EPre > 5 GeV OR EEM1 > 5 GeV 17151 99.97 82.54 17150 99.97 34.30
|η| < 1.375 OR 1.52 < |η| < 2.0 15438 90.01 74.30 15438 90.02 30.88
Hadronic veto EHCal ≤ 1 GeV 14085 91.24 67.79 14085 91.24 28.17
Max fHT candidate 14085 100.00 67.79 14085 100.00 28.17
w ≥ 0.94 14068 99.88 67.70 14068 99.88 28.14
fHT ≥ 0.7 13850 98.45 66.65 13850 98.45 27.70

Table D.11: Event selection efficiency for single monopoles of mass 2000 GeV and charge
|g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 16114 32.23 32.23
Preselection 19611 — — 16085 99.82 32.17
Overlap removal 16087 82.03 82.03 16085 100.00 32.17
EEM

T > 16 GeV 16081 99.97 82.00 16080 99.97 32.16
EPre > 5 GeV OR EEM1 > 5 GeV 16070 99.93 81.94 16068 99.93 32.14
|η| < 1.375 OR 1.52 < |η| < 2.0 14441 89.87 73.64 14440 89.87 28.88
Hadronic veto EHCal ≤ 1 GeV 12956 89.72 66.07 12955 89.72 25.91
Max fHT candidate 12955 99.99 66.06 12955 100.00 25.91
w ≥ 0.94 12943 99.91 66.00 12943 99.91 25.89
fHT ≥ 0.7 12669 97.88 64.60 12669 97.88 25.34

Table D.12: Event selection efficiency for single monopoles of mass 2500 GeV and charge
|g| = 1.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 47054 — —
HIP trigger — — — 19403 41.24 41.24
Preselection 20784 — — 19288 99.41 40.99
Overlap removal 19290 92.81 92.81 19288 100.00 40.99
EEM

T > 16 GeV 19284 99.97 92.78 19282 99.97 40.98
EPre > 5 GeV OR EEM1 > 5 GeV 19284 100.00 92.78 19282 100.00 40.98
|η| < 1.375 OR 1.52 < |η| < 2.0 17984 93.26 86.53 17982 93.26 38.22
Hadronic veto EHCal ≤ 1 GeV 17961 99.88 86.42 17960 99.88 38.17
Max fHT candidate 17960 99.99 86.41 17960 100.00 38.17
w ≥ 0.94 16507 91.91 79.42 16507 91.91 35.08
fHT ≥ 0.7 16071 97.36 77.33 16071 97.36 34.15

Table D.13: Event selection efficiency for single monopoles of mass 200 GeV and charge
|g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 48443 — —
HIP trigger — — — 21437 44.25 44.25
Preselection 23048 — — 21307 99.40 43.98
Overlap removal 21312 92.47 92.47 21307 100.00 43.98
EEM

T > 16 GeV 21310 99.99 92.46 21307 100.00 43.98
EPre > 5 GeV OR EEM1 > 5 GeV 21309 100.00 92.46 21307 100.00 43.98
|η| < 1.375 OR 1.52 < |η| < 2.0 19928 93.52 86.46 19928 93.53 41.14
Hadronic veto EHCal ≤ 1 GeV 19912 99.92 86.39 19912 99.92 41.10
Max fHT candidate 19912 100.00 86.39 19912 100.00 41.10
w ≥ 0.94 19811 99.49 85.95 19811 99.49 40.89
fHT ≥ 0.7 19487 98.37 84.55 19487 98.37 40.23

Table D.14: Event selection efficiency for single monopoles of mass 500 GeV and charge
|g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 48527 — —
HIP trigger — — — 22901 47.19 47.19
Preselection 24748 — — 22802 99.57 46.99
Overlap removal 22806 92.16 92.16 22802 100.00 46.99
EEM

T > 16 GeV 22802 99.98 92.14 22801 99.99 46.99
EPre > 5 GeV OR EEM1 > 5 GeV 22802 100.00 92.14 22801 100.00 46.99
|η| < 1.375 OR 1.52 < |η| < 2.0 21255 93.21 85.89 21254 93.21 43.80
Hadronic veto EHCal ≤ 1 GeV 21234 99.90 85.80 21233 99.90 43.76
Max fHT candidate 21233 99.99 85.80 21233 100.00 43.76
w ≥ 0.94 21207 99.88 85.69 21207 99.88 43.70
fHT ≥ 0.7 20993 98.99 84.83 20993 98.99 43.26

Table D.15: Event selection efficiency for single monopoles of mass 1000 GeV and charge
|g| = 1.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 48335 — —
HIP trigger — — — 23032 47.65 47.65
Preselection 25125 — — 22934 99.57 47.45
Overlap removal 22941 91.31 91.31 22934 100.00 47.45
EEM

T > 16 GeV 22937 99.98 91.29 22932 99.99 47.44
EPre > 5 GeV OR EEM1 > 5 GeV 22933 99.98 91.28 22928 99.98 47.44
|η| < 1.375 OR 1.52 < |η| < 2.0 21291 92.84 84.74 21289 92.85 44.04
Hadronic veto EHCal ≤ 1 GeV 21263 99.87 84.63 21260 99.87 43.99
Max fHT candidate 21260 99.99 84.62 21260 100.00 43.99
w ≥ 0.94 21232 99.87 84.51 21232 99.87 43.93
fHT ≥ 0.7 21087 99.32 83.93 21087 99.32 43.63

Table D.16: Event selection efficiency for single monopoles of mass 1500 GeV and charge
|g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 24284 48.57 48.57
Preselection 26440 — — 24198 99.65 48.40
Overlap removal 24199 91.52 91.52 24198 100.00 48.40
EEM

T > 16 GeV 24198 100.00 91.52 24197 100.00 48.39
EPre > 5 GeV OR EEM1 > 5 GeV 24195 99.99 91.51 24195 99.99 48.39
|η| < 1.375 OR 1.52 < |η| < 2.0 22484 92.92 85.04 22483 92.92 44.97
Hadronic veto EHCal ≤ 1 GeV 22469 99.93 84.98 22468 99.93 44.94
Max fHT candidate 22468 100.00 84.98 22468 100.00 44.94
w ≥ 0.94 22451 99.93 84.91 22451 99.93 44.90
fHT ≥ 0.7 22261 99.15 84.19 22261 99.15 44.52

Table D.17: Event selection efficiency for single monopoles of mass 2000 GeV and charge
|g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 50000 — —
HIP trigger — — — 24250 48.50 48.50
Preselection 26597 — — 24176 99.70 48.35
Overlap removal 24180 90.91 90.91 24176 100.00 48.35
EEM

T > 16 GeV 24179 100.00 90.91 24176 100.00 48.35
EPre > 5 GeV OR EEM1 > 5 GeV 24177 99.99 90.90 24174 99.99 48.35
|η| < 1.375 OR 1.52 < |η| < 2.0 22358 92.48 84.06 22355 92.48 44.71
Hadronic veto EHCal ≤ 1 GeV 22332 99.88 83.96 22329 99.88 44.66
Max fHT candidate 22329 99.99 83.95 22329 100.00 44.66
w ≥ 0.94 22309 99.91 83.88 22309 99.91 44.62
fHT ≥ 0.7 22127 99.19 83.20 22127 99.19 44.25

Table D.18: Event selection efficiency for single monopoles of mass 2500 GeV and charge
|g| = 1.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 27197 — —
HIP trigger — — — 5321 19.56 19.56
Preselection 5419 — — 5296 99.54 19.47
Overlap removal 5300 97.80 97.80 5296 100.00 19.47
EEM

T > 16 GeV 5297 99.95 97.75 5296 100.00 19.47
EPre > 5 GeV OR EEM1 > 5 GeV 5297 100.00 97.75 5296 100.00 19.47
|η| < 1.375 OR 1.52 < |η| < 2.0 5211 98.37 96.15 5210 98.37 19.16
Hadronic veto EHCal ≤ 1 GeV 5208 99.94 96.10 5207 99.94 19.14
Max fHT candidate 5207 99.98 96.08 5207 100.00 19.14
w ≥ 0.94 4172 80.12 76.98 4172 80.12 15.34
fHT ≥ 0.7 4115 98.63 75.93 4115 98.63 15.13

Table D.19: Event selection efficiency for single monopoles of mass 200 GeV and charge
|g| = 2.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 27688 — —
HIP trigger — — — 6815 24.61 24.61
Preselection 6978 — — 6775 99.42 24.47
Overlap removal 6775 97.08 97.08 6775 100.00 24.47
EEM

T > 16 GeV 6774 99.99 97.07 6774 99.99 24.47
EPre > 5 GeV OR EEM1 > 5 GeV 6774 100.00 97.07 6774 100.00 24.47
|η| < 1.375 OR 1.52 < |η| < 2.0 6609 97.55 94.70 6609 97.55 23.87
Hadronic veto EHCal ≤ 1 GeV 6609 100.00 94.70 6609 100.00 23.87
Max fHT candidate 6609 100.00 94.70 6609 100.00 23.87
w ≥ 0.94 6579 99.55 94.27 6579 99.55 23.76
fHT ≥ 0.7 6471 98.37 92.73 6471 98.37 23.37

Table D.20: Event selection efficiency for single monopoles of mass 500 GeV and charge
|g| = 2.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 21045 — —
HIP trigger — — — 6090 28.94 28.94
Preselection 6270 — — 6065 99.59 28.82
Overlap removal 6067 96.76 96.76 6065 100.00 28.82
EEM

T > 16 GeV 6067 100.00 96.76 6065 100.00 28.82
EPre > 5 GeV OR EEM1 > 5 GeV 6067 100.00 96.76 6065 100.00 28.82
|η| < 1.375 OR 1.52 < |η| < 2.0 5856 96.52 93.40 5854 96.52 27.82
Hadronic veto EHCal ≤ 1 GeV 5851 99.92 93.32 5850 99.93 27.80
Max fHT candidate 5850 99.98 93.31 5850 100.00 27.80
w ≥ 0.94 5843 99.88 93.20 5843 99.88 27.76
fHT ≥ 0.7 5808 99.40 92.64 5808 99.40 27.60

Table D.21: Event selection efficiency for single monopoles of mass 1000 GeV and charge
|g| = 2.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 27625 — —
HIP trigger — — — 8641 31.28 31.28
Preselection 8950 — — 8608 99.62 31.16
Overlap removal 8609 96.19 96.19 8608 100.00 31.16
EEM

T > 16 GeV 8608 99.99 96.18 8608 100.00 31.16
EPre > 5 GeV OR EEM1 > 5 GeV 8608 100.00 96.18 8608 100.00 31.16
|η| < 1.375 OR 1.52 < |η| < 2.0 8309 96.52 92.84 8308 96.52 30.07
Hadronic veto EHCal ≤ 1 GeV 8305 99.96 92.80 8305 99.96 30.06
Max fHT candidate 8305 99.99 92.79 8305 100.00 30.06
w ≥ 0.94 8297 99.90 92.70 8297 99.90 30.03
fHT ≥ 0.7 8267 99.64 92.37 8267 99.64 29.92

Table D.22: Event selection efficiency for single monopoles of mass 1500 GeV and charge
|g| = 2.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 24332 — —
HIP trigger — — — 7931 32.59 32.59
Preselection 8257 — — 7902 99.64 32.48
Overlap removal 7904 95.73 95.73 7902 100.00 32.48
EEM

T > 16 GeV 7903 99.98 95.71 7902 100.00 32.48
EPre > 5 GeV OR EEM1 > 5 GeV 7903 100.00 95.71 7902 100.00 32.48
|η| < 1.375 OR 1.52 < |η| < 2.0 7569 95.77 91.67 7568 95.77 31.10
Hadronic veto EHCal ≤ 1 GeV 7566 99.97 91.64 7565 99.97 31.09
Max fHT candidate 7565 99.99 91.63 7565 100.00 31.09
w ≥ 0.94 7558 99.90 91.54 7558 99.90 31.06
fHT ≥ 0.7 7525 99.56 91.14 7525 99.56 30.93

Table D.23: Event selection efficiency for single monopoles of mass 2000 GeV and charge
|g| = 2.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 25003 — —
HIP trigger — — — 8509 34.03 34.03
Preselection 8877 — — 8480 99.65 33.91
Overlap removal 8481 95.54 95.54 8480 100.00 33.91
EEM

T > 16 GeV 8481 100.00 95.54 8480 100.00 33.91
EPre > 5 GeV OR EEM1 > 5 GeV 8478 99.97 95.51 8478 99.99 33.91
|η| < 1.375 OR 1.52 < |η| < 2.0 8115 95.71 91.42 8115 95.71 32.46
Hadronic veto EHCal ≤ 1 GeV 8112 99.96 91.39 8112 99.96 32.44
Max fHT candidate 8112 100.00 91.39 8112 100.00 32.44
w ≥ 0.94 8108 99.95 91.34 8108 99.95 32.43
fHT ≥ 0.7 8067 99.49 90.87 8067 99.49 32.26

Table D.24: Event selection efficiency for single monopoles of mass 2500 GeV and charge
|g| = 2.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 20000 — —
HIP trigger — — — 4780 23.90 23.90
Preselection 8761 — — 4763 99.65 23.81
Overlap removal 7676 87.61 87.61 4763 100.00 23.81
EEM

T > 16 GeV 7443 96.97 84.96 4753 99.80 23.77
EPre > 5 GeV OR EEM1 > 5 GeV 7406 99.50 84.53 4734 99.59 23.67
|η| < 1.375 OR 1.52 < |η| < 2.0 6761 91.29 77.17 4509 95.24 22.54
Hadronic veto EHCal ≤ 1 GeV 6691 98.97 76.38 4505 99.92 22.53
Max fHT candidate 4505 67.33 51.42 4505 100.00 22.53
w ≥ 0.94 4477 99.37 51.10 4477 99.37 22.39
fHT ≥ 0.7 4459 99.60 50.90 4459 99.60 22.30

Table D.25: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 200 GeV
and charge |g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 20619 — —
HIP trigger — — — 7462 36.19 36.19
Preselection 15735 — — 7439 99.70 36.08
Overlap removal 13385 85.06 85.06 7439 100.00 36.08
EEM

T > 16 GeV 13034 97.37 82.83 7410 99.60 35.94
EPre > 5 GeV OR EEM1 > 5 GeV 12969 99.51 82.42 7399 99.86 35.89
|η| < 1.375 OR 1.52 < |η| < 2.0 12151 93.69 77.22 7217 97.55 35.00
Hadronic veto EHCal ≤ 1 GeV 11819 97.26 75.11 7198 99.72 34.91
Max fHT candidate 7198 60.90 45.74 7198 100.00 34.91
w ≥ 0.94 7152 99.36 45.45 7152 99.36 34.68
fHT ≥ 0.7 6908 96.59 43.90 6908 96.59 33.50

Table D.26: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 500 GeV
and charge |g| = 0.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 22072 — —
HIP trigger — — — 7499 33.97 33.97
Preselection 16533 — — 7481 99.75 33.89
Overlap removal 14125 85.44 85.44 7481 100.00 33.89
EEM

T > 16 GeV 13785 97.60 83.38 7461 99.74 33.80
EPre > 5 GeV OR EEM1 > 5 GeV 13624 98.83 82.41 7446 99.79 33.73
|η| < 1.375 OR 1.52 < |η| < 2.0 13027 95.61 78.79 7348 98.69 33.29
Hadronic veto EHCal ≤ 1 GeV 12203 93.68 73.81 7258 98.77 32.88
Max fHT candidate 7258 59.47 43.90 7258 100.00 32.88
w ≥ 0.94 7206 99.28 43.58 7206 99.28 32.65
fHT ≥ 0.7 6140 85.21 37.14 6140 85.21 27.82

Table D.27: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1000 GeV and charge |g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 22353 — —
HIP trigger — — — 7277 32.55 32.55
Preselection 15967 — — 7268 99.89 32.52
Overlap removal 13943 87.32 87.32 7268 100.00 32.52
EEM

T > 16 GeV 13686 98.16 85.71 7251 99.76 32.44
EPre > 5 GeV OR EEM1 > 5 GeV 13262 96.90 83.06 7216 99.52 32.28
|η| < 1.375 OR 1.52 < |η| < 2.0 12878 97.11 80.66 7163 99.26 32.04
Hadronic veto EHCal ≤ 1 GeV 11545 89.65 72.31 6946 96.98 31.08
Max fHT candidate 6946 60.17 43.51 6946 100.00 31.08
w ≥ 0.94 6890 99.18 43.15 6890 99.18 30.82
fHT ≥ 0.7 5287 76.74 33.11 5287 76.74 23.65

Table D.28: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1500 GeV and charge |g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 22974 — —
HIP trigger — — — 5843 25.43 25.43
Preselection 12943 — — 5842 99.99 25.43
Overlap removal 11427 88.29 88.29 5842 100.00 25.43
EEM

T > 16 GeV 11307 98.95 87.36 5834 99.86 25.39
EPre > 5 GeV OR EEM1 > 5 GeV 10728 94.88 82.89 5801 99.43 25.25
|η| < 1.375 OR 1.52 < |η| < 2.0 10575 98.57 81.70 5777 99.59 25.14
Hadronic veto EHCal ≤ 1 GeV 8796 83.18 67.96 5407 93.60 23.54
Max fHT candidate 5407 61.47 41.78 5407 100.00 23.54
w ≥ 0.94 5367 99.26 41.46 5367 99.26 23.36
fHT ≥ 0.7 3832 71.40 29.60 3832 71.40 16.68

Table D.29: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2000 GeV and charge |g| = 0.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 24321 — —
HIP trigger — — — 4029 16.57 16.57
Preselection 8976 — — 4028 99.98 16.56
Overlap removal 7910 88.12 88.12 4028 100.00 16.56
EEM

T > 16 GeV 7877 99.59 87.77 4028 100.00 16.56
EPre > 5 GeV OR EEM1 > 5 GeV 7422 94.21 82.69 4004 99.39 16.46
|η| < 1.375 OR 1.52 < |η| < 2.0 7386 99.52 82.30 3998 99.85 16.44
Hadronic veto EHCal ≤ 1 GeV 5311 71.91 59.17 3417 85.48 14.05
Max fHT candidate 3417 64.34 38.07 3417 100.00 14.05
w ≥ 0.94 3388 99.15 37.75 3388 99.15 13.93
fHT ≥ 0.7 2380 70.26 26.52 2380 70.26 9.79

Table D.30: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2500 GeV and charge |g| = 0.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 56075 — —
HIP trigger — — — 2152 3.84 3.84
Preselection 3106 — — 2120 98.49 3.78
Overlap removal 3002 96.65 96.65 2120 100.00 3.78
EEM

T > 16 GeV 2981 99.30 95.97 2119 99.96 3.78
EPre > 5 GeV OR EEM1 > 5 GeV 2976 99.83 95.81 2118 99.98 3.78
|η| < 1.375 OR 1.52 < |η| < 2.0 2747 92.30 88.43 1987 93.77 3.54
Hadronic veto EHCal ≤ 1 GeV 2741 99.78 88.24 1987 100.00 3.54
Max fHT candidate 1987 72.48 63.96 1987 100.00 3.54
w ≥ 0.94 1980 99.66 63.74 1980 99.66 3.53
fHT ≥ 0.7 1968 99.38 63.35 1968 99.38 3.51

Table D.31: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 200 GeV
and charge |g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 31579 — —
HIP trigger — — — 5011 15.87 15.87
Preselection 8105 — — 4992 99.64 15.81
Overlap removal 7791 96.13 96.13 4992 100.00 15.81
EEM

T > 16 GeV 7719 99.07 95.23 4992 100.00 15.81
EPre > 5 GeV OR EEM1 > 5 GeV 7714 99.95 95.18 4992 100.00 15.81
|η| < 1.375 OR 1.52 < |η| < 2.0 7230 93.72 89.21 4712 94.38 14.92
Hadronic veto EHCal ≤ 1 GeV 7204 99.63 88.88 4712 100.00 14.92
Max fHT candidate 4712 65.41 58.14 4712 100.00 14.92
w ≥ 0.94 4699 99.73 57.98 4699 99.73 14.88
fHT ≥ 0.7 4693 99.86 57.90 4693 99.86 14.86

Table D.32: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 500 GeV
and charge |g| = 1.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 26502 — —
HIP trigger — — — 6526 24.62 24.62
Preselection 11253 — — 6503 99.65 24.54
Overlap removal 10877 96.66 96.66 6503 100.00 24.54
EEM

T > 16 GeV 10794 99.23 95.92 6503 100.00 24.54
EPre > 5 GeV OR EEM1 > 5 GeV 10787 99.94 95.86 6503 100.00 24.54
|η| < 1.375 OR 1.52 < |η| < 2.0 10310 95.58 91.62 6242 95.97 23.55
Hadronic veto EHCal ≤ 1 GeV 10286 99.77 91.41 6242 100.00 23.55
Max fHT candidate 6242 60.68 55.46 6242 100.00 23.55
w ≥ 0.94 6222 99.69 55.29 6222 99.69 23.48
fHT ≥ 0.7 6193 99.53 55.04 6193 99.53 23.37

Table D.33: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1000 GeV and charge |g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 25441 — —
HIP trigger — — — 6001 23.59 23.59
Preselection 10744 — — 5972 99.52 23.47
Overlap removal 10426 97.04 97.04 5972 100.00 23.47
EEM

T > 16 GeV 10331 99.09 96.15 5971 99.98 23.47
EPre > 5 GeV OR EEM1 > 5 GeV 10327 99.96 96.11 5971 100.00 23.47
|η| < 1.375 OR 1.52 < |η| < 2.0 10000 96.84 93.07 5767 96.58 22.67
Hadronic veto EHCal ≤ 1 GeV 9973 99.73 92.82 5762 99.92 22.65
Max fHT candidate 5762 57.78 53.62 5762 100.00 22.65
w ≥ 0.94 5737 99.57 53.40 5737 99.57 22.55
fHT ≥ 0.7 5635 98.21 52.44 5635 98.21 22.15

Table D.34: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1500 GeV and charge |g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 26285 — —
HIP trigger — — — 4761 18.11 18.11
Preselection 8653 — — 4752 99.82 18.08
Overlap removal 8415 97.25 97.25 4752 100.00 18.08
EEM

T > 16 GeV 8334 99.04 96.31 4752 99.98 18.08
EPre > 5 GeV OR EEM1 > 5 GeV 8330 99.96 96.27 4751 99.99 18.08
|η| < 1.375 OR 1.52 < |η| < 2.0 8155 97.89 94.24 4617 97.17 17.57
Hadronic veto EHCal ≤ 1 GeV 8140 99.82 94.07 4616 99.98 17.56
Max fHT candidate 4616 56.71 53.35 4616 100.00 17.56
w ≥ 0.94 4594 99.51 53.08 4594 99.51 17.48
fHT ≥ 0.7 4342 94.53 50.18 4342 94.53 16.52

Table D.35: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2000 GeV and charge |g| = 1.0gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 26558 — —
HIP trigger — — — 3005 11.32 11.32
Preselection 5603 — — 3001 99.87 11.30
Overlap removal 5513 98.40 98.40 3001 100.00 11.30
EEM

T > 16 GeV 5463 99.10 97.51 3001 100.00 11.30
EPre > 5 GeV OR EEM1 > 5 GeV 5461 99.96 97.47 3001 100.00 11.30
|η| < 1.375 OR 1.52 < |η| < 2.0 5405 98.98 96.47 2961 98.65 11.15
Hadronic veto EHCal ≤ 1 GeV 5400 99.92 96.39 2961 100.00 11.15
Max fHT candidate 2961 54.83 52.85 2961 100.00 11.15
w ≥ 0.94 2954 99.78 52.73 2954 99.78 11.12
fHT ≥ 0.7 2592 87.73 46.26 2592 87.73 9.76

Table D.36: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2500 GeV and charge |g| = 1.0gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 155743 — —
HIP trigger — — — 254 0.16 0.16
Preselection 310 — — 245 96.35 0.16
Overlap removal 305 98.48 98.48 245 100.00 0.16
EEM

T > 16 GeV 304 99.54 98.02 245 100.00 0.16
EPre > 5 GeV OR EEM1 > 5 GeV 304 100.00 98.02 245 100.00 0.16
|η| < 1.375 OR 1.52 < |η| < 2.0 287 94.48 92.61 232 94.77 0.15
Hadronic veto EHCal ≤ 1 GeV 287 99.90 92.52 232 100.00 0.15
Max fHT candidate 232 80.99 74.93 232 100.00 0.15
w ≥ 0.94 228 98.00 73.43 228 98.00 0.15
fHT ≥ 0.7 224 98.64 72.43 224 98.64 0.14

Table D.37: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 200 GeV
and charge |g| = 1.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 39207 — —
HIP trigger — — — 483 1.23 1.23
Preselection 681 — — 478 98.98 1.22
Overlap removal 667 98.01 98.01 478 100.00 1.22
EEM

T > 16 GeV 662 99.11 97.13 478 100.00 1.22
EPre > 5 GeV OR EEM1 > 5 GeV 661 99.85 96.99 477 99.79 1.22
|η| < 1.375 OR 1.52 < |η| < 2.0 637 96.38 93.47 456 95.53 1.16
Hadronic veto EHCal ≤ 1 GeV 631 99.18 92.71 455 99.91 1.16
Max fHT candidate 455 72.08 66.83 455 100.00 1.16
w ≥ 0.94 454 99.84 66.72 454 99.84 1.16
fHT ≥ 0.7 454 100.00 66.72 454 100.00 1.16

Table D.38: Event selection efficiency for pair-produced spin-1/2 monopoles of mass 500 GeV
and charge |g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 33757 — —
HIP trigger — — — 1263 3.74 3.74
Preselection 1967 — — 1251 99.09 3.71
Overlap removal 1947 99.02 99.02 1251 100.00 3.71
EEM

T > 16 GeV 1923 98.75 97.79 1251 100.00 3.71
EPre > 5 GeV OR EEM1 > 5 GeV 1923 100.00 97.79 1251 100.00 3.71
|η| < 1.375 OR 1.52 < |η| < 2.0 1903 98.95 96.76 1236 98.81 3.66
Hadronic veto EHCal ≤ 1 GeV 1902 99.96 96.72 1236 100.00 3.66
Max fHT candidate 1236 65.01 62.88 1236 100.00 3.66
w ≥ 0.94 1234 99.76 62.73 1234 99.76 3.65
fHT ≥ 0.7 1230 99.74 62.57 1230 99.74 3.64

Table D.39: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1000 GeV and charge |g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 31048 — —
HIP trigger — — — 1117 3.60 3.60
Preselection 1780 — — 1117 100.00 3.60
Overlap removal 1768 99.32 99.32 1117 100.00 3.60
EEM

T > 16 GeV 1757 99.38 98.71 1117 100.00 3.60
EPre > 5 GeV OR EEM1 > 5 GeV 1757 99.98 98.69 1117 99.97 3.60
|η| < 1.375 OR 1.52 < |η| < 2.0 1746 99.35 98.05 1106 99.00 3.56
Hadronic veto EHCal ≤ 1 GeV 1743 99.86 97.91 1106 100.00 3.56
Max fHT candidate 1106 63.42 62.10 1106 100.00 3.56
w ≥ 0.94 1102 99.63 61.87 1102 99.63 3.55
fHT ≥ 0.7 1097 99.60 61.62 1097 99.60 3.53

Table D.40: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
1500 GeV and charge |g| = 1.5gD.
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Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 29828 — —
HIP trigger — — — 844 2.83 2.83
Preselection 1367 — — 844 99.97 2.83
Overlap removal 1362 99.61 99.61 844 100.00 2.83
EEM

T > 16 GeV 1347 98.90 98.52 844 100.00 2.83
EPre > 5 GeV OR EEM1 > 5 GeV 1347 100.00 98.52 844 100.00 2.83
|η| < 1.375 OR 1.52 < |η| < 2.0 1343 99.76 98.28 840 99.62 2.82
Hadronic veto EHCal ≤ 1 GeV 1343 99.94 98.22 840 100.00 2.82
Max fHT candidate 840 62.61 61.49 840 100.00 2.82
w ≥ 0.94 838 99.69 61.30 838 99.69 2.81
fHT ≥ 0.7 832 99.32 60.89 832 99.32 2.79

Table D.41: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2000 GeV and charge |g| = 1.5gD.

Selection Candidates Rel. eff. Total eff. Events Rel. eff. Total eff.

All — — — 38147 — —
HIP trigger — — — 652 1.71 1.71
Preselection 1069 — — 647 99.24 1.70
Overlap removal 1065 99.64 99.64 647 100.00 1.70
EEM

T > 16 GeV 1053 98.93 98.57 647 100.00 1.70
EPre > 5 GeV OR EEM1 > 5 GeV 1053 100.00 98.57 647 100.00 1.70
|η| < 1.375 OR 1.52 < |η| < 2.0 1052 99.85 98.42 646 99.87 1.69
Hadronic veto EHCal ≤ 1 GeV 1049 99.76 98.19 646 100.00 1.69
Max fHT candidate 646 61.61 60.49 646 100.00 1.69
w ≥ 0.94 645 99.75 60.34 645 99.75 1.69
fHT ≥ 0.7 615 95.31 57.51 615 95.31 1.61

Table D.42: Event selection efficiency for pair-produced spin-1/2 monopoles of mass
2500 GeV and charge |g| = 1.5gD.
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Appendix E

Event selection efficiency maps for

single monopoles
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Figure E.1: Event selection efficiency as a function of the transverse kinetic energy, Ekin
T ,

and pseudorapidity, η, for single monopoles of charge |g| = 0.5gD.
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Figure E.2: Event selection efficiency as a function of the transverse kinetic energy, Ekin
T ,

and pseudorapidity, η, for single monopoles of charge |g| = 1.0gD.
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Figure E.3: Event selection efficiency as a function of the transverse kinetic energy, Ekin
T ,

and pseudorapidity, η, for single monopoles of charge |g| = 1.5gD.
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Figure E.4: Event selection efficiency as a function of the transverse kinetic energy, Ekin
T ,

and pseudorapidity, η, for single monopoles of charge |g| = 2.0gD.
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Appendix F

Pseudorapidity asymmetry in

selected monopole candidates

An asymmetry in pseudorapidity was observed in the selected candidates for some samples.

This asymmetry was also observed in the collision data. Figure F.1 shows that there is a

greater number of candidates from collision data selected at positive pseudorapidity values.

The left plot shows preselected candidates after overlap removal while the right plot shows

candidates after tight selection. Therefore, the asymmetry is not introduced by any of the

requirements of the event selection. It is important to note that this asymmetry occurs at

|η| > 1.7, beyond the coverage of the Tile calorimeter responsible for the hadronic veto at

Level-1 and tight selection.

The asymmetry in the signal samples is shown in Fig. F.2 and it is quantified as

A =
NF −NB

NF +NB
, (F.1)

where NF (NB) is the number of candidates in the forward (backward) region η > 0 (η < 0)

after full event selection. It is interesting to see that there is no asymmetry for candidates

that have transverse kinetic energies below the HIP trigger efficiency drop-off energy. On the

other hand, the asymmetry becomes more significant for candidates with energies above the

HIP trigger efficiency drop-off energy. It should be noted that the asymmetry reaches the

highest values of about 10% for monopoles of charge |g| = 0.5gD, which are more likely to
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Figure F.1: Pseudorapidity distribution of preselected candidates from collision data after
overlap removal (left) and after tight selection (right).

penetrate to the hadronic calorimeter, while it is negligible for monopoles of higher charge.
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Figure F.2: Asymmetry in signal monopole samples for monopoles with transverse kinetic
energy below (left) and above (right) the HIP trigger efficiency drop-off energy.

An additional test was performed on a simulated MC sample of electrons from W boson

decays (the sample used for background studies). Figure F.3 shows the pseudorapidity

distribution of the generated electrons. No selection criteria has been applied to this sample.

However, the sample has been processed by the DESD HIP filter, which requires the HIP

trigger. Therefore, the asymmetry must be related to the trigger performance. Thus, the

source of the asymmetry is partially understood. Since the asymmetry is present in the
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collision data and in the simulated data, it does not require a special treatment, e.g., the

introduction of an associated systematic uncertainty.
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Figure F.3: Pseudorapidity distribution of generated electrons from simulated MC sample
of electrons from W boson decays.
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Appendix G

Tables of systematic uncertainties

on the event selection efficiency for

signal samples
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Spin-1/2 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Total Total
|g| = 0.5 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =200 GeV ±1.62 ±(1 ± 5) +(1 ± 5) +(1 ± 5) 0 ± 5 ±(3 ± 5) −(1 ± 2) −(6 ± 2) +5 −8
m =500 GeV ±1.91 ±(4 ± 6) −(4 ± 6) −(2 ± 6) −(7 ± 6) ±(6 ± 6) (0 ± 3) −(6 ± 3) +8 −13
m =1000 GeV ±2.48 ±(9 ± 8) +(5 ± 8) +(4 ± 8) +(4 ± 8) ±(1 ± 8) +(11 ± 4) −(4 ± 3) +16 −10
m =1500 GeV ±2.71 ±(9 ± 8) −(12 ± 8) −(8 ± 9) −(9 ± 8) ±(10 ± 8) +(10 ± 4) −(8 ± 4) +17 −23
m =2000 GeV ±2.94 ±(28 ± 11) +(27 ± 11) +(33 ± 11) +(24 ± 11) ±(27 ± 11) +(13 ± 4) −(7 ± 4) +64 −40
m =2500 GeV ±3.06 ±(14 ± 9) −(12 ± 10) −(11 ± 10) −(18 ± 9) ±(6 ± 10) +(10 ± 5) −(7 ± 4) +18 −29

Spin-1/2 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Total Total
|g| = 1.0 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =200 GeV ±3.71 ±(2 ± 3) +(6 ± 3) +(12 ± 3) +(3 ± 3) ±(7 ± 3) +(1 ± 2) 0 ± 2 +16 −9
m =500 GeV ±1.69 ±(3 ± 2) 0 ± 2 +(3 ± 2) −(7 ± 2) ±(0 ± 2) 0 ± 2 −(1 ± 2) +6 −8
m =1000 GeV ±1.28 ±(4 ± 2) −(3 ± 2) +(10 ± 2) −(10 ± 2) ±(2 ± 2) −(1 ± 1) −(3 ± 1) +12 −12
m =1500 GeV ±1.33 ±(8 ± 2) −(2 ± 2) +(13 ± 2) −(9 ± 2) ±(1 ± 2) +(1 ± 2) −(1 ± 2) +15 −13
m =2000 GeV ±1.59 ±(3 ± 3) −(1 ± 3) +(15 ± 3) −(9 ± 3) ±(3 ± 3) +(2 ± 2) −(3 ± 2) +16 −11
m =2500 GeV ±2.21 ±(9 ± 3) −(10 ± 3) +(9 ± 4) −(17 ± 3) ±(6 ± 3) +(6 ± 2) −(3 ± 2) +16 −24

Spin-1/2 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Total Total
|g| = 1.5 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =500 GeV ±7.52 ±(19 ± 5) −(7 ± 6) −(3 ± 6) −(12 ± 5) ±(13 ± 5) 0 ± 4 −(1 ± 4) +24 −28
m =1000 GeV ±3.65 ±( 8 ± 5) −(4 ± 5) +(1 ± 5) −(9 ± 4) ±(5 ± 5) +(3 ± 3) +(2 ± 3) +11 −14
m =1500 GeV ±3.69 ±( 8 ± 5) −(5 ± 5) +(1 ± 5) −(8 ± 5) ±(4 ± 5) 0 ± 3 −(1 ± 3) +10 −14
m =2000 GeV ±4.28 ±(14 ± 6) −(10 ± 6) −(7 ± 6) −(12 ± 6) ±(12 ± 6) +(3 ± 4) +(3 ± 4) +19 −26
m =2500 GeV ±5.53 ±( 8 ± 6) −(6 ± 6) −(6 ± 6) −(15 ± 6) ±(4 ± 6) 0 ± 4 −(4 ± 4) +11 −21

Table G.1: Systematic uncertainties on the signal efficiencies in percentages for Drell-Yan produced spin-1/2 monopoles of
charge |g| = 0.5gD (top), |g| = 1.0gD (centre) and |g| = 1.5gD (bottom).
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Spin-0 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Extrapolation Total Total
|g| = 0.5 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =200 GeV ±0.78 ±(2 ± 3) +(3 ± 3) +(9 ± 3) −(5 ± 3) ±(3 ± 3) 0 ± 2 −(2 ± 2) −11 +11 −13
m =500 GeV ±0.62 ±(2 ± 2) −(3 ± 2) +(2 ± 2) −(11 ± 2) ±(4 ± 2) +(1 ± 1) −(4 ± 1) −9.8 +6 −17
m =1000 GeV ±0.76 ±(2 ± 2) −(1 ± 2) +(3 ± 2) −(7 ± 2) ±(1 ± 2) +(9 ± 2) −(5 ± 1) −8.8 +10 −13
m =1500 GeV ±0.89 ±(6 ± 2) −(4 ± 2) −(1 ± 2) −(12 ± 2) ±(8 ± 2) +(14 ± 2) −(6 ± 2) −7.8 +18 −19
m =2000 GeV ±1.01 ±(4 ± 3) −(8 ± 3) −(1 ± 3) −(12 ± 3) ±(5 ± 3) +(18 ± 2) −(7 ± 2) −6.8 +19 −19
m =2500 GeV ±1.24 ±(5 ± 4) −(9 ± 4) −(2 ± 4) −(14 ± 4) ±(10 ± 4) +(16 ± 3) −(7 ± 2) −5.8 +20 −23

Spin-0 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Extrapolation Total Total
|g| = 1.0 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =200 GeV ±2.02 ±(2 ± 3) +(6 ± 3) +(12 ± 3) +(3 ± 3) ±(7 ± 3) 0 ± 2 0 ± 2 −10 +16 −13
m =500 GeV ±0.92 ±(3 ± 2) 0 ± 2 +(3 ± 2) −(7 ± 2) ±(0 ± 2) 0 ± 2 −(1 ± 2) −9.5 +6 −12
m =1000 GeV ±0.66 ±(4 ± 2) −(3 ± 2) +(10 ± 2) −(10 ± 2) ±(2 ± 2) −(1 ± 1) −(3 ± 1) −8.5 +12 −14
m =1500 GeV ±0.68 ±(8 ± 2) −(2 ± 2) +(13 ± 2) −(10 ± 2) ±(1 ± 2) +(1 ± 2) −(1 ± 2) −7.5 +15 −15
m =2000 GeV ±0.80 ±(3 ± 3) −(1 ± 3) +(15 ± 3) −(9 ± 3) ±(3 ± 3) +(2 ± 2) −(3 ± 2) −6.5 +16 −13
m =2500 GeV ±1.01 ±(9 ± 3) −(10 ± 3) +(9 ± 4) −(17 ± 3) ±(6 ± 3) +(6 ± 2) −(3 ± 2) −5.5 +15 −24

Spin-0 MC Det. G4 Birks’ Birks’ δ−ray TRT LAr Extrapolation Total Total
|g| = 1.5 Stat. material range cut high low Occ. xTalk (UP) (DOWN)

m =500 GeV ±3.25 ±(19 ± 5) −(7 ± 6) −(3 ± 6) −(12 ± 5) ±(13 ± 5) 0 ± 4 −(1 ± 4) −20 +23 −33
m =1000 GeV ±1.88 ±(8 ± 5) −(4 ± 5) +(1 ± 5) −(9 ± 4) ±(5 ± 5) +(3 ± 3) +(2 ± 3) −19 +11 −24
m =1500 GeV ±1.68 ±(8 ± 5) −(5 ± 5) +(1 ± 5) −(8 ± 5) ±(4 ± 5) 0 ± 3 −(1 ± 3) −18 +9.4 −22
m =2000 GeV ±1.93 ±(14 ± 6) −(10 ± 6) −(6 ± 6) −(12 ± 6) ±(12 ± 6) +(3 ± 4) +(3 ± 4) −17 +19 −30
m =2500 GeV ±2.48 ±(8 ± 6) −(6 ± 6) −(6 ± 6) −(15 ± 6) ±(4 ± 6) 0 ± 4 −(4 ± 4) −16 +10 −26

Table G.2: Systematic uncertainties on the signal efficiencies for Drell-Yan produced spin-0 monopoles of charge |g| = 0.5gD
(top), |g| = 1.0gD (centre) and |g| = 1.5gD (bottom).
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