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Abstract

Markov properties can be used to model different dynamic processes at various stages of the
loop extrusion process. The current methods are proposed to gain insight on how Markov
models may illustrate chromatin behaviour once the appropriate observed data becomes
available. We find that single molecule FRET experiments are able to identify the confor-
mational states of chromatin using Gaussian mixture models. The unbinding and binding
rates of loop extrusion factors (LEFs) were applied in an immigration-death model, and
found to play a role in influencing the frequency of loop extrusion. By including the ad-
ditional parameter of the presence of nucleosomes with LEF binding on a strand of DNA,
we find that the theoretical timescale of DNA exposure decreased upon LEF binding. The
binding behaviour of LEFs is also dependent on the location of nucleosomes on a strand of
DNA. This is modelled with the Gillespie algorithm to simulate LEF binding activity with
single cell dynamics.

ii



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Jorg Grigull, for his
patient guidance, support, and immense knowledge. I am particularly grateful for his will-
ingness to give his time so generously, and encouragement to keeping my progress on schedule.
His contributions have been very much appreciated.

I would also like to thank my committee members, Dr. Xin Gao, Dr. John McDermott, and
Dr. Iain Moyles for their help in offering me their time, comments, critiques and suggestions
regarding my research.

Finally, I wish to thank my family and friends for their support and encouragement through-
out my study. They have continuously made sacrifices in order for me to pursue my own
goals. Their support and encouragement is worth more than I can express on paper.

iii



Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures ix

1 General Introduction 1

1.1 Objectives and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Mixture Models in Chromatin Compaction 4

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Single-molecule FRET . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

iv



2.3.3 EM application: Gaussian Mixture Models . . . . . . . . . . . . . . . 10

2.3.4 Previous applications of the EM mixture model in enzyme kinetics . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Gaussian Mixture Model Application: Chromatin dynamics . . . . . 17

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 CTMC Application: Loop Extrusion Factor Stacking 30

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Continuous Time Markov Chains . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Immigration-Death Process . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Gillespie Algorithm for Chromatin Loop Dynamics . . . . . . . . . . 36

3.3.5 Rates of Loop Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.6 Binding Behaviour of LEFs . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Combining LEF Binding with Loop Extrusion Activity . . . . . . . . 43

3.3.8 Burst Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Steady state binding . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Varying the rates of binding and unbinding . . . . . . . . . . . . . . . 52

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



3.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Theoretical Exposure Time for Loop Extrusion 60

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Random Walks in Chromatin Organization . . . . . . . . . . . . . . . 61

4.3.2 Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Random Walk Application: LEF Binding . . . . . . . . . . . . . . . . 64

4.3.4 Derivation of Exposure Time on Chromatin . . . . . . . . . . . . . . 69

4.3.5 Mean First-Passage Time of DNA Exposure . . . . . . . . . . . . . . 71

4.3.6 LEF Exposure Cases on DNA . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 DNA Exposure Time Theoretical Equations . . . . . . . . . . . . . . 85

4.4.2 DNA Exposure Time Simulations . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Case A: No LEF Binding . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.4 Case B: Binding of one LEF . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.5 Case C: Binding of one LEF and one nucleosome . . . . . . . . . . . 96

4.4.6 Case D: Binding of one LEF and two nucleosomes . . . . . . . . . . . 98

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 General Conclusion 104

vi



5.1 Limitations of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 108

A R Code for Gaussian Mixture Models 115

B Python Code for Markovian Models 117

C Python Code for Loop Visualization 121

vii



List of Tables

2.1 Parameters from smTIRF- FRET data for 2-component model . . . . . . . . 19

2.2 Results from smTIRF- FRET data for 2-component model . . . . . . . . . . 19

2.3 Parameters from smTIRF- FRET data for adjusted 2-component model . . . 20

2.4 Results from smTIRF- FRET data for adjusted 2-component model . . . . . 20

2.5 Parameters from smTIRF- FRET data with smaller tolerance . . . . . . . . 21

2.6 Results from smTIRF- FRET data with smaller tolerance . . . . . . . . . . . 21

2.7 Parameters from smTIRF- FRET data for 4-component model . . . . . . . . 23

2.8 Results from smTIRF- FRET data for 4-component model . . . . . . . . . . 23

2.9 Parameters from smTIRF- FRET data for 5-component model . . . . . . . . 24

2.10 Results from smTIRF- FRET data for 5-component model . . . . . . . . . . 24

3.1 Parameters from observed data . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Nucleosome Kinetic Parameters (s−1) . . . . . . . . . . . . . . . . . . . . . . 90

viii



List of Figures

1.1 ‘Beads on a string” illustration of chromatin. The orange circles depict the
nucleosomes, and the blue ‘string’ depicts the strand of DNA. . . . . . . . . 1

2.1 Single iteration of the EM algorithm. Figure obtained from literature [9] . . 9

2.2 FRET populations with 2-component Gaussian Distribution Fit . . . . . . . 20

2.3 FRET populations with 4-component Gaussian Distribution Fit . . . . . . . 22

2.4 FRET populations with 5-component Gaussian Distribution Fit . . . . . . . 23

3.1 Diagram of M/M/∞ queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Simulated loop extrusion with overlapping loops in a single time frame. The
height of the loop demonstrates the amount of chromatin that has been ex-
truded from the loop. The colour of the loop is also significant such that
darker the loop, the more stacking has occurred. . . . . . . . . . . . . . . . . 38

3.3 Simulated loop extrusion with overlapping loops in a single time frame with
more LEFs in the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Steady states of DNA loops. A. Sparse state ; B. Dense state . . . . . . . . 40

3.5 Rates of loop extrusion. The left plot denotes the rate of loop division, and
the right plot denotes the rate of loop death. . . . . . . . . . . . . . . . . . . 42

3.6 Binding behaviour of LEFs on DNA. This plot illustrates the relationship
between the copy number of binding sites to the amount of LEFs stably bound
to DNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



3.7 Loop Extrusion Dynamics with LEF binding. Components illustrate the re-
lationship between the rate of binding (kon) and unbinding (koff) from the un-
bound (UB) to the dynamically bound (DB) LEFs. The dynamically bound
LEFs then become stably bound (SB) and allow for loop extrusion (LE) to
occur. This activity is regulated by their rate of loop division (Rdiv) and loop
death (Rdeath). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Simplified loop extrusion model . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Low steady state binding rate, where kon/koff = 0.04. The upper plot denotes
the activity of the LEFs bound and unbound from the strand of DNA by
their on/off states. The bottom plot denotes the loop extrusion activity that
corresponds to the state of the LEF binding. . . . . . . . . . . . . . . . . . . 51

3.10 High steady state binding rate, where kon/koff = 0.4. The upper plot denotes
the activity of the LEFs bound and unbound from the strand of DNA by
their on/off states. The bottom plot denotes the loop extrusion activity that
corresponds to the state of the LEF binding. . . . . . . . . . . . . . . . . . . 51

3.11 The rate of kon is greater than that of koff in an unsteady state. The upper
plot denotes the activity of the LEFs bound and unbound from the strand
of DNA by their on/off states. The bottom plot denotes the loop extrusion
activity that corresponds to the state of the LEF binding. . . . . . . . . . . 53

3.12 The rate of koff is greater than that of kon in an unsteady state. The upper
plot denotes the activity of the LEFs bound and unbound from the strand
of DNA by their on/off states. The bottom plot denotes the loop extrusion
activity that corresponds to the state of the LEF binding. . . . . . . . . . . 53

4.1 Diagram of nucleosome structure. The left of the arrow shows the “beads on
a string” view of the nucleosome, whereas the right of the arrow depicts the
side view of a nucleosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Random walk of LEF binding . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Random walk model of binding potential . . . . . . . . . . . . . . . . . . . . 66

4.4 Loop extrusion in the presence of nucleosomes . . . . . . . . . . . . . . . . . 70

x



4.5 Theoretical cases of LEF binding between nucleosomes. A. Exposed strand
of DNA, with no LEF binding. The target patch , m, is bounded by two nu-
cleosomes, N1 and N2. B. Binding of one LEF (C) between two nucleosomes.
C. Binding of one LEF and one nucleosome between two nucleosomes. D.
Binding of one LEF and two nucleosomes between two nucleosomes. . . . . . 74

4.6 No LEF or nucleosome binding . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Binding of one LEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Binding of one LEF and one nucleosome . . . . . . . . . . . . . . . . . . . . 80

4.9 Binding of one LEF and two nucleosomes . . . . . . . . . . . . . . . . . . . . 82

4.10 Theoretical exposure timescale plot. Case A No LEF or nucleosome binding.
Case B Binding of one LEF. Case C Binding of one LEF and one nucleosome.
Case D Binding of one LEF and two nucleosomes. . . . . . . . . . . . . . . 85

4.11 Theoretical exposure timescale plot on a log axis. Case A No LEF or nucle-
osome binding. Case B Binding of one LEF. Case C Binding of one LEF
and one nucleosome. Case D Binding of one LEF and two nucleosomes. . . 86

4.12 Theoretical exposure timescale plot with a greater on rate. Plot A depicts the
theoretical exposure timescale plot, and plot B depicts the same plot on a log
axis. Case A No LEF or nucleosome binding. Case B Binding of one LEF.
Case C Binding of one LEF and one nucleosome. Case D Binding of one
LEF and two nucleosomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 Theoretical exposure timescale plot with a greater off rate. Plot A depicts
the theoretical exposure timescale plot, and plot B depicts the same plot on
a log axis. Case A No LEF or nucleosome binding. Case B Binding of one
LEF. Case C Binding of one LEF and one nucleosome. Case D Binding of
one LEF and two nucleosomes. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 No LEF or additional nucleosome binding. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed
DNA, and the movement of nucleosomes. i. Pattern time series plot. The area
for free, exposed DNA is denoted in green. The area of nucleosome activity
is denoted in red. ii. Pattern distributions plot. iii. Species time series plot.
iv. Species distribution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



4.15 No LEF, additional nucleosome binding, nor sliding of nucleomes. The values
of M, U, A, Mt are as follows: nucleosome activity, available binding regions
for LEFs, free exposed DNA, and the movement of nucleosomes. i. Pattern
time series plot. The area for free, exposed DNA is denoted in green. The
area of nucleosome activity is denoted in red. ii. Pattern distributions plot.
iii. Species time series plot. iv. Species distribution plot. . . . . . . . . . . 93

4.16 Binding of one LEF. The values of M, U, A, Mt are as follows: nucleosome
activity, available binding regions for LEFs, free exposed DNA, and the move-
ment of nucleosomes. i.Pattern time series plot. The area for free, exposed
DNA is denoted in green. The area of nucleosome activity is denoted in red.
ii. Pattern distributions plot. iii. Species time series plot. iv. Species
distribution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Binding of one LEF. The values of M, U, A, Mt are as follows: nucleosome
activity, available binding regions for LEFs, free exposed DNA, and the move-
ment of nucleosomes. i.Pattern time series plot. The area for free, exposed
DNA is denoted in green. The area of nucleosome activity is denoted in red.
ii. Pattern distributions plot. iii. Species time series plot. iv. Species
distribution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.18 Binding of one LEF and one nucleosome. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed
DNA, and the movement of nucleosomes. i.Pattern time series plot. The area
for free, exposed DNA is denoted in green. The area of nucleosome activity
is denoted in red. ii. Pattern distributions plot. iii. Species time series plot.
iv. Species distribution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 Binding of one LEF and two nucleosomes. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed
DNA, and the movement of nucleosomes. i.Pattern time series plot. The area
for free, exposed DNA is denoted in green. The area of nucleosome activity
is denoted in red. ii. Pattern distributions plot. iii. Species time series plot.
iv. Species distribution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii



Abbreviations

BDP Birth-Death process
ChIA-PET Chromatin Interaction analysis with Paired-End Tag
ChIP Chromatin immunoprecipitation
CTCF CCCTC-binding factor
CTMC Continuous-time Markov chain
DNA Deoxyribosenucleic acid
EM Expectation Maximization
FRET Förster (or Fluorescence) Resonance Energy Transfer
GMM Gaussian Mixture Model
IDP Immigration-Death process
LEF Loop extrusion factor
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
MCMC Monte Carlo Markov chain
MLE Maximum Likelihood Estimation
mRNA Messenger RNA
PCR Polymerase chain reaction
pdf Probability density function
pgf Probability generating function
PTM Post-translational modifications
RNA Ribonucleic acid
Rdivision Rate of division
Rdeath Rate of death
smFRET Single molecule FRET
smTIRF Single-molecule total internal reflection fluorescence
SMC Structural maintenance chromosome
TAD Topologically associating domain
TF Transcription factor

xiii



1 General Introduction

A cell’s genome contains the genetic material of an organism in a collection of chromosomes.
Chromatin is a mass of genetic material composed of DNA that condense to form these
chromosomes that make up the genome. Its arrangement may seem chaotic, but it is far from
random. Research has revealed that the genome may be organized through chromosomal
folding in the form of DNA loops. This is performed with a loop-forming process, called
extrusion, where the human genome consists of 10,000 loops [3]. This process is significant
in understanding what determines which genes get expressed, or activated, in different cells.
It ultimately influences the functions that the cell performs.

During interphase, chromatin is classified as either euchromatin or heterochromatin depend-
ing on its level of compaction [68]. Euchromatin has a less compact structure, and may
be referred as chromatin in an open or sparse state. The chromatin fiber visually has an
appearance of ‘beads on a string’ (Figure 1.1) where the beads represent nucleosomes and
the string represents DNA.

Figure 1.1: ‘Beads on a string” illustration of chromatin. The orange circles depict the
nucleosomes, and the blue ‘string’ depicts the strand of DNA.

Heterochromatin has a more compact structure, and may be considered chromatin in a closed,
or dense state. As chromatin is compacted, DNA becomes less accessible for transcription
factors. By loosening the chromatin, transcription machinery is better able to access the
genomic DNA, and thus promote transcription [68]. Therefore, nucleosome organization and
dynamics are regularly modified by the combined influence of covalent post-translational
modifications, histone chaperones, ATP-dependent nucleosome remodelers, etc. The differ-
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ential attraction between euchromatin and heterochromatin leads to phase separation and
reproduces compartmentalization. Heterochromatin is phase separated from euchromatin,
but not collapsed.

In this thesis, the possibility of modelling the chromosome compaction process with Marko-
vian dynamics in different stages of the DNA looping mechanism is explored. The overall
process may be observed through examining the conformational states of chromatin macro-
scopically. By examining the process more closely, other Markovian properties can be ex-
amined through the binding kinetics of loop extrusion factors. The specific contributions
of these loop extrusion factors may be investigated through the development of a proper
mathematical model to describe this process. Ultimately, the organizational process of chro-
matin will influence transcription activity, and gene expression. This work will contribute
to understanding how information is stored in our DNA by the manner in which chromatin
is structured.

1.1 Objectives and Aims

1.1.1 Research Question

The purpose of this research is to explore the mathematical processes involved in the chro-
matin compaction procedure. The specific loop extrusion factor properties are analyzed to
determine the contributions that affect its looping behaviour.

1.1.2 Research Design

In this research, the methods of data analyses are emphasized for the chromatin loop com-
paction process. The perspective in which chromatin data is analyzed will allow for further
mathematical applications to predict chromatin folding behaviour with several loop extru-
sion factors. This will allow for the promotion of future motivation into researching other
mathematical methods to illustrate the behaviour of DNA.

To conduct this investigation, the chromatin looping process is modelled mathematically with
the use of Markov properties. Single-molecule FRET experiments will be used to examine
chromatin conformations. With the use of the Expectation-Maximization algorithm, these
conformations may be more easily identified by employing Gaussian mixture models. The
immigration-death process is then used to model the behaviour of reinforcing chromatin
loops through stacking loop extrusion factors. The specificity of the binding behaviour of
loop extrusion factors is also included to determine the information extruded in a loop. The

2



exposure timescale of DNA is also explored to determine the behaviour of LEF binding in the
presence of nucleosomes on a strand of DNA. These results give just a few interpretations of
chromosome organization and highlight how chromatin is a complex, active matter shaped
by loop extrusion.

3



2 Mixture Models in Chromatin Compaction

2.1 Abstract

Gaussian mixture models can be used to predict the specific areas of single-molecule FRET
data that represent different stages of chromatin folding states. We found that some un-
derstanding of the chromatin folding process is required to establish the necessary number
of components for the model. The Gaussian mixture model is effective in conjunction with
the use of the Expectation-Maximization algorithm to iteratively cluster the components of
FRET data. However, with a better understanding of the steps required to fold chromatin
into stable loops, the Gaussian mixture model can successfully identify the single-molecule
FRET properties associated with each folding state.

2.2 Introduction

Chromatin is a complex system due to its molecular organization, heterogeneous structure,
and multiscale dynamics induced by post-translational modifications on chromatin itself
and other considerations, such as transcription factors. As previously determined [15], single
molecule FRET experiments examine the interconversion kinetics of discrete tetranucleosome
units and the impact on post-translational modifications by ubiquitylation on chromatin
structure. These experiments are able to determine the conformational dynamics through
single-molecule total internal reflection fluorescence (smTIRF) microscopy data sets.

The Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown pa-
rameters. This allows the data itself to dictate how many mixture components are required
to model it, and provides a measure of the probability that some data may share common
characteristics. It is characterized as a clustering algorithm, since it can be used to find
distinct clusters in the data. The Förster (or Fluorescence) Resonance Energy Transfer
(FRET) distribution of all, or a subset, of molecules from multiple movie acquisitions can be
analyzed using Gaussian mixture distributions. The aim of this FRET distribution analysis

4



is to determine the number of state components in the global data, their relative weights,
and the FRET efficiency of these components. In this application, Gaussian mixture models
are fitted to chromatin datasets to analyze how the Expectation-Maximization algorithm
can identify some of its dynamic conformations.

2.3 Materials and methods

2.3.1 Single-molecule FRET

Förster (or Fluorescence) Resonance Energy Transfer (FRET) at the single molecule level
focuses on the study of immobilized molecules that allow measurements of single molecule
reaction trajectories from about 1 millisecond to many minutes. This is becoming an es-
sential tool for characterizing proteins, signaling pathways or any biological phenomenon.
Single-molecule FRET (smFRET) has rapidly developed to answer fundamental questions
about replication, recombination, transcription, translation, RNA folding and catalysis, non-
canonical DNA dynamics, protein folding and conformational changes, to name a few [60].

In the case of chromatin looping, smFRET is used to examine the evolution of nanometre-
length scale conformational changes of protein-DNA and protein-protein complexes at the
single-molecule level. In smFRET experiments, two fluorophores, or dyes rather, are placed
at known positions on double-stranded DNA molecules with complementary overhangs
(sticky ends) are immobilised onto the glass coverslip. Fluorescence signals from smFRET
are observed when molecules are trapped in the looped state due to base pairing between
the sticky ends. Looping and unlooping of DNA lead to fluorescence intensity fluctuations,
where low FRET signals correspond to the unlooped state and high FRET signals corre-
spond to the looped state [35]. Some interesting looping kinetic properties can also arise in
these experiments, such as the looping probability density, looping rate, annealing rate, etc.

Briefly, FRET measures the extent of non-radiative energy transfer between two fluorescent
dye molecules, termed donor and acceptor, and reports the intervening distance which can
be estimated from the ratio of acceptor to total emission intensity. This efficiency of energy
transfer, E, is given as E = [1 + (R/R0)6]−1, where R represents the inter-dye distance and
R0 is the Förster radius at which E = 0.5 [62]. Conformational dynamics of single molecules
can be observed in real-time by tracking FRET changes. FRET is advantageous compared
to other imaging techniques as it is a ratiometric method that enables the measurement
of the internal distance in the molecular frame rather than in the laboratory frame. This
prevents interference from instrumental noise and drift. The smFRET time trajectories are
acquired by imaging surface immobilized molecules with the aid of total internal reflection
miscroscopy that allows high throughput data sampling.
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In this chapter, we utilize a two colour FRET scheme as performed by Kilic et al. [39], but
it is noted that higher order FRET schemes can also be applied to probe multi-component
interactions between conformational changes in large molecular complexes. In order to pro-
cess the observed data to apply the GMM, iSMS software is used [55]. This single-molecule
FRET microscopy software is used to study the structure and conformational dynamics of
biomolecules where the data was collected in the form of a movie file. These movie files essen-
tially show movies of the single molecule events of interest. iSMS integrates and automates
common procedures in smFRET data analysis including: molecule localization, intensity-
trace integration, quantitative FRET determination, FRET distribution analysis, molecule
subpopulation analysis and transition state dynamics analysis [55]. In the present context
of studying chromatin looping behaviour, the goal is to determine the number of looping
conformations present in the observed dataset with the EM algorithm.

2.3.1.1 SmTIRF data set

The observed chromatin data was obtained from smFRET experiments conducted previously
by Kilic et.al. [39] to reveal structural states and their interconversion kinetics in chromatin
fibers. Plasmids for chromatin DNA production were generated in DH5α cells grown in
a medium and isolated by alkaline lysis followed by gel filtration. These plasmids were
then prepared for flurorescent labelling in smFRET experiments at three distinct sets of
internal positions yielding structural information from several vantage points. To begin
investigating the conformational and dynamic properties of the assembled chromatin fibers
with single molecule imaging, smTIRF is applied. With this type of imaging, it is possible
to view complex biological interactions in real time. TIRF allows for visualization of single
molecules by eliminating out-of-focus fluorescence and enhancing signal-to-noise ratio [42].
The excitation is restricted to a very thin section near the coverslip to achieve this precision
for single molecule detection. This also reduces the photobleaching of fluorophores in solution
and prevents harmful light damage when imaging live cells. For the purpose of examining the
effectiveness of the GMM on chromatin data, only one out of the three dye configurations
on Donor-Acceptor positions were utilized to demonstrate the performance of the GMM
in identifying chromatin states. It is presumed that the GMM would identify fluorescent
populations in the other two dye configurations in a similar manner. The DA2 labeled
chromatin fibers in flow channels were immobilized and the donor and acceptor fluorescence
emissions were measured. The time traces of FRET efficiency are then generated.

Chromatin fiber was examined in vivo with Alexa Fluor 568 as FRET donor and Alexa
Fluor 647 as FRET acceptor. The goal of Kilic’s experimentation [39] was to determine the
extent of the impact of the heterochromatin protein 1α in establishing a compact chromatin
state. Ultimately, this would be significant, as a compact chromatin state would contribute
to gene silencing. Each dye pair was positioned in the center of the 12-mer nucleosome array
to probe distinct contacts and motions. The DA2 dataset was used from Kilic et al’s [39]
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work, where the bivalent cation of magnesium posseses a concentration of 0.5mM Mg2+ is
present in the system. This pair measured inter-nucleosome interactions closer to the dyad.
The results for this particular dataset in the study showed that these conditions promoted
structural dynamics in chromatin upon examining the fluctuations in the time traces of donor
and acceptor fluorescence emission. This specific dataset was used due to its presentation,
as the information can be interpreted more clearly for the purposes of our investigation. The
GMM can still be applied to the other datasets in this study, but only this data was utilized
here to better illustrate the effectiveness of the GMM.

2.3.2 EM algorithm

The Expectation-Maximization (EM) algorithm is presented prior to applying this to the
smFRET dataset. It provides an iterative method in determining maximum-likelihood es-
timates for model parameters when data is incomplete, has missing data points, or has
unobserved (hidden) latent variables. It is strongly dependent on the selection of initial val-
ues of model parameters and increases the values for the likelihood function at each iteration.
As well, it produces a local rather than global maximum of the likelihood function [34].

Each iteration of the EM algorithm consists of two processes: the E-step, and the M-step.
The expectation step (E-step), estimates the complete-data sufficient statistics by finding
the missing data given the observed data, and current estimate of the model parameters.
The maximization step (M-step), maximizes the likelihood function under the assumption
that the missing data are known. This is where the missing data from the E-step is used to
complete the observed dataset. Convergence is assured since the algorithm is guaranteed to
increase the likelihood at each iteration.

To begin the derivation of the EM algorithm, let X be a random vector which results from a
parameterized family. The goal is to find θ such that P (X|θ) is a maximum. This is referred
to as the maximum likelihood estimate for θ. The log likelihood function is ultimately
required to estimate the parameter θ,

L(θ) = lnP (X|θ). (2.1)

The likelihood function is considered to be a function of the parameter θ given X. Since
ln(x) is a strictly increasing function, the value of θ which maximizes P (X|θ) also maximizes
L(θ).

The goal of the EM algorithm is to maximize L(θ), so we want to obtain an updated estimate
for θ at each iteration such that,

L(θ)>L(θn), (2.2)

where after the nth iteration the current estimate for θ is denoted by θn. Equivalently, we
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want to maximize the difference,

L(θ)− L(θn) = lnP (X|θ)− lnP (X|θn). (2.3)

At this point, we have not considered any unobserved or missing variables. We denote the
hidden random vector by Z. The total probability P (X|θ) may now be written in terms of
the hidden variables z as,

P (X|θ) =
∑
z

P (X|z, θ)P (z|θ). (2.4)

This allows for Equation 2.3 to be re-written as,

L(θ)− L(θn) = ln
∑
z

P (X|z, θ)P (z|θ)− lnP (X|θn). (2.5)

As observed, this involves the logarithm of a sum. Now by employing Jensen’s inequality,
we can obtain

ln
n∑
i=1

λixi ≥
n∑
i=1

λiln(xi), (2.6)

for constants λi ≥ 0 with
∑n

i=1 λi = 1. Jensen’s inequality is a general result in convexity.
It states that for a convex function f , if λ ∈ [0, 1], then

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)). (2.7)

Ultimately, we can generalize the result to expectation: E[f(X)] ≥ f([X])

Further from Equation 2.5, the constants P (z|X, θn) are denoted as,

L(θ)− L(θn) = ln
∑
z

P (X|z, θ)P (z|θ)− lnP (X|θn)

= ln
∑
z

P (z|X, θn)
(P (X|z, θ)P (z|θ)

P (z|X, θn)

)
− lnP (X|θn)

≥
∑
z

P (z|X, θn)ln
(P (X|z, θ)P (z|θ)

P (z|X, θn)

)
− lnP (X|θn)

=
∑
z

P (z|X, θn)ln
( P (X|z, θ)P (z|θ)
P (z|X, θn)P (X|θn)

)
∆
= ∆(θ|θn)

(2.8)

This can be simplified and rearranged to write L(θ) ≥ L(θn) + ∆(θ|θn). However, to further

simplify this, let l(θ|θn)
∆
= L(θn) + ∆(θ|θn). By combining these equations, this states

L(θ) ≥ l(θ|θn) (2.9)
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The function l(θ|θn) is bounded above by the likelihood function L(θ). Additionally, observe
that,

l(θn|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑
z

P (z|X, θ)ln P (X|z, θn)P (z|θn)

P (z|X, θn)P (X|θn)

= L(θn) +
∑
z

P (z|X, θn)ln
P (X|z, θn)

P (X|z, θn)

= L(θn) +
∑
z

P (z|X, θn)ln1

= L(θn).

(2.10)

This implies that for θ = θn the functions l(θ|θn) and L(θ) are equal.

With the EM algorithm, we aim to choose values of θ such that the likelihood function,
L(θ), is maximized. The function l(θ|θn) is bounded above by the likelihood function and
the values of the functions l(θ|θn) and L(θ) are equal at the current estimate for θ = θn.
Therefore, any θ which increases l(θ|θn) in turn increases the likelihood function. In order to
achieve the greatest possible increase in the value of L(θ), the EM algorithm calls for selecting
θ such that l(θ|θn) is maximized. We denote this updated value as θn+1. An illustration of a
single iteration of the EM algorithm is provided in Figure 2.1, as given previously [9]. The

Figure 2.1: Single iteration of the EM algorithm. Figure obtained from literature [9]
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value of θn+1 may be derived such that,

θn+1 = argmax
θ
{l(θ|θn)}

= argmax
θ

{
L(θn) +

∑
z

P (z|X, θn)ln
P (X|z, θ)P (z|θ)
P (z|X, θ)P (X|θ)

}

= argmax
θ

{∑
z

P (z|X, θn)lnP (X|z, θ)P (z|θ)

}

= argmax
θ

{∑
z

P (z|X, θn)ln
P (X, z, θ)

P (z, θ)

P (z, θ)

P (θ)

}

= argmax
θ

{∑
z

P (z|X, θn)lnP (X, z|θ)

}
= argmax

θ

{
EZ|X,θn{lnP (X, z|θ)}

}

(2.11)

It is observed from Equation 2.11 that the E-step and the M-step of the EM algorithm have
been fulfilled. In the E-step, the conditional expectation Q(θ, θn) = EZ|X,θn{lnP (X, z|θ)}
is determined. In the M-step, this expression was maximized with respect to θ, where
θ̂ = argmaxθQ(θ, θn).

Note that for the EM algorithm, the log likelihood function gives a formal measure of how
well a particular parameter, θ fits the observed sample. This represents a function of both
the observed data and the desired parameters for the model. The higher the log likelihood,
the higher the probability is assigned under the model to the observation data. If we could
efficiently search for θ̂ = argmaxθ l(θ), then this would result in the “correct” parameters to
represent the data.

When running the EM algorithm, the procedure assures that learning occurs at each iterate.
In order for it to stop learning, the stopping criterion is established,

|l(θn+1)− l(θn)|
|l(θn+1)|

< ε, (2.12)

where ε is a preset threshold.

This completes the derivation of the EM algorithm. Its application in Gaussian mixture
models will now be explained to further its use for parameter estimation in genetic datasets.

2.3.3 EM application: Gaussian Mixture Models

The Gaussian mixture model (GMM) is a finite mixture probability distribution model,
where the generic probability density function is a weighted sum of independent processes
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that adds to a total density function with a total area of 1. The GMM is presented in this
case to find clusters in a dataset from which we know, or assume to know, the number of
clusters in the dataset, but we do not know whether these clusters are as well as how they
are shaped.

To begin with the derivation of the GMM, consider a univariate Gaussian distribution, with
mean µ and variance σ,

N (x|µ, σ) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
(2.13)

For the multivariate distribution, rather than an equation with variance, this considers co-
variance, Σ,

N (x|µ,Σ) =
1√

(2π|Σ|)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.14)

From Equation 2.14, the parameters can be estimated by using Maximum Likelihood Esti-
mation (MLE). The log of the multivariate Gaussian distribution is considered,

logp
(
x|µ,

∑)
= −1

2
log(2π)− 1

2
log
∣∣∑∣∣− 1

2
(x− µ)TΣ−1(x− µ) (2.15)

Note that by applying the log function to the likelihood, this aids in decomposing the product
and removing the exponential function so that the MLE can be more easily solved. In order
to perform the MLE, the gradient of Equation 2.15 is taken with respect to each the mean
and the covariance. The gradient with respect to the mean, µ, is determined,

∂logp(x|µ,Σ)

∂µ
= 0

µML =
1

N

N∑
n=1

xn.

(2.16)

The MLE of the mean was denoted by µML and N is the number of samples or data points.
This will be needed for the maximum likelihood of the covariance, Σ. The gradient of
Equation 2.15 is now determined with respect to Σ,

∂logp(x|µ,Σ)

∂Σ
= 0

ΣML = 1N
N∑
n=1

(xn − µML)(xn − µML)T
(2.17)
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These MLE derivations can also be applied to Gaussian mixture models. The GMM can
be visualized as Gaussian distributions centered at different means. The EM algorithm is
applied to the GMM to better search for the optimal parameters of the mixture distribution.
This search is initialized with a clustering algorithm to identify areas of the dataset to start
identifying the central means for the GMMs. Once these clusters are identified, the GMM
can be optimized. The Gaussian mixture distribution can be written as a linear superposition
of Gaussians in the form,

p(x1:N |c1:N) =
∏
n

N (xn|µn, σ2I), (2.18)

where c refers to the cluster for data point n, as identified from the initialization step. Let
the covariance be denoted by σ2I, where I is the unit matrix. However, instead of using
cn, let zn ∈ {0, 1}K be an indicator vector for data point n. The model for the GMM is
generated by choosing among one of the k clusters for each data point, each with probability
πk. Then the data point is generated by a Gaussian centered at µk. This is portrayed by
the following,

p(x1:N , z1:N,1:K |µ1:K , σ
2, π) =

∏
n

∏
k

{πkN (xn|µk, σ2I)}zn,k

=
∏
n

∏
k

{
πk(2π(σ2)d)−1/2exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

,
(2.19)

where π denotes the weight of each distribution. Equation 2.19 can now be used to get the
likelihood of the data by summing over the unknown z vector,

p(x|µ, σ2, π) =
∑

z1:N,1:K

∏
n

∏
k

{
πk(2πσ

2d)−1/2exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

=
∏
n

∑
zn,1:K

∏
k

{
πk(2πσ

2d)−1/2exp

[
− 1

2σ2
||xn − µk||2

]}zn,k
(2.20)

The log likelihood of this equation then becomes,

logp(x|µ, σ2, π) =
∑
n

log
∑
zn

∏
k

{
πk(2πσ

2d)−1/2exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

(2.21)

The complete log likelihood can then be determined, which implies that z is known,

logp(x, z|µ, σ2, π) =
∑
n

∑
k

{logπk + logN (xn|µk, σ2I)} (2.22)

However, when z is not known, this is represented by the incomplete log likelihood. The EM
algorithm can now be employed to iteratively refine the initial guesses for z. The z vector
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will satisfy zn,k ≥ 0 for all n, k and
∑

k zn,k = 1 for all n. The values for z can be predicted
by taking the expectation of the following by using Bayes’ theorem,

Ep(z|x,µ,σ2,π)zn,k = 1× p(zn,k = 1|xn, µ, σ2, π) + 0× p(zn,k = 0|xn, µ, σ2, π)

= p(zn, k = 1|xn, µ, σ2, π)

=
p(xn|zn,k = 1, µ, σ2)p(zn,k = 1|π)∑
k′ p(xn|zn,k′ = 1, µ, σ2)p(zn,k′ = 1|π)

=
N (xn|µk, σ2)πk∑
k′ N (xn|µk′ , σ2)πk′

(2.23)

This represented the “Expectation step”, or E-step of the algorithm, where the expected
values for the latent variable are estimated. This solves the inference problem to essentially
determine which Gaussian generated each datapoint. This is a distribution over all probabil-
ities because we cannot be sure. Now, Equation 2.23 can be used to maximize the complete
data log likelihood with respect to µ and σ2. In order to do this, the gradient of the complete
likelihood with respect to π, µ, and σ2 is required.

First, the maximization of π is done, where the constraint which the weights sum to one must
be obeyed. In order to do this, a Lagrange multiplier is needed, which gives an augmented
likelihood function, ∑

n

∑
k

zn,klogπk − λ

(∑
k

πk − 1

)
(2.24)

Equation 2.24 is then differentiated with respect to πk to obtain,∑
n

zn,k
πk
− λ =

∑
n

zn,k − λπk = 0 (2.25)

Finally, by summing over all K, we see that λ =
∑

n

∑
k zz,k = N , so

πk =
1

N

∑
n

zn,k, (2.26)

which completes the “Maximization step”, or M-step, partially. The maximized values for
both µk and σ2 must also be determined.

Now, the maximization of µk is performed. This does not have any constraints, therefore
the Lagrange multiplier is not required. The gradient of the complete log likelihood is done
with respect to µk,

∇µk logp(x, z|µ, σ2, π) =
∑
n

zn,k∇µk logN (xn|µk, σ2I)

=
∑
n

zn,k∇µk

−1

2σ2
||xn − µk||2

= −
∑
n

zn,k
1

σ2
(xn − µk)

(2.27)
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In order to solve this, Equation 2.27 is equated to zero to give,∑
n

zn,k
1

σ2
(µk − xn) = 0

∑
n

zn,k
1

σ2
µk =

∑
n

zn,k
1

σ2
xn

µk
∑
n

zn,k =
∑
n

zn,kxn

µk =
∑
n

zn,k∑
n′ zn′,k

xn

(2.28)

Which completes the maximization step for µk. Finally, σ2 can be maximized, as well.

∇σ2 logp(x, z|µ, σ2, π) =
∑
n

∑
k

zn,k∇σ2 logN (xn|µk, σ2)

=
∑
n

∑
k

zn,k∇σ2

[
−d

2
log(σ2)− 1

2σ2
||xn − µk||2

]
=
∑
n

∑
k

zn,k

[
− d

2σ2
+

1

2σ4
||xn − µk||2

] (2.29)

Again, by setting Equation 2.29 to zero, we can obtain∑
n

∑
k

zn,k
d

2σ2
=
∑
n

∑
k

zn,k
1

2σ4
||xn − µk||2

d

σ2

∑
n

∑
k

zn,k =
1

σ4

∑
n

∑
k

zn,k||xn − µk||2

dNσ2 =
∑
n

∑
k

zn,k||xn − µk||2

σ2 =
1

dN

∑
n

∑
k

zn,k||xn − µk||2

(2.30)

Which completes all components of the M-step.

Formally, the EM-GMM can be summarized in the following algorithm,

1. Initialize cluster centers µ1:K , π and σ2

2. E step:

Ep(z|x,µ,σ2,π)zn,k = N (xn|µk,σ2)πk∑
k′ N (xn|µk′ ,σ2)πk′
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3. M step:
πk = 1

N

∑
n zn,k

µk =
∑

n
zn,k∑
n′ zn′,k

xn

σ2 = 1
dN

∑
n

∑
k zn,k||xn − µk||2

4. Evaluate log likelihood until convergence is achieved, otherwise return to step 2
logp(x, z|µ, σ2, π) =

∑
n

∑
k{logπk + logN (xn|µk, σ2I)}

The fourth step is repeated until the convergence criteria is met. As given in Equation 2.12,
learning is stopped when the log likelihood is below a certain preset threshold.

2.3.4 Previous applications of the EM mixture model in enzyme kinetics

The concept of applying the EM algorithm with mixture models for enzyme data is not new,
as this has been done in several different applications. This is not restricted to only Gaussian
mixture models, as it can be used as a tool to cluster data and identify significant trends.

A Bayesian mixture model was introduced previously as a method of clustering when the
number of components is unknown[58]. In this model, the number of components and the
mixture component parameters are first modelled jointly. Then, a base inference about
these quantities on their posterior probabilities is made. The posterior distributions of the
target’s objects of inference is then presented, and not just the ‘best estimates’. The concept
in which a sample-based approach can be used to compute mixture models allowed for a
more subtle extraction of information from posterior distributions. It was determined that
the experiments and discussion conducted utilized a hierarchical model for mixtures that aim
to provide a simple and generalizable way of being weakly informative about parameters of
mixture models. Ultimately, Bayesian mixture models have previously been used successfully
to determine the number of unknown components present in a sample. This may also be
done as an alternative to applying the GMM. While the Bayesian approach typically offers a
more apealing strategy of determining the number of components in a model, it may not be
representative of a “true” number of clusters. The Bayesian approach allows an unbounded
number of components. As data gets larger, the number of components to the model will
naturally increase. In this case, since we are investigating the behaviour of the Gaussian
mixture model on the smFRET data, the Bayesian mixture model will not be explored. We
are interested in examining a small number of clusters in the model, so the GMM should
suffice in identifying the overall conformations of chromatin present in the model. However,
one may be able to explore whether the Bayesian mixture model will identify the correct
components of the model in the future.

Mixture models have also been explored in Birnbaum-Saunders distributions with G compo-
nents, to improve upon previous work where there were only two components considered [5].
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The identifiability of the model with G components was proven and an EM algorithm for
the maximum likelihood estimation of the mixture parameters was developed. This is where
the k-bumps algorithm was used as an initialization strategy in the EM algorithm. In the
k-bumps algorithm, the k bumps are detected in the observed data. The maximum point
for each bump is determined, where the maximum point is the mode for each bump. Each
observation is assigned to the cluster with the closest maximum point. The maximum point
and the k bump can then be used to calculate the initial value of the shape parameter, which
completes the clustering algorithm [5]. This implies there has been some exploration in the
impact of the initialization values for the EM algorithm. It was determined that mixture
models can provide a multimodal log likelihood function, which suggests that the method of
maximum likelihood estimation through the EM algorithm may not give maximum global
solutions if the starting values are far from the real parameters. Based on this work, good ini-
tial values are necessary to hasten or enable the convergence in the EM algorithm. Therefore,
the importance of the initialization parameters were determined with k-means as a method
of estimating the initial starting conditions, to minimize the uncertainty in the initial search
values.

The speed of convergence for the EM algorithm has also been previously examined [50],
and concluded that convergence is dependent on the amount of overlap among the mixture
components. When the mixture components exhibit some overlap, the convergence of EM in
GMMs become slower as the dynamic range among the mixing coefficients increases. This
can be examined by running the EM algorithm and observing its impact when changing
the stopping criterion. The number of components in the model may also be shown to be
significant, as this adds more complexity to the model. Therefore, choosing a proper stopping
criteria will impact the confidence in the output. The number of components actually present
in the model must also be addressed, for fear of obtaining inaccurate results.

A mixture model with detection limits was previously proposed to obtain regression analyses
of antibody response to vaccines [48]. Standard analyses typically assume the data arise from
a single lognormal response distribution, but this may not always be considered appropriate,
as more observations are censored than would be expected under such a model. A mixture
model with censored lognormal distribution and a point distribution located below the de-
tection limit was proposed for these situations. It was concluded in this study that this could
have been modelled by two lognormal distributions. However, more informative regression
analyses were required to explain the mixing of the behaviour of the data to appropriately
model the distributions. In our model, lognormal distributions can also be considered as
possible distributions in the mixture. However, we focus on the GMM and its applicability
to this dataset to test its applicability to the different components of data. It is acknowledged
that other distributions may be more appropriate as mixtures in this dataset.

The concept of applying the EM algorithm in enzyme data was also not limited to vaccines,
in that Gaussian mixture models have previously been applied to chromatin interaction map-
ping studies [71]. In other words, Gaussian mixture models have been applied to model the
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behaviour of chromatin. To be more specific, they were used to map topologically associ-
ating domains and subdomains in the genome. This provided a further understanding of
the three dimensional structure-function relationship of the genome. The use of Gaussian
mixture models was advantageous for this publication [71], since it allows for the flexibility
of modeling a wide range of probability distributions. The input to the algorithm was a
normalized Hi-C contact matrix. By fitting a 2-component Gaussian mixture model to the
count matrix, the contacts are distinguished within a chromatin domain from contacts that
are outside of a chromatin domain. This serves to reduce the amount of noise in the normal-
ized Hi-C data. Mixture models have also been previously applied for chromatin interaction
data [52], where the dependency among ChIA-PET data (count of DNA fragment pairs) and
the available information on protein binding sites and gene promoters was accounted for to
reduce false positives. The EM algorithm is employed in this case to identify the optimal
parameters for both determining the number of state components in the global data, and to
maximize the difference in the proportion of intra-domain contacts in putative domains and
outside of putative domains. The EM algorithm has been shown to be successful in opti-
mizing parameters for the application of GMMs in chromatin interaction data, so it should
successfully be transferable in this investigation. In our research, this raised the question of
how many components should be used to model the dataset. This was investigated in terms
of the known steps in chromatin organization, and will be further discussed.

The use of Gaussian mixture models in chromatin interaction data has widely been used in
biological analyses of chromatin data. In this case, applying GMMs to chromatin data will
allow for a better understanding of the macroscopic properties associated with identifying
chromatin states in this type of data. We use the GMM in a unique manner such that is
tested against some known steps in the chromatin folding process. The significance of the
central means identified in the GMM in this application will give insight toward how the
data supports these configurations.

2.4 Results

2.4.1 Gaussian Mixture Model Application: Chromatin dynamics

The analysis of individual, noisy signal trajectories has been greatly facilitated by the use of
hidden Markov models (HMMs). This has been introduced within the context of patch-clamp
experiments on ion channels, and have since been applied within a variety of single-molecule
experimental platforms, including smFRET experiments. In HMM approaches, a statistical
model defines an expected distribution of measurement values in terms of a set of parameters,
such as the centers and widths of Gaussian peaks representing the signal values associated
with each conformation state, and the transition probabilities between states. Given this
model, the EM algorithm is applied to determine the maximum likelihood of the parameters

17



and conformational trajectory for each measured signal trajectory.

After conducting an extensive literature search, the number of chromatin states that can
summarize the loop formation procedure can be summarized in either two [71], four [61],
or five states [59] depending on the imaging detection methods that were made available in
these studies to measure chromatin looping activity. Since all of these methods are accepted
to measure chromatin activity, the GMM will optimize the data based on a 2-component,
4-component, and a 5-component model. While there may be other conformation states that
may occur, these have already been identified in the available literature.

2.4.1.1 Initialization

In order to initialize the EM algorithm for its initial search parameters, the k-means algo-
rithm was applied to the observed dataset. The importance of a good estimate for the initial
parameters were previously emphasized by Benites, et. al [5]. It was stated that this affected
the search with the EM algorithm such that it may determine whether the achieved result
may be either a local or global maximum. K-means is one of the most popular clustering
algorithms. This method stores k centroids that is used to define clusters. A point is con-
sidered to be in a particular cluster if it is closer to that cluster’s centroid than any other
centroid.

K-means finds the best centroids by alternating between assigning data points to clusters
based on the current centroids, and choosing centroids (points which are the center of a
cluster) based on the current assignment of data points to clusters. The k-means algorithm
partitions n objects into k clusters in which each object belongs to the cluster with the
nearest mean. This method produces exactly k different clusters. The optimal number of k
clusters leading to the greatest separation is not known and must be computed from the given
data. First, the number of cluster centroids are initialized randomly. Then, the following
equation is used to determine the total Euclidean distances between each data point and the
corresponding centroid.

J =
k∑
j=1

n∑
i=1

||x(j)
i − cj||2, (2.31)

where J is the objective function with the total distances. In Equation 2.31, k represents the
number of clusters, n represents the number of points belonging to cluster j, xi represents
the specific point i, and cj is the centroid of cluster j. The new centroid of each cluster is
now defined by calculating the mean of all points assigned to that cluster,

µ =

∑n
i=1 xi
n

. (2.32)

This procedure is repeated from the initialization step before employing Equation 2.31 until
the positions of the centroids no longer move and the assignments stay the same. Using
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the k-means algorithm to initialize the EM algorithm will allow for the search of optimized
parameters and ultimately achieve convergence. The EM algorithm may now be implemented
for a mixture model with the observed dataset provided by Kilic et. al. [39].

2.4.1.2 Implementation

As mentioned, the observed dataset used was obtained from a previous publication [39],
where they analyzed chromatin structure dynamics. The smTIRF data was deposited, and
made available publicly at www.zenodo.org under the accession code 1069675.

To analyze the smTIRF dataset, the FRET donor (FD) and acceptor fluorescence emission
intensity (FA) traces FRET efficiency (EFRET) traces, were calculated using the following
equations,

EFRET =
FA − βFD

FA − βFD + γFD
and γ =

∆FA,bleach
∆FD,bleach

(2.33)

The values of β = 0.141 and γ = 0.468 were experimentally determined for the dye pair
Alexa568/647 in this dataset. The bin size for the histogram was set to 0.02, as previously
discussed in the original publication [39]. The final histogram was then fitted using a 2-
component Gaussian function. This was performed using iSMS [55], and then extracted to
modify the raw data to fit the EM GMM with R software. The code to perform this fit is
available in the Appendix.

The results of the implementation of the EM algorithm with a 2-component Gaussian mixture
model is given in Figure 2.2, where the histogram depicts the raw data count density of
FRET populations against FRET emissions, and the red line depicts the EM GMM fit to
the data. Numerically, the mean (µ), standard deviation (σ), and weight (π) of each Gaussian
distribution fit from Figure 2.2 is given in Table 2.1. A summary of the EM results is given
in Table 2.2.

Table 2.1: Parameters from smTIRF- FRET data for 2-component model

k µ σ π

1 -0.00833 0.0485 0.707
2 0.605 0.200 0.293

Table 2.2: Results from smTIRF- FRET data for 2-component model

Iterations Log-likelihood Tolerance

23 607.57 1e-08
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Figure 2.2: FRET populations with 2-component Gaussian Distribution Fit

It is observed that this EM algorithm run took 23 iterations at a stopping criterion of 1e-
08. The log-likelihood value was returned for comparison of other tested models. However,
upon examining Figure 2.2 visually, one may wonder if this could be fit better by perhaps
adjusting the stopping criterion to examine the effectiveness of the EM algorithm on the
2-component GMM. The stopping criterion may also affect the speed of convergence [50].
A larger stopping criterion, or tolerance, is now implemented with 1e-01. A summary of
the Gaussian fit parameters is given in Table 2.3, and the corresponding results of the EM
implementation is given in Table 2.4.

Table 2.3: Parameters from smTIRF- FRET data for adjusted 2-component model

k µ σ π

1 -0.00847 0.0484 0.706
2 0.604 0.201 0.294

Table 2.4: Results from smTIRF- FRET data for adjusted 2-component model

Iterations Log-likelihood Tolerance

10 607.56 1e-01
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It is observed that both Tables 2.1 and 2.3 have yielded similar results in terms of the
Gaussian fit parameter values, therefore Figure 2.2 will remain the same shape. However,
what is interesting to note is that the log-likelihood value that returned was also similar
to that of Table 2.2, but it has converged in fewer iterations. Since this has affected the
number of iterations, it seemed that by having a larger tolerance, the problem required fewer
iterations to converge. Therefore, one may wonder if the converse is true; whether a smaller
tolerance will cause the problem to use even more iterations to achieve convergence. To
examine this outcome, a smaller tolerance of 1e-10 was used to run the EM algorithm again.
The results of the Gaussian fit is given in Table 2.5, and the results of the EM algorithm
run is given in Table 2.6.

Table 2.5: Parameters from smTIRF- FRET data with smaller tolerance

k µ σ π

1 -0.00833 0.0485 0.707
2 0.605 0.200 0.293

Table 2.6: Results from smTIRF- FRET data with smaller tolerance

Iterations Log-likelihood Tolerance

23 607.57 1e-10

It was observed that the results of the GMM parameters with the smaller tolerance still
yielded similar results to the original run in Table 2.1, and the fit to Figure 2.2 remains
unchanged. However, there were more iterations performed with a smaller established stop-
ping criterion, as predicted. In addition, similar to the previous run, the log-likelihood that
returned remains unchanged. By comparing the three models with their respective log-
likelihood values, it seems that it does not matter how long it takes for the EM algorithm
to achieve convergence, as they have all yielded the same result. In order to minimize the
computations made by the computer, the larger tolerance could have been chosen for this
problem, and would still achieve accurate results.

In addition, from both 2-component model results, it is noted that there was one peak where
µ returned a negative value. Negative efficiency values indicate that the fluorescence of the
donor in the prescence of the acceptor is enhanced instead of quenched. This demonstrates
the weakness of indirect measurements of FRET. The method is only stable with absolutely
repeatable detection of the donor signals before and after adding acceptor and thus, between
two different samples. Small changes in the fluorescence, whether noise- or sample-induced,
can dramatically alter the efficiency and yield nonsensical negative values [6]. The negative
FRET emission signals will be discussed further in Section 2.5. This implied that more of
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the data was skewed toward lower values of EFRET. This should be further investigated
by introducing more components to the model, to verify its validity in this dataset. This
suggests that the model may still be improved by examining the log-likelihood values, and
the values of µ that returned. Therefore, either more components should be added to the
model, or the initial starting parameters should be modified. In this case, the model was
already initialized with the k-means algorithm with the original intention of minimizing this
problem beforehand. To modify the initial search parameters, a different algorithm could
then be used to mitigate this uncertainty. However, we continue this investigation by adding
more components, as this may ultimately affect the initial search parameters by splitting up
the dataset.

The number of components were now increased to four to model the dataset. This result is
illustrated in Figure 2.3.

Figure 2.3: FRET populations with 4-component Gaussian Distribution Fit

It is observed that at lower EFRET emission values, there is more distinction in the peak than
what was identified from the 2-component model. By running the EM algorithm with the
4-component model, there are some similarities observed between the two peaks. A summary
of the results of this model is presented in Tables 2.7 and 2.8.

It is noted that there are now more values tending toward the lower EFRET values. In order
to add more confidence to the interpretation of this model, one more component is added
to test which component model is better suited to represent the dataset. A five component
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Table 2.7: Parameters from smTIRF- FRET data for 4-component model

k µ σ π

1 -0.007 0.037 0.508
2 -0.065 0.019 0.111
3 0.065 0.060 0.100
4 0.623 0.181 0.282

Table 2.8: Results from smTIRF- FRET data for 4-component model

Iterations Log-likelihood Tolerance

673 631.28 1e-08

model is now fitted to identify whether this will determine another significant Gaussian peak
in the lower EFRET emissions values. The values of µ are also compared to determine whether
these results will output similar trends in their results, in that they may identify values in
similar regions.

After increasing the number of components and visually examining the fit compared with the
observed data, the GMM was modelled with five components. This is illustrated in Figure
2.4.

Figure 2.4: FRET populations with 5-component Gaussian Distribution Fit
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The GMM parameters for the 5-component model is summarized in Table 2.9. By comparing
the results from the previous models to the 5-component model, it is observed that the
original locations of the mean µ has shifted. The weight π parameter has also significantly
decreased. The EM algorithm results for this GMM has also been provided in Table 2.10.
As expected, the log-likelihood value has increased, and is bigger than that of both the 2-
component and 4-component models. This implies that the 5-component GMM is generally
a better model for this dataset.

Table 2.9: Parameters from smTIRF- FRET data for 5-component model

k µ σ π

1 -0.011 0.035 0.473
2 -0.068 0.018 0.098
3 0.049 0.051 0.139
4 0.598 0.241 0.192
5 0.629 0.041 0.099

Table 2.10: Results from smTIRF- FRET data for 5-component model

Iterations Log-likelihood Tolerance

931 661.04 1e-08

It was observed that by increasing the number of components to the dataset, this was able
to capture a better shape, and return a larger log-likelihood value. This provides strong
evidence that the larger component model was better representative of the data. It was also
noted that by changing the stopping criterion, this affected the number of iterations required
for the model to achieve convergence. The log-likelihood value returned from the alternate
stopping criteron did not change, nor did the GMM parameters.

As mentioned, the likelihood can always be improved by adding more states to the kinetic
model which makes it difficult to distinguish real conformational states from states that arise
from overfitting the inherently noisy individual signal trajectories. However, this still implies
there are different distinct states present in this dataset. Imaging methods would need to
be conducted to validate these proposed conformations. Perhaps adding more components
may also imply that in the future, the chromatin organization/folding process can be broken
down more granularly in more detail for each component. If this is always true, it means we
can examine each individual stage in a more detailed manner.
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2.5 Discussion

The purpose of smFRET experiments is to observe fluorescence signals on DNA to detect
chromatin looping activity. Based on the fluorescence intensities, this indicates the presence
of whether chromatin looping has occurred on DNA. Each stage of the chromatin looping
procedure will also possess different biophysical properties [21]. These properties rationalize
how soluble protein factors dissolved in the liquid nuclear phase, the nucleoplasm, bind and
organize transcriptionally active or silenced chromatin domains. There are also different
mechanisms for the formation of phase-separated chromatin subcompartments [21]. The
distinguishment of these biophysical properties during the chromatin compaction process
are important to make predictions on the assembly of chromatin. The GMM in this chapter
has been proposed as a method to distinguish the steps required to compact chromatin into
organized loops. What is novel is that the GMM was applied to existing proposed chromatin
folding procedures, and tested to analyze the folding properties of chromatin in each step.
Its efficacy is now discussed to gain further insight on how this can be a powerful tool in
chromatin looping analyses.

In an smFRET dataset, the output is interpreted such that low FRET signals correspond to
unlooped DNA, and high FRET signals imply the DNA is in its looped state. In this section,
the plot of the count density to the FRET emissions was analyzed. The EM algorithm
was implemented to identify significant components of the data. The Gaussian mixture
model developed from the EM algorithm contained components were employed to identify
the number of states in which the strand of DNA was structured. If the means of the
Gaussian components identified more trends with lower FRET emissions, this would imply
that the DNA was largely in the unlooped state. If higher Gaussian means were identified,
then the data was organized into loops. This determined the frequency of interactions
within the strand of DNA. In the environment where this chromatin was analyzed, it allowed
for a specific number of chromatin configurations to occur at that moment. This could
give information pertaining to whether chromatin looping would have been promoted or
discouraged in this type of environment. Overall, the GMM was able to cluster the data into
the pre-defined number of components. The smFRET experiments can be organized into a
detailed ensemble of disordered states within biological networks as categorized into specific
components via the GMM and EM method.

It is important to emphasize that smFRET experiments only identifies the conformational
states of chromosomes. Therefore, by identifying the significant peaks in the data, one is
able to determine specific values of EFRET associated with a specific state. Donor fluorophore
and acceptor fluorophore are placed at the specific positions on neighbouring nucleosomes
on DNA to allow for detection of FRET fluctuations to measure chromatin folding activity
[7]. This allows for the generation of specific ranges of FRET emissions to be established to
determine what kind of activity has occurred. This does not necessarily specify the details
that contribute to this state, such as the external factors, but it does allow for experiments
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to validate whether the strand of DNA will achieve this topological structure.

There are two states in chromatin data analysis with Hi-C data, as conducted previously
by Yu et al [71]: intra-domain contact frequency and inter-domain contact frequency. The
difference between these conformations is that intra-domain contacts describe contacts that
are within a chromatin domain, whereas inter-domain contacts describe contacts that are
outside of a chromatin domain. Some examples of intrachromosomal interactions include in-
teractions between promoters and enhancers over several kilobases up to megabases away[18].
Another example includes insulator-mediated contacts that appear to contribute to the orga-
nization of the genome into functionally distinct regions by separating differently regulated
regions from each other[18]. Interchromosomal interactions are not as well researched, and
are mostly involved in promoting the formation of chromatin domains [18]. Some examples
may be involved in gene regulation. Interchromosomal domains also affect chromosomal
translocations because the rejoining of broken chromosomes requires their physical interac-
tion [18].

In the two component model, we aim to identify areas of the data that identify where
EFRET shows both inter and intra domain contact frequencies. There were two distinct
peaks identified around EFRET at 0.05 and 0.6. From this results, it suggests that there is
are generally chromatin in a looped and unlooped state based on smFRET interpretation.
This may be difficult to interpret the intra domain and inter domain contact frequencies
of chromatin, as both states contain looped and unlooped chromatin. In general, it was
discussed by Brackley et al that inter-domain interactions are weaker than intra-domain
ones in Hi-C data [11]. One advantage to smFRET technology is it is able to measure
inter-domain motions in proteins [65]. Therefore, inter- and intra-domain contacts these
can both be factors in contributing to chromatin looping. Since the EFRET data is not able
to distinguish between an unfolded and folded state of chromatin, this does not provide
insight toward whether inter or intradomain interactions have contributed to the chromatin
organization. Therefore, other proposed components to the model are further scrutinized
to see if the GMM can distinguish betweeen other folding activities. In addition, the two
component model itself was not successful in presenting accurate clusters around these EFRET

values. With the help of the higher component models, these states were able to be identified
as important, and should be more closely evaluated. There were some µ values in which
the EM algorithm ouputted negative values. Mathematically, this information implies that
the data is more prominant toward the left side of the plot, where there are lower values
of EFRET, signifying an unlooped chromatin state. Therefore, the given dataset for this
time frame showed that this strand of DNA was largely unlooped. While there were some
significant peaks around the µ = 0.6 state, this implied that some chromatin looping has
also occurred.

Another study described the chromatin folding process into four steps. Loop extrusion occurs
when an extrusion complex loads onto a fiber at a random locus, forming an extremely short
range loop. As the two subunits move in opposite directions along the fiber, the loop grows
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and the extruded fiber forms a domain. When a subunit detects a motif on the appropriate
strand, it can then stop sliding [61]. It is observed that some of the outputted central means
of the GMM in the 4-component model shares some similarities to those determined in the
2-component model. Visually, it seems that some of the components have merged closer
together within the smFRET dataset. When clustering the data into more components, it
did not seem as though there was much distance between the clusters. By this interpretation
biologically, there may not be much conformational difference between the properties of
DNA between the exposed strand, and the strand upon binding of an LEF. There was some
indication that there was some looped chromatin in this dataset, but there was a stronger
presence of LEF in an unlooped DNA strand since more components identified more central
data in the lower EFRET values. This could imply that EFRET is detecting the small loops in
the same manner as the large loops, as well. From the four steps of the chromatin process
described, the third step of the procedure should result in looped chromatin. The results from
the four-component model in our GMM run were not reflective of this result, therefore the
four component model described would not be effective with the GMM-EM method. Since
this model still provides vague information toward the conformational state of chromatin in
this model, one more component model is analyzed.

The general steps in chromatin assembly can also be summarized in five stages [59]. In
the first step, assembly begins with the incorporation of the H3/H4 tetramer. Second,
two H2A-H2B dimers are added to form the core particle. The newly synthesized histones
utilized are then modified, where histone H4 is typically acetylated at Lys5 andLys 12. Thus,
the third step required ATP to establish a regular spacing, and histones are de-acetylated.
The incorporation of linker histones is accompanied by folding of the nucleofilament. This
establishes the fourth step, where the structure is configured into a solenoid shape, in which
there are six nucleosomes per gyre. Finally, folding events ultimately lead to a defined
domain organization within the nucleus. By using a 5-component GMM, this attempts to
identify the areas in which these five steps may be occuring in the data. As described, it isn’t
until the fourth step of this process until the chromatin obtains a more established shape. In
the first three steps of this interpretation of the chromatin folding process, the histones are
binding to the chromatin to prepare the DNA for looping. This is where the enzymes have
prepared the DNA to allow for the biophysical properties required for DNA interaction. As
observed from the five component GMM results, it isn’t until the fourth component where
the EFRET value becomes greater than 0.5. This implies that there is some organization of
chromatin loops. Therefore, this model is more appropriate to model the chromatin folding
process, as given in conjunction with the procedure described by Ridgeway and Almouzni
[59].

The GMM combined with the EM algorithm maximizes the likelihood such that it will not
bias the means towards zero, or bias the cluster sizes to have specific structures that may
or may not apply. Due to the nature of the size of smFRET data, there is little bias, as it
often collects large samples of data. Knowing the number of chromatin folding stages will
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also make the GMM a powerful tool for chromatin data, as it will be able to successfully
identify the FRET emissions associated with each specific stage of the looping process. One
limitation of this method is that the likelihood can always be improved by adding more
states to the kinetic model, making it difficult to distinguish real conformational states from
states that arise from overfitting the inherently noisy individual signal trajectories [69]. This
is important to note when considering the number of stages of chromatin organisation to
include in the GMM components. This stresses the importance of having observed data
for each stage of the chromatin compaction procedure to understand the true number of
components required to create the GMM model. This becomes a further limitation, since
the model requires prior knowledge of the biological processes involved.

2.6 Future directions

As discussed, one of the disadvantages of the GMM involves the identification of the number
of components. The number of components for the GMM were set based on the known
chromatin states in this chapter that are available based on current observational experi-
ments. This becomes a limitation to this model, as this is a supervised learning procedure.
This allows for the understanding of the specific chromatin states that are already known.
Should an unsupervised method be used to cluster the data, there could be many more states
identified that are not already known. Therefore, some knowledge of the chromatin looping
stages would need to be known in order to use this model. This may also be advantageous,
as this will reinforce the understanding of the already established chromatin looping states.
The EM algorithm will also always use all the components it has access to, needing held-
out data or information theoretical criteria to decide how many components to use in the
absence of external cues. Selecting the number of components in the GMM is then impor-
tant to identify the clusters. One way to determine this would be to add more components
until overfitting occurs. However, without observed experimental evidence to support these
components, there would not be added meaning to the identified components. Therefore,
observed experimental data and more work conducted into identifying the steps of chromatin
folding and the unique biochemical properties at each step would allow for more meaningful
results.

The BIC criterion can be used to select the number of components in a GMM in an efficient
way. In theory, it recovers the true number of components only in the asymptotic regime.
However, using a variation Bayesian Gaussian mixture model avoids the specification of the
number of components for a GMM. It was previously shown by Cordunneanu and Bishop [16]
that by setting the mixing coefficients to maximize the marginal log-likelihood, unwanted
components can be suppressed, and the appropriate number of components for the mixture
can be determined in a single training run without recourse to cross-validation. Variational
treatment based on factorized approximation to the posterior distribution can be used to
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accomplish this task. However, this was not performed here as this would not be supportive
of the unknown number of components that may be required to support the chromatin
compaction procedure. More experimental evidence would be needed to support this method
of validating the smFRET components.

Biologically, there is much research to be conducted in visualizing specific steps in the chro-
matin loop process. Specified stages should be identified in order to successfully implement
the GMM with the EM algorithm. The steps that have been researched in the literature are
vague due to the imaging limitations in current technology. For example, upon any chro-
matin modifications, this will modify the genetic makeup of chromatin in a similar manner
to nucleosome modification behaviour. Any binding of an enzyme will ultimately influ-
ence whether changes to the makeup of chromatin will be influenced. The environment in
which the chromatin is modified will also influence the conformation. Once there is more
information available in the specific steps in chromatin conformation, the GMM applied in
conjunction with the EM algorithm can be a powerful tool in identifying significant EFRET

data that may identify unique properties of chromatin in each state.

Some EFRET components may have a wider range corresponding to a specific step in the
chromatin organisation process. Therefore, other mixture distributions should also be fit
to the data to gain more information on which EFRET values correspond to a specific area
of data. Previously, it was discussed that experimental smFRET histograms have been
well-fitted by both Gaussian functions and log-normal functions [51]. It was also stated by
Deniz et al [19] that “One must exercise great caution in interpreting the width of FRET
distribution”, due to the interplay of many factors. Therefore, when interpreting the central
means of each distribution for each component of the GMM, it would be helpful to know
some additional biological data to understand what needs to be included in the model.

2.7 Conclusion

The GMM assigns a probability to each point to see whether it should belong to the identified
potential cluster, rather than assigning a flag to a point that belongs to certain cluster, as
performed in the classical k-means method. Then, GMM is producing non-convex clusters,
which can be controlled with the variance of the distribution. The EM algorithm has aided
in optimizing the loss function of the GMM. The clustering work conducted with both the
GMM and the EM algorithm is a powerful tool in identifying significant clusters of data. This
can be a powerful tool in identifying the areas of EFRET data where the specific chromatin
conformations are located. This will help in understanding the specific functionalities and
properties of chromatin in each defined state. While more work needs to be conducted in
identifying the number of stages required to model the chromatin compaction procedure,
this tool can be powerful in identifying the components in smFRET data.
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3 CTMC Application: Loop Extrusion Factor

Stacking

3.1 Abstract

The binding behaviour of loop extrusion factor stacking can be modelled using several
continuous-time Markov chain (CTMC) models. The kinetic rates including the rates of
binding, unbinding, loop division and loop death are used to drive these CTMC applications
for loop extrusion. The immigration-death model is used to model the stacking behaviour of
loop extrusion factors to reinforce chromatin structure. The Gillespie algorithm is used to
simulate the number of fluctuating LEFs in the IDP. The burst model is also used to demon-
strate the abilities of the chromatin compaction process beginning from the binding of an
LEF to the creation of chromatin loops. We found that the burst model applied with non-
equilibrium kinetic rates of the LEF exhibited more consistent results with current available
experimental data. Future work to investigate the burst model with other LEF candidates
would be helpful in gaining a better more general understanding of the behaviour of LEFs
in chromatin organization.

3.2 Introduction

Elements of chromatin looping have been modelled with stochastic processes due to the
dynamic nature of loop extrusion factors. This suggests that Markov chains may be suitable
for describing some of their structural folding behaviour. Markov chains describe a sequence
of possible events in which the probability of each event depends on the state attained in
the previous event. In this chapter, Markov properties are explored to model various stages
of the chromatin looping process with loop extrusion factors through chromatin binding,
unbinding, loop division and loop degradation activities.

The Immigration-Death process (IDP) is an example of a continuous-time Markov chain
(CTMC), which is originally derived from the Birth-Death process (BDP). This model is
used to describe the fluctuations of chromatin loops in DNA compaction. The BDP is first
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introduced in order to derive the IDP. This is then evolved and further applied to model the
behaviour of loop formation and degradation in chromatin compaction. This is the main
model in this section that describes the loop organization behaviour.

3.3 Materials and methods

3.3.1 Continuous Time Markov Chains

Since the Birth-Death process (BDP) is an example of a continuous-time Markov chain
(CTMC), the properties of a CTMC are presented. To model a process in continuous time,
the limit of a discrete-time process is taken. A Markov chain in discrete time remains in any
state for exactly one unit of time before making a transition, or a change of state. When the
process enters a state, the time it spends before leaving the state is referred as the holding
time. Some conditions are placed on the holding time to ensure that the CTMC satisfies the
Markov property. The Markov property refers to the memoryless property of the CTMC.
This is described as {X(t), t ≥ 0}, which is a stochastic process that takes values on a finite
or countable set (0, 1, 2, ...,). The memoryless property is described as the following,

P [X(t+ s) = j|X(s) = i,X(u) = x(u) for 0 ≤ u ≤ s] = P [X(t+ s) = j|X(s) = i] (3.1)

Time homogeneous chains are also considered, where the memoryless property is employed.
As mentioned, a condition is placed on the holding time to ensure this property holds,
wherein they will have to be exponentially distributed, such that

P [X(t+ s) = j|X(s) = i] = P [X(t) = j|X(0) = i] (3.2)

By time homogeneity, this refers to whenever the process enters state i; the way it evolves
probabilitically from that point is the same as if the process started in state i at time 0.
When the process enters state i, the time it spends in that state before it leaves is referred to
as the holding time in state i. By time homogeneity, the holding time distribution is the same
every time the process enters state i, which is also exponentially distributed. This explores
the Markov property (Equation 3.1), where the behaviour of the future of the process is
only dependent upon the current state and not of the past. The models are generalized
to allow for time to be continuous, and the state space is either finite or countably finite.
The sequence of states is written as {Xn, n ≥ 0} that {X(t)} arrives in, and let Sn be the
corresponding arrival times. The Markov property for {X(t)} implies the (discrete-time)
Markov property for {Xn}, thus {Xn} is an embedded Markov chain, with transition matrix
P = [Pij]. The key quantities that specify a discrete-time Markov chain are the transition
probabilities. In continuous time, the corresponding key quantities are the transition rates.

CTMCs can each be modeled by representing the passage from one state to another as a
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Poisson process. This process is now described in more detail to gain a better understanding
of its role in the CTMC.

3.3.2 Poisson Process

Briefly, the Poisson distribution by itself describes the probability of an event occurring
after a given amount of time. It uses a single parameter, which expresses the average rate
at which the event occurs. A recurring event, or process, whose probability follows this
distribution is called a Poisson process. To fully classify something as a Poisson process,
specifically for Markov chains, the shift invariance and independent inter-arrival times must
be derived. Shift invariance describes the probability of an event occurring within a given
amount of time and does not change depending on the point at which you start counting
time. Independent inter-arrival times indicate that once an event in a Poisson process has
occurred once, the probability of it occuring a second time can be modelled with the same
Poisson distribution, as if from the initial occurrence. The specific properties of the Poisson
process are now explained in more detail to understand the criteria for this model.

The Poisson distribution occurs by way of the Law of rare events. Consider a large number
N of independent Bernoulli trials where the probability p of success on each trial is small
and constant from trial to trial. Let XN,p be the total number of successes in N trials, where
XN,p follows the binomial distribution for k = 0, 1, ..., N .

P (XN,p = k) =

(
N

k

)
pk(1− p)N−k (3.3)

If we assume that N → ∞ and p → 0, so that Np = µ, then the distribution for XN,p

becomes the Poisson distribution:

P (Xµ = k) =
e−µµk

k!
for k = 0, 1, ... (3.4)

In stochastic modelling, this law is used to suggest circumstances under which the Poisson
distribution might be expected to dominate approximately.

The Poisson distribution given in Equation 3.4 describes the probability of having k events
over a time period in µ. The random variable X having a Poisson distribution has the mean
E[X] = µ and the variance V ar[X] = µ.

The Poisson process gives the notion of the Poisson distribution together with independence.
A Poisson process of intensity λ>0, which describes the expected number of events per unit
of time, is an integer-values Stochastic process {X(t); t ≥ 0} for which the following criteria
holds:
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1. For any arbitrary time points t0<t1<t2<...<tn and t0 = 0, the number of events hap-
pening in disjoint intervals (process increments)

X(t1)−X(t0), X(t2)−X(t1), X(t3)−X(t2), ..., X(tn)−X(tn−1)

are independent random variables. This implies that the number of events in one time
interval is independent from the number of events in an interval that is disjoint from
the first interval. This is the independent increments property of the Poisson process.

2. For s ≥ 0 and t ≥ 0, the random variable X(s+ t)−X(s), which describes the number
of events occurring between time s and s + t (independent increment), follows the
Poisson distribution,

P (X(s+ t)−X(s) = k) =
(λt)ke−λt

k!
.

3. We assume that at time zero the number of events that have happened already is zero

The parameters of the Poisson distribution is λt, E[X(t)] = λt, V ar[X(t)] = λt. We fix a
short interval of time h to begin the derivation of exactly one event over the time period h:

P (X(t+ h)−X(t) = 1) =
(λh)e−λh

1!

= (λh)
∞∑
n=0

(−λh)n

n!

= (λh)

(
(−λh)0

0!
+

(−λh)1

1!
+

(−λh)2

2!
+ ...

)
= (λh)(1− λh+

1

2
λ2h2 − ...)

= λh+ o(h)

(3.5)

where o(h) denotes a general and unspecified remainder term of smaller order than h. We
can view the rate λ in Poisson process X(t) as the proportionality constant in the probability
of an event occurring during an arbitrary small interval h.

In a Poisson process, the waiting time between consecutive events is referred to as a Sojourn
time, Si −Wi+1 −Wi, where Wi is the time of occurrence of the ith event. This means that
Si measured the duration that the Poisson process sojourns in state i. The Sojourn times
S0, S1, ..., Sn−1 are independent random variables, each having the exponential probability
density function as given in the following equation,

fSk
(s)− λe−λs (3.6)
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The Poisson process may also be referred to as the pure birth process. In other words, only
forward transitions apply. The Birth-Death process (BDP) then introduces the term where
backward transitions are allowed. The applicability of the Poisson process is now extended
to the BDP. The BDP is a special case of a CTMC where the state transitions are of only
two types: “births”, which increases the state variable by one and “deaths”, which decreases
the state variable by one. There have been several extensions of the BDP to introduce
other variables such as immigration, shifts, migration, etc., to name a few. The BDP may
also be described with queueing theory, as well. For the purpose of this investigation, the
Immigration-Death process is now derived and analyzed for its applicability in chromatin
loop dynamics.

3.3.3 Immigration-Death Process

In order to derive the Immigration-Death process (IDP), the Birth-Death process (BDP)
must be explained to compare its modifications in the IDP. The BDP describes a CTMC
with discrete state spaces in which state transitions may only occur between neighbouring
states. Originally, this was used to model the number of “particles” in a system, where each
particle can “give birth” to another particle or “die” ([22],[38]). The rates of birth and death
at any given time are dependent on the number of particles present in the system. This is a
type of branching process, where the history of the trajectory of the particle is insignificant,
but the total number of particles in a system is maintained at a given time.

When there are i particles in the system, a birth occurs with an instantaneous rate, λi and a
death occurs with an instantaneous rate, µi. In the “simple linear” BDP, λi = iλ and µi = iµ
to allow for constant birth and death rates. In the “general” BDP, the values for λi and
µi can be any function of i but are time-homogeneous. This allows for modifications to be
made to generate the IDP. To adjust the properties of the BDP to create the IDP, the birth
rates are instead given by λi = α. Note the death rates are still given by µi = iµ for all i.
The IDP describes {N(t)}t≥0 as a time-homogeneous irreducible CTMC where the possible
states for which transitions i→ j may occur are supplied by the state space E = {0, 1, ...}.
The birth and death rates propel the IDP with θ = (α, µ). This is assumed to take values
in some parameter space Θ which is a compact subset of R2

+. In order to view {N(t)}t≥0 as
a BDP, the Law of the total probability is applied, where the total probability of an outcome
can be realized via several distinct events. For i > 0, the infinitesimal transition probabilities
are given by the following set of equations:

pij(t; θ) = P (N(h+ t) = j|N(h) = i) =


λit+ o(t), if j = i+ 1

1− (λi + µi)t+ o(t), if j = i

µit+ o(t), if j = i− 1

o(t) if |j − i| > 1

(3.7)
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By extension, the IDP can also be extended to queueing theory, where the concepts of the
IDP parallel those of an M/M/∞ system. The M/M/∞ queue is a multi server queueing
model where every arrival experiences immediate service and does not wait. Each customer
arrives according to a Poisson process with intensity α. They are individually handled by
its own server so that its Sojourn time in the system is exponential with intensity µ and
independent of all other customers. This means that the waiting customers are either served,
or removed from the queue. In this case, there are infinitely many servers, so customers do
not need to wait for a server.

The transition matrix is then described as the following equation ∆p(t) = p(t)Q, where
the matrix is given in Equation 3.8, and the process is illustrated in Figure 3.1, where α
represents the immigration rate and µ represents the death rate.

Q =


−α α
µ −(µ+ α) α

2µ −(2µ+ α) α
3µ −(3µ+ α) α

. . .

 (3.8)

Figure 3.1: Diagram of M/M/∞ queue

The IDP may now be applied to model the chromatin looping process. The immigration and
death rates in the process will be denoted by the rate of division and degradation of loops
on a strand of DNA . By modelling the chromatin compaction activity in this manner, it is
predicted that the rates of loop formation and degradation may be established for different
loop extrusion factors used to perform extrusion. While chromatin loop formation is still
unknown due to the limitations of experimentation, this model may hopefully contribute to
the understanding of DNA storage information once appropriate data becomes available in
the future. For the purpose of this investigation, simulations conducted with the Gillespie
algorithm are used in the place of observed data to test the proposed systems. This is now
introduced to understand how it may provide a proposed trajectory of single cell processes.
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3.3.4 Gillespie Algorithm for Chromatin Loop Dynamics

The Gillespie algorithm was created by Dan Gillespie, with the intention of using it to
simulate chemical or biochemical systems of reactions efficiently and accurately with limited
computational power [27]. This has been useful for simulating reactions within cells where
the number of reagents is low and it is computationally feasible to keep track of the position
and behaviour of individual molecules.

While there are generally two ways of implementing the Gillespie algorithm (the deterministic
approach and the stochastic approach), the algorithm may be altogether summarized in the
following manner,

1. Initialization. Initialize the number of molecules in the system, reaction constants,
and random number generators.

2. Monte Carlo step. Generate random numbers to determine the next reaction to
occur as well as the time interval. The probability of a given reaction to be chosen
is proportional to the number of substrate molecules, and the time interval is expo-
nentially distributed with mean 1/RTOT where RTOT is the total number of substrate
molecules.

3. Update. Increase the time step by the randomly generated time in Step 2. Update
the molecule count based on the reaction that occured.

4. Iterate. Go back to Step 2 unless the number of reactants is zero or the simulation
time has been exceeded.

For the purpose of this investigation, the stochastic approach is favoured due to the dynamic
nature of the loop extrusion factor (LEF) binding to chromatin. This algorithm provides a
systematic method for obtaining a sample of trajectories that are consistent with the master
equation that describes the stochastic system. When the chemical rates are known functions
of time, then the simple and intuitive way to augment the Gillespie algorithm is to assume
that the propensities are known functions of time. However, this leads to an approximate,
rather than an exact stochastic algorithm. The deterministic approach regards the time
evolution as a continuous, wholly predictable process governed by a set of coupled, ordinary
differential equations. These are generally represented with reaction-rate equations. The
stochastic approach regards the time evolution as a kind of random-walk process, which is
governed by a single differential-difference equation, and represented by the master equation.

Biochemical experiments have widely accepted and used the Gillespie algorithm to simulate
biochemical networks due to its inclusion of noise, which is especially important in gene
regulation [45]. This algorithm is used when fluctuations arise from the small number of
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reactant molecules. The advantage is that it generates an ensemble of trajectories with
correct statistics for a set of biochemical reactions. This allows for favourable conditions to
generate loop extrusion trajectories.

Prior to applying the Gillespie algorithm in a chromatin loop process, the following assump-
tions were made, as described previously in literature [30].

1. The two heads of each LEF stochastically step away from each other with the average
rate, α, the immigration rate of the IDP.

2. The heads of different LEFs cannot step over each other and thus stop extrusion upon
reaching another LEF. However, the two heads of the same LEF may extrude loops
independently and if one head of a LEF is blocked, another head continues extrusion.

3. LEFs stochastically unbind from the fiber with the rate 1
τ
, where τ represents the

average residence time.

4. Free LEFs immediately rebind to the chromatin fiber at a random uniformly chosen
pair of adjacent sites.

It is assumed in this LEF model that upon unbinding from chromatin, an LEF immediately
rebinds to another randomly chosen site along the chromosome to maintain the steady state
assumption. With this assumption, the number of LEFs bound to a chromosome remains
constant throughout the simulation. Another strong assumption is that an LEF extrudes
two chromatin strands independently, such that blocking extrusion of one strand does not
stop extrusion of another. Coordinated blocking of extrusion prevents the growth of the
average loop size with λ/d and the average loop size saturates at ∼ d, where d is the LEF
separation, and λ is the LEF processivity. This shows that in order to efficiently compact a
chromosome, LEFs must be able to move one of its contact points when the other is blocked.

The implementation of the Gillespie algorithm in this application with LEFs for loop ex-
trusion is summarized. Suppose the system is known at time t, which means the number
of DNA reacting with LEFs are known, and consequently, the set of reactions aµ(t) with
a given number of LEFs are known for each reaction. Call a0(t) the sum of all aµ(t). Let
reaction 1 be the reaction with probability per unit time of a1, reaction 2 be the reaction
with probability per unit time of a2, and so on.

Then the following steps are followed:

1. Find the time τ after t at which the next reaction will take place, by drawing a
random number from an exponential probability density function (pdf) of rate a0p(τ) =
a0exp(−a0τ).
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2. Choose at random the reaction which will occur at time t+ τ . Draw a random number
from a uniform distribution between 0 and 1. If that number falls between 0 and a1/a0

reaction 1 is chosen. If that number falls between a1/a0 and (a1 + a2)/a0 reaction 2.
This pattern then continues in a similar manner.

3. The occurrence of the chosen reaction at time t + τ changes the number of DNA
molecules involved in the reaction. Thus the values of the aµ which depend on any of
these numbers change. One then goes back to point 1 of the algorithmic implementation
with a new distribution of molecules at time t+ τ . The process is reiterated for as long
as one wishes to follow the evolution of the system.

The observed data parameters were simulated using the Gillespie algorithm from the Python
code made available from a previous publication [30]. This software was used to create
illustrative diagrams of the loop extrusion process, where it was used to demonstrate the
loop formation over time. Figure 3.2 gives a representation of chromosome compaction by
LEFs in a single frame of time.

Figure 3.2: Simulated loop extrusion with overlapping loops in a single time frame. The
height of the loop demonstrates the amount of chromatin that has been extruded from the
loop. The colour of the loop is also significant such that darker the loop, the more stacking
has occurred.

The height and colour of the loops represent the LEF stacking process that occurs in chro-
matin compaction over time. Since loop extrusion is a stochastic process, there is much
variability in the chromatin loop process at any time frame. The darker the loop, the more
stacking has occurred. The height of the loop denotes the amount of chromatin that has
been extruded from the loop. In initial simulations, LEFs generated tightly stacked loops
with a high degree of chromatin compaction, despite their constant dissociation. Simulations
converged to states with degree of compaction and distribution of loop size that depended on
the control parameters, but were independent of initial states. This supports the existence
of a well-defined, loop stacked steady state.

By running this same simulation again with more LEFs present in the system, Figure 3.3
illustrates a different arc diagram than that from Figure 3.2. It is observed that by increasing
the number of LEFs present in the system, there was more overlap in the loops formed. This
indicates that a greater degree of loop extrusion activity, and ultimately DNA compaction,
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has occurred. What also differred was that more stacking has occurred due to the increased
number of darker loops formed. This could suggest that the model favours LEF stacking
when more LEFs are available.

Figure 3.3: Simulated loop extrusion with overlapping loops in a single time frame with more
LEFs in the system

In this case, the chromatin loop activity describes a 1D lattice model for loop division and
degradation. The rates for the IDP are now derived and supported with Gillespie simulated
activity to test the model.

3.3.5 Rates of Loop Extrusion

The underlying mechanisms that drive chromatin loop extrusion is still unknown. There are
several models proposed to describe this process, however experimentation is still limited
to validate this data. The rates of loop division and degradation presented in this section
are derived from a previous publication by Goloborodko, et al [30]. It was discussed that
loop extrusion factors (LEFs) dynamically exchange between the nucleoplasm and chromatin
fiber. LEFs self-organize into a dynamic array of consecutive loops with two distinct steady
states: a sparse state, where loops are separated by gaps and provide moderate compaction;
and a dense state, where jammed LEFs drastically compact a long chromatin fiber [30].
The analytical model is based on microscopic properties of LEFs and their abundance. An
illustration of the sparse and dense state is presented in Figure 3.4

There are several theories available regarding chromatin looping and DNA compaction. One
example of chromatin looping has been studied by Alipour and Marko [1], where they in-
troduced a quantitative model of loop extrusion and considered the dynamics of solvent-
exchanging LEFs on a short chromosomal segment. They found that extruded chromatin
loops can be stabilized by multiple stacked LEFs, thus making loops robust enough for the
exchange of individual LEFs. A small system size however, prevented them from obtaining a
complete picture of self-organization. The remaining key question is whether LEFs alone are
sufficient to form arrays of non-overlapping loops on a long chromosome or if other factors
are required to define the loop bases.

In this investigation, the model proposed by Goloborodko, et. al. [30] is favoured to describe
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Figure 3.4: Steady states of DNA loops. A. Sparse state ; B. Dense state

the loop extrusion process because it demonstrated that efficient chromosome compaction
can be achieved solely by an active loop-extrusion process. This method is also further
investigated because it has been acknowledged as one of the favoured methods of chromatin
organization in literature [56].

In the model of Goloborodko et al, the rate of loop division is given by

Rdivsion ≈
(

1

τ

)(
l

d

)3(
d

λ

)
, (3.9)

while the rate of loop death is given by

Rdeath ≈
(

1

τ

)(
l

d

)
e−l/d (3.10)

As observed, the rates are made up of several other conditions contributing to chromatin
loop activity. These factors are defined by the following variables,

L = length of the chromosome
N = number of LEFs in the system
d = L/N , LEF separation, the average spacing between LEFs if they were randomly dis-
persed along the chromosome
λ = 2ντ , LEF processivity, the average length of a chromatin loop that a single unobstructed
LEF can extrude over its residence time
ν = the average speed with which a LEF motor translocates chromatin fiber
τ = the average time that a LEF stays continuously bound to the chromosome, also referred
to as the residence time
l = length of a loop
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It is noted that these rates are largely determined by the LEF separation, and the LEF
processivity. To visually observe the behaviour of the rate parameters, the values summarized
in Table 3.1 were used to plot an example of the rate behaviour determined by these factors.

Table 3.1: Parameters from observed data

d l λ τ

30 kb 100 kb 830 83

The values chosen in Table 3.1 were used to represent chains of 5000 monomers and corre-
sponds to 30 Mb, close to the size of the smallest human chromosomal arm. We focus on the
effect of two parameters, the linear separation of LEFs and their processivity, which have
been previously considered in the context of a 1D model [30]. These parameters control the
fraction of a chromosome extruded into loops and the average loop length. This publication
used condensin behaviour to generalize all enzymes that perform LEF activity [30]. The
separation, denoted by d is 30 kb, which is given by 1000 condensins per 30 Mb as measured
in observed data [24]. The processivity, denoted by λ is 830 kb, where condensins form a
dense array of gapless loops with the average loop length (l) of 100 kb. In addition, the
compaction density of ∼ 5 kb/nm was used in order to calculate the residence time, τ [72].
For further details on the experimental methods used to obtain these values, refer to the
Goloborodko, et. al. [30] publication.

These values were then plotted to observe the extent of loop length and separation given
in Figure 3.5. It is observed that the polynomial function of the rate of loop division will
always be increasing, whereas the rate of loop death will reach a maximum rate then rapidly
decrease as the ratio of loop length to loop separation increases. Therefore, at larger loop
lengths, there will be more loop division activity, which will allow for compaction. This is
consistent with the current understanding for DNA compaction, as there is more available
DNA that will allow for loop extrusion. When there is less DNA available, LEFs are less
likely to remain stably bound and promote loop extrusion.

By drawing from these concepts, these are further explored in the exposure timescale for
binding to DNA in Chapter 4. For now, LEF binding will be explored by analyzing theoretical
kinetics of unbound LEFs up until it has conducted loop extrusion activity and unbinds from
the strand of DNA.

3.3.6 Binding Behaviour of LEFs

As mentioned, the binding behaviour of loop extrusion factors (LEFs) is unknown. While
there are several theories and models proposed for the loop extrusion process, there is little
to no observed data available to validate these models. The chromatin loop extrusion model
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Figure 3.5: Rates of loop extrusion. The left plot denotes the rate of loop division, and the
right plot denotes the rate of loop death.

is favoured because it allows for the formation of CTCF loops and topological domains. This
explains the arrangement of CTCF binding motifs that stabilize loops, and extrusion is the
only model available so far that explains this. The model requires a motor to generate the
loops, and although cohesin is a strong candidate for an extruding factor, a suitable motor
protein has yet to be found. However, for the purpose of this investigation, CTCF is used as
a loop extrusion boundary element to stop loop extrusion, and cohesin is used as an example
of an LEF.

To begin the derivation of LEF binding kinetics to DNA, one must consider the binding
behaviour of an enzyme to DNA. There are two states in this case: bound (B) and unbound
(UB). Once bound, the enzyme can either remain bound or immediately unbind from the
strand of DNA. This gives rise to two options in the bound case: dynamically bound (DB)
and stably bound (SB). Therefore, the rate that an LEF can bind to DNA may be given by
kon for the forward reaction, and the rate that an LEF unbinds can be given by koff for the
reverse reaction. This was previously described to model the behaviour of cohesin binding
to chromatin [32]. It is interesting to note that this model was applied to the growth stages
of the cell cycle (G1 and G2). In the steady-state, similar to the concepts applied from
Michaelis-Menten properties, the following equation can be used to describe the kinetics.

konUB = koffDB (3.11)

As described in the previous paragraph, the total copy number of LEFs is the sum of both
bound, and unbound LEFs. This can be depicted mathematically as CT = BT + UBT . By
rearranging this equation, the number of unbound (UB) LEFs can be denoted as UB =
CT − BT , which can be substituted into the left hand side of Equation 3.11. The total
number of bound LEFs can also be denoted as the fraction of dynamically bound LEFs over
the stably bound LEFs. This is denoted mathematically as BT = DB/SB. By rearranging
this equation for the dynamically bound (DB) LEFs, where DB = BTSB, this may be
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substituted into the right hand side of Equation 3.11. These rearrangements were made in
Equation 3.12 below.

kon(CT −BT ) = koff(BTSB). (3.12)

Since we are interested in the binding behaviour of LEFs, Equation 3.12 is now rearranged
to determine the manner in which the on-rates and off-rates affect LEF binding. This will
allow for the examination of how these factors make up the total number of LEFs bound to
DNA, and perhaps predict loop extrusion activity. In Equation 3.13, BT is now isolated.

BT =
kon

kon + koff

CT +
koff

kon + koff

SB (3.13)

As observed, the total number of LEFs bound is made up of the sum of the portion of
LEFs that bind to DNA and the portion of stably bound LEFs that unbind from DNA.
This equation may be further normalized with respect to the copy number of LEFs bound to
DNA. This is done by dividing both sides of the equation by the copy number by substituting
bT = BT/CT and sb = SB/CT such that,

bT =
kon

kon + koff

+
koff

kon + koff

sb. (3.14)

In order to gain a better understanding of this equation, assuming a steady state binding of
kon and koff , the relationship between the number of LEFs bound to DNA to the number of
stably bound LEFs is illustrated in Figure 3.6. This concept has now been extended to show
that the number of stably bound LEFs contribute largely to the number of bound LEFs,
which will skew the number of bound LEFs. As this model was previously tested with the
binding behaviour of cohesin [32], it is important to note that they found that the only major
distinction between cohesin dynamics in G1 and G2 phase cells is that a fraction of cohesin
becomes stably bound in G2 [32]. Therefore, the number of stably bound LEFs contribute
to the understanding of which stage of the cell cycle this will impact.

3.3.7 Combining LEF Binding with Loop Extrusion Activity

The rates of loop extrusion activity and LEF binding activity have now been established
separately. Since these two processes contribute to DNA compaction, it is only fitting that
these models be combined in some manner. LEF binding can be described with a reversible
chemical reaction, whereas loop extrusion from this binding is described with an IDP. These
mathematical procedures are now combined sequentially to create a larger illustration of the
chromatin compaction process.

To describe this process simply, an LEF must stably bind to DNA and then extrude a loop.
This may parallel the burst model [46] to describe stochastic single-cell transcription. The
burst model is described in more detail in Section 3.4.1. Transcription may occur in both
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Figure 3.6: Binding behaviour of LEFs on DNA. This plot illustrates the relationship between
the copy number of binding sites to the amount of LEFs stably bound to DNA.

a bursty and non-bursty manner, which depends on the parameter values describing the
enzyme rates performing transcription. However, this differs from the model in that there
are two conditions in the bound state: dynamically bound and stably bound. For the purpose
of this investigation, the bound state will be simplified and modelled as one state to simplify
the interpretation of the model. This process is illustrated in Figure 3.7.

Figure 3.7: Loop Extrusion Dynamics with LEF binding. Components illustrate the re-
lationship between the rate of binding (kon) and unbinding (koff) from the unbound (UB)
to the dynamically bound (DB) LEFs. The dynamically bound LEFs then become stably
bound (SB) and allow for loop extrusion (LE) to occur. This activity is regulated by their
rate of loop division (Rdiv) and loop death (Rdeath).

As illustrated, loop extrusion is a highly regulated sequence of intrinsically stochastic pro-
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cesses. In LEF binding or unbinding, an LEF may bind dynamically to DNA, with a residence
time unique to each factor. The biological significance of the effect of the residence time is
still unclear for the loop extrusion process, however this will be explored later in terms of
how it affects the exposure timescale of the target DNA in which an LEF binds. Therefore,
the on-time and off-time of an LEF is given by τon = 1/koff and τoff = 1/kon, respectively.

In order to derive the mean number of occurrences for loop extrusion, the contributing factors
from enzyme activity as described in previous sections is considered. The number of loops is
affected by both the number of LEFs bound to DNA, and the rate of loop extrusion activity.
Thus, both the rates of loop formation, and the rate of binding of the LEF must be utilized.
The fraction of loop division and the fraction of LEF binding is combined as a product to
yield the mean number of occurences for loop extrusion. Mathematically, this is given by,

LT =
Rdiv

Rdeath

· τon

τon + τoff

=
Rdiv

Rdeath

· kon

kon + koff

(3.15)

While the on-time and off-time is originally used to model the situation, the equations for
τon and τoff may be substituted to depict the behaviour of the LEF in terms of its on-rate
and off-rate of binding to DNA. In other words, this gives the mean copy number of LEFs
per cell as a function of the fraction of time spent in the on- and off-state from chromatin.

Further, from the binding properties of an LEF, loop extrusion activity is increased by the
amount of LEFs bound and extrude a loop. The loop extrusion activity from an LEF can
then be given as a product of the rate of loop division and the amount of time it spends on
a strand of DNA,

b = Rdivτon =
Rdiv

koff

(3.16)

The frequency of the loop extrusion activity is then determined by the rates that an LEF
remains bound to DNA. By substituting the residence time equations of an LEF bound to
DNA with its kinetic on- and off-rates, we determine the frequency f as,

f =
1

τon + τoff

=
konkoff

kon + koff

(3.17)

Finally, Equation 3.15 may be rewritten in terms of the factors given in Equation 3.16 and
3.17, to yield

LT =
bf

Rdeath

(3.18)

As observed from these theoretical calculations, the importance of the four parameters given
in Figure 3.7 largely determine loop extrusion activity: kon, koff , Rdiv, and Rdeath. These
parameters will now be tested with simulations to model the trajectories of loop extrusion
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and residence time of LEFs to promote extrusion. However, prior to testing the model, the
burst model is introduced to describe how significant peaks are determined in the data. To
analyze the dataset, significant bursts, or time periods of data with significant activity, are
identified to narrow the area of data for examination.

3.3.8 Burst Model

As previously mentioned, the binding process for an LEF may parallel that of the burst
model. Burst detection was previously described by Kleinberg [40], where a burst detection
algorithm was described with the purpose of identifying time periods in which a target event
is uncharacteristically frequent, or “bursty”. Burst detection may be used to detect bursts
in a continuous stream of events, or in discrete batches of events.

Recall in Figure 3.7 the loop extrusion dynamics with LEF binding. This process can also
be simplified into three stages, as illustrated below. To represent Figure 3.8 mathematically,

Figure 3.8: Simplified loop extrusion model

the process can be summarized by two differential equations,

dm

dt
= αm − τ−1

m m

dn

dt
= αnm− τ−1

n n,

(3.19)

where m represents the rate of LEF binding to the DNA strand, and n represents the rate
of loop extrusion. Note that these equations ignore the fluctuations of the burst model.

In the steady-state, these are represented by

m̄ = αmτm

n̄ = αnτnm̄ = αmτnαnτm
(3.20)

Two dimensionless parameters are now defined to ease the future calculations,

b̄ = αnτm

a = αmτn
(3.21)
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It is observed that the value of b̄ is the mean number of loops produced from the LEFs
bound to DNA. When there is more than one loop present in the system, the loops are
produced in “bursts”. This quantity will be denoted as the mean-burst size. This value was
been approximated by a geometric distribution, which is a discrete version of the exponential
distribution. The quantity a measures the mean-number of bursts per cycle.

The burst sizes are distributed in a geometric manner, as mentioned, since it is a discrete
version of the exponential distribution. This is now derived. We start by considering a single
LEF molecule that can be bound to DNA at rate αm, and can be destroyed at rate τ−1

m . Most
of the time, nothing will typically happen. In fact, using the same intuition as the Gillespie
algorithm, we can calculate the waiting time distribution between events. However, for
calculating the number of loops produced from each LEF molecule, this distribution plays
no role. Instead, we need to know the probability that when an event happens, it is the
production of a loop rather than an LEF unbinding. This probability can be written by the
following,

q =
αn

αn + τ−1
m

=
b̄

b̄+ 1
, (3.22)

which is the second step of the Gillespie algorithm.

The probability of producing exactly b bursts is then given by

Pburst(b) = qb(1− q) =
1

1 + b̄

(
b̄

b̄+ 1

)b
, (3.23)

which represents the Geometric distribution. Since the geometric distribution is the discrete
analogue of the exponential distribution, we can write,

Pburst(b) =
e− ln(1+1/b̄)b

1 + b̄

≈ e−b/b̄

b̄

(3.24)

Note that in the second line, a Taylor expansion was performed in 1/b̄ which is valid when
b̄>>1.

This is now used to derive the Gamma distribution for loop abundances. To do so, we will
write a loop-only master equation. We will call the number of loops x.

dn(x, t)

dt
= αm

∫
dbPburst(b)p(x− b, t)︸ ︷︷ ︸

term 1

−αmp(x, t)︸ ︷︷ ︸
term 2

+ τn(x+ 1)p(x, t)︸ ︷︷ ︸
term 3

− τmxm(x, t)︸ ︷︷ ︸
term 4

(3.25)

The first term represents the probability that you have x− b loops and produce burst of size
b which is integrated and summed over all burst sizes b. The second term is the probability
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that you have x loops and produce a burst of any size. The third term is the probability
that you have x + 1 loops and degrade a loop. The fourth term is the probability that you
have x loops and degrade a loop. When x>>1, we can approximate this Master equation
by a Fokker-Planck equation of the form,

dm(x, t)

dt
= αm

∫
dbPburst(b)m(x− b, t)− αmm(x, t) + ∂x(τ

−1
m xm(x, t)) (3.26)

At the steady-state, this becomes

a

∫
bd[Pburst(b)− δ(x)]p(x− b) = −∂x(xm(x, t)), (3.27)

with a = amτn the mean number of bursts per cycle. Note that the left hand side of
Equation 3.27 is just a convolution of two distributions: an exponential distribution and the
distribution we want to solve for. Equation 3.27 can then be solved, and isolated for P̂burst(s)
such that,

P̂burst(s) =
1b̄

s+ 1/b̄
(3.28)

Thus, we can take the Laplace transform of both side to obtain

− as

s+ 1/b̄
p̂(s) = s∂sp̂(s) (3.29)

which yields

p̂(s) =
1

(s+ 1/b̄)a
. (3.30)

Note that this is the Laplace transform of the Gamma distribution. The distribution of loop
abundances on a strand of DNA is then described by the following gamma distribution,

m(x) =
xa−1e−x/b̄

Γ(a)b̄a
(3.31)

It was previously stated that Gamma distributions are able to model a wide range of molec-
ular mechanisms relevant for gene switching and transcription initiation [64]. It was also
stated that an LEF, cohesin, has exponentially distributed binding times to DNA and are
highly stochastic [31]. This implies that the above burst model to model the binding and
looping behaviour of chromatin is appropriate based on the available experiments conducted.
However, due to the limited experiments available for consistent results, the burst model is
not without limitations. Imaging was only able to confirm that the binding behaviour of
cohesin to cognate sites are exponentially distributed because few events exhibit the mean
value[31]. This does not necessarily imply that all LEFs will exhibit this behaviour because
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this result was not widely repeated with many experiments. This will be further discussed
in the Discussion section.

The burst detection algorithm was implemented with the Stochpy package in Python [46] to
detect bursts in one of Stochpy’s built-in modules. This is implemented in the analysis of
LEFs on loop kinetics both in steady state and non steady state binding behaviour. In this
application, the burst model is used to model the binding of LEFs and extrude the loop. It
is illustrated in a manner that shows when an LEF is either bound or unbound on a strand
of DNA.

3.4 Results

3.4.1 Steady state binding

The steady state assumption in enzyme kinetics was proposed by George Briggs and John
Haldane in 1942. This assumes that the concentrations of the intermediates of a reac-
tion remain the same, even when the concentrations of starting materials and products are
changing. In other words, the rate of formation and breakdown of the intermediate are
equal. Both the formation of the intermediate from reactions and the formation of products
from the intermediate have rates much higher than their correponding reverse reactions. An
application of this example is found in Michaelis-Menten enzyme kinetics, where there is a
closed-form solution for the concentration of reactants and products in an enzymatic reac-
tion. The steady-state assumption assumes a negligible rate of change in the concentration
of the enzyme-substrate complex during the course of the reaction.

While the binding of an LEF to DNA may not wholly exhibit Michaelis-Menten properties
since there are many activation sites on a single strand of DNA, the steady state assumption
is applied in this model. This assumption was previously discussed by Goloborodko et al
[30], where loop dynamics are controlled by competition between loop death and division.
This implies that the rate of binding and unbinding of an LEF onto a strand of DNA is
equal. Since the loop stacking process may be given by an immigration-death process, as
previously described, the steady state is given by the following equation,

Rdiv −Rdeath(nloops) = 0 (3.32)

The average number of loops can then be given by the ratio between the rate of loop division
and the rate of loop death, as denoted in Equation 3.33, without the consideration of the
residence time of the LEFs.

nloops =
Rdiv

Rdeath

(3.33)
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Since the LEF stacking activity is modelled with an IDP, it follows a Poisson process. The
arrival of an event is independent of the prior event, which satisfies the Markov property.
Therefore, the probability mass function of loop extrusion is given by,

f(n, λt) = P (LE = n) =
λtne−λt

n!
(3.34)

where n = LT , and λ = nloops = Rdiv

Rdeath
. The waiting time until the next event may also be

established. This can then be denoted by a decaying exponential function, as the probability
of waiting a given amount of time between successive events decreases exponentially as the
time increases. The following equation then denotes the probability of waiting more than a
specified time,

P (T>t) = e−λt (3.35)

by using the same parameters as defined in Equation 3.34.

Now that these functions have been established, the relationship between the LEF binding
and the loop extrusion activity may be simulated with the Gillespie algorithm. This activity
is observed using Stochpy [46] software, as they have pre-established modules that utilize
this algorithm in different biological processes.

To begin investigating the kinetic rates of the burst model, a literature search was conducted
to determine appropriate parameters. The kinetic rates of loop activity were previously
studied by Brackley et al [13], which will be applied in our models. Brackley et al [13]
studied the formation of CTCF-mediated chromatin loops. A model was proposed for the
formation of chromatin loops based on the diffusive sliding of molecular slip links. For the
equilibrium state, kon = koff = 0.04. Throughout these investigations, the rate of loop
extrusion and degradation will be fixed at Rdiv = 5, and Rdeath = 10, respectively, as defined
by the parameters in Table 3.1. This result is illustrated in Figure 3.9. The upper plot of
the two plots shown illustrates the amount of time an LEF remains bound to the strand of
DNA. There are only two states in this plot: on and off. This plot is interpreted in a manner
in which the size of the each rectangle shows the amount of time the LEF extrudes the loop.
The bottom plot is a simulation of the loop extrusion activity via the immigration death
process.

As desired, in Figure 3.9, loop extrusion activity occurs when the LEF is in the “on” state.
Loop extrusion activity remains at 0 when the LEF binding is in the “off” state. However,
the loop extrusion activity does not always behave in the same manner each time the loop
is bound to DNA. In other words, there are some times in which the loop extrusion activity
may peak higher, or it may not be as active. When a loop has been bound to DNA for a
longer period of time, the loop extrusion activity is still constantly fluctuating. It is neither
consistently increasing nor decreasing. With these observations in mind, a higher kinetic
rate for the steady state condition of the binding of LEF to DNA is now used, which was
also explained in the study conducted by Brackley et al [13]. In this case, kon = koff = 0.4.

50



Figure 3.9: Low steady state binding rate, where kon/koff = 0.04. The upper plot denotes
the activity of the LEFs bound and unbound from the strand of DNA by their on/off states.
The bottom plot denotes the loop extrusion activity that corresponds to the state of the
LEF binding.

It is perhaps expected that similar activity will occur, since these scenarios are in a steady
state, and the kinetic parameters do not differ as a whole. The results are illustrated in
Figure 3.10, with similar plots to Figure 3.9 to show loop extrusion activity.

Figure 3.10: High steady state binding rate, where kon/koff = 0.4. The upper plot denotes
the activity of the LEFs bound and unbound from the strand of DNA by their on/off states.
The bottom plot denotes the loop extrusion activity that corresponds to the state of the
LEF binding.

The steady state kinetics for the rate of LEF binding and unbinding to DNA is higher for
this case, so it is expected that the frequency of binding would have increased. As observed
from Figure 3.10, there is barely any time in which an LEF is not bound to DNA. As soon as
one LEF is found in the off-state, another LEF would bind immediately and overlap with the
previous LEF’s exposure time on the DNA strand. This is suggestive of a stacked LEF state,
in which there may be several LEFs that extrude a loop. This makes this model appropriate
for the immigration death model proposed by Goloborodko et. al. [30]. However, this was
not observed in Figure 3.9, in which the kinetic rates were much lower. While it is possible
that the residence time of the LEF is much shorter in the present case, and the rate of
binding of new LEFs may not overlap at all, it is not possible to distinguish between the
states in this plot for the proposed model. However, previous publications have discussed
the possibility of reinforced loops, in which this is supportive of this idea, theoretically. Note
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that the plot depicting the IDP (in red) in Figure 3.10 shows similar behaviour in terms of
the loop extrusion activity in Figure 3.9. It is also not evident of the activity due to the
corresponding LEF bound to DNA, therefore reinforced looping must be occurring.

Since the higher rates depict a model suggestive of chromatin looping, it implies that the rate
of kinetics for the on and off rates of LEF binding should be greater than kon = koff = 0.4.
Should there be experimental proof of loop reinforced extrusion, then the LEF rates should
also show higher kinetic rates. However, LEF binding in a steady state is only suggestive of
one possible method of LEF binding. LEF binding activity is now explored with non steady
state kinetics to explore how this model performs in these conditions.

3.4.2 Varying the rates of binding and unbinding

Suppose the previous assumption for steady state binding kinetics do not apply, and the
binding rates of LEFs do not occur in the same manner as described above. This may be
possible due to the uncertainty of LEF stacking activity, and that there may be several
contributors to loop extrusion. Since the properties and identities of an LEF are still un-
known, it is possible that non steady state kinetics may occur for loop extrusion activity.
This implies that upon unbinding from chromatin, the LEF may not immediately rebind to
another randomly chosen site along the chromosome. In Brackley et al’s research [13] with
the proposed kinetic rates for sliding, they even proposed a nonequilibrium model where the
binding and unbinding kinetics of cohesin violate detailed balance. This models the fact
that both its loading and unloading onto chromatin requires ATP. It was emphasized that
passive LEF sliding would be the driver of loop formation and degradation. The merit of
this assumption should not be ignored, since there is evidence that suggests that this enzyme
behaves in a non-steady state manner.

To begin this investigation, let the parameters of Rdiv and Rdeath remain identical to the
values used in the previous assessment. These values remained unchanged because we wish
to isolate the steady state component of LEF binding to DNA. This will allow for a better
understanding of how the presence of LEFs may impact loop extrusion activity. The values
of kon and koff used in this case is then 0.4 and 0.04, respectively, where kon > koff . The
results of this simulation is illustrated in Figure 3.11.

Similar to what was observed in Figure 3.10, there is a higher rate of LEFs bound to DNA,
and there is very little area which indicates there was no LEF bound at any specific time.
The maximum peaks of the loop extrusion activity (green) in this plot does not indicate
a correlation with the binding of LEF activity. It is noted that the loop extrusion activity
behaves in a similar manner to that of the steady state representation. This is to be expected,
as the IDP is still used to model the same procedure. The only difference is the frequency of
the on and off rate of binding for loop extrusion activity on the loop itself. The rates of loop
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Figure 3.11: The rate of kon is greater than that of koff in an unsteady state. The upper
plot denotes the activity of the LEFs bound and unbound from the strand of DNA by their
on/off states. The bottom plot denotes the loop extrusion activity that corresponds to the
state of the LEF binding.

divison and death have remain unchanged. While there are some sections in which there
are narrower rectangles for binding activity, it may be indicative that loop reinforcement
activity will occur less frequently.

The behaviour of the unbinding LEF activity in the non steady-state is now examined. While
the rates of LEF extrusion activity remains the same, such that the parameters of Rdiv and
Rdeath remain consistent to the previous plots, the rates kon and koff are now reversed in their
roles. The values of kon and koff are now 0.04 and 0.4, respectively, and kon < koff . This
simulation is illustrated in Figure 3.12.

Figure 3.12: The rate of koff is greater than that of kon in an unsteady state. The upper
plot denotes the activity of the LEFs bound and unbound from the strand of DNA by their
on/off states. The bottom plot denotes the loop extrusion activity that corresponds to the
state of the LEF binding.

It is observed that Figure 3.12 shows results that are much different that what was explored
in the previous plots. It was thought that as soon as an LEF is bound to DNA, it will
immediately extrude a loop. The scenarios in which loop extrusion may not occur once an
LEF is bound to DNA is not yet known, however this plot suggests this could be a possible
event. As observed from the binding plot of LEF, there is very short and somewhat frequent
activity of binding to DNA. Although, the width of the rectangles are not very wide as
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expected, since the rate of unbinding is greater than that of binding. It is also observed
that there is much more space between the rectangles, suggesting a longer waiting time for
another LEF to bind to DNA successfully to perform loop extrusion. The IDP activity also
shows very little activity, but does not seem to wholly conform to the binding behaviour of
LEFs. While it still only extrudes the loop while the LEF is bound to DNA, it is not always
guaranteed.

To continue investigating the binding of LEFs, the residence time is now examined theoret-
ically. By observing the results in Figure 3.12, it is interesting to think about the impact
of having an LEF bind to DNA and not actually perform loop extrusion activity. While
available literature is only speculating about the true properties of an LEF, we only consider
cohesin as an example. It is thought that cohesin binds specifically to DNA in a specific
target area that may be rich in A-T sequences. Therefore, loop extrusion may only occur
when an LEF binds specifically to DNA. Should an LEF bind unspecifically in DNA, this
may result in false results that suggest loop extrusion activity may occur. Therefore, the
probability of this occurring may be considered mathematically in the following manner,

P (t) = Ae−knst +Be−kspt (3.36)

where A and B are some constants, and the rates are defined as,

• kns = unbinding rate for non-specific binding

• ksp = unbinding for specific binding

Intuitively, the residence time of the model should be defined as,

τs ≈ 1/koff (3.37)

where τs is the residence time of specific binding, which is of interest because only specific
binding to the DNA strand will promote loop extrusion. Equation 3.37 is only an approxi-
mation, as the off rate may be influenced by non-specific binding as well. The impact is not
shown here, as the amount of bias this will ensue for the residence time. As observed by
the simulations, it is unclear how one may be able to distinguish between specific and non-
specific binding. This affect may not be negligible, and therefore should be acknowledged
when interpreting these results.

Therefore, the IDP for loop extrusion may be influenced by both specific and non-specific
binding. Nonetheless, the rates of LEF binding to DNA, as well as the rates of loop extrusion
will influence the loop extrusion activity that will perform chromatin compaction. After
running these simulations, it would be interesting to explore the specific positions of LEF
activity, to further explore whether loops in chromatin are reinforced by several LEFs. Since
these results only suggest that LEF binding may occur, the actual rates of binding of LEFs
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are still uncertain, since it is unsure of which enzymes are confirmed to be LEFs. It would be
interesting to explore the range of rates that these LEFs would bind and unbind to DNA, as
this is what drives the chromatin compaction activity. While this work is simply theoretical
and speculatory, there have been other publications that suggest that these findings would
support their conclusions regarding reinforced loop extrusion activity {[1], [23], [30]}. The
exposure timescales of LEFs will be further explored in the next chapter.

3.5 Discussion

There are several kinetic rates that drive loop extrusion activity. These include the rates of:
loop division, death, LEF processivity, and LEF separation. Through the use of continuous-
time Markov chains, these rates can be utilized in stochastic equations to model chromatin
activity depicting the shape, size, and stability of chromatin loops. The behaviour of LEFs
can be modelled with the help of the Immigration-Death process, the Gillespie algorithm,
and the burst model. What is novel is that existing binding kinetics have been tested against
the burst model to determine how this can be used to show the fluctuations in LEF stacking
to reinforce chromatin loops. This can allow for further simulations to be conducted when
experimentation becomes limited.

The Immigration-Death model is appropriate to model chromatin loop division and loop
death due to the manner in which it allows an LEF to transition from one state to another.
The traditional Birth-Death model is not appropriate, because LEF binding activity is sus-
pected not to be dependent on the current number of LEFs on the extruded loop based on
the potential stacking ability to stabilize a loop [30]. Loop death, however, is dependent on
the number of LEFs bound to the loop since it is less likely to die when it is reinforced by
several LEFs. Goloborodko et al [30] have discussed how the rates of binding and unbinding
of LEFs are also dependent on environmental factors. In the Immigration-Death model, one
thing that was not consistent between the rates of division and death, and the rates of bind-
ing and unbinding is the specificity of the location of DNA in which this occurs. While the
rate of loop division is dependent on the number of LEFs bound to DNA, it is not specific
to the location of DNA in which it is bound. The only influence of spatial location of these
LEFs is addressed in the LEF separation. However the affinity of the DNA is not considered.
This could be that once the LEF has stably bound to DNA, the aspect of the specificity was
already taken care of. Thus, the specificity of the rates of loop division and loop death is not
required as a factor in these rates. The number of loops extruded has already included both
of these rates in the same equation. Therefore, this should be treated as a whole system,
rather than as separate components when considering the complete process of chromatin
looping.

One idea that was explored was the activity of multiple LEFs bound to the chromatin loop
extrusion. When there were more LEFs bound to the system, it was difficult to observe
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whether this would have increased loop extrusion activity due to the amount of noise gen-
erated from the IDP. The number of LEFs may only affect the strength of the loop rather
than its activity. It may be that the residence time of the loop has a greater influence on
the loop extrusion activity. Some factors that can be individually explored within the rates
would be whether the specific components such as the sequence of DNA on the loop would
promote an increased velocity of loop extrusion. If only specific DNA sequences should be
extruded from the loop, this would raise questions on the kind of information stored during
the chromatin loop process, and what information is lost should it not be extruded.

A dynamical model was proposed by Brackley et al [13] where a molecular slip link might
organize chromosomal loops. It was shown that diffusive sliding of cohesin explains the
experimentally observed bias favouring convergent over divergent CTCF loops. Second, the
probability of formation of cohesin/CTCF-mediated loops does not obey a power law, in
stark contrast with the case of polymer loops in thermodynamic equilibrium. Finally, when
multiple links slip links bind to chromatin at a “loading site” rather than randomly, a ratchet
effect arises, which favours the formation of much larger loops than are possible with single
slip links. These observations were dependent on their assumption that that the cohesin
binding kinetics violate detailed balance, which is motivated by the fact that its loading and
unloading requires ATP. While these observations were not incorporated into our current
model, it is still important to consider in future experimental observations. Since this is
only one perspective on external factors that influence chromatin organization, it may not
be valid for all LEF candidates for active loop extrusion. Nonetheless, it is still important
to consider in the future, when there is more extensive experimental observations that can
validate its inclusion for the kinetic rates that motivate chromatin looping.

Based on the parameters that contribute to the rates of loop division and loop death estab-
lished by Fudenberg et al. [23], they have deduced that LEF stacking activity are based on
LEF processivity and LEF separation. It was discussed that the protein link between each
binding domain leads to extrusion of a DNA loop. This association of machines and DNA,
known as infinite processivity, forms a disordered distribution of small loops. However, if
dissociation of the machine and DNA occurs, known as finite processivity, highly stable and
large DNA loops are formed with few fluctuations. The importance of LEF processivity is
similar to that discussed by Brackley et al [13] where LEF sliding propels the formation of
chromatin loops, rather than the actual binding of LEFs. Bonato et al have used Brownian
dynamics to study the diffusive sliding of molecular slip links, thus mimicking the behaviour
of cohesin molecules [8]. They have proposed that diffusive sliding is sufficient to explain
the chromatin loop extrusion of hundreds of kilo-base pairs, which may then be stabilised by
interactions between cohesin and CTCF proteins. The loop extrusion rate, or processivity
here has shown that the rates of the immigration-death process are crucial in the formation
of stable chromatin loops. From the burst model, the actual rate of binding and unbinding
had a small impact on the behaviour of chromatin organisation.

The specificity of binding to the strand of DNA to allow for loop extrusion to occur should
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be incorporated into the model, based on the work that has already been established for
potential LEF candidates. While it seems that the actual LEF processivity will propel
the model, it may be that the LEF specifically will promote processivity based on specific
sequences that need to be conserved in the strand of DNA. This will influence the fluctuation
caused by the immigration-death model of the stability of the loops. In a similar manner,
factors that promote the rate of loop formation, or loop extrusion, should be further examined
and included in the model. There are some limitations in the rates of division and death
as derived by Golobordko et al [30]. Some research has explored the possibilities of ATP
propelling loop formation, which may need to be included into the rates. Given the presence
of ATP, this may increase the rate of loop extrusion.

In our model, the burst model would appropriately support Brackley et al’s [13] experimental
observations. In the nonequilibrium model, it would appropriately show that upon binding
of an LEF onto a strand of DNA, it does not necessarily mean loop extrusion will occur. The
sliding rate is more dependent on loop formation and degradation. Although the individual
rates of loop binding, unbinding, division, and death were fixed, the Gillespie algorithm
allowed for varied results for each run. The shape of the data was not necessarily duplicated
in the next simulation run. This allowed for a better interpretation of the random output
that can be yielded. The nonequilibrium model will also allow for a better interpretation of
real world behaviour, as the loop behaviour may vary according to what kind of information
in stored in a chromatin loop and for what purpose that loop serves.

An external factor that may influence chromatin looping activity with cohesin as a potential
LEF is the influence of chaperone enzymes. It was determined by Garcia-Luis et al [26] that
the role of cohesin in chromosome organization requires the histone chaperone FACT (‘fa-
cilitates chromatin transcription’) in yeast. It was determined that FACT interacts directly
with cohesin, and is dynamically required for its localization on chromatin. Depletion of
FACT in metaphase cells prevents cohesin accumulation at pericentric regions and causes
reduced binding on chromosome arms. This implies that without the presence of FACT,
cohesin would not be stabilized, and would not be able to extrude the cohesin loop, even if it
is bound on the strand of DNA. This is was represented in some of the burst model experi-
mentation, where the LEF may be bound, or “ON” , in the model, but does not perform any
immigration-death activity to extrude the loop. This implies that an external factor may
influence the extrusion activity in terms of the sliding rate, as the cohesin must be stabilized
by the histone chaperone in order to perform its activity.

The binding behaviour of cohesin in human cells was analyzed by Holzmann et al [32]. They
have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL
and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence
recovery after photobleaching in HeLa cells. It was determined that if cohesin extrudes
loops of chromatin, it is possible that it does so without topological entrapment, raising the
possibility that two populations of cohesin exists in cells, one that is competent for loop
extrusion and the other for cohesion. The number and position of TADs and loops does not
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difer significantly between G1 and G2 cells, that is chromatin architecture does not detectably
change even though many cohesin complexes are stably bound to chromatin in G2. They
deduced that considering around half of chromatin-bound cohesin is stably-bound in G2 and
may not function in loop extrusion, they needed further analysis with LC-MS, FCS and
FRAD data to compare the number of dynamically chromatin-bound cohesin complexes in
cells synchronised in G1 and G2. They deduced that either stably-bound cohesin participates
in genome organisation in some way - without any of the changes in chromatin structure
observed following WAPL depletion - or the two-fold increase in DNA content in G2 must be
organised by relatively fewer cohesin complexes. In our burst model, this was demonstrated
in the non-equilibrium model where the rate of LEF binding was greater than the rate of
LEF unbinding. This showed behaviour where LEF bound did not exhibit loop extrusion
activity. This also enforces that the steady-state assumption does not apply when modelling
the behaviour of LEF loop extrusion activity. The assumption that every LEF bound to
DNA will perform loop extrusion activity will also not be applicable when creating a model.
Therefore, the burst model with non equilibrium binding characteristics is well supported
by current assumptions in chromatin organization.

3.6 Future directions

The kinetic rates of LEF binding are still speculatory in today’s research and more work
is needed to confirm proposed models. In this research however, it was determined that
the given evidence was appropriate in supporting the present literature that explores the
behaviour of chromatin formation. Although, it is acknowledged that this model contains
assumptions that may not hold true in the future. There could be other key factors or steps
that are crucial in modelling the chromatin compaction process that are not in this current
model.

The specificity of binding of an LEF to extrude the loop should also be incorporated into
this model. Since it is difficult to identify a potential enzyme that acts as the known char-
acteristics of an LEF, it is challenging to assign the chemical properties that should be
included in this model. In addition, it has been speculated that loop extrusion is driven
by post-translational modifications, ATP concentration, etc. The purpose of the specific
loop extruded should also be considered, such that perhaps the type of DNA sequences it
contains may be more conserved than other genetic information. This could serve some
purposes such as transcription, gene modification, duplication, etc. More experiments are
required to support the motivation that drives loop extrusion.

There are now robust methods for evaluating likelihoods for realizations of Birth-Death
processes: finite-time transition, first passage, equlibrium probabilities, and distributions of
summary statistics that arise commonly in applications. Recent work has also exploited the
connection between continuously- and discretely-observed BDPs to derive EM algorithms for
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maximum likelihood estimation. Likelihood-based inference for previously intractable BDPs
is much easier than previously thought and regression approaches analogous to Poisson
regression are straightforward to derive [17]. As these tools are starting to develop, this
can be applied to the future for the Immigration-Death model to optimize the loop divison
and death rates. Given the limited observed data able to predict these parameters, it is not
possible to obtain an accurate representation of the model currently. However, when the
tools become available to observe the chromatin looping procedure to gain a comprehensive
understanding of its organization, this will provide more insight in the rates of LEF behaviour
for chromatin loop organization.

As discussed, there has been recent extensive research toward examining the specific drivers
involved in the chromatin looping process. Racko et al [56] have shown that growing plec-
tonemes resulting from transcription-induced supercoiling have the ability to actively push
cohesin rings along chromatin fibers. This evidence supported earlier explanations proposing
why TADs flanked by convergent CTCF binding sites form more stable chromatin loops than
TADs flanked by divergent CTCF binding sites. It was proposed that transcription of eRNA
(enhancer RNA) sends the first wave of supercoiling that can activate mRNA transcription
in a given TAD. If this is true, then the effect of supercoiling should be introduced into the
burst model to add additional components to account for potential transcription activity
that may propel the chromatin looping process. This may add more steps to the model, so
that looping activity can be controlled depending on specific factors. This implies if this
model were true, that chromatin fibers passing through cohesin rings experience significant
hydrodynamic drag limiting their free rotation [56]. This decreases the diffusion rate of co-
hesin. Should all LEFs behave in this manner in which some external factors will influence
their kinetic rates, some variable should be included to account for these influences.

3.7 Conclusion

Several CTMC models were successfully applied to predict the binding behaviour of LEF to
DNA for chromatin loop formation. The immigration-death model was able to predict the
stability of chromatin loops, with the aid of the Gillespie algorithm to simulated its binding
activities. The burst model was able to show the trajectory of an LEF upon binding to
DNA to the actual loop extrusion procedure. It was determined that the non equilibrium
model was able to show the real application of chromatin behaviour since the potential LEF
candidates do not follow the equilibrium assumption. For future development of this model,
external factors that contribute to the loop extrusion kinetic rates should be incorporated
into the model to account for different LEF candidates.
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4 Theoretical Exposure Time for Loop Extrusion

4.1 Abstract

The presence of nucleosomes on a strand of DNA can impact loop extrusion factor activity
by hindering its binding behaviour. The exposure timescale of LEF binding to a strand of
DNA was derived, and verified through simulations. The specificity of binding is considered
in the kinetic rates to include sequence specifications to promote loop extrusion activity.
The impact of nucleosome activity impedes LEF binding and extrusion behaviour. Further
research is required to fully understand the barriers in loop extrusion activity and the extent
of what controls their activity, however this provides a preliminary understanding of how
LEF activity is impacted by the presence of other enzymes on a strand of DNA.

4.2 Introduction

The topology of chromosomal DNA molecules is controlled by cell processes that have yet
to be fully understood. One theory is that there is some external loop extrusion factor that
organizes chromatin structure. This loop extrusion factor may bind to DNA on a specific
sequence site in order for extrusion to occur. There are several other factors bound to DNA,
or may bind to DNA, that may impede loop extrusion activity. In this chapter, the amount
of time this specific sequence site remains exposed and ready for binding, is explored. Since
nucleosomes share the same environment as LEFs, the impact of their presence on the strand
of DNA is also explored for loop extrusion activity. This can play a role in transcription
regulation, as loop extrusion extrudes some genetic information for storage.

Nucleosomes perform DNA packaging functions in eukaryotes, consisting of a segment of
DNA wound in sequence around eight histone protein cores [3]. This is often visualized as
thread wrapped around a spool (Figure 4.1). LEFs, on the other hand, also interact with
DNA, but they pull DNA fiber into a loop through specific contacts with its protein scaffold.
Since both nucleosomes and LEFs may be present on a single strand of DNA at the same
time, one may wonder how they may perform similar functions in parallel.
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Figure 4.1: Diagram of nucleosome structure. The left of the arrow shows the “beads on
a string” view of the nucleosome, whereas the right of the arrow depicts the side view of a
nucleosome

An example of an LEF that has been studied in conjunction with the presence of nucleo-
somes is cohesin. It was discussed previously that one of the conditions for cohesin loading to
achieve chromatin remodeling is nucleosome-free DNA [49]. There is a correlation between
chromatin remodeling and cohesin loading onto chromosomes, which describe the entry point
by which cohesin accesses DNA in the context of chromatin [49]. Based on this, it is impor-
tant to consider the presence of nucleosomes when deriving the theoretical exposure times
for LEF binding to DNA. It was also established under single molecule microscopy that co-
hesin can undergo rapid one dimensional diffusion along DNA, but individual nucleosomes,
nucleosome arrays, and other protein obstacles significantly restrict its mobility [67]. It was
also determined that cohesin prefers binding to A-T rich sites, therefore when considering
its binding behaviour its sequence dependence should also be considered.

The impact of nucleosome presence for LEF extrusion factor mechanisms becomes important
to understand both biological and mathematical perspectives to determine the extent of
their impact for modelling purposes. Whether a nucleosome free section of DNA becomes a
requirement for proper LEF binding could be significant for defining the probability of loop
extrusion.

4.3 Materials and Methods

4.3.1 Random Walks in Chromatin Organization

The Gillespie algorithm is often used to model chemical reactions, which includes the be-
haviour of Markovian random walks in particle number space. In the previous chapter, the
Gillespie algorithm was used to model the behaviour of LEF binding on DNA to promote
loop extrusion activity. The burst model showed the significant trends in which the LEF
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binding may promote activity. In the previous chapter also, the burst model was used to
show the significant trends of the IDP in a bursty manner. This showed LEF binding on a
continuous time scale. In this case, the random walk will be presented to show on a discrete
time scale how LEF binding may be modelled on a specific sequence of DNA. This will be
used later when analyzing the behaviour of LEF binding and how its binding activity may
be affected in the presence of nucleosomes.

4.3.2 Transition Rates

In the previous chapter, the burst model was explored and applied to chromatin loop orga-
nization. This behaviour is also comparable to a random walk model. Recall in Figure 3.1,
the M/M/∞ queue was illustrated as a Markov chain to model the IDP. This describes a
stochastic process, where a sequence of possible events in which the probability of each event
depends on the state attained from the previous event. A random walk is also a stochastic
process that describes a path that consists of a succession of random steps on some mathe-
matical space such as the integers. A random walk occurs in discrete time intervals, whereas
the IDP occurs in continuous time. By examining the behaviour of LEF binding in the IDP
in the previous section, there are some interesting properties that connect the random walk
model and the IDP for the LEF behaviour in chromatin compaction. This was modelled
on several occasions to represent ion-channel gating behaviour [47], where there is one open
state as an absorption state, and either one or several closed states. The purpose of present-
ing the random walk in this case is to demonstrate how upon binding of an LEF for loop
extrusion activity, the LEF may not remain in this state such that the LEF may become
stacked, and the state of the loop will “walk” or wander away from its original exposed state.
This may allow for the loop formation for chromatin compaction.

The transition behaviour of the IDP is analogous to a random walk with the difference
that the transitions occur at random times, as opposed to fixed time periods in random
walks. To begin implementing the random walk model, consider Figure 4.2 depicting the
LEF reinforcement model,

Figure 4.2: Random walk of LEF binding
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The illustration may be represented mathematically by a master set of equations:

dpLn

dt
= (2α + nβ)pLn−1 − ((n− 1)β + α)pLn

dpLk

dt
= (k − 1)βpLk−1

+ (n− k)αpLk+1
− ((n− k)α + (k − 1)β)pLk

dpL1

dt
= βpL2 − nαpL1 ,

(4.1)

where pn(t) denotes the probability of occupying any state at time t, and k ∈ (1<k<n).

Since random walks are represented in discrete time, the total probability is conserved and
the rate of probability redistribution is determined by the set of transition rate constants.
A compact formulation of the master equation is then given by,

d

dt
P (t) = P (t)A (4.2)

The transition probability matrix is given by the following Matrix A:

A =



−nβ α
nβ −((n− 1)β − α) 2α

(n− 1)β −(2α + (n− 2)β)
(n− 2)β

. . .

(n− 1)α
−((n− 1)α + β) nα

β −nα


(4.3)

where the solution to this matrix would be P (t) = exp(At).

For this rate scheme, standard Markov analysis yields the average times for when the strand
of DNA is occupied by an LEF, or when it is exposed, as given by the following equations,

E[TO] = 1/(nβ),

E[TL] =
(α + β)n − αn

nαnβ

(4.4)

For n > 1, when there is more than one LEF present on the loop and the state moves by
chance to the left toward the stable loop state, rate constants become progressively slower.
Thus, the average “dwell time” in states L0 or L1 is much longer than the dwell time in state
Ln or Ln−1. In the limit as n→∞, this model converges to power-law distributions of dwell
times. Because this scheme follows the Markov assumption of memoryless performance, we
are able to simulate the behaviour of such LEFs using the Gillespie algorithm.
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The Gillespie algorithm is conducted by choosing an exponentially distributed random num-
ber for the dwell time that accounts for all of the possible transitions out of the current
state, which uses the sum of the transition probabilities. After the length of the dwell time
in the current state is determined, the destination state is selected by choosing a uniformly
distributed random variable on an approximated partitioned interval. This will be observed
in the later section when conducting simulations regarding the behaviour of LEF binding.

4.3.3 Random Walk Application: LEF Binding

In Section 3.3, the binding behaviour of LEFs was described with the burst model. This
behaviour may also be described with a random walk model, as introduced above in a
different context, such that the impact of the search time of the LEF upon binding DNA is
explored. This will later become impactful when considering the exposure time of DNA for
LEF binding in the presence of nucleosomes. The random walk model is derived by explaining
the search time of LEF on DNA, how it impacts protein-DNA binding energy, then finally
the mean first-passage time is presented. The theoretical random walk is presented here to
gain an understanding of the movement of the LEF on a strand of DNA. Simulations for
this behaviour will be presented in the later section in presence of nucleosomes.

Previous work conducted by Slutsky [66] discussed the problem of how a protein finds its
target site on DNA. When a protein binds to a DNA site, it binds via three-dimensional diffu-
sion, and hits the right site of the target DNA. If a protein performs both three-dimensional
(3D) and one-dimensional (1D) diffusion, then the total search process can be considered as
a 3D search followed by binding DNA and a round of 1D diffusion. Upon dissociation from
the DNA, the protein continues 3D diffusion until it binds DNA in a different place, and the
cycle continues.

The search time is explored first to describe how upon LEF binding, it may slide on the
strand of DNA to find a specific sequence of DNA prior to extruding a loop. This process
would then include N rounds of 1D searches which each take τα,i, where i = 1, ...N , separated
by rounds of 3D diffusion (τβ,i). The total search time is the sum of the times of individual
search rounds:

ts =
N∑
i=1

(τα,i + τβ,i) (4.5)

The total number N of such rounds occuring before the target site is eventually found is
very large, so probability distributions are required. One simplification that can be made
is for τβ,i, where it is replaced by its average τβ. This is valid when the distribution of 3D
diffusion times inside the DNA nucleoid is sufficiently narrow. Each round of 1D diffusion
scans a region of n sites, where n stems from some distribution p(n). The time τα(n) it takes
to scan n sites can be obtained from the exact form of the 1D diffusion law. If, on average,
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n sites are scanned in each round, then the average number of such rounds to find the site
on a strand of DNA of length M is N = M/n̄. Equation 4.5 can now be substituted with
these average values to obtain the following,

ts(n,M) =
M

n̄
[tα(n) + τ̄β] (4.6)

As observed from this equation, when n̄ is small, then ts(n̄,M) is large. When n̄ is small,
this implies that very few sites are scanned in each round of 1D search and a large number
of rounds are required to find the site. Conversely, if n̄ is large, more time is spent scanning
a single stretch of DNA, which would render the search inefficient.

The binding potential is now explored for its implications in the random walk. When diffusing
along DNA, the LEF may experience different binding potential U(~s) at every site ~s it
encounters. The energy of the protein-DNA interaction requires consideration from both
specific and non-specific binding, as discussed in the previous chapter. This is portrayed in
the following equation, where ~s describes a DNA sequence of length l.

Ui = U(~s = si, ...si+l−1) + Ens (4.7)

The non-specific binding energy Ens arises from interactions that do not depend on the DNA
sequence that the LEF is bound. The specific part of the interaction energy exhibits a strong
dependence on the actual sequence. For example, cohesin loading possesses an affinity for A-
T rich sequences [10]. Energy is referred to the change in the free energy related to binding,
∆Gb.

The energy of specific protein-DNA interactions can be approximated by a weight matrix,
where each nucleotide contributes independently to the binding energy,

U(~s = si, ...si+l−1) =
l∑

j=1

ε(j, sj) (4.8)

where sj is a base-pair in position j of the site and ε(j, x) is the contribution of base-pair x
in position j. For a sufficiently long site, the distribution of the binding energy of random
sites can be closely approximated by a Gaussian distribution with a certain mean 〈U〉 and
variance σ2 [66]:

f(Ui) =
1√

2πσ2
exp
[
− (Ui − 〈U〉)2

2σ2

]
(4.9)

By combining all of these concepts, it is observed that the whole DNA molecule can be
mapped onto 1D array of sites {~s}, each corresponding to a certain binding sequence com-
prising bases from the ith to the (i + l − 1)th, where l is the length of the motif. The
random walk is thus observed becauses there is a probability pi of moving forward one site
i + 1 and a probability qi to moving backward one site i − 1. These probabilities depend
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on the specific binding energies Ui, Ui+1, and Ui−1 at the ith site and at the adjacent sites,
respectively. These are proportional to the corresponding transition rates, wi,i+1, and wi,i−1.
The transition rates can be represented by the following equation,

wi,i±1 =

{
νe−β(Ui±1−Ui) if Ui±1>Ui

ν otherwise
(4.10)

where ν is the effective attempt frequency, β ≡ (kBT )−1, kB is the Boltzmann constant
and T is the ambient temperature. This is a one-dimensional random walk with position
dependent hopping probabilities,

pi =
wi,i+1

wi,i+1 + wi,i−1

qi = 1− pi
(4.11)

Recall Figure 4.2, where the random walk model is depicted in terms of compartments.
Figure 4.3 is now shown to illustrate the random walk model graphically given the hopping
probabilities from Equation 4.11. The behaviour of the plot shows the change of the binding
potential, where each Ui is represented differently for each base pair on a strand of DNA.
This plot was illustrated to demonstrate how the random walk model can effectively show
the fluctuations of the binding potential on a DNA strand. Parameters were chosen based
on the previous publication by Eeftens et al [20] that examined the behaviour of condensin.

Figure 4.3: Random walk model of binding potential

As proposed by Eeftens et al [20], condensin compacts DNA in a stepwise manner. As
one of the proposed LEFs includes condensin, the random walk is suitable to propose the
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compaction behaviour of chromatin. This figure is also similar to what was observed by
Kurkcuoglu and Bates [43] for cohesin. This random walk plot parallels the behaviour of
the flutuations depicting the functional sites of cohesin loading with respect to the hinge
and coil structure of cohesin. The higher binding potential correspond to that of the coil
structure of cohesin, where they will exhibit higher mobility than that of the head and
hinge regions. However, it was noted that in this study one limitation is that existing
modeling techniques are incapable of accurately constructing the long coiled-coil arms based
on amino-acid sequence. Nonetheless, it is observed here that the random walk model is able
to duplicate the results as predicted for the sequence binding kinetics of a proposed LEF,
cohesin. Additionally, this will further emphasize the importance of binding specificity of
the LEF on the strand of DNA. Therefore, the structural properties of an LEF should be
considered when constructing a mathematical model for chromatin loop behaviour.

4.3.3.1 Mean First Passage Time of the Random Walk

One property of the random walk is that it is dependent on the probabilities {pi} of either
stepping left or right. The mean first-passage time (MFPT) is now presented. It is noted
that it can be further used to derive the diffusion law, however we will focus on the MFPT
to observe the random walk behaviour. The diffusion law may be useful to illustrate protein
sliding along the DNA given the sequence-dependent binding energy.

The MFPT is calculated from site 0 to site L, defined as the mean number of steps the LEF
needs to make in order to reach the site L for the first time. This was described in more
detail in a previous publication [66]. A summary of this concept, and an extension for LEF
binding is presented.

Let Pi,j(n) denote the probability to start at site i and reach site j in exactly n steps. Then,

Pi,i+1(n) = piTi(n− 1) (4.12)

where Ti(n) is defined as the probability of returning to the ith site after n steps without
stepping to the right of it. All of the paths contributing to Ti(n− 1) should now start with
the step to the left and then reach the site i in n− 2 steps, not necessarily for the first time.
Thus, Ti(n− 1) can be written as,

Ti(n− 1) = qi
∑
m,l

Pi−1,i(m)Ti(l)δm+l,n−2, (4.13)

where δm+l,n−2 denotes the left jump site probability for the site i at n − 2 steps. The
following generating functions, P̃i,j(z) =

∑∞
n=0 z

nPi,j(n) and T̃i(z) =
∑∞

n=0 z
nTi(n), can be

used to show that

P̃0,L(z) =
L−1∏
i=0

P̃i,i+1(z) (4.14)
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This now eases the MFPT calculation with the following,

t̄0,L =

∑
n nP0,L(n)∑

n

P0,L(n) =
[ d
dz

lnP̃0,L(z)
]
z=1

=
L−1∑
i=0

[ d
dz

lnP̃i,i+1(z)
]
z=1

(4.15)

Using Equations 4.12 and 4.13, the following recursion may be obtained,

P̃i,i+1(z) =
zpi

1− zqiP̃i−1,i(z)
(4.16)

To solve for t̄0,L, we must introduce boundary conditions. Let p0 = 1, q0 = 0, which is
equivalent to having symmetry occur at i = 0. This gives,

t̄0,L =
L−1∑
i=0

P̃ ′i,i+1(1) (4.17)

The recursion relation for P ′i,i+1(1) may be obtained from Equation 4.16 to yield,

P ′i,i+1(1) =
1

pi
+
qi
pi
P̃ ′i−1,i(1) = 1 + αi

[
1 + P̃ ′i−1,i(1)

]
(4.18)

where αi ≡ qi/pi. Thus, the expression for t̄0,L is obtained in closed form

t̄0,L = L+
L−1∑
k=0

αk +
L−2∑
k=0

L−1∑
i=k+1

(1 + αk)
i∏

j=k+1

αj (4.19)

This gives the MFPT in terms of a given realization of disorder producing a certain set of
probabilities {pi}, whereas we are interested in the behaviour average over all realizations of
disorder. The cumulative products in Equation 4.19 reduce to the two form eβ(Ui−Uj), which
after being averaged over uncorrelated Gaussian disorder produce a factor of eβ

2σ2
. After

the summations are carried out, the expression for MFPT becomes for L>>1,

〈t̄0,L〉 ' L2eβ
2σ2

(4.20)

The aim of this section was to describe the random walk model for when an LEF will find the
optimal section of DNA to extrude a loop. In the next section, MFPT will be described in
terms of the exposure timescale of the DNA strand. The binding of an LEF is now explored
in terms of the theoretical timescale in which the DNA remains exposed and available for
LEF binding in the presence of nucleosomes.
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4.3.4 Derivation of Exposure Time on Chromatin

Previous work by Parmar, et al.[54] investigated the theoretical estimates of exposure
timescales of protein binding sites on DNA regulated by nucleosome kinetics. A theoret-
ical method to estimate the time of continuous exposure of binding sites of non-histone
proteins along any genome was investigated. It was concluded that exposure timescales are
determined by cooperative dynamics of multiple nucleosomes, and their behaviour is often
different from expectations based on static nucleosome occupancy. Drawing inspiration from
the concepts proposed in this paper, these will be further modified and applied to loop
extrusion activity.

While it is unknown which enzymes are actually LEFs, it was proposed in other work that
LEFs are structural maintenance of chromosome (SMC) protein complexes, in particular
cohesin during interphase. Cohesin topologically entraps DNA then slides along the strand,
and over small DNA-bound proteins and nucleosomes. It is enriched at TAD boundaries
and corner peaks [53]. In addition, it was shown in vitro that a closely related SMC, yeast
condensin, has ATP-dependent motor activity, and growing loops were directly visualized
[25]. By comparing the looping behaviour of LEFs and nucleosomes conceptually, they
may mathematically be modelled in a similar manner. There are several similarities and
differences between the behaviour of LEFs and nucleosomes, therefore the previous work
done for nucleosomes [54] may be adapted to loop extrusion activity with some similarities.

Nucleosomes organize the eukaryotic genome into chromatin, where nucleosome assembly
in cells rely on the activity of histone chaperones. Nucleosomes are modular and dynamic
structures composed of an octameric core of histone proteins, wrapped by 147 bp of DNA.
These histones act as spools around which DNA winds, and plays a role in gene regulation.
These histones wind the DNA in chromosomes. Histone modifications are what drive the
gene regulation, in that this is regulated by histone acetylation and deacetylation activity.
Acetylation transforms the condensed chromatin into a more relaxed structure that is asso-
ciated with greater levels of gene transcription. A conserved ATPase motor is also able to
increase nucleosome sliding activity along DNA. Therefore, nucleosome activity is stochastic,
and includes binding, diassembling, and sliding along DNA.

The specific location of these nucleosome kinetics are important to consider mathematically.
For example, disassembly of nucleosomes is known to be important for exposure of TATA sites
in promoters, while dynamics of binding nucleosomes is likely to influence the assembly near
the transcription start site. Sliding of nucleosomes as well as partial wrapping/unwrapping
of DNA at nucleosome edges may also contribute toward creating exposed regions along
DNA. These factors affect gene expression of DNA in different ways.

In the case of loop extrusion, the LEF may behave in a similar manner to histones. LEFs are
able to bind to an exposed section of DNA and compact it through loop extrusion. Histones
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perform this function by winding the DNA. Since LEFs bind to DNA in the presence of
nucleosomes, as well, the nucleosome activity is also included in this model. The presence
of boundary elements are also present on the strand of DNA. Once a boundary element has
attached onto a strand of DNA at its specific site, this will halt the loop extrusion process.
These factors are also present on the same strand of DNA in which nucleosomes are present.
This is illustrated in Figure 4.4.

Figure 4.4: Loop extrusion in the presence of nucleosomes

The rate of binding and unbinding enzymes from chromatin can now be explored. It was pre-
viously discussed by Parmar et al [54] that the effect of spatial heterogeneity in histone-DNA
interaction is captured through spatially varying off-rates. There are many different enzymes
that are capable of binding to DNA, and influencing the rate of unbinding from DNA. This
includes LEFs and nucleosomes activity. For the purpose of this investigation, only these
two enzymes will be the main focus. The rate of unbinding is explored, as it is expected
that they will unbind in a similar fashion. To clarify, they may not necessarily unbind at
the same rate, but they are sequence-dependent in their rate of unbinding. Therefore, the
unbinding rates (koff) for nuclesomes and LEFs can be generalized with Equation 4.21.

k
(i)
off = konexp

{(
Vi + Ui
kBT

)}
(4.21)

where

• Vi = −kBT ln(Pi) represents the sequence-dependent effective potential

• Ui represents ATPases, histone modifications, histone exchanges or DNA methylation
that modifies enzyme stability

While this represents a generalization of the unbinding rates for sequence specific unbinding
of nucleosomes and LEFs, it does not imply they will unbind at the same rate. The factors
Vi and Ui influence the specific location and state of the enzyme, in that they may not
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be unbinding at the same location, or as easily. The value of Vi is obtained from the
previous work conducted by Kaplan et al. [37] representing the nucleosome-DNA binding
affinity between sites i and i + k − 1 in the presence of basal remodelling activity. The
value kB represents the Boltzmann constant in Vi, and the value T represents the absolute
temperature, in K. Their work allows for one to be able to acquire the relative affinity, which
represents the probability Pi that an enzyme starts at the ith bp. The value of Ui denotes the
remodelling activity that may occur from locally recruited ATPases, histone modifications,
histone exchange, or DNA methylation, to name a few. The magnitude of Ui being positive
or negative would result in lesser or greater local stability of the enzyme attached to the
DNA.

4.3.5 Mean First-Passage Time of DNA Exposure

The mean first-passage time (MFPT) was explored in Section 4.2 to describe the specificity
of LEF binding on a strand of DNA. The MFPT may also be calculated to represent the
amount of time a specific section of DNA may stay exposed and available for LEF binding.
This is derived here to show the impact of external factors on LEF activity.

The MFPT was previously derived by Parmar et al [54] for nucleosome activity in the
presence of transcription factors. In this case, this will be modified for the purpose of
incorporating the presence of LEF binding, which may be represented mathematically in a
similar manner. Rather than the binding of transcription factors, this will explore the binding
of LEFs. From the open state, two events are possible: binding of an LEF or binding of a
nucleosome. Upon LEF binding, the first passage happens, while if a nucleosome binds, the
first passage is delayed by additional mean time T closef . Therefore, we obtain

T openf =
1

k
(n)
on + k

(c)
on

+
k

(n)
on

k
(n)
on + k

(c)
on

T closef , (4.22)

where k
(n)
on and k

(c)
on represent the binding rate of nucleosomes and LEFs, respectively. Simi-

larly, from the closed state, the only possible event is nucleosome unbinding, and there is a
subsequent delay of mean time T openf . This gives,

T closef =
1

k
(n)
off

+ T openf , (4.23)

and k
(n)
off represents the unbinding rate of nucleosomes. Rearranging the above equation to
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isolate for T openf gives,

T openf =
1

k
(c)
on

(
1 +

k
(n)
on

k
(n)
off

)

T closef =
1

k
(n)
off

+
1

k
(c)
on

(
1 +

k
(c)
on

k
(c)
off

) (4.24)

In case at t = 0, the site may be either open or closed by the nucleosome, the MFPT Tf
would be a weighted average of T openf and T closef , such that

Tf =
k

(n)
off T

open
f + k

(n)
on T closef

k
(n)
on + k

(n)
off

(4.25)

Although it was observed from Equation 4.24 that T openf depends only on the ratio k
(n)
on /k

(n)
off ,

which can be predicted through the nucleosome occupancy, the same is not the case for T closef

or Tf . Moreover, when Parmar et al [54] analyzed the full probability distributions of the

open and closed states, they determined that those depend on individual values of k
(n)
on and

k
(n)
off , and not just the ratio k

(n)
on /k

(n)
off . Thus, the protein binding histories will be distinct for

different nucleosome kinetics.

By deriving the MFPT for the exposure time of DNA, these concepts may be introduced
into the theoretical exposure timescales of LEF binding in the presence of nucleosomes in
different scenarios for binding. In the next section, the specific area of LEF binding is
considered when determining the factors contributing to LEF binding.

4.3.5.1 Distribution length of DNA strand

If the length of DNA, l, is not held fixed but drawn from a distribution Pin(l), the mean
exposure time Tav of the m-patch would be a weighted average over the mean times Tl.

Tav =
∑
l≥lmin

Pin(l)Tl (4.26)

If no experimental bias is introduced, Pin(l) is expected to be the steady state gap distribu-
tion, which is an exponential function. If the distribution of the initial nucleosome location
(l) from the barrier is chosen in steady state, then the initial gap distribution is equivalent
to the gap distribution in steady state, which is denoted by Pss = (1 − C)C l for l ≥ 0 and
Pss = 0 for l<0. The constant C is determined by the ratio between the dissociation rate to
binding rate, as given by

koff

kon

=
Ck

1− C
(4.27)
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which was described by Parmar et al [54]. This distribution is introduced in the theoretical
derivations to demonstrate the impact of how the length of the DNA is not held fixed.

The length of the DNA strand is not the only factor that may not be held fixed. Depending
on environmental factors, the kinetic rates of the enzymes binding and unbinding to the
strand of DNA can also be derived from a distribution. These equations are further derived
in the following section.

4.3.6 LEF Exposure Cases on DNA

To begin investigating the binding kinetics, one must consider whether the enzyme is binding
in a specific, or non-specific manner. As observed from the previous chapter, an LEF may
bind to the strand of DNA, but may not extrude a loop. However, since the exposure time
of the specific patch of DNA is investigated here, these kinetics must be considered. In the
case of non-specific binding, then the on-rate (kon) may simply be given by Equation 4.28,
where k0 is merely some constant. This will apply for both LEF and nucleosome non-specific
binding kinetics.

kon = k0 (4.28)

However, we suspect that LEFs may bind to DNA on specific nucleotide sequences. This case
will not apply to nucleosomes, as nucleosomes may bind to DNA non-specifically then slide
to the promoter site whereupon it will commence winding the strand of DNA. An example
of a possible LEF that binds to DNA specifically is cohesin, in which its loading complex has
been found at A-T rich DNA both in vitro and in vivo [10]. Therefore, it is assumed that
specific binding may also occur for some LEFs. The rate of specific binding is then given by
Equation 4.29.

kon = k0e

(
Vi+Ui
kBT

)
(4.29)

To begin exploring the effect of these binding kinetics on the exposure timescales of the
target DNA, several cases are considered. These cases are modified from the previous work
performed by Parmar, et al. [54]. However, there are other factors and considerations
included in our model. Since nucleosomes are able to bind, dissociate, and slide from DNA
that may affect the exposure time, this information must be included as factors that may
contribute to LEF binding. It is assumed that the rate of nucleosome sliding is constant and
non-specific. The four cases of binding activity that will be explored is illustrated in Figure
4.5. Note that the target patch will be on the right side of N1. Should the equations be
visualized as the patch on the left side of N2, the distances to the left will be negative. For
consistency and simplicity, the distances to the right of N1 will be shown.

In Figure 4.5, there are several cases that depict factors that may influence and affect LEF
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Figure 4.5: Theoretical cases of LEF binding between nucleosomes. A. Exposed strand of
DNA, with no LEF binding. The target patch , m, is bounded by two nucleosomes, N1 and
N2. B. Binding of one LEF (C) between two nucleosomes. C. Binding of one LEF and one
nucleosome between two nucleosomes. D. Binding of one LEF and two nucleosomes between
two nucleosomes.

binding to the DNA that could impede loop extrusion activity. The green rectangle illustrates
the strand of DNA in which enzymes will bind. The gray rectangle with the “N” at the
center depicts a nucleosome. As mentioned, this will be around 147 bp long on the strand
of DNA. The length of DNA is based on the size of nucleosomes that can bind to the DNA.
Therefore, k is based on the width of the LEF that may bind to the DNA. The length of
the strand strand of DNA (l) studied is only 3k. The reason is that large gaps are rare
[54], so this behaviour is expected to be repeated on the strand of DNA for any case. The
LEF used for these cases will be cohesin, as an example. This is denoted by the oval shape
with the “C” above the target (“m”) patch of DNA. The relative size of cohesin is 0.8 kb,
which is significantly larger than a nucleosome [29]. While the figure does not adjust the size
of cohesin and nucleosomes relative to size, it is still implied that binding will be impeded
should a nucleosome not allow for enough exposed DNA for anything to bind.

In order to further examine the exposure time of the target patch of DNA, the nucleosome
and LEF activity is simulated again with the Gillespie algorithm. The Nucleosome Tool
plug-in [2] from Stochpy will be used to create plots of this activity. This plug-in also
models four different states of histones: acetylated (A), unmodified (U), methylated (M) or
occupied by a methyltransferase (Mt). Other rates used in this tool that affects nucleosome
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activity include: kon, koff , ktransferase, kslide, krecruitment, kdemodification, and kinteraction. Only some
of the rates are used in these simulations to create a more realistic situation of nucleosome
activity that affect the binding of LEFs to DNA. There are several kinetic rates included in
the tool’s capabilities described by Anink-Groenen et al [2], including the following:

• kon: Influx of transferase at initiation site

• koff : Release rate of transferase from nucleosome

• ktransferase: Modification rate of nucleosome

• kneighbour: Modification rate of neighbouring nucleosome

• kslide: 1D difusion rate over the chromatin

• krecruitment: Influx of transferases at modified nucleosome

• kdemodification: Rate constant of demodification

• kinteraction: Interaction frequency

In the simulations run to examine these individual cases, the rate of specific binding of
LEFs was also added to observe the exposure times. However, only the kon, koff , and kslide

rates were utilized, as the other factors were not required because they may not affect LEF
activity in any manner. These were not included in the theoretical equations, as the focus
of this investigation was to determine how the LEFs would behave in the presence of other
nucleosomes in terms of the exposure time on DNA, and whether it would be able to bind.
These four cases are now examined in more detail by deriving the theoretical exposure
rate, then testing the model by running simulations. The theoretical exposure time of each
case is first derived, however to simplify the theoretical cases, nucleosome behaviour will be
restricted to three options: binding, unbinding, and sliding.

4.3.6.1 Case A: No LEF binding

The theoretical case in which there is no LEF binding is first derived. A detailed illustration
of this case is presented in Figure 4.6. The gray arrows represent the possibility of nucle-
osomes sliding within the area of the target DNA. If the nucleosomes slide too closely to
the DNA, there will not be enough space for the LEF to bind to the target, and thus will
not bind successfully. Since an LEF binds between two nucleosomes, the distance between
these nucleosomes must be examined more closely. The black arrows in the Figure depict
relevant lengths between different attributes that are found on the strand of DNA. Since
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Figure 4.6: No LEF or nucleosome binding

there is no LEF binding in this case, only the behaviour of the nucleosomes will be examined
to determine its movement along the strand of DNA.

In this Figure, let N1 be the left nucleosome that surrounds the target patch of DNA. This
will be the initial starting point of reference for counting the distance of the attributes found
on the strand of DNA. Let l1 depict the length between N1 and the target patch m. The
target patch of DNA is the set of sequences that the LEF will bind specifically. Let l2 depict
the length of DNA between N1 and N2. This represents the length of exposed DNA that
encompasses the LEF binding activity. Note the target patch of DNA maintains exposed
within this length, which will be measured. Since the binding activity may be specific, the
length l3 depicts the length which measures from the right side of N1 to the right side of N2.
Note this length of DNA is restricted to 3k, which represents the size of three LEFs.

To analyze the enzyme behaviour of this figure, all aspects of nucleosome activity is con-
sidered. Since no new enzymes will be entering the system, the only other possible activity
occurring will be the rate of unbinding of the current nucleosomes. Ultimately, that is ex-
pected to increase the exposure time of the DNA. The exposure time of the DNA is given
by Tlj , where j represents the specified segment of on the DNA strand in the figure. The
theoretical equation expected to represent this activity is given in Equation 4.30, which is
simply a rearrangement of Equation 4.23.

T closef =
1

koff

+ T openf

T closef − T openf =
1

koff

(4.30)

Further from Equation 4.26, if the length of DNA is not held fixed, but drawn from a
distribution, the exposure time would be represented by a weighted average over average
exposure times. This exposure time is then represented by the open state of exposure, and is
substitued into T openf . The open state also depicts the probability weight to make a transition
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to a new gapped state (l3) with new exposure time Tl3 . This gives the following,

T closef −
3k−1∑

l3=l2+k

P (l3)Tl3 =
1

koff

(4.31)

It is also known that nucleosomes are able to slide along the length of DNA, which should
then be considered into the model. This will be depicted at a constant rate, ks. It was
previously stated by Lequieu et al [44] that the mechanism of nucleosome repositioning is
shown to be strongly linked to DNA sequence and directly related to the binding energy of
a given DNA sequence to the histone core. This will be interpreted such that the rate of
sliding is directly proportional to the binding of the DNA strand in the open state. This is
only added to the existing distribution without the effect of sliding, such that if there was
no sliding activity, the exposure time is still affected in its open state. As well, the effect of
sliding may be anywhere between [1, 3k], where the probability distribution of the exposed
DNA along l3 is affected, thus the sum of the effect of this region is included. It is assumed
that the desired DNA binding sequence lies in this area of the DNA strand. Therefore, this
gives Equation 4.32,

T closef − (ks + 1)
3k−1∑

l3=l2+k

P (l3)Tl3 =
1

koff

(4.32)

The effect of binding specificity is also affected by the off rate of LEFs. The unbinding rate,
k

(i)
off , denotes the off-rate where i is the left most base pair of the enzyme positioned between

[i, i+k−1]. This rate was previously defined in Equation 4.21, where the sequence-dependent
effective binding potential influences the rate.

Tl2 − (1 + ks)
3k−1∑
l3=l2+k

P (l3)Tl3 =
1

k
(l2+1)
off

(4.33)

The mean persistence time of the initial gap state is given by this unbinding rate for either
nucleosome, as denoted on the right side of the equation. This equation describes the ex-
posure time of the target DNA. This is given by the exposed time of the length of DNA,
l2, since this is the distance between the two nucleosomes that may impede binding. This
is affected by the possible sliding activity of nucleosomes as well, so they need to be taken
into consideration. On the right hand side of Equation 4.33, this denotes the rate of unbind-
ing of any of the nucleosomes. Therefore, the rate of exposure is dependent on the rate of
unbinding. Since either nucleosome can unbind from the strand of DNA and increase the
exposed timescale of DNA, the off- rate is dependent on the specific nucleosome activity. It
is assumed that the off-rate for each nucleosome will have the same potential, otherwise two
off-rates would need to be specified in the equation for each nucleosome.
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4.3.6.2 Case B: Binding of one LEF

Further building on Case A, the binding of an LEF is now considered. In the previous case,
there was no LEF binding activity. Here, the binding of an LEF, namely cohesin, will be
investigated. This case is illustrated in Figure 4.7.

Figure 4.7: Binding of one LEF

By comparing Case A and Case B, the only new aspect introduced in this case is the binding
of the LEF. Starting from the closed state, the enzymatic activities only include the binding
of the LEF and the unbinding of the nucleosome to create an exposed strand of DNA.
Therefore, to expand on Equation 4.30, the effect of LEF binding must be included, which
will be given by k

(c)
on . Note that this rate is represented by Euqation 4.29, which includes

factors affecting the specificity of binding for the LEF. This is significant, as cohesin binds
at A-T rich DNA sites[10]. The probability of unbinding activity of the nucleosome and the
binding activity of the LEF is then given by 1

k
(c)
on +koff

. This is given by Equation 4.34,

T closef =
1

k
(c)
on + koff

+
koff

k
(c)
on + koff

T openf

(k(c)
on + koff)T closef = koffT

open
f + 1

(k(c)
on + koff)T closef − koffT

open
f = 1

T closef − koff

k
(c)
on + koff

T openf =
1

k
(c)
on + koff

(4.34)

The probability weights of the transitions are now modified to include the binding rate of
the LEF as ( koff

k
(c)
on +koff

)P (l3)Tl3 . Note that in a similar manner to Case A, the open state of

the DNA is now modified to include the binding distribution, as described by Equation 4.26.

T closef − koff

k
(c)
on + koff

 3k−1∑
l3=l2+k

P (l3)Tl3

 =
1

k
(c)
on + koff

(4.35)
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Since we are interested in the first time the LEF binds to DNA, the sliding rate of this
enzyme is not required. However, the sliding rates of the nucleosomes already bound to the
DNA is still necessary, and its inclusion follows the same rationale as that of Case A. The
equation depicting this case is given by Equation 4.36.

T closef − koff

k
(c)
on + koff

(1 + ks)(
3k−1∑
l3=l2+k

P (l3)Tl3) =
1

k
(c)
on + koff

(4.36)

Finally, the binding specificity of the LEF is now included, as it affects the binding rate of
the enzyme. This is now included in Equation 4.37.

Tl2 − (1 + ks)

(
k

(l2+1)
off

k
(l2+1)
off + k

(c)
on (l2 − k + 1)

)
3k−1∑
l3=l2+k

P (l3)Tl3 =
1

k
(l2+1)
off + k

(c)
on (l2 − k + 1)

(4.37)

As previously discussed, in order for binding to occur, there needs to be enough space
between the two nucleosomes to allow for LEF binding. The mean persistence time is now
given by 1

k
(c)
on +koff

, which corresponds to the dissociation events of the nucleosomes, and the

binding event of the LEF. The binding events immediately cover the target patch, while
the dissociation events lead to exposure in new gapped states, as previously discussed for
Case A. It was also specified in this equation the distinction between the binding activity of
nucleosomes and the LEFs. It is assumed that all rates correspond to that of the nucleosome
activity, except for k

(c)
on , which denotes the binding rate of the LEF.

4.3.6.3 Case C: Binding of one LEF and one nucleosome

The case has now been further developed to include the binding of a nucleosome, in addition
to the binding of an LEF from the initial case. Since nucleosomes do not necessarily bind
specifically to DNA, competition is not considered for the binding in the target patch. The
new nucleosome will bind to a region at some distance away from the target patch. This
situation is illustrated in Figure 4.8 below.

Similar to Case B, the sliding rate of the LEF that will bind to the DNA is not considered.
The sliding rate of the nucleosome that will bind to the DNA is also not considered because
it has not yet had the chance to bind to DNA to affect the exposure time. Since we are
interested in the first passage time, this would have already delayed the exposure time upon
initial binding. The Equation depicting this case is given in Equation 4.38.

T closef =
1

k
(c)
on + koff

+
koff

k
(c)
on + koff

T openf +
kon

k
(c)
on + koff

T closefn (4.38)
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Figure 4.8: Binding of one LEF and one nucleosome

In addition to the same terms as denoted in Equation 4.37, the binding of the additional
nucleosome is now considered. This binding may lead to a new gap of length l4 ∈ [l1+m, l2−k]
without covering the m patch. The weight of transitions in this case is kon

k
(c)
on +koff

. The average

delay after direct binding events missing the m-patch is now considered. The delay is denoted
by the probability that each nucleosome unbinds from the DNA strand, which is represented
by the following,

1 + k
(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l3+1)
off

. (4.39)

This represents the value of T closefn because only the binding of a nucleosome in the exposed
section can delay LEF binding.

After the binding of a nucleosome between N1 and N2, a gap of length l4 is created. Now,
either N3 dissociates, and contributes to a further delay of average time Tl2 , or if nucleosome
N2 dissociates, the delay is Tl1 . The average waiting time for neither of these two events

to happen is 1/(k
(l2+1)
off + k

(l4+1)
off ), which completes the rationale for T closefn . The other closed

state is that of the state of the portion of exposed DNA between N1 and N2, as represented
by T closef . This state of DNA can simply be represented by Tl2 since we have started this
scenario in the closed state with the binding events of either a nucleosome or an LEF to the
exposed section of DNA, l2. Therefore, the values for T closef , and T closefn from Equation 4.39,
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can be substituted into Equation 4.38 to obtain,

T closef =
1

k
(c)
on + koff

+
koff

k
(c)
on + koff

T openf +
kon

k
(c)
on + koff

l2−k∑
l4=m+l1

[
1 + k

(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l4+1)
off

]

T closef − koff

k
(c)
on + koff

T openf +
kon

k
(c)
on + koff

l2−k∑
l4=m+l1

[
1 + k

(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l4+1)
off

]
=

1

k
(c)
on + koff

Tl2 −
koff

k
(c)
on + koff

T openf +
kon

k
(c)
on + koff

l2−k∑
l4=m+l1

[
1 + k

(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l4+1)
off

]
=

1

k
(c)
on + koff

(4.40)
Note that Equation 4.39 was also manipulated to show the factors that contribute to the
probability of unbinding activity.

The final component is the exposure time in the open state, where the area affected by the
binding distribution of the DNA strand, as previously explained with Equation 4.26, is now
substituted into T openf to obtain,

Tl2 −
koff

k
(c)
on + koff

3k−1∑
l4=l2+k

P (l3)Tl4 +
kon

k
(c)
on + koff

l2−k∑
l4=m+l1

[
1 + k

(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l4+1)
off

]
=

1

k
(c)
on + koff

(4.41)

Finally, the effect of sliding of the existing nucleosomes that were already on the strand of
DNA is incorporated in the equation in a similar manner to what was explained for Case A.

Tl2 − (1 + ks)
koff

k
(c)
on + koff

3k−1∑
l4=l2+k

P (l4)Tl4

+
kon

k
(c)
on + koff

l2−k∑
l4=m+l1

[
1 + k

(l4+1)
off Tl4 + k

(l2+1)
off Tl4

k
(l2+1)
off + k

(l4+1)
off

]
=

1

k
(c)
on + koff

(4.42)

There are other ways in which this delay could have been approximated, but due to the
presence of N3 at l2, the gap distribution is so strongly conditioned away from steady state
that the actual delays are far from Tl1 . The value of 1

k
(c)
on +koff

remains identical to that of Case

B, as the same dissociation events of the nucleosomes and the binding event of the LEF are
the same conditions that contribute to the mean persistence time.
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4.3.6.4 Case D: Binding of one LEF and two nucleosomes

Finally, one last case is considered. A larger gap for l2 that has now been created, where more
nucleosomes are able to bind to the strand of DNA. This is the case in which N2 is located
outside of l2, so the distance between N1 and N2 is much wider than the previous cases.
Competition between nucleosomes and the LEF is again not considered for the binding in
the target patch. This case is illustrated in Figure 4.9 below.

Figure 4.9: Binding of one LEF and two nucleosomes

The binding contribution of the second nucleosome within l2 must now be incorporated,
as Equation 4.42 is further developed. This yields Equation 4.43. Dissociation events are
ignored altogether as they produce gaps of size l4 ≥ 3k, which is not considered. This was
established prior to investigating these cases, as the nucleosome activity is studied in these
smaller sections.

T closef =
1

k
(c)
on + koff

+ T openf +
kon

k
(c)
on + koff

T closefn1 +
kon

k
(c)
on + koff

T closefn2

T closef − T openf − kon

k
(c)
on − koff

T closefn1 −
kon

k
(c)
on − koff

T closefn2 =
1

k
(c)
on + koff

(4.43)

As previously mentioned, the effect of sliding is now incorporated into the model. Also, in
the open state, the length of DNA may not be held fixed, but drawn from a distribution as
previously explained in Case A. Therefore, Equation 4.26 is substituted into T openf , which
yields

T closef − (1 + ks)
3k−1∑
l2

P (l2)Tl2 −
kon

k
(c)
on − koff

T closefn1 −
kon

k
(c)
on − koff

T closefn2 =
1

k
(c)
on + koff

(4.44)

The values for T closefn1 and T closefn1 are now derived. These values are a little more complicated
due to the limited amount of space available on the portion of DNA available for binding.
While this scenario should be similar to the previous case, there is the additional nucleosome
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that can be available for binding in this space of exposed DNA. This affects the closed state
of the exposure time for the DNA strand. In the closed states, the average delay after
direct binding events missing the m-patch has now expanded to include the influence of
both nucleosomes. These nucleosomes can bind in the gap between m+ l1 and l, which are
both of size k. This can then be denoted by the following,

T closef − (1 + ks)
3k−1∑
l2

P (l2)Tl2−
kon

k
(c)
on − koff

3k−1∑
l4=k

Tl4 −
kon

k
(c)
on − koff

3k−1∑
l4=m+l1

Tl4 =
1

k
(c)
on + koff

(4.45)

Recall Equation 4.39 for Case C, which represented the average delay after direct binding
events missing the m-patch. However now that there is an additional nucleosome, the effects
of the second nucleosome must be incorporated. Binding events happen with weight factor

kon

k
(c)
on +koff

, similar to the previous cases. If the patch gets directly covered, the contribution to

Tl2 is only 1

k
(c)
on +koff

. But quite often the newly bound nucleosome misses the target patch,

which results in larger delays in coverage like the cases described above. In this case, there
are two nucleosomes binding in the gap between m + l1 and l. The possibility of a second
binding arises in three different ways. First, if the new gap l1 ≥ k, the remaining gap
l2 − (l1 + k) is not big enough to accomodate a second nucleosome to its right, as l2 has a
maximum value of 3k− 1 within the approximate. But a second nucleosome can bind in the
space l1 with an average timescale of Tl1 . Second, if the new gap l1<k, a second nucleosome
can only bind the gap l2−(l1 +k) ≥ k. Assuming that is the case, the first binding is followed
by either its immediate dissociation, dissociation of N2, or binding of a second nucleosome
in l2 − l1,−2k + 1 positions, where δ is the space between N3 and N4. Lastly, for l1<k and
l2 − (l1 + k)<k, there is not enough space for second binding.

To mathematically show the binding effects of nucleosomes N3 and N4, let δ denote the
distance between N3 and N4. Equation 4.39 for Case C can now be modified according to
the binding distance between N3 and N4 for this case where T closefn2 can be,

1 + k
(l4+1)
off Tl4+k+δ + k

(l4+k+δ+1)
off Tl4

k
(l4+1)
off + k

(l4+k+δ+1)
off

(4.46)

However, as mentioned in the previous paragraph, binding events have weight factor, kon

k
(c)
on +koff

,

so Equation 4.46 becomes,

k̃on

k
(l+1)
off + k

(l̃+1)
off + k̃on(l − l4 − 2k + 1)

l2−l4−2k∑
δ=0

{1 + k
(l4+1)
off Tl4+k+δ + k

(l4+k+δ+1)
off Tl4

k
(l4+1)
off + k

(l4+k+δ+1)
off

}
(4.47)
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Equation 4.46 is now added and modified to accomodate the binding of the second nucleo-
some.

1 + k
(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l+1)
off + k

(l̃+1)
off + k̃on(l − l4 − 2k + 1)

+
k̃on

k
(l+1)
off + k

(l̃+1)
off + k̃on(l − l4 − 2k + 1)

l2−l4−2k∑
δ=0

{1 + k
(l4+1)
off Tl4+k+δ + k

(l4+k+δ+1)
off Tl4

k
(l4+1)
off + k

(l4+k+δ+1)
off

} (4.48)

By including the weight factor again and apply it to the binding events of both N3 and N4,
then T closefn2 is fully defined and can be substituted into the following equation to model Case
D,

Tl2 − (1 + ks)
3k−1∑
l2

P (l2)Tl2 −
kon

k
(c)
on + koff

l2=k∑
l4=k

Tl4

− kon

k
(c)
on + koff

∑
l4=m+l1

[ 1 + k
(l4+1)
off Tl2 + k

(l2+1)
off Tl4

k
(l+1)
off + k

(l̃+1)
off + k̃on(l − l4 − 2k + 1)

+
k̃on

k
(l+1)
off + k

(l̃+1)
off + k̃on(l − l4 − 2k + 1)

l2−l4−2k∑
δ=0

{1 + k
(l4+1)
off Tl4+k+δ + k

(l4+k+δ+1)
off Tl4

k
(l4+1)
off + k

(l4+k+δ+1)
off

}]
=

1

k
(c)
on + koff

(4.49)

and

k̃on =

{
0 if l4<0

kon if l4 ≥ 0

which concludes the derivation of Case D.

4.3.6.5 Remarks

While the activity of only nucleosomes and LEFs were examined in the above-mentioned
cases, there are several other factors that may also affect the exposure timescale of DNA
including the binding of barrier elements, ATPase modifications, transcription factors, etc.
In addition, there has yet to be specific enzymes that have been confirmed to be LEFs.
This is not to say that cohesin is representative of all LEF behaviour, nor that its size is
consistent for all LEFs. There is much research that has yet to be conducted to fully confirm
the precise mechanism for loop extrusion behaviour. For now, these theoretical cases for the
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exposure times should only be interpreted as one method of modelling the binding behaviour
of enzymes, and how it will affect the time a specific patch of DNA remains exposed and
available for binding.

4.4 Results

4.4.1 DNA Exposure Time Theoretical Equations

In Section 4.3, the exposure time of a strand of DNA in four different cases were derived.
These cases include: A) No LEF binding, B) Binding of one LEF, C) Binding of one LEF and
one nucleosome, and finally, D) Binding of one LEF and two nucleosomes. The final theo-
retical exposure equations were finalized in equations 4.33, 4.37, 4.42, and 4.49, respectively.
The theoretical exposure timescales are now plotted to gain a better understanding of the
behaviour of binding activity (Figure 4.10). The kinetic rates used to run these equations
were the same as those used in Chapter 3 for the burst model, as derived from Brackley
et al [13]. Specifically, for this run, the lower steady state kinetic rates were used, where
kon = koff = 0.04.

Figure 4.10: Theoretical exposure timescale plot. Case A No LEF or nucleosome binding.
Case B Binding of one LEF. Case C Binding of one LEF and one nucleosome. Case D
Binding of one LEF and two nucleosomes.

The shape of the curves show the desired “butterfly-like” shape with two ‘wings’, similar
to what was plotted by Parmar et al [54]. This represents the situation where l<k and
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l ≥ (k+ l+ 1 +m). As observed from Figure 4.10, case A, where there is no binding activity
within the two boundary nucleosomes exhibits the highest amount of exposure time on the
strand of DNA. Case B, where there is binding of only one LEF, illustrates a scenario where
there is a much smaller exposure time on the strand of DNA. The gap in the exposure time
has also decreased and shifted toward the right side of the plot. This may be indicative of
the sliding activity of the enzyme along the strand of DNA. Note that four lines should have
been plotted in this figure. It seems that the activity for cases C and D are hidden along
the y=0 axis, which requires further investigation. If this exposure timescale was actually 0,
this implies that there can be no more binding activity allowed on this strand of DNA once
one LEF binds to the strand. Or, it will be extremely difficult for another enzyme to bind
on this section of DNA.

Since Figure 4.10 does not necessarily show the activity for cases C and D, the activity was
plotted again on a log axis for the exposure time, as illustrated in Figure 4.11. Since cases
C and D are closer to y=0, this is investigated more closely.

Figure 4.11: Theoretical exposure timescale plot on a log axis. Case A No LEF or nu-
cleosome binding. Case B Binding of one LEF. Case C Binding of one LEF and one
nucleosome. Case D Binding of one LEF and two nucleosomes.

The theoretical exposure time for cases C and D are now more visible in Figure 4.11. Case
C has a slightly higher exposure time than that of Case D, but they are both significantly
lower than those of cases A and B. The theoretical exposure time in these cases are found
between Tl(s) = 10−220 and Tl(s) = 10−194, which is extremely small. While it does not
completely eliminate the possibility of having two enzymes bind to this section of DNA, it
decreases the chance of this occurring. Note that both of these cases contain the presence of
nucleosomes within the proximity of binding of an LEF. The implications of their presence
will be further discussed in Section 4.5.
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In Chapter 3, the idea was explored where the impact of the specificity of binding an LEF to
the strand of DNA was explored. Due to the considerations of possible LEF candidates and
the specificity of binding for the kinetic rates, this was run again but with a larger kon = 0.4
rate (Figure 4.12), as previously used in Chapter 3 for the non steady state kinetics, based
on the experiments conducted by Brackley et al [13]. The reason for imploring a larger on
rate was the possibility of the LEF having a larger affinity for the target rate, which increases
the rate of binding, as described in Equation 4.29.

Figure 4.12: Theoretical exposure timescale plot with a greater on rate. Plot A depicts the
theoretical exposure timescale plot, and plot B depicts the same plot on a log axis. Case A
No LEF or nucleosome binding. Case B Binding of one LEF. Case C Binding of one LEF
and one nucleosome. Case D Binding of one LEF and two nucleosomes.

It is observed in Figure 4.12 that only case A has maintained its shape. This is due to the
fact that no enzyme binds to the DNA in this scenario, so it is not influenced by binding
kinetics. However, case B has now significantly decreased and lost its “butterfly-like” shape.
The log plot also reflects this observation, where it is more of a horizontal line. It is also
noticeable how cases C and D now have a larger separation in exposure, but interestingly, has
actually increased in exposure. In the previous plot (Figure 4.11), the theoretical exposure
time in these cases are found between Tl(s) = 10−220 and Tl(s) = 10−194, but in this case, the
exposure time was found between Tl(s) = 10−60 and Tl(s) = 10−50. This can be influenced
by the possibility of overcrowding on the strand, which may allow for the binding of both
LEFs and nucleosomes. However it will be difficult to initiate activity when there are too
many enzyme on the same strand of DNA.

Alternatively, since koff may also exhibit binding specificity, this was run again but with a
large koff = 0.4 value (Figure 4.13) again based on Brackley et al’s experiments [13]. In a
similar manner to the increased on rate, a larger off rate was run due to the possibility of a
stronger affinity for sequence specificity of unbinding, as proposed in Equation 4.21.
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Figure 4.13: Theoretical exposure timescale plot with a greater off rate. Plot A depicts the
theoretical exposure timescale plot, and plot B depicts the same plot on a log axis. Case A
No LEF or nucleosome binding. Case B Binding of one LEF. Case C Binding of one LEF
and one nucleosome. Case D Binding of one LEF and two nucleosomes.

In Figure 4.13, since all equations are dependent on the off rate kinetics, it was predicted that
all cases would have been impacted. It was observed that the exposure time has decreased
for cases A and B. The exposure time then decreases to reach the mean persistence time,
1/koff . It was stated by Parmar et al [54] that the exposure time decreases as the adjacent
nucleosomes become more unstable. This concept is consistent with Figure 4.13 since the
rate of nucleosome unbinding has increased, they do not remain stably bound to the strand
of DNA. What was observed was the exposure has decreased in this scenario overall, as well.

The theoretical equations show the possible activity of LEF binding as demonstrated in the
proposed cases. The kinetic rates of binding and unbinding ultimately affected the overall
shape and exposure time of the DNA strand, as predicted. The possibility of other enzymes
binding to this DNA strand will also affect the binding activity of LEFs, as demonstrated
by the varying rate of binding and unbinding. This concept will be further discussed in the
future directions for this model.

4.4.2 DNA Exposure Time Simulations

As observed from the theoretical exposure timescale derivations, the activity of DNA is in-
fluenced by the composition of the chromatin in which it is embedded. These factors include
nucleosome turnover, conformational dynamics, and covalent histone modifications, which
each induce changes in the structure of chromatin and its affinity for regulatory proteins.
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The dynamics of histone modifications and the persistence of modification patterns for long
periods are still largely unknown. Simulations are now conducted to validate the theoreti-
cal equations derived in the previous section with the Nucleosome Tool plug-in within the
Stochpy software [2] to visualize the impact of these modifications to DNA with both nucle-
osome and LEF activity. The code was modified from the plug-in to include the effects of
LEF binding.

Further from the previous section, the same four cases will be explored. The trajectory of
the DNA is modelled again using the Gillespie algorithm to observed the effects of LEF
and nucleosome binding. From this tool, the behaviour of the nucleosome has not been
restricted to just binding, unbinding, and sliding. This will also include the recruitment of
transferase, interaction, recruitment, interaction, and neighbour nucleosome influences, for
a more realistic scenario for LEF binding, as described in Section 4.1.

In each case, four different plots will be shown to summarize the results of each simulation:
Pattern Time Series, Pattern Distributions, Species Time Series, and Species Distributions.
While the intent of this plot was originally used for nucleosome behaviour, the interpretations
of these plots will be different than as described in the Nucleosome Tool documentation [2].
The pattern time series plot will be used to illustrate the modification state of each position
on the strand of DNA. The pattern distributions plot will illustrate the behaviour of the
probability mass function (pmf) of each nucleosome state at each position on the strand of
DNA. The species time series plot illustrates the time it takes for the specific state of the
nucleosome to reach a steady state. The species distributions plot illustrates the distribution
of the pmf of the copy number of these nucleosomes from the species time series plot. By
showing the information from these plot side by side, it will make it easier to show a complete
illustration of the nucleosome and LEF dynamics.

In order to interpret the plots, the model was simplified to treat each of the nucleosomes
as a single unit that can exist in only one out of three modification states: acetylated
(A), unmodified (U), or methylated (M). These modifications are used for active, neutral,
and silenced chromatin. The histone modifications are modified with the methylation and
acetylation enzyme reactions. This considers the binding, 1D diffusion, and recruitment of
the transferases. The methyl- and acetyletransferases can only modify the nucleosome in
its unmodified state (from U to M or U to A), and that each nucleosome can be bound
by only one transferase at a time. The conversions from a modified to unmodified state
are assumed to exhibit basal activity of the demodification enzymes, so the tracking of
binding, diffusion, and recruitment of demodification enzymes are not tracked. While this
may not seem applicable to this model, the code was modified to interpret this behaviour in
a mathematical manner to consider LEF activity.

In this example, let A denote the available DNA, M denote the nucleosome activity, U denote
the available binding site for LEF activity, and Mt denotes the movement of the nucleosome.
A summary of each case has been simulated, and illustrated in the following sections.
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Further the following table summarizes the rates used to model nucleosome kinetics. These
parameters were previously described and is not explained here. Refer to the publication for
the development is thie iSMS tool for the derivation of these parameters [2].

Table 4.1: Nucleosome Kinetic Parameters (s−1)

kon koff kslide

2.4 (one enzyme) 0.1 0.6
0.01 (two enzymes)

The rates of binding and unbinding of the LEF is also fixed at 0.001 s−1 based on previous
literature and the steady state assumption made previously [57]. This is very speculatory,
as true properties and the identity of LEFs have yet to be confirmed. This value is based on
the behaviour of the residence time of cohesin, yet it is not known whether cohesin is truly
an LEF. Therefore, we are mindful that this rate is not indicative of all LEF behaviour.

4.4.3 Case A: No LEF Binding

In this case, there is only the behaviour of two nucleosomes examined, as observed in the
theoretical case. Recall Figure 4.6 in the previous section where two nucleosomes surround
the target area of DNA where an LEF may bind to the sequence of interest. A summary of
the results of this simulation is illustrated in Figure 4.14.

By first examining plot i.), which denotes the pattern time series, it is observed that most
of the plot is green with the exception of two areas which show activity in red. This shows
all of the free DNA available for binding. The red area depicts the nucleosome activity of
that was initially bound to the DNA. Once bound, the nucleosome is free to slide within
any free area of DNA. As observed the trajectory of the red area deviates over time, which
indicates sliding activity has occurred. However, note that the red area never overlaps with
one another, as they have been positioned far enough away from each other that there is
enough space between them that it will not be sliding close enough to interact with one
another. While the space between them does become narrow at some points in time, namely
around 40, it does not overlap. Since the size of the LEF is not completely known, this may
not be enough space to allow for LEF binding to occur. In the future, the size of the specific
LEF should be considered for these simulations. Since these are not definitely supported by
observed experments at this time, it remains theoretical.

The corresponding pattern distributions plot to plot i.) is illustrated in plot ii.). As observed
from the previous plot, as the nucleosome activity increases, then the area of exposed DNA
is decreased. It is observed from the pmf that the area of DNA exposed peaks is surrounded
by the nucleosome activity. The area of exposed DNA is still influenced by the nucleosome
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Figure 4.14: No LEF or additional nucleosome binding. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed DNA, and the
movement of nucleosomes. i. Pattern time series plot. The area for free, exposed DNA is
denoted in green. The area of nucleosome activity is denoted in red. ii. Pattern distributions
plot. iii. Species time series plot. iv. Species distribution plot.

activity. Had the nucleosome been positioned much closer together, the target area of DNA
between these nucleosomes would not be as wide. Therefore, it is important to keep in mind
how much space is needed for the proposed LEF to bind onto the strand of DNA. Thus,
the importance of the location of the nucleosomes, the LEF, and the target patch must be
emphasized.

The species time series plot is depicted in plot iii.). The copy number of the nucleosomes
and free DNA binding sites are observed in this plot. It is observed that over time, there
will always be more exposed DNA binding sites than that for the nucleosome, as there is no
additional binding of other factors.

The corresponding species distribution plot to that of the species time series plot is denoted
in plot iv.). As observed from the pattern species plot, the largest pmf stems from the
nucleosome activity, as it is the only movement present in the system. There is a higher
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copy number of available DNA for binding activity to occur, with a lower pmf value. In this
system, since the only activity stems from the nucleosomes that are already bound to DNA,
the simulated results were as expected.

For comparison, kslide is now set to zero to understand the extent of the effect of sliding in
this system. This is illustrated in Figure 4.15. It is observed from this results that there is
far less noise, and nucleosome activity is restricted to two different types of activity: binding
or unbinding. As observed from plot i.) in this figure, the movement of the red line shows
the nucleosome activity. Once a nucleosome binds, it can only remain bound and does not
slide to other areas of the DNA. However, this may unbind, as shown by the gap in the
red lines. Since this activity was limited to the nucleosome at positions 15 and 35, it is not
known whether this specific nucleosome may then decide to bind to other exposed sections
of the DNA. By analyzing the red line at nucleosome position 15 of plot i.), it is observed
that the exposed DNA does not remain unbound for a long period of time. A nucleosome
then finds itself bound to the section of DNA no later than 5 time points. By examining
the other plots ii.), iii.), and iv.), the nucleosome activity is consistent with the assumptions
with no sliding, such that the activity is more restricted, and does not have as much noise
as that in Figure 4.14.

While removing the sliding parameter was shown for the purpose of comparing the nucleo-
some activity with that of sliding activity, it is not representative of a realistic biochemical
system with nucleosome activity. Nonetheless, this demonstrates that mathematically, it
impacts the model for the exposure time for LEFs. The sliding parameter is important to
introduce a certain level of noise in the system, as an obstable that will affect the probability
of LEF binding to occur.

4.4.4 Case B: Binding of one LEF

The binding of an LEF is now included in this case, as a further development of Case A.
Recall Figure 4.7 in the previous section where two nucleosomes surround the target area,
and now an LEF may bind between them onto the sequence of interest. A summary of this
simulation is illustrated in Figure 4.16.

As observed in the plot i.) from this Figure, there is now an inclusion of a white space
between the (red) nucleosome activity. This denotes the LEF binding opportunity and
exposure time. The nucleosome activity is consistent with that from the previous case, in
that the sliding activity allows for the nucleosome to slide onto the exposed DNA area. Over
time, the nucleosome sliding behaviour is consistent, although it does not take the same
trajectory as the first case. This is one advantage of the Gillespie algorithm, as it introduces
a certain level of noise whcih allows for slight variation in each result, but will present a
general understanding of what may occur in the biochemical system. In the initial time,
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Figure 4.15: No LEF, additional nucleosome binding, nor sliding of nucleomes. The values
of M, U, A, Mt are as follows: nucleosome activity, available binding regions for LEFs, free
exposed DNA, and the movement of nucleosomes. i. Pattern time series plot. The area for
free, exposed DNA is denoted in green. The area of nucleosome activity is denoted in red.
ii. Pattern distributions plot. iii. Species time series plot. iv. Species distribution plot.

there is an opportunity for LEF binding, but does not occur until approximately time 35,
where there is more white activity in the middle of the plot. This implies LEF an LEF has
bound to the DNA. The nucleosome activity is still consistent however, and does not alter
its behaviour necessarily, as it still slides within free regions of DNA.

Further from this plot, plot ii.) depicts a similar illustration to that of the first case albeit
the distance between the nucleosome activity is much narrower in distance. The reason is
that the initial case was set to a more narrow area to see whether the distance would affect
LEF activity. As observed, if the nucleosome activity overlaps with the exposed area of DNA
at some point in time, the LEF may become more unstable and will be less likely to bind or
remain bound to the strand of DNA. It would be interesting to further develop this model
in this case to allow for multiple LEFs on the same loop, as this would affect whether the
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Figure 4.16: Binding of one LEF. The values of M, U, A, Mt are as follows: nucleosome
activity, available binding regions for LEFs, free exposed DNA, and the movement of nucle-
osomes. i.Pattern time series plot. The area for free, exposed DNA is denoted in green. The
area of nucleosome activity is denoted in red. ii. Pattern distributions plot. iii. Species
time series plot. iv. Species distribution plot.

loop will remain there over time. However, this is beyond the scope of this investigation for
the first passage time activity of LEFs.

In the species time series plot iii.), it is observed that this differs from the first case such that
the nucleosome activity at one point approaches the same number of free, exposed DNA.
This implies that the nucleosome activity may have been affected by the LEF binding at
this point, such that there is less exposed DNA. Since it seems at this point, the nucleosome
activity has maintained a steady copy number, and the amount of freely exposed DNA has
slightly decreased at this point, it implies that the LEF has bound to the DNA, but the
nucleosome activity may interact with the LEF at this point. Later, the LEF would have
begun to extrude the loop, and the nucleosome activity will decrease, and the amount of free
exposed DNA will increase, which is observed at the later time period, around 90.

Finally, the species distributions plot iv.) has also differed from the previous case as the pmf
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has leveled, and the two peaks occur at almost the same value. However, the copy number
of freely exposed DNA still remains higher than that of the nucleosomes. At some point, the
copy number of the nucleosome and the exposed DNA overlaps, which is consistent if the
nucleosome activity impedes the binding of exposed DNA.

Since it was observed from Figure 4.16, the effect of distance of the nucleosomes may impede
LEF binding, this example was re-simulated with a greater distance between neighbouring
nucleosome to allow for better LEF binding. This result is illustrated in Figure 4.17 with
the same four plots.

Figure 4.17: Binding of one LEF. The values of M, U, A, Mt are as follows: nucleosome
activity, available binding regions for LEFs, free exposed DNA, and the movement of nucle-
osomes. i.Pattern time series plot. The area for free, exposed DNA is denoted in green. The
area of nucleosome activity is denoted in red. ii. Pattern distributions plot. iii. Species
time series plot. iv. Species distribution plot.

It is observed from this result that the LEF is not affected by the impact of nucleosomes,
as there is enough distance between them to allow for better ease of binding. The risk of
unbinding is lower because there are no nucleosome obstacles in the path of the LEF. The
nucleosomes and the LEF are able to slide more freely in their respective positions on the
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strand of DNA. Therefore, the exposure time of the strand of DNA for LEF binding would
be smaller should the distance between the LEF and obstructing nucleosomes be large, as
the presence of nucleosomes will unlikely contribute to LEF unbinding.

4.4.5 Case C: Binding of one LEF and one nucleosome

Further from the previous case, the binding of additional nucleosome is now simulated into
the system. Recall Figure 4.8 in the previous section for the theoretical case. Now an
additional nucleosome will also bind within the area between the two nucleosomes that are
already bound to the DNA. The binding of an LEF will also be included, where it will bind
to the target patch of DNA. A summary of this simulation is illustrated in Figure 4.18.

Figure 4.18: Binding of one LEF and one nucleosome. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed DNA, and the
movement of nucleosomes. i.Pattern time series plot. The area for free, exposed DNA is
denoted in green. The area of nucleosome activity is denoted in red. ii. Pattern distributions
plot. iii. Species time series plot. iv. Species distribution plot.

It is observed in the pattern time series plot that the nucleosome activity is much heavier
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than from previously, as expected. It would also seem that when the nucleosomes are side by
side, as in the case between the nucleosomes between position 30 and 40, the sliding activity
occurs more dense. When there is only one nucleosome bound, as in the case between
nucleosome position 10 and 20, the nucleosome seems to deviate away from the free patch
of DNA in the middle of the plot. The LEF bound, is not as stable as was previously
observed in the first plot, when the activity of the nucleosome closest to it becomes closer.
However, it would seem that the sole nucleosome, as it is sliding away from the area of
activity, compensates for the second nucleosome bound and creates a wider area of exposed
DNA. One may question how this may affect loop extrusion activity. Since one side has a
more dense area of nucleosome activity, would the LEF simply extrude on the area of DNA
that has more area between nucleosomes, or extrude the loop symmetrically? Although, due
to the unstability of the LEF due to the dense nucleosome activity, it may eventually unbind
and loop extrusion activity would not occur altogether. The exposed section of DNA may
possibly be consumed by the nucleosome activity.

In the pattern distributions plot ii.), the three nucleosomes are observed from the three
different peaks of the nucleosome activity. The free exposed DNA is observed, and shares
the same pmf as the previous plots. This corresponds to the activity that may occur for
LEF binding. Of note, as the two nucleosomes are bound side by side, there may be more
sliding that occurs as they interact with one another. Thus, the peaks of these nucleosomes
have blended together, but both peaks are still separate and distinct from one another. In
the case of the one nucleosome surrounded by free DNA, this peaks is much more narrow
and does not slide as often to take over the other exposed DNA regions. Thus it would be
more favourable for LEFs to extrude in a one-sided manner to allow for more movement in
terms of loop extrusion. With more nucleosome activity, this minimizes the free space that
the LEF may occupy once it slides onto the DNA into its new position after loop extrusion.

In the species time series plot iii.), this differs from the previous plots as the nucleosome
activity has reached the same copy number of the exposed DNA. This implies that this has
overlapped with the region in which the LEF may bind. However, as this deviates again
and almost interacts again, this is interpreted as observing the unstability of the LEF. As
Goloborodko, et al. [30], previously explained, the loops are more stabilized when there are
multiple LEFs on the same loop to reinforce the structure. Due to the specificity of the LEF
binding, the nucleosome may have interacted with the LEF at some point and may obstruct
the structure. Another interpretation is that loop extrusion would have commenced at time
40, as the nucleosome activity has decreased afterward. This implied it would have stabilized
and the DNA would have been more free and exposed once extruded in the loop.

In the species distribution plot iv.) it is interesting to note the overlap between the peaks
denoting the amount of exposed DNA and the amount of nucleosome activity. There is
more activity for the nucleosomes present in the system, thus the higher pmf is shown. The
peak is significantly higher in terms of nucleosome activity, and it almost overlaps with the
amount of free DNA. However, there is still more exposed DNA, as it has a higher copy
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number. Since there are only 3 nucleosomes present in the system, it is expected that the
copy number remains lower.

4.4.6 Case D: Binding of one LEF and two nucleosomes

Finally, the binding of one more additional nucleosome in now introduced in the system.
Recall from Figure 4.9 in the previous section for the theoretical case that two additional
nucleosomes will bind within the area between the two nucleosomes already bound to the
strand of DNA. The binding of the LEF will also be included, where it will bind to the target
patch of DNA. A summary of this simulation is illustrated in Figure 4.19.

Figure 4.19: Binding of one LEF and two nucleosomes. The values of M, U, A, Mt are as
follows: nucleosome activity, available binding regions for LEFs, free exposed DNA, and the
movement of nucleosomes. i.Pattern time series plot. The area for free, exposed DNA is
denoted in green. The area of nucleosome activity is denoted in red. ii. Pattern distributions
plot. iii. Species time series plot. iv. Species distribution plot.

By examining the pattern time series plot i.), it is observed that the binding of all three
nucleosomes in close proximity would affect the binding of LEFs. If those nucleosomes bind
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to the DNA before the LEF, this will delay the exposure time of DNA, as explained in the
theoretical case. It is also observed that the nucleosome activity seems to close the gap
from the exposed DNA between them. This could be due to the nucleosome sliding activity.
Since one side of the target patch has the possibility of having 3 nucleosomes, this could be
too crowded for that portion of DNA. These nucleosomes could then slide into the exposed
patch of DNA and prevent LEF binding. The target patch of DNA, if it is still exposed,
may not have enough space for the LEF to bind. Instead, the 4 nucleosomes present in the
system may even out the distance between them. As observed from the LEF activity in
white, it disappears at one point, which may be due to the crowding from the nucleosomes.
Therefore, there is not enough space in this system to allow for the LEF binding to occur,
as the nucleosome activity have take presedence in the system. Although the target patch
of DNA may still be exposed, the nucleosomes may be too close together.

In the pattern distributions plot ii.), it is observed that the peak on the right depicting the
activity of the 3 nucleosomes is now much wider. There are now 2 distinct peaks for the
nucleosome activity, as it seems the three nucleosomes on the right position of the target
patch has overlapped. The single nucleosome on the left of the target patch has, however
remained narrow. There is very little space between the two nucleosomes, which may allow
for LEF activity.

In the species time series plot iii.), there is now very little distinction between the free DNA
and the nucleosome activity. It is observed that there is more interaction between the two
activities. This implies that there is now an even number of free DNA in the system as there
is for nucleosome activity. In terms of LEF activity, it seems that at one point, around time
60, in which the LEF would have bound to the DNA and started extruding the loop, as the
nucleosome activity decreased. However, the nucleosome activity has then risen once again,
which implies there could have been competition between the LEF and the nucleosome and
the LEF had finally unbound from the DNA as there were too many elements bound to the
DNA. It is challenging to have definite interpretations of the plot, as the observed data is
not available to validate these speculations.

In the species distribution plot iv.), there is now a larger overlap between the nucleosome
activity and the free DNA. The pmf of the nucleosome activity is much larger than that
of the free DNA, which implies more activity with the nucleosomes. Since the nucleosome
activity overlaps with that of the free DNA, it is observed that there will be less free DNA
for elements to bind. This is consistent with the idea that by binding more nucleosomes,
this will delay the exposure time for the DNA and delay the binding of an LEF. Due to the
sliding nature of nucleosomes, this will also add to delaying the exposure time of DNA.
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4.5 Discussion

These findings were consistent with those as discussed previously by Parmar et al. [54] for the
theoretical estimates of exposure timescales of protein binding sites on DNA by nucleosome
kinetics, despite the inclusion of the effects of LEF binding in this case. It is still important
to stress the locations of both nucleosome and LEF binding kinetics. The specificity of
binding is also important, as it determines the type of activity that may occur in that region
of DNA. This work was novel as research on chromatin compaction is limited in the influence
of nucleosomes, and how the presence of other enzymes on a strand of DNA will impede loop
extrusion activity.

As observed from the simulations conducted above, nucleosome activity will delay the expo-
sure time of DNA, and it may prevent the binding of LEFs. Some other considerations is
how this nucleosome activity will affect loop extrusion. In the Nucleosome Tool [2] plug-in
used, there was already a loop rate however, this model focuses on chromatin interactions,
and how two non-adjacent nucleosomes are connected to create a loop. In the loop extrusion
model, an LEF will bind to DNA to extrude the loop with motor activity. In this tool, it
was described that if transferases are present on the nucleosomes, they are able to hop to
the connected nucleosomes, where a methylated nucleosome will interact with an acetylated
chromosome. Therefore, this is more of a fold on the DNA rather than extruded. This rate
was ultimately not required, since we focus mainly on LEF behaviour, not of nucleosomes.
However, the concept of nucleosome hopping would be interesting to explore in future models
to understand how nucleosomes position themselves onto DNA loops.

The concept of the chromatin as performing self-organization without a motor is similar
to the concept of loop extrusion without a motor[12]. While loop extrusion is generally
favoured, there has yet to be a suitable motor protein, or a motor activity in cohesin itself
that will allow this to occur. In the model proposed for loop extrusion without a motor,
it was speculated that a thermal motion within the nucleus drives extrusion. Perhaps this
concept may be explored further in the future with more information regarding the specific
manner in which loops may be formed. So far, recent HiC data has revealed a strong bias
in favour of a particular arrangement of the CTCF binding motif that stabilize loops, and
extrusion is the only model to date that can explain this. This is the reason why the loop
extrusion model was heavily studied in this thesis.

One question that was raised during the simulations was the effect of nucleosome presence
on LEF binding. As observed from the results, when there were more nucleosomes present
on the strand of DNA, loop extrusion was more challenging, and became unstable. It is
not clear whether the LEF would be able to remain bound to DNA in this case. Since it
was proposed that cohesin may be an LEF, the behaviour of this enzyme was explored. It
was previoulsy determined by Liu et al [36] that in budding yeast, cohesin is loaded onto
the chromosome during the late G1 phase, established sister chromatid cohesin concomitant
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with DNA replication, and dissociates in telophase. In their experiments, it was shown that
at anaphase, nearly all of the cohesin binding sites contain nucleosome-free regions. The
majority of these sites remain nucleosome-free throughout the cell cycle, which is consistent
with the suggestion of a DNA binding anchoring protein present at these sites, although
such a region could also serve as part of a marker for the binding of cohesin in the next cell
cycle. Therefore, the regions must be wider to allow for LEF binding from the simulations
in our experiments conducted.

The behaviour of cohesin with nucleosome activity was previously explored by Stigler, et
al.[67]. Single molecule microscopy was used to observed the dynamic and functional char-
acteristics of cohesin bound to DNA. Cohesin is able to undergo rapid one-dimensional
diffusion along DNA, but individual nucleosomes, nucleosome arrays, and other protein ob-
stacles significantly restrict its mobility. DNA motor proteins can readily push cohesin along
DNA, but they cannot pass through the interior of the cohesin ring. It was revealed that
DNA-bound cohesin has a central pore that is substantially smaller than anticipated. There-
fore, one should consider whether the DNA loop extrusion model should include the impact
of nucleosome presence on LEF binding to DNA. While the binding may not be possible on
a nucleosome, and DNA must be exposed without other proteins already bound, the loop
extrusion procedure itself still remains unknown in literature.

The use of the fixed rate of binding and unbinding of LEFs is also a limitation in this study.
Since the true rate of binding activity of either cohesin and condensin varies depending on
several factors such as temperature, solvent concentration, ATP activity, etc., the rate may
vary from cell to cell. Therefore, the binding activity may appear more frequenty than that
of nucleosome binding depending on the conditions of the cell. In this model, only one
perception of LEF binding behaviour is explored. This is not indicative of all cell conditions,
but it should present an understanding of one possible method of LEF binding behaviour.

In most models when analyzing loop extrusion, the illustrations do not include the presence of
nucleosomes in the loop. It is unclear whether the LEF will simply jump over the nucleosome
present on the strand, if they will bind to the chromatin loop after it is extruded, or if they
are simply not present at all. Further research exploring the effect of nucleosomes in loop
extrusion is required to validate the loop extrusion process. Recent single-molecule imaging
experiments conducted by Kong et al [41] have shown that both condesin I and II exhibit
ATP-dependent motor activity and promote extensive and reversible compaction of double-
stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without
being displaced from the DNA, indicating that condensin complexes can readily act upon
nucleosome fibers. Based on this finding, it may be a novel characteristic of LEF binding
behaviour such that the binding activity of both an LEF and nucleosomes may be occurring
at the same time during loop extrusion acitivity. In this model, this characteristic was
incorporated by considering the mean first passage time for LEF binding to allow for loop
extrusion. However, since the timing of nucleosome and LEF binding is not fully understood,
this will impact the model such that nucleosome binding and competition may have a smaller
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role in the loop extrusion process. If competition of LEF binding does not occur, it may not
have to be included in the model at all. More research is needed to fully map out the timing
of LEF binding and nucleosome activity, and whether these activity can occur simultaneously
without competition, but the model developed is advantageous for examining cases where
competing enzymes can promote loop extrusion activity. Our model was based on cohesin
binding activity. While cohesin and condensin may exhibit similar loop extrusion properties,
their individual influence on nucleosome binding may also differ. Therefore, specific LEF
characteristics need to be established prior to applying this model and determining whether
they are in agreeance.

As observed from our results, this is consistent with what is currently understood and stated
regarding the relationship between nucleosome activity and cohesin. Therefore, the Gillespie
algorithm was successful in simulating the exposure timescale of DNA with respect to LEF
and nucleosome activity for the motor model proposed for chromatin loop extrusion. It is
observed that nucleosome presence impedes exposure and LEF binding activity. However,
this is only speculatory based on the theoretical equations explored in this chapter. More
experimental evidence would need to be performed to fully support this assumption.

4.6 Future directions

There are several different factors that influence enzyme binding on a strand of DNA. Loop
extrusion activity is dependent on the environment in which the LEF binding activity is
promoted.

Munoz et al [49] have determined that chromatin remodeling is required to generate a
nucleosome-free region that is the substrate for cohesin loading. An engineered cohesin
loading module can be created by fusing the Scc2 C terminus (a cohesin loader) to the RSC
chromatin remodeling complex or to other chromatin remodelers, but not to unrelated DNA
binding proteins. This demonstrates the importance of nucleosome-free DNA for cohesin
loading and provide insight into how cohesin accesses DNA during its varied chromosomal
activities. To incorporate this into our model, for the future, the presence of the cohesin
loading enzymes should be incorporated into the kinetic rates that determine the LEF bind-
ing parameters. This will influence the likelihood of whether a region of DNA will be free of
nucleosomes and increases LEF binding opportunity.

It was also previously determined by Horlbeck et al [33] that nucleosomes also impede Cas9
access to DNA in vivo and in vitro. Cas9 is a prokaryotic CRISPR (clustered regularly
interspaced palindromic repeats)-associated protein. It has been widely adopted as a tool
for editing, imaging, and regulating eukaryotic genomes. This study aimed to understand the
selection of single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity, since there was
an information gap into how chromatin impacts Cas9 targeting. It was also determined that
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highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low
nucleosome occupancy. If this is the case, since our current understanding is that cohesins
also bind to DNA in nucleosome free regions, perhaps competition should also be considered
in this model. The in vitro experiments conducted by Horlbeck et al [33] have observed that
nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling
can restore Cas9 access.

Future direction for this model would include testing potential LEF candidates and the
extent of its behaviour in this model. Some LEF candidates include condensin and cohesin,
however they may not bind to DNA and extrude loops in the same manner such that they
will require different cell conditions, or environments, in order to extrude a loop. It was
previously examined by Baxter et al [4] that in silico simulations predicted that if SMC
complexes are acting as part of LEF machines, then they should display distinct biochemical
and cell biological characteristics. First, ablation of SMC activity should lead to a cessation
of sequencial cis-looping along chromosomes, but not inhibit chromosome loops acting across
other looped domains or in trans. Second, generation of loops by LEFs should be associated
with the translocation of SMCs along DNA. Third, the coverage and size of looping should
be a function of the number and processivity of SMCs on chromatin. Therefore, when
experimental parameters for potential LEF candidates become available, this can help gain
clarity on the behaviour of LEFs in the presence of nucleosomes in the future.

4.7 Conclusion

Loop extrusion factor activity is hindered by the presence of nucleosomes on DNA. The
kinetic rates to describe the activity of both LEFs and nucleosomes are influenced by the
specificity of bindng on a strand of exposed DNA which will aid in determining whether
loop extrusion activity can occur. Due to the limited experimentation conducted toward the
understanding of chromatin compaction, this model is to be used as a potential guide toward
the understand of loop extrusion activity in the presence of nucleosomes.
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5 General Conclusion

Aspects of the chromatin loop extrusion process were able to be modelled with Markovian
dynamics. The GMM was successfully able to highlight specific states of chromatin folding
in smFRET data, macroscopically. The EM algorithm was able to optimize the GMM
parameters for this data by identifying the significant clusters. Microscopic folding properties
of chromatin configurations were also explored through LEF binding and unbinding kinetics.
The specificity of its binding properties is an important parameter that determines whether
the loops may be extruded in that section of DNA. The number of LEFs bound to the loop
may deduce whether the loop is stably bound, and thus promote extrusion. The amount of
time in which the region of DNA explored is also dictated by the number of nucleosomes
present in the system. Therefore, future works may explore the impact of several LEF
candidates on loop extrusion for chromatin organization.

5.1 Limitations of research

Limited research has been conducted regarding the chromatin organization procedure. This
research was based on the current understanding of loop extrusion factor binding on a strand
of DNA to extrude chromatin loops. This area of research is rapidly developing and gaining
more interest. Even as this work was conducted, there has been continuous development in
the study of chromatin compaction.

There are many assumptions in these models that have yet to be verified with observed
experimentation. Simulations runs in these models are limited in the assumptions of what is
currently known of the behaviour of LEFs in chromatin compaction. When this information
becomes available for the future, this can help validate and adjust the proposed models
accordingly. However, this work is still important to consider in this field, as it allows us to
raise questions about some areas of research that can influence the mathematical modeling.
This also allows us to propose possible conclusions and assumptions that may be expected
regarding the behaviour of chromatin.

As discussed, there is no concrete list of LEFs that has been developed. Their properties
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are developed based on what is speculated for loop extrusion activity and what should be
occuring based on our current knowledge of the DNA loop formation process. There are
several factors that may not be considered in their properties, such as the manner in which
external factors affect the loop extrusion activity.The following are research models for loop
extrusion by: the structual maintenance of chromosomes (SMC) family of ATPases, DNA-
loop-extruding enzymes, transcription-induced supercoiling, osmosis, and thermal motion
(diffusive extrusion) [63]. In this research, most of the models relied solely on loop extrusion
by the structural maintenance of chromsomes (SMC) family of ATPases, and loop extru-
sion by DNA-loop-extruding enzymes. Mathematically, this influences the manner in which
the behaviour of loop extrusion can be modelled. This was preferred as there was more
information available to support these assumptions over the other models.

The postulation that loop extrusion by the SMC family of ATPases is consistent with what
has been discussed to formulate these models. The SMC family of ATPases such as condensin
and cohesin, extrude DNA into large loops. Energy from hydrolysis helps the SMC proteins
to translocate along the chromatin fibers. A single complex of these LEFs could extrude
DNA and the growth of the loop can stop when the LEF encounters a barrier element in the
convergent direction, which are typically present at the border of topologically associating
domains (TADs). This was ultimately the motivation for this research, as there was real-time
evidence observed in previous experiments that validate this finding. However, other models
have also been researched that can change this point of view. These models are discussed as
a form of limitation of this research, as they alter the assumptions in our models.

The model that proposed that loop extrusion occurs via DNA-loop-extruding enzymes pos-
tulate that they are bound to a DNA lattice of finite length. Each enzyme is assumed to
have two binding domains that can bind and bridge two DNA sites. It is thought that ATP
can hydrolyze each binding domain to move along the DNA. The protein link between each
binding domain leads to extrusion of a DNA loop. This association of machines and DNA,
known as infinite processivity, forms a disordered distribution of small loops. However, if
dissociation of the machine and DNA occurs, known as finite processivity, highly stable and
large DNA loops are formed with very less fluctuations. Our models become impacted in
this case such that the size of the loops and the fluctuations of the loops are affected. The
immigration-death model may no longer be appropriate to model the behaviour of chromatin
loops, as the stability may not be influenced by the number of LEFs present in the system.
External environmental factors may be the driving factors that affect the size of the loops.
The immigration-death process would have to be adjusted, or it may simply be a matter of
adjusiting the kinetic rates of loop formation and division.

In the case that loop extrusion by transcription-induced supercoiling, loop extrusion occurs
when TAD cohesin rings are actively pushed along chromatin fibers, forming cohesin ‘hand-
cuffs’. These handcuffs are then released by the DNA topoisomerase IIB (TOPIIB) enzyme
present on the TADs borders to form DNA extrusion loops. The motivation for this scenario
is due to the lack of evidence that cohesin rings act as active DNA translocases to give

105



rise to loop extrusions. However, transcription-induced supercoiling is a well-documented
process in living organisms. This involves the presence of an enzyme chaperone, TOPIIB,
required to form DNA loop extrusion loops. The quantity of this chaperone enzyme, and
the understanding of its own mechanism of binding to the LEF is required for the models.

Yamamoto and Schiessel [70] examined the behaviour of cohesin ring dynamics on a loop with
cohesin loaders in the middle of the loop and unloaders at the loop ends. This mechanism
assumes that cohesin monomers bind to the loader more frequently than cohesin dimers. The
cohesin dimers facilitated DNA loop extrusion due to osmotic pressure exerted by the cohesin
monomers. However, this theory is only true if: 1) there is rare loading of cohesin dimers
onto the chromatin fiber, and 2) cohesin monomers do not form dimers on the chromatin
fiber. This affects the proposed enzyme kinetic rates. The assumption that loop extrusion
activity occurs once an LEF binds would be incorrect, and two enzyme would have to be
bound to DNA in order for loop extrusion activity to initiate. This would also affect the
theoretical exposure timescale equations, as described in Chapter 4, as this assumes that only
one LEF would be neccesary for loop extrusion. Not only would the number of nucleosomes
affect the theoretical exposure time, but DNA activity would have to wait until two cohesin
monomers were bound to the DNA strand.

Finally, the last proposed theory is that loop extrusion is driven by thermal motion, which
is also referred to as diffusive extrusion. This is motivated by the fact that there is no
suitable motor protein that generated loops have been identified in this research, despite
how HiC experiments have suggested that CTCF binding motifs and cohesin rings lead
to loop extrusion. Brackley et al [12] used HiC to carry out simulation experiments in
order to shed more light on whether diffusive extrusion could generate DNA loops. Their
simple 1D simulation demonstrated a ratchet effect. In their simulation, different cohesin
handcuffs were continually loaded and uploaded from a chromatin fiber. It was observed
that if the handcuffs were loaded at random locations, a number of loops were formed side-
by-side competing for space. However, if the handcuffs were loaded at a single location,
it led to a ratchet effect. This ratchet effect prevented the first handcuff from diffusing
back towards the loading site, thus creating an osmotic pressure leading to diffusive loop
extrusion. The handcuffs are ultimately not included in this research. This would affect
the theoretical exposure equations such that the position of the target patch would not be
applicable. There would not be a target location for loop extrusion activity to occur if the
cohesin binds to DNA in a completely random manner. The specificity of binding would
have to be re-defined, as there will not be an affinity to a specific location.

As discussed, there are several loop extrusion theories that researchers have been continu-
ously working to validate. Depending on the definitive evidence that becomes available in
the future, there will have to be modifications to the proposed models as discussed in this
research. However, these models can aid toward understanding what is currently speculated
regarding LEF behaviour. While it is not necessarily correct, it also may not be completely
invalid depending on the model that holds true. This work is still relevant to consider ways
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to incorporate specific elements into the mathematical modeling of chromatin behaviour.

5.2 Future directions

In general there have been several future directions proposed for each model as described
at the end of each chapter. In terms of the general future directions required with this
research, this involves more work required in the broader perspective for loop extrusion.
The motivation of mathematically modelling the behaviour of chromatin loop formation was
to contribute to the current understanding of the DNA organization process. However, this
still raises a few questions. From the second chapter, the specific number of components that
would be optimal to apply the GMM to smFRET experiments remains unknown, as current
research has limited observed data to support any proposed value. This would be useful to
answer questions regarding the impact on transcription activity and the type of information
that would be conserved in these DNA loops. In the third chapter, the proper parameters
required to derive the LEF kinetic rates for the burst model are still limited due to the
unknown environmental requirements for LEFs to perform loop extrusion activity. In the
fourth chapter, the kinetics are also affected to determine the full impact of LEF behaviour
in conjunction with nucleosome activity. While this research is lacking in the resources
required to answer these questions, it can contribute in understanding the behaviour when
the necessary resources become available.

Loop extrusion impacts transcription activity such that genomic DNA must be compacted
to fit in the cell, but must simultaneously remain accessible for transcription [14]. As Racko
et al have previously discussed, transcription may be needed for the formation of TADs [56].
Recent studies of chromatin structure in inactive X chromosomes have shown that a few genes
that were transcriptionally active in these chromosomes, were all located in chromosome
portions forming TADs, whereas the rest of the chromosome was free [28]. However, once
TADs are formed and chromatin loops are extruded and stabilized by interaction between
cohesin and CTCF, the ongoing transcription would not be necessary anymore for TADs
maintenance. It is important to know the impact of transcription on this process, as this
may be needed to initiate the proposed models. In the future, this factor can be implemented
in models necessary for loop extrusion. The integration of transcription activity should be
included in these models with a more significant impact in the future. Transcription activity
should be incorporated as an additional component to the GMM model, to identify at which
stage during the loop extrusion process that the cell begins to use the information stored
in these chromatin loops. In the burst model, the necessary environmental that would
promote transcription activity would have an impact on the kinetic rates of LEF activity.
The presence of nucleosomes would also be affected by transcription activity such that it
may also interfere with the procedure. By understanding the impact of transcription on loop
extrusion, this will contribute to understanding the broader field of genome organization and
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how it influences gene expression. The spatial organization between the LEF and DNA will
allow for an understanding of how the LEF overcomes some of the DNA-bound obstacles to
initiate transcription activity.

In the future, these methods would have to be adapted according to the information con-
served within each chromatin loop. By understanding how loop extrusion occurs and the
motivation for storing specific types of information, the proper parameters can be included
when deriving the kinetic rates for loop extrusion activity. This would introduce specific lim-
itation parameters in the configuration procedure. For example, Zhang et al [73] found with
dCas9 that additional, undefined, chromatin-based mechanisms may enhance the synapsis
of functional cis-elements via loop extrusion more generally. There was also scanning that
was impeded by targeted binding of nuclease-dead Cas9 based on the position of the loop
anchor. This implies that the position of transcription promoting elements on the loop can
impact what information should be extruded in a loop to prevent or enhance accessibility
to this information. Mathematically, this could impact the probability of loop extrusion
occurring. Perhaps this can be defined by a specific distribution based on the presence of
specific elements that are present on the loop. This can impact the rate of binding and loop
extrusion activity that will affect every model proposed in this research.

In general, our work was unique in applying Markov models to illustrate its application in
different stages of the chromatin loop extrusion process. There is more work required to
gain a full understanding of the mechanism and motivation behind loop extrusion in itself,
but ultimately, this procedure can be successfully modelled with the specific mathematical
methods presented. As the loop extrusion process becomes more defined in the biological
community, the mathematical models should be able to adapt accordignly.
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A R Code for Gaussian Mixture Models

Listing A.1: R Code to determine two component Gaussian mixture models

df= as . data . frame (cbind ( Overa l l . Cond= data$V1 , Freq= data$V2) )
df
df . f r e q= as . vector ( rep (df$Overa l l . Cond , df$Freq ) )
hist (df . f r e q )
x=df . f r e q

mem = kmeans (x , 2 )$ c l u s t e r
mu1 = mean( x [mem==1])
mu2 = mean( x [mem==2])
sigma1 = sd ( x [mem==1])
sigma2 = sd ( x [mem==2])
p i1 = sum(mem==1)/length (mem)
pi2 = sum(mem==2)/length (mem)

sum . f i n i t e = function ( x ) {
sum( x [ i s . f i n i t e ( x ) ] )

}

Q = 0

Q[2 ]= sum . f i n i t e ( log ( p i1 )+log (dnorm(x , mu1 , sigma1 ) ) )
+ sum . f i n i t e ( log ( p i2 )+log (dnorm(x , mu2 , sigma2 ) ) )

k = 2

while (abs (Q[ k]−Q[ k−1])>=1e−8) {
comp1 = pi1 ∗ dnorm(x , mu1 , sigma1 )
comp2 = pi2 ∗ dnorm(x , mu2 , sigma2 )

comp .sum = comp1 + comp2

p1 = comp1/comp .sum
p2 = comp2/comp .sum
pi1 = sum . f i n i t e ( p1 ) / length ( x )
p i2 = sum . f i n i t e ( p2 ) / length ( x )
mu1 = sum . f i n i t e ( p1 ∗ x ) / sum . f i n i t e ( p1 )
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mu2 = sum . f i n i t e ( p2 ∗ x ) / sum . f i n i t e ( p2 )
sigma1 = sqrt (sum . f i n i t e ( p1 ∗ (x−mu1)ˆ2) / sum . f i n i t e ( p1 ) )
sigma2 = sqrt (sum . f i n i t e ( p2 ∗ (x−mu2)ˆ2) / sum . f i n i t e ( p2 ) )

p1 = pi1
p2 = pi2

k <− k + 1
Q[ k ] <− sum( log (comp .sum) )

}

l ibrary ( mixtoo l s )
gm=normalmixEM(x , k=2, e p s i l o n=1e−08)
gm$mu
gm$sigma
gm$lambda
gm$ l o g l i k
hist (x , prob=T, breaks=59, xlim=c ( range ( x ) [ 1 ] , range ( x ) [ 2 ] ) , main=’ ’ ,
yl im=c (0 , 6 ) , x lab=expression ( ’E ’ [ ’FRET’ ] ) , y lab=”Count dens i ty ” , col=” cadetb lue3 ” )
l ines (density ( x ) , col=”dark blue ” , lwd=2)
x1 = seq ( from=range ( x ) [ 1 ] , to=range ( x ) [ 2 ] , length . out=1000)
y = pi1 ∗ dnorm( x1 , mean=mu1, sd=sigma1 ) + pi2 ∗ dnorm( x1 , mean=mu2, sd=sigma2 )
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B Python Code for Markovian Models

Listing B.1: Python code for random walk implementation

import random
import numpy as np
import matp lo t l i b . pyplot as p l t

prob = [ 0 . 2 5 , 0 . 7 5 ]
s t a r t = 5
po s i t i o n s = [ s t a r t ]

r = np . random . random(2000)
downp = r < prob [ 0 ]
upp = r > prob [ 1 ]

for idownp , iupp in zip (downp , upp ) :
down = idownp and po s i t i o n s [−1] > 1
up = iupp and po s i t i o n s [−1] < 15
p o s i t i o n s . append ( p o s i t i o n s [−1] − down + up)

%matp lo t l i b i n l i n e
p l t . x l ab e l ( ’ Base Pair Number ’ )
p l t . y l ab e l ( ’ Binding Energy (U) ’ )
p l t . p l o t ( p o s i t i o n s )
p l t . show ( )

In order to use the Stochpy modules, the Stochpy github (https://github.com/
SystemsBioinformatics/stochpy) was cloned and saved onto the desktop. The Stochastic
Simulation Algorithm (SSA) module was used to employ the Burst Model, and modified to
comply with the parameters of this research. Specifically, the Immigration Death module
was modified for the purpose of this simulation. Listing B.2 specifies the final commands
used to initiate the simulations.

Listing B.2: Python code for Burst Model (example modified from Stochpy package)

import stochpy
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import matp lo t l i b . g r i d spe c as g r i d spe c
sim end = 100
smod = stochpy . SSA( )
smod . Model ( ’ Burstmodel . psc ’ )
smod . ChangeParameter ( ”kon” , 0 . 4 )
smod . ChangeParameter ( ” k o f f ” , 0 . 4 )
smod . ChangeParameter ( ”ksyn” , 4 . 8 )
smod . ChangeParameter ( ”kdeg” , 2 . 4 )
smod . DoStochSim ( end=sim end ,mode=’ time ’ , t r a j e c t o r i e s = 1)
gs = gr id spe c . GridSpec (4 , 1 , width r a t i o s =[1 ] , he ight r a t i o s = [ 0 . 3 , 1 , 0 . 3 , 1 ] )
ax1 = stochpy . p l t . subplot ( gs [ 0 ] )

smod . P lo tSpec i e sT imeSer i e s ( s p e c i e s 2 p l o t =’ONstate ’ , x l ab e l =’ ’ , y l ab e l =’ ’ )
stochpy . p l t . l egend ( ’ ’ , frameon=False )
stochpy . p l t . xl im ( [ 0 , sim end ] )
stochpy . p l t . x t i c k s ( [ ] )
stochpy . p l t . yl im ( [ 0 , 1 . 5 ] )
stochpy . p l t . y t i c k s ( [ ] )
stochpy . p l t . t ex t ( −5 .5 ,0 .9 , ’ON’ )
stochpy . p l t . t ex t (−5.5 ,0 , ’OFF ’ )
stochpy . p l t . t ex t ( 101 , 0 . 35 , ’A ’ , f o n t s i z e = 14)

ax2 = stochpy . p l t . subplot ( gs [ 1 ] )
smod . p l o t . ResetPlotnum ( )
smod . P lo tSpec i e sT imeSer i e s ( s p e c i e s 2 p l o t =’mRNA’ , c o l o r s = [ ’#32CD32 ’ ] )
stochpy . p l t . xl im ( [ 0 , sim end ] )
stochpy . p l t . l egend ( ’ ’ , frameon=False )
stochpy . p l t . x t i c k s ( [ ] )
stochpy . p l t . t i t l e ( ’ ’ )
stochpy . p l t . x l ab e l ( ’ ’ )
stochpy . p l t . y l ab e l ( ’ Loop Extrus ion ’ )
stochpy . p l t . y t i c k s ( [ 0 , 5 , 1 0 ] )
stochpy . p l t . t ex t (101 ,8 , ’B ’ , f o n t s i z e = 14)

Listing B.3: Python code for LEF Exposure Timescale Equations

import numpy as np
import matp lo t l i b . pyplot as p l t
import math
from s c ipy import misc

L=200
f =0.04
s=5
o=0.04

def C s e r i e s (x , k ) :
n = np . arange (k )
X, N = np . meshgrid (x , n)
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va l =1/ (L−(X∗∗N))∗8
return np .sum( val , ax i s=0)

va l2=1/ ( f∗(1−((1+ s )∗C s e r i e s (x , k ) ) ) )
va l3=1/ ( ( f+o )∗(1−((1+ s )∗ ( ( f/ ( f+o ) )∗C s e r i e s (x , k ) ) ) ) )

g=0.04
def E s e r i e s (x , k ) :

n = np . arange (k )
X, N = np . meshgrid (x , n)
va l =(1+((o∗∗N)∗X)+((g∗∗N)∗X))/ ( ( g∗∗N)+(o∗∗N))
return np .sum( val , ax i s=0)

va l4=1/ ( ( f+o )∗(1−((1+ s )∗ ( ( f/ ( f+o ) )∗C s e r i e s (x , k )∗ ( s∗o/ ( f+o ) )∗E s e r i e s (x , k ) ) ) ) )

def D s e r i e s (x , k ) :
n = np . arange (k )
X, N = np . meshgrid (x , n)
va l =(1+f∗∗N∗X+g∗∗N∗X)/ ( f+g )
return np .sum( val , ax i s=0)

def F s e r i e s (x , k ) :
n = np . arange (k )
X, N = np . meshgrid (x , n)
va l =((1+g∗∗N∗X+f∗∗N∗X)/ ( g+f+o ))+(( o/ ( g+f+o )∗D s e r i e s (x , k ) ) )
return np .sum( val , ax i s=0)

va l5=1/ ( ( f+o )∗(1−((1+ s )∗ ( ( f/ ( f+o ) )∗C s e r i e s (x , k )∗ ( s∗o/ ( f+o ) )∗E s e r i e s (x , k )∗ ( o/ ( o+f ) )∗F s e r i e s (x , k ) ) ) ) )

x0 = 0
xf= 500

x = np . l i n s p a c e ( x0 , xf , 15)

for k in [ 1 4 7 ] :
p l t . p l o t (x , val2 , l a b e l=” case A” )
p l t . p l o t (x , val3 , l a b e l=” case B” )
p l t . p l o t (x , val4 , l a b e l=” case C” )
p l t . p l o t (x , val5 , l a b e l=” case D” )

p l t . yl im ( [ 0 , 120 ] )
p l t . xl im ( [ 0 , 500 ] )
#p l t . y s c a l e ( ’ l o g ’ )
p l t . x l ab e l ( ’$ l $ (bp) ’ )
p l t . y l ab e l ( ’$T l $ ( s ) ’ )
p l t . l egend ( l o c=”upper r i g h t ” )
p l t . show ( )

The NucleosomeTool, a Stochpy plug in, was downloaded and cloned it into the Stochpy
package, as obtained from the NucleosomeTool download (https://sourceforge.net/projects/
stochpy/files/StochPyPlugins/NucleosomeTool/). The NucleosomeTool file within the plug
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in was then modified to include the impact of LEFs, as specified in Chapter 4. This ultimately
affected the NucleosomeBuilder command, which was used to simulate the trajectory of the
DNA folding procedure. The specific parameters were then included to comply with the
specifications of this research. Listing B.4 describes the final commands used to execute the
simulation.

Listing B.4: Python code for LEF Exposure Timescale in the presence of nucleosome example
(no sliding)

import stochpy
bmod=stochpy . NucleosomeModelBuilder ( Ks l ide=0)
bmod . S e t I n i t i a t i o n S i t e s ({ ’M’ : [ 1 5 , 3 5 ] } )
bmod . S e tS l i d i n g ( Fa l se )
bmod . SetRecruitment ( Fa l se )
bmod . S e t I n i t i a l S t a t e ( ’U ’ )
bmod . BuildModel ( ’model n o s l i d e ’ )

smod=stochpy . NucleosomeSimulator ( F i l e=’model n o s l i d e . psc ’ )
smod . DoMesoscopicStochSim (mode=’ time ’ , end=100)
smod . PlotPatternTimeSer ies ( )
smod . P l o tPa t t e rnD i s t r i bu t i on s ( )
smod . P lo tSpec i e sT imeSer i e s ( )
smod . P l o t Sp e c i e sD i s t r i bu t i on ( )
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C Python Code for Loop Visualization

Prior to loading the github, the grin package, and the mirnylib package were required.
The looplib github (https://github.com/golobor/looplib/tree/master/looplib) was then also
cloned and saved it onto the desktop. The looplib package was then installed and initalized
by downloading the individual files in the folder. The simlef onesided document was modified
to include the parameters required to conduct this research. The sample simulation onesided
document with Jupyter notebook was run, but simply by using the commands to create the
simulations and the plots. The background documents were modified to comply with these
research parameters, and to adapt the machine used to run the simulations. For example, the
looptools document was modified as the numbers were not properly defined in the original,
cloned github package. In order to yield the figure in the document, the points required to
simulate the loop activity was performed with the simlef document, and then the loopviz file
was required to actually visualize the simulation. Listing C.1 depicts the commands used to
execute the simulation.

Listing C.1: Adapted from Goloborodko’s Github, looplib [23]

! easy i n s t a l l g r i n
! pip i n s t a l l https : //b i tbucket . org/mirnylab/mirny l ib/get/ t i p . ta r . gz

import sys
import numpy as np
from mirny l ib import h5d ic t
import pyximport ; pyximport . i n s t a l l (

setup args={” inc lude d i r s ” : np . get i n c lude ( )} ,
reload support=True )

from l o o p l i b import l oopv iz , l oop too l s , s im l e f ones ided , s im l e f
import os , sys , glob , she lve , time

p = {}
p [ ’L ’ ] = 50000
p [ ’N ’ ] = 1000
p [ ’R OFF ’ ] = 1 .0/692 .0

121

https://github.com/golobor/looplib/tree/master/looplib


p [ ’R EXTEND’ ] = f loat ( 5 . 0 )
p [ ’R SHRINK ’ ] = 0

p [ ’R SWITCH’ ] = p [ ’R OFF ’ ] ∗ 10

p [ ’T MAX LIFETIMES ’ ] = 100 .0
p [ ’T MAX’ ] = p [ ’T MAX LIFETIMES ’ ] / p [ ’R OFF ’ ]
p [ ’N SNAPSHOTS ’ ] = 200
p [ ’PROCESS NAME’ ] = b ’ proc ’

l s i t e s , r s i t e s , l e ad ing l eg s , t s = s im l e f ones ided . s imulate (p)
l s i t e s , r s i t e s , t s = s im l e f . s imulate (p)

t s 4p l o t = [ 0 , 100 , 1 , −10]
for t in t s 4p l o t :

l o opv i z . p l o t l e f s (
l s i t e s=l s i t e s [ t ] ,
r s i t e s=r s i t e s [ t ] ,
L=p [ ’L ’ ] ,
c o l o r s =[(223 .0/255 .0 ,90/255 .0 ,73/ 2 5 5 . 0 ) ] ∗500 ,
s i t e width bp = 10 ,
max he ight =200 ,
p l o t t ex t=False ,
he ight f a c t o r =2.0)

p l t . xl im (0 , p [ ’L ’ ] //10)
p l t . x t i c k s ( [ ] )
p l t . x l ab e l ( ’ chromosomal p o s i t i o n ’ )
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