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Abstract

This thesis presents a novel graph-based approach to classify video clips with binary labels. Each video clip

is described by a feature vector instead of raw pixel values.

At the model’s core, a similarity graph is defined where each node is associated with a feature vector and

its corresponding label. The weight of an edge connecting two nodes delineates the similarity of the nodes’

feature vectors which is computed via the Mahalanobis distance and its metric matrix. The metric matrix is

learned using labeled training data. Unknown labels are then estimated using the optimized metric and the

similarity graph.

The main advantage of our model is enabling interpretations of how the predictions are made. Nevertheless,

the model achieves competitive accuracy with state-of-the-art approaches as well. We apply this model to a

retinal coding problem where explainability is essential to gain conceptual insight about the retina.
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1 Introduction and Literature Review

This thesis brings three different subjects together: graph signal processing, retinal visual coding, and AI

explainability. Graph signal processing combines spectral graph theory and discrete signal processing to

analyze signals that arise from an underlying network structure. Retinal visual encoding happens when an

image received by the vertebrate eye gets translated into electrical pulses carrying visual information to the

brain. Explainability means the ability to explain, in a humanly understandable way, how a mathematical

model captures the dynamics of a physical or computational system. More thorough introduction of these

subjects is presented in this chapter.

1.1 Graph Signal Processing

1.1.1 Introduction

A network is a set of objects (called nodes or vertices) that are connected together. The connections between

the nodes are called edges or links. Many signals in the real world appear on a network. These signals

are generated by individual components which interact with each other in some way. A few examples of

these networks include the Internet, sensor networks, social networks and neural networks of the brain. To

illustrate, the Internet is a collection of individual computers which are connected to each other via cable or

electromagnetic waves (i.e. links). Each computer can be represented by a node and each link by an edge.

Edges can be weighted where the weights show bandwidths of the links.

Signals appear on networks as a set of numbers associated to the nodes of the network. For example, the

CPU power of each computer in the Internet can be a signal. Other examples can be waiting times for packets

to be processed in each node, or number of packets that are delivered to each node during a specific time

interval.

Graphs are mathematical tools to display and analyze networks. Graph signals (i.e. a set of numbers associ-

ated to the nodes of the graph) inherit important information from their underlying structure which need to

be considered in their analysis. Graph signal processing (GSP) combines graph spectral theory and digital

signal processing to address this need. Common GSP tools include filtering, denoising, inpainting and com-

pressing graph signals [4].

In the following, we explain a few basic concepts of GSP such as graph filtering and Fourier transform. First

of all, please note the distinction between the graph and the graph signal. The signal refers to the set of

numbers that are associated with nodes in a graph, while the graph itself primarily shows the interactions

between the nodes and secondarily the nodes themselves. Figure 1a delineates the distinction. This figure

shows an undirected graph. Undirected graph signals are more widely studied in the field. However, undi-

rected graphs are not mandatory; a graph signal can generally exist on a directed graph as well.

We use linear algebra to algebraically represent and manipulate graph signals. To do this, first we need to

1



(a) A graph is a set of nodes and edges. A graph signal is a set
of samples (i.e. numbers) residing on the nodes of a specific

graph.
(b) To algebraically represent a graph signal, we need to index

the nodes. Any arbitrary indexing method is acceptable.

Figure 1: A graph signal and its underlying graph

assign a number to all nodes. These numbers identify the nodes in the algebraic representation. Any arbitrary

numbering method would work. To illustrate, see Figure 1b; it shows how numbers 0 to 9 are assigned to the

nodes of the graph. Now that each node has an identifying index, we can represent the graph signal with a

vector as in Equation (1). Black numbers in this equation show graph signal samples and red numbers show

the identifying indices.

xxx = [ 4 3 6 8 4 9 9 2 1 3 ]T

0 1 2 3 4 5 6 7 8 9
(1)

However, this vector is not enough to uniquely define a graph signal. We also need a matrix showing the

edges and their weights. This matrix can be the graph’s adjacency matrix or the graph Laplacian matrix.

Equation (2) notes the adjacency matrix and Equation (3) notes the Laplacian matrix for the graph in Fig-

ure 1. Assume all edges in the graph have weight 1.

2



WWW =



0 1 1 0 0 0 0 0 1 0

1 0 0 0 0 1 0 1 0 0

1 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 1 0 1

0 0 1 0 0 1 1 0 0 0

0 1 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 1 0

0 1 0 1 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 1

0 0 0 1 0 1 0 0 1 0



(2)

LLL =DDD−WWW = diag(W1W1W1)−WWW

LLL =



3 −1 −1 0 0 0 0 0 −1 0

−1 3 0 0 0 −1 0 −1 0 0

−1 0 3 −1 −1 0 0 0 0 0

0 0 −1 3 0 0 0 −1 0 −1

0 0 −1 0 3 −1 −1 0 0 0

0 −1 0 0 −1 3 0 0 0 −1

0 0 0 0 −1 0 3 −1 −1 0

0 −1 0 −1 0 0 −1 3 0 0

−1 0 0 0 0 0 −1 0 3 −1

0 0 0 −1 0 −1 0 0 −1 3



(3)

Either of the pairs (xxx,WWW ) or (xxx,LLL) can uniquely define the graph signal. Here we use (xxx,LLL) for reasons that

will be explained by the end of this section.

If LLL is diagonalizable with real entries, it means we can decompose it as

LLL =UUU ΛΛΛ UUUT

UUUUUUT = III,
(4)

where UUU ∈ RN has eigenvectors of LLL as its columns, and ΛΛΛ is a diagonal matrix with the corresponding

eigenvalues on its diagonal,

UUU = [v1v1v1, ...,vNvNvN ]

ΛΛΛ = diag(λ1, ...,λN).
(5)

Borrowing from spectral graph theory, eigenvectors of the Laplacian matrix can be defined as frequency

3



components while their corresponding eigenvalues are their frequencies. Consequently, matrix UUUT in this

equation can be defined as the graph Fourier transform (GFT). By this definition, the spectral representation

of a graph signal is obtained by

x fx fx f =UUUT xxx . (6)

Conversely, we can get back the nodal representation by multiplying the inverse GFT matrix (≜UUU) by the

spectral representation,

xxx =UUU x fx fx f . (7)

It is possible to define the graph Fourier transform for defective (non-diagonalizable) matrices as well; how-

ever, it would lead to some numerical difficulties which we rather avoid. For this reason, we only consider

undirected graphs with real edge weights. These graphs have real and symmetric Laplacian matrices, and

any real and symmetric matrix is guaranteed to be diagonalizable [5].

Furthermore, assuming that all edges have non-negative weights, we can prove that the graph Laplacian is

always positive semi-definite by using the Gershgorin Circle Theorem [6]. A real symmetric matrix is pos-

itive semi-definite (PSD) if and only if all of its eigenvalues are non-negative [7]. Thus, if we use the graph

Laplacian to define GFT, all graph frequencies (i.e. eigenvalues of LLL) would be non-negative. This property

makes the concept of graph frequency more accessible. This is the reason why we chose (xxx,LLL) to represent

our graph signal instead of (xxx,WWW ).

Since we chose (xxx,LLL) to represent graph signals, a graph filter is defined as any matrix that can be written as

a linear combination of powers of the Laplacian matrix. The following equation shows this definition,

HHH =
N−1

∑
k=0

Hk LLLk . (8)

Filtering a graph signal means multiplying a filter by the signal,

yyy =HHHxxx . (9)

If we write the eigen decomposition of HHH in Equation (9), it shows the process of taking Fourier transform

of our signal, filtering it in the spectral domain and taking inverse Fourier transform of the result. The output

is the same regardless of filtering the signal in the nodal or spectral domain
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(arbitrary filter) HHH =
N−1

∑
k=0

Hk LLLk ,

yyy =HHH xxx

=UUU ΛHΛHΛH UUUTxxx (eigen-decomposition)

=UUU

(
N−1

∑
k=0

HkΛΛΛ
k

)
UUUT xxx

=UUU

(
N−1

∑
k=0

HkΛΛΛ
k

)
x fx fx f (Fourier transform)

=UUU diag

(
N−1

∑
k=0

Hkλ
k
1, ...,

N−1

∑
k=0

Hkλ
k
N

)
x fx fx f

=UUU y fy fy f (filtering in the spectral domain)

= yyy (inverse GFT) .

(10)

In the above equation, xxx is our input signal which is filtered by HHH to yield output signal yyy. UUU and ΛΛΛ are the

same matrices derived in Equation (4). ΛHΛHΛH is the diagonal representation of filter HHH. ΛHΛHΛH is a polynomial of ΛΛΛ.

Multiplying UUUT by xxx gives us the spectral representation of the input signal x fx fx f . Then, the spectral representa-

tion of the filter (i.e. ΛHΛHΛH) is multiplied by x fx fx f which is the definition of filtering x fx fx f by ΛHΛHΛH . This multiplication

is essentially just N point-wise multiplications since ΛHΛHΛH is diagonal. The multiplication’s result is our output

in spectral domain y fy fy f . To convert the output back into the nodal domain, we take inverse GFT of y fy fy f which

yields yyy. It is witnessed that the result is the same result obtained by filtering in the nodal domain.

To gain more intuition, consider a line graph (Figure 2). Signals on this graph are equivalent to tradi-

tional time signals. The graph Laplacian is equivalent to the second derivative operator with zero-slope

boundary condition (Equation (11)). Moreover, GFT is equivalent to the discrete cosine transform (DCT).

Equation (12) shows the GFT matrix of this line graph; rows of this matrix are eigenvectors of the graph

Laplacian. Figure 3 shows rows of the GFT matrix in Equation (12). It is observed that these frequency

components have roughly sinusoidal shapes. If we increase the number of nodes in the graph, the shapes of

the frequency components become smoother.

WWW =


0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

 =⇒ LLL =


1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1

 (11)
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(a) A time signal of length N = 5
(b) A graph signal with an underlying line graph of N = 5

nodes.

Figure 2: A graph signal on a line graph can be seen as a time signal.

UUUT =


1 1 1 1 1

1 −0.382 −1.236 −0.382 1

−1 1.618 0 −1.618 1

−1 −0.618 0 0.618 1

1 −2.618 3.236 −2.618 1

 (12)

Figure 3: Frequency components of the line graph in Figure 2b

Lastly, we need to talk about the concept of smoothness for graph signals. Smoothness is a general concept

which can take on various exact mathematical definitions in different contexts. For example, one can talk

about signal smoothness in the vertex domain which would generally mean that samples that are close to

each other on the graph tend to have similar values. The closeness can be defined as the number of hops

between two nodes, the shortest path connecting them, etc. Similarly, one can speak of smoothness in the

spectral domain, otherwise known as bandlimitedness. In this case, a smooth graph signal’s spectral repre-

sentation does not include a sharp cutoff. Instead, it slowly decays according to a specific formula [8].
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For example, Figure 4 shows a piece-wise smooth approximation of an irregular nonsmooth graph signal.

This figure is drawn from [8]. The image on the left shows the number of taxi pickups in Manhattan from

6 p.m. to 7 p.m. on January 4, 2015, projected to the nearest intersection. By analyzing this signal, it

is observed that intersections in a neighbourhood show similar activity patterns, while the pattern might

change between the neighbourhoods; for example, a neighbourhood which is full of office buildings behaves

differently than a mostly residential neighbourhood. A piece-wise smooth signal can capture both the large

differences between the neighbourhoods and small differences inside a neighbourhood. In this thesis, we use

a quantity called Graph Laplacian Regularizer (GLR) to measure smoothness. More explanation about this

quantity is given in Section 2.2.3.

Figure 4: (Left) An irregular nonsmooth graph signal. (Right) Piece-wise smooth approximation of the
signal.

1.1.2 Literature Review

We review applications of GSP in two relevant areas to this thesis: image processing and analysis of the

brain’s structure and function.

A) Analyzing Brain’s Structure and Function
Diffusion MRI is a modern brain imaging technique which captures the neuron fiber tracts in the brain’s

white matter. Another type of MRI called Functional MRI (or fMRI) reveals activity levels of various re-

gions of the brain while performing a specific task.

Correspondingly, two common networks are used in analyzing brain-related signals with GSP. One network

represents different regions of the brain with nodes and uses edges to indicate their physical connection

through neuron fiber tracts. Higher edge weights in this network suggest higher estimated number of neuron

tracts between two regions. The other network’s nodes represent brain regions as well. However, here the

edges capture functional correlation between regions. Higher edge weights suggest higher probability of
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simultaneous activity between two regions.

One useful graph signal presents each region’s activity measurement (obtained by fMRI) on the nodes of

a structural graph. Low-frequency components in such a network show strong correlated activity between

physically connected regions. In contrast, high-frequency components show tendency of non-connected re-

gions to activate simultaneously. Analyzing this type of graph signal can reveal interesting brain behaviors.

For example, the amount of high frequency energy of a given brain signal is correlated with the performed

task’s difficulty [9, 10].

GSP has been used in many other neurological applications as well. For example, some have used graph

based dimensionality reduction on fMRI images and other brain signals [11, 12]. Another work finds that

people’s familiarity with a simple motor task affects the frequency content of their brain signals while trying

to master said task. This work then proceeds to recognize the most important frequency contents at differ-

ent familiarity levels [13]. One work analyzes connectivity patterns of brains infected with the Alzheimer’s

disease [14]. Finally, some works build upon graph spectral transforms to incorporate several biologically

known connections in the brain and deliver meaningful brain signal decompositions [15, 16].

B) Image Processing
In image processing applications, the graph’s nodes designate pixels of an image while edges capture pixel

position or similarity. Samples on nodes contain intensity or color information of the corresponding pixel.

Common image processing tools in GSP include filtering, compression, restoration and segmentation.

If the graph is undirected and all edge weights are equal to 1, and assuming the graph structure is regular

such as a 1D line graph or a 2D grid, the graph Fourier transform will be equivalent to the DCT transform

[17]. However, GFT is more flexible and adapts better to application-specific conditions if the underlying

graph is constructed insightfully such as the one suggested in [18]. The underlying graph can be learned

from data. For instance, a statistical method is as follows. First, one breaks an image into small 8×8 blocks

and reshapes them into 64-dimensional vectors. Then, one computes the covariance matrix of these vectors.

The graph Laplacian is approximately equal to the inverse of this covariance matrix. By estimating the graph

Laplacian, an underlying graph is inferred whose edges show the conditional independence of the connected

nodes [19].

Another graph learning method is similarity-based. This method constructs an N×N distance matrix con-

taining the distances between all pairs of nodes. Then, considers that distance matrix to be the adjacency

matrix of the underlying graph. The main point in this method is defining a measure of distance between
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nodes. One common definition combines the spatial and intensity differences between nodes as follows,

WWW ∈ RN ,

wi, j = exp(−ds(i, j)2

2σ2
s

)exp(−
dp(i, j)2

2σ2
p

) ,

ds(i, j) =
√
(i1− j1)2 +(i2− j2)2 ,

dp(i, j) = |x(i1, i2)− x( j1, j2)|.

(13)

The two pixels are i = (i1, i2) and j = ( j1, j2). The pixels’ intensities are depicted by x(i1, i2) and x( j1, j2).

The spatial distance between the nodes is noted by ds while their intensity difference is noted by dp. The

(i, j)th entry of the adjacency matrix WWW incorporates both distances [20].

Note that matrix WWW in Equation (13) practically contains a bilateral filter’s weights. Assume xxx contains

intensity values from a block of an image. A bilateral filter applied to xxx will output the signal x̂̂x̂x as

x̂(i1, i2) =
1

∑ j∈Ni wi, j
∑
j∈Ni

wi, jx j . (14)

Equation (14) can be rewritten as

x̂̂x̂x =DDD−1WxWxWx ,

DDD = diag(W1W1W1)
. (15)

which can be seen as graph filtering by a normalized version of the graph’s adjacency matrix.

Other image filters such as non-local means [21] can be viewed from a GSP perspective as well. Non-local

graph-based transform (NLGBT) is a graph-based denoising technique which significantly outperforms state-

of-the-art denoising techniques such as BM3D for piecewise smooth images like depth images [22].

1.2 Visual Coding in the Retina

1.2.1 Introduction

The eye receives visual information by light and translates it into electrical signals which are carried to the

brain for further processing. Curiously, this conversion is not a simple RGB code. Rather, the visual in-

formation goes through a sophisticated process evidenced by the complexity of the retina’s cell structure.

Researchers have formed many hypotheses to clarify this process although much remains unknown. In this

section, we explain how the eye encodes visual information.

The retina is a thin layer of neural cells that lines the back of the eyeball of vertebrates and some cephalopods.

In vertebrate embryonic development, the retina and the optic nerve originate as outgrowths of the devel-

oping brain. Hence, the retina is part of the central nervous system (CNS). The vertebrate retina contains

9



Figure 5: Cross section of the eyeball and the retina. The retina contains several layers of cells. Images
are adapted from [1, 2] with minor edits.

photoreceptor cells (rods and cones) that respond to light; the resulting neural signals then undergo complex

processing by other neurons of the retina. The last layer of the retina’s cells are called ganglion cells. These

cells have long axons which form the optic nerve. The optic nerve carries visual information to the brain

in the form of neuron action potentials. Several important features of visual perception can be traced to the

retinal encoding and processing of light.

Figure 5 shows how light enters the eye through the lens and proceeds to reach the retina. The retina is

mostly transparent, so light moves through it until it reaches the pigment epithelium (RPE). RPE cells are

pigmented; therefore, they absorb light instead of passing it. Photoreceptor cells (rods and cones) are placed

immediately adjacent to RPE cells. They receive the absorbed light and convert it to electrical signals. In hu-

mans, there are three different types of cone cells which respond to three different colors: red, green and blue.

Photoreceptors are connected to horizontal and bipolar cells. Bipolar cells transmit electrical signals from

photoreceptors to the next stage. They serve as a link between photoreceptors and ganglion cells (RGC).

Ganglion cells receive signal from bipolar and Amacrine cells, then transmit the signal upward through their

axons. At least 18 different types of ganglion cells are now thought to be present in the primate and human

retina, all of them functionally and morphologically distinct [23]. The collection of ganglion cell axons is

called the Retinal Nerve Fiber Layer (RNFL), also known as the optic nerve, which carries visual informa-

tion to the brain.
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Each ganglion cell is connected to a set of photoreceptors via a complex circuit consisting of bipolar, hori-

zontal and Amacrine cells. If we move a bright spot in front of the retina, we see that the ganglion cells in a

local area around the bright spot respond to the light, while other ganglion cells positioned far from the light

source remain silent. Hence, each ganglion cell has a receptive field consisting of the photoreceptors that are

connected to it via a cellular circuit. For a fixed eye position, we can also think of the receptive field as the

region of the visual field in which the stimulus evokes a response in the ganglion cell [3].

To get more acquainted with ganglion cell signaling, let us investigate two types of ganglion cell receptive

fields. The receptive field is subdivided into two regions, center and surround. There are two primary types

of ganglion cell receptive fields:

1. ON-center/OFF-surround: Flashing a small bright spot in the center subregion increases the cell’s

response. Flashing a bright annulus in the surround subregion inhibits the cell’s response. There is

little or no response to a large (full field) spot of light that covers both the center and the surround

because excitation in the center cancels the inhibition from the surround. This phenomenon is called

lateral inhibition.

2. OFF-center/ON-surround: This type has the opposite arrangement. It gets inhibition from a bright

spot in the center, and excitation from an annulus in the surround.

Figure 6 plots a ganglion cell’s action potentials through time if a small bright spot is flashed on its receptive

field. Icons on the left represent various visual stimuli. Plots next to the icons show the electrical pulses

recorded through time at the cell’s axon for indicated stimuli. We can see that the ON-center cell fires more

frequently when excited by a bright-center-dark-surround stimulus, and less frequently by the inverse stimu-

lus. The OFF-center ganglion cell behaves in opposite of the ON-center cell. This behavior already portrays

a sort of derivation computed by the ganglion cells.

Figure 6: Responses of two primary ganglion cell types to various stimuli. Adapted from [3]

Most textbooks and review articles regard the retina akin to a pre-filter and a channel. The retina’s principal
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function is to convey the visual image to the brain, where complex processing can be applied to it. Never-

theless, the retina enhances the brain’s input as well. For instance, a light adaptation mechanism exists in the

retina which acts like an automatic gain control, keeping the visual input’s illumination in a suitable range.

Moreover, the lateral inhibition in the ganglion cell’s receptive field can serve to sharpen the image in space

and time. Although the picture of the retina as a simple spatiotemporal prefilter is widely adopted, it fails to

explain the need for various RGC types and intricate cell connections in the retina [24].

An alternative picture of the retina proposes that each ganglion cell type computes a specific feature about the

visual scene. In this picture, each ganglion cell type is connected to the photoreceptors via a dedicated neural

circuit which extracts the feature of interest. This neural circuit is implemented by the Amacrine, bipolar and

horizontal cells. Therefore, the downstream regions in the brain receive a highly processed set of extracted

features, instead of a generic pixel representation of the image. Indeed, there is a well-known example of this

kind of processing: the direction-selective ganglion cell. These neurons respond strongly to moving stim-

uli, such as traveling spots or bars, but they greatly prefer one direction of motion over the others [25, 26, 27].

The prefilter picture may well apply to particular kinds of retinal ganglion cells under certain conditions; but

in other cases, it reflects a crude average of the ganglion cell’s behavior under stimuli that fail to probe its

function properly. To better understand the retinal code, it helps to work with visual stimuli that somehow

reflect the actual challenges that the visual system faces in its natural environment. The data used in this

thesis is generated by naturalistic stimuli for the same reason. A number of visual features computed by the

retina are reviewed in the next section.

1.2.2 Literature Review

Since we discuss general computational abilities of the vertebrate retina, we will focus on visual tasks rele-

vant to all species: detecting light at low intensity, dealing with image motion caused by objects in the scene

or the movement of the observer, and adapting to changing visual environments. Because of the generic

nature of these tasks, we will freely discuss results obtained from different animal models.

A) Light Detection
The most straightforward task of the visual system is the detection of dim lights. Human observers can sense

a flash of light even at very low intensities that lead to only a handful of successful photon absorptions in the

retina [28, 29]. Correspondingly, rod photoreceptors display small responses to single photon absorptions,

1 mV in amplitude [30, 31], and retinal ganglion cells can indeed signal these events to the brain [32]. A

ganglion cell typically collects inputs from many hundreds of rods [33]. Thus, the computational challenge

for the retina lies in separating the small single-photon signal in one or a few rods from the continuous elec-

trical noise that is present in all photoreceptors. How the retina isolates the signal from the ubiquitous noise

is beginning to be understood [34, 35].

B) Motion Detection and Discrimination
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Beyond mere light detection, the retina can interpret behaviorally significant patterns in the visual input. A

dominant feature of the retina’s input is motion. Motion can come from two sources. First is the movement

of the observer’s body, head or eye which causes a global optic flow. This type of global motion is usually

interpreted as noise since it does not contain important information about the environment which guides the

subject’s behavior. The second source is the movement of objects in the scene which causes the behaviorally

relevant “signal”. As we will see, The retina contributes to sorting this important signal from the morass of

distracting noise before it is presented to the brain.

The Y-type ganglion cell, according to one hypothesis, detects texture motion. When a textured image patch

moves across the retina, it causes an increase of light intensity at some points and a decrease at others. Y-

type ganglion cells are connected to a circuit of bipolar cells seemingly able to detect and integrate such

local changes. These neurons fire when the texture moves, and the activity is largely independent of the

direction of motion or the spatial layout of the moving pattern. Such ganglion cells have been identified in

many species [36, 37, 38, 39, 40, 41].

Saccadic eye movements are unconscious rapid movements of both eyes that shift the center of our gaze even

if we consciously fix our gaze on an object. Although these fixational eye movements have a magnitude that

should make them visible to us, we are unaware of them. If saccadic eye movements are counteracted, our

visual perception fades completely as a result of neural adaptation. Hence, our visual system has a built-in

paradox — we must fix our gaze to inspect the minute details of our world, but if we were to fixate perfectly,

the entire world would fade from view [42].

As a result of this constant movement, object motion manifests itself on the retina as the difference between

the motion trajectory of a local patch and that of the background. Neurons that detect this differential motion

have been found in various parts of the visual system [43, 44, 45], and they are particularly well studied in

the retina. Here, object motion sensitive (OMS) ganglion cells were discovered that respond selectively to

differential motion [46, 47]. These neurons remain silent when all visible objects move rigidly across the

retina, but fire vigorously when a local patch on the receptive field center moves with a trajectory different

from the background.

Objects moving vertically or horizontally in the visual field lead to translation on the retina. But what about

motion in the third dimension of depth? An approaching object would produce an image patch that gradually

expands on the retina, with no net displacement. Recently, a ganglion cell type was described that is indeed

selective for this stimulus feature [48]. These ganglion cells showed OFF-type responses. They were driven

strongly by an expanding dark spot, even if it was accompanied by a global brightening of the scene. Yet

they remained silent during lateral motion of a dark spot.

C) Anticipation
There is great survival value in being able to anticipate the future. Indeed, because of delays in our sensory
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pathways, the brain really experiences the past, and even knowing the present requires a measure of predic-

tion. Here we mention two ways in which the retina contributes to this prediction.

Detecting a moving object and the direction of its motion is generally not sufficient; to catch fleeing prey

or to avoid an approaching predator, an animal needs to track the object location precisely. This becomes a

challenge because of the cells’ natural delay to respond to stimuli. Even in bright daylight conditions, the

cone photoreceptor responds with a time delay of several tens of milliseconds [49, 50]. In this amount of

time, a well-served tennis ball flies ∼ 2m, a distance many times larger than the receiving player’s racket.

Obviously, undoing this delay is critical for the observer’s survival.

It has been shown that the retina extrapolates an object’s trajectory by relying on the fact that objects tend

to move in a smooth fashion. Surprisingly, this complex computation comes about through the interplay of

rather generic features of retinal circuitry. The main contributors are the spatiotemporal receptive field of the

ganglion cell and a dynamic gain-control mechanism. Because the receptive fields are extended in space, the

object already activates ganglion cells that lie some distance ahead in its motion path. The spatial receptive

field alone would predict an equally extended zone of activation behind the object. However, firing of those

ganglion cells is suppressed first by the biphasic temporal receptive field, and second by a dynamic gain

control mechanism, which itself gets activated by the response to the object [51, 52, 53]. The gain control

lets the ganglion cell be sensitive upon first entry of the object into the receptive field, but then shuts down

the response. It is an essential component for the anticipatory response to motion stimuli [54] and gives this

computation a highly nonlinear flavor.

A different form of anticipation can be observed when the visual system is exposed to a periodic stimulus,

such as a regular series of flashes. The activated visual neurons typically become entrained into a periodic

response. If the stimulus sequence is interrupted, for example by omitting just one of the flashes, some

neurons generate a pulse of activity at the time corresponding to the missing stimulus [55, 56]. This phe-

nomenon, termed the “omitted stimulus response”, is quite widespread and has been noted in the brains of

many species, including humans [57]. Qualitatively it suggests the build-up of an anticipation for the next

stimulus, and the large response reflects surprise at the missing element in the sequence. Unlike in the case

of moving objects, where the anticipation involves lateral processing in space, here the information about the

stimulus sequence must be propagated forward purely in time. Many works scrutinize the omitted stimulus

response, attempting to find its underlying neural mechanism [58, 59, 60].

1.3 Explainability of Artificial Intelligence Models

1.3.1 Introduction

A) Model-based Processing
Model-based processing is the traditional way of inferring constructive information about a system or ma-

nipulating it into a desired state. This procedure, which is rooted in the scientific method itself, starts with

observation, making a hypothesis about the system, testing said hypothesis by collecting data from controlled
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experiments and, finally, using results from the experiments to modify and further develop the hypothesis.

This paradigm has been used in many disciplines of engineering and science. The discovery of mathemat-

ical relations and laws governing a physical system is an example of model-based processing, from simple

kinematic equations to complex theoretical models such as electromagnetism or thermodynamics. These

mathematical models of physical systems, in turn, lay the foundation of new technology which manipulates

said systems to reach a target [61].

The same procedure can be followed to develop abstract systems as well. For example, imagine that we

want to create an audio processing system which can extract one voice from a recording of multiple speakers

having a discussion. We need to analyze the recording using mathematical tools such as Fourier trans-

form, identify useful variables to distinguish and isolate the desired voice, run multiple tests of our invented

method, and repeatedly improve it until we reach an acceptable quality. Finally, we implement the method

as our final product. To illustrate, a model-based solution for this problem can be found in [62].

B) Issues with Model-based Processing
Model-based processing is slow and expensive. People who develop models need to be experts in multi-

ple disciplines and spend a tremendous amount of time testing and modifying their model. In addition, the

experiments they conduct can be expensive. Finding out all relevant variables and dynamics in the system

costs time, expertise and money for running experiments [61]. On the other hand, complex models are hard

to work with when designing new technology or predicting the future state of the system; therefore, simpler

models are favored. However, these simple models fail to account for some relevant variables and dynamics

which may cause unforeseen behavior and system failure [63].

Above that, scientists and engineers tend to build upon previously established models than disrupt the founda-

tions; so model-based hypotheses are usually biased by previously developed models. To boot, data gathered

from controlled experiments may not reflect the full complexity of real applications and miss patterns that

only appear in the full perspective [64]. These issues fostered a need for a new problem solving approach.

C) Data-driven Processing
In the past few decades, growing capacity and decreasing cost of sensors, computational power and data

storage has led to an unprecedented abundance of accessible data [61]. Computers became able to run so-

phisticated algorithms on huge amounts of data which paved the way of data-driven processing.

Data-driven processing starts by devising an algorithm that can find patterns and correlations in data, then

applies it to huge datasets that include as many variations and conditions of the system as feasible. At first

glance, this might appear as an automation of the model-based approach; instead of humans meticulously

curating a model, a computer tries out numerous possible models in a specific space and chooses the best

one based on defined criteria.
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Since computers can deal with many more variables than humans, data-driven models can be much more

complex than ones devised by humans, taking more factors and conditions into account. This usually leads

to better prediction of the system’s behavior [65]. The data used in this approach is gathered in real un-

controlled conditions so it reflects more of the natural complexities of the system compared to controlled

data used in the model-based approach. Consequently, measurement errors become more tolerable in such a

setting [61].

D) Issues with Data-driven Processing
Benefits of data-driven solutions excited many scientists and engineers, although a lot of criticism have been

made as well. One criticism points out that, counter to popular belief, data provided by online databases

are highly selective. The subjects of these data and the way they are presented are influenced by underlying

social, political, economic and technical factors. These unknown biases in data lead to erroneous data-driven

models. Furthermore, these subtle biases and their consequent model errors are hard to detect and fix [66].

Other issues arise when too complex models are derived from data that do not rely on previously established

knowledge. While these data-driven models yield extremely good performance, they tend to become a black

box; in other words, explaining why and how they come to conclusions, in a humanly understandable way,

becomes nearly impossible. This unexplainability causes important issues in technology enhancement, ro-

bustness, fairness and acceptance by the users.

Adoption of a model or taking action based on a prediction requires user trust in the model or prediction.

A model with unintelligible inner dynamics or a prediction based on unknown patterns and trends cannot

engender such a trust [67]. For instance, consider computer-based diagnosis of a cancerous tumor. Accept-

ing the risks and costs of treating such a tumor requires a level of trust in the diagnosis that cannot yet be

generated without human expert knowledge.

A closely related issue is that of safety. Engineers need to make sure that a data-driven model will work

correctly not only on available validation data, but also on real user input in real applications. Understanding

how the model will extrapolate to unseen data is crucial for this goal which requires some level of explain-

ability [68].

Furthermore, enforcing legal responsibility on corporations and individuals requires a clear description of

each party’s function [69]. For instance, if an autonomous car crashes, it is not clear whether it is the driving

system’s fault or the passenger’s. Another legal aspect is the “right to an explanation” which was adopted by

the European Union in May 2018. This regulation states that individuals have the right to an explanation of

a decision based on automated processing [70].

Technology developers need explainability as much as consumers. Detailed explanation of each part of the
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system helps developers locate sources of malfunction and uncertainty. They can then fix malfunctions or

develop schemes to account for uncertainty. An example of this procedure is robust control theory which

expands model-based control theory by considering uncertainty [63]. Explainability is also essential in de-

veloping new technology by using experience and feedback from previous ones.

A third merit of explainability is addressing upper-level concerns such as fairness, nondiscrimination and

avoiding technical debt. Technical debt means the costs of maintaining a software such as deep learning

models as opposed to the costs of their design and implementation [71]. On another note, since data-driven

models are usually tuned to uncontrolled data, they are prone to adapting any discriminatory judgement that

might exist in the data. To boot, the complex structure of these models makes it hard to detect where and

why these biases happen [72]. To reduce technical debt and detect biases, the model needs to be moderately

transparent.

1.3.2 Literature Review

Despite the crucial need for explainability, this concept does not yet have a formal mathematical definition,

or a metric by which it can be measured. Various works define explainability in many intuitive ways. One

popular definition is stated in [73] as “the ability to explain or to present in understandable terms to a hu-

man”. Numerous works try to establish clear desiderata for an acceptable explanation such as [74, 75].

Despite the absence of clear definitions, a myriad of AI explanation methods have been developed over the

years. As seen in Figure 7, these methods can be categorized based on different criteria. Some explanation

methods only work for certain algorithms; these are called model-specific. While other methods, which are

called model-agnostic, can be used to explain any AI model. Explanation methods may explain the model’s

result for one specific input (local), or generally explain the model for all inputs (global). Furthermore,

explanation methods can be categorized based on their input data types; most common types are tabular and

image [76]. Figure 7 is taken from [76].

Four major categories of AI explanation methods based on their purpose are as follows.

1. Intrinsic or white-box: These methods aim to create a self-explanatory model or a white box. Examples

include linear, decision tree and rule-based models.

2. Post-hoc: These methods aim to explain already trained and complex models (black boxes). Examples

include gradient-based attribution [77] and Shapley additive explanations (SHAP) [78].

3. Fairness enhancement: These methods aim to enhance AI fairness whether that leads to more explain-

ability or not. Examples include disparate impact testing [79] and adversarial debiasing [80].

4. Sensitivity analysis: These methods analyze the output’s sensitivity to input features. Examples in-

clude traditional methods such as [81, 82, 83] and methods of creating adversarial examples such as

[84, 85, 86].
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Figure 7: Categories of AI explanation methods.
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2 Methodology

2.1 Big Picture

2.1.1 Graph Signal Processing

This work stems from GSP and branches into retinal coding and AI explainability. GSP offers an arsenal of

various tools and concepts, one of which is the similarity graph. A similarity graph is an undirected graph

where each edge describes the similarity relationship between two connected nodes. The similarity between

two nodes can be delineated both by their connectivity (whether an edge exists between them or not) and the

edge’s weight. The higher the weight, the stronger the similarity. The edge’s weight can quantify similarity

with more precision than just the connectivity. This similarity-based structure is then used to process the

graph signal, which is defined on top of the nodes.

The definition of similarity is application-dependent. One idea is to parameterize this definition and learn

it using experimental data. Thus, the similarity graph becomes a machine learning model. One application

of such a model is classification. Let each node represent a data point, e.g., an image of an animal (see

Figure 8). The graph signal on top of nodes shows the class to which each image belongs. In Figure 8, class

labels are shown with letters; however, they can easily be converted to numbers by a simple map: cat is 0,

dog is 1, and horse is 2.

Figure 8: A similarity graph is used to classify images of animals. The definition of similarity is
parameterized and optimized on labeled data.

Ideally, the similarity definition would be learned in a way that many edges with high weights would connect

images of the same label, while images of different labels are either connected with low-weighted edges or

not connected at all. In other words, the similarity should be learned in a way that the given graph signal

becomes smooth (or piece-wise smooth) on the resulting graph. The concept of smoothness for graph signals

was explained in Section 1.1.1. If the similarity is learned correctly, the resulting structure includes clusters

comprising all nodes of a certain class. Edges insides a cluster are numerous and have high weights, while
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edges between clusters are scarce and have low weights.

To predict unknown labels using this model, we represent each test data point with a node. Then, we find the

edges connecting the test nodes to training nodes using the optimized definition of similarity. This process

is illustrated in Figure 9; new edges connecting a test image to a training or another test image are colored

red. After fixing the edges, estimating the unknown labels becomes equivalent to an interpolation problem

for graph signals (as opposed to time-domain signals). Thus, the unknown labels can be estimated using the

smoothness criterion and the known labels.

This estimation yields real values for labels; for example, we might get 1.2 or 2.37. The real-valued labels

can be simply rounded (or otherwise discretized) into whole numbers to obtain class labels. The original real

values can also serve as a measure of confidence in the final prediction; for example, if a real-valued label is

rather close to a threshold border, then the final prediction has a high probability of error.

To increase the accuracy of our model, nodes can be associated with extracted features of images, instead of

their raw values. These features can be arbitrarily simple or complex. For instance, one might use filters of a

pre-trained convolutional neural network (CNN) to extract features from the images. The filters can belong

to the first layers of CNN which result in simpler (but more generalizable) features, or the last layers which

yield more specific and sophisticated features. Alternatively, one can use feature extraction algorithms such

as SIFT [87], SURF [88], BRIEF [89], ORB [90], etc.

Figure 9: Estimating labels of test images using the optimized similarity graph of Figure 8. Edges
connecting at least one test image to another image are colored red.

2.1.2 Machine Learning

The previous section described the outline of a graph-based classification model. This section summarizes

the model’s advantages compared to existing classification approaches such as deep learning [91], gradient

boosting decision trees (GBDT) [92], k-nearest neighbors [93], etc.
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There are two main advantages that our model provides: explainability, and the ability to use the test nodes’

similarities to predict their labels. The focus of this thesis is providing good explanations of the model’s

predictions. This is not to say that popular classification approaches like deep learning are 100% opaque

and unexplainable. In fact, several tools to explain machine learning models were introduced in Section 1.3.

Nevertheless, we develop a transparent model in this thesis so that it enables producing neurobiological in-

terpretations which can be used in the research about retinal visual coding.

A similarity graph is completely explainable and visualizable. Moreover, it enables further analysis via

already-developed tools in GSP. Since the definition of similarity can be arbitrarily parameterized, one can

choose a widely studied and established formulation. In this thesis, we defined similarity based on the Ma-

halanobis distance which is well-known and studied in the literature [94, 95, 96]. More explanation of the

Mahalanobis distance is presented in the following sections.

Although the similarity graph is completely explainable, the features that are given to the similarity graph

may not be. If features are not explainable, then our method is only half-explainable; we can see the similar-

ity graph and the relationship between the features and the prediction, but not the relationship between the

features and the input image. However, the choice of features is given to the user. Based on the application,

one might use a fully explainable feature set such as SIFT. If the features and the definition of similarity are

explainable, then our approach is 100% transparent from start to finish.

The second advantage of our method is the possibility to utilize similarities between the test data, as well as

the training data ,to predict the labels. Machine learning models typically predict each test label indepen-

dently from other test data. Conversely, our proposed model estimates all test labels at once; hence, it can

account for the similarities between the test data during prediction.

To estimate test nodes’ labels, we found edges between them and training nodes, then considered the whole

graph signal and interpolated it on the test nodes based on the smoothness criterion. We can incorporate

the similarity between the test nodes into the prediction process by connecting pairs of test nodes via edges.

Based on the smoothness criterion, connected test nodes with similar images tend to have similar predictions,

whatever that prediction may be. This property allows the model to rely less on the training data which is

specially sought after in applications where labeled training data is expensive to obtain. One such application

is neurobiological signaling which is discussed in the next section.

2.1.3 Retinal Coding

As described in Section 1.2, each retinal ganglion cell type extracts a specific feature from the eye’s input

which is crucial to the animal’s survival from an evolutionary point of view. Recent advances in building

electrode arrays [97] have made it possible to record individual responses of a population of RGCs to an stim-

ulus, such as a naturalistic movie played in front of the retina. Deep learning models have been trained and

tested on these datasets (i.e. the stimulus and the responses) [98, 99]. Although deep learning can model the
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input-output of the retina with high accuracy, it struggles to yield applicable information about the nature of

the ganglion cells [99]. This is mostly due to the opaqueness of large convolutional neural networks (CNN)

which was discussed in Section 1.3.2. Our model’s transparency enables neurobiological interpretations.

These interpretations let us select the features to which ganglion cells are most sensitive from a given set of

extracted features. Moreover, they can be used to locate each ganglion cell’s receptive field (see Section 1.2.1

for a definition of the receptive field). More applications of these interpretations can be explored in the future.

On the other hand, recording ganglion cell responses is expensive so the datasets are small compared to

the usual sets used in deep learning applications. Additionally, these responses are sparse since ganglion

cells stay silent most of the time; i.e. action potentials are infrequent. The small and sparse datasets pose a

challenge for mainstream deep learning approaches; therefore, our model’s ability to use test data similarities

is convenient to this context. Furthermore, our model has the option of connecting each node to an arbitrary

number of nodes from zero to the size of the graph. As a result, it has the flexibility of caring more about

some nodes compared to the others; for instance, one can set a higher degree for nodes that are associated

with action potentials than those associated with silence.

2.2 Comprehensive Picture

2.2.1 Problem Formulation

In its most simplified form, the retina is a system that converts the eye’s spatiotemporal input to electrical

pulses conveyed by multiple cells through time (Figure 10). The eye’s input could be mimicked by a movie.

Mathematically, it can be represented by a 3D tensor (see Figure 11). The first two dimensions serve as

the width and height of the visual field (i.e. the movie’s frames), and the third dimension is time. The

tensor’s elements delineate the pixels’ brightness on the grayscale spectrum. If the eye’s input includes color

information, then three of these tensors are needed, each for one primary color. The dataset used in this

thesis includes a grayscale movie as the eye’s input; therefore, we only consider one tensor.

Figure 10: Retina is simplified as an encoder, converting the visual input to a set of electrical pulses
through time

The electrical pulses can be represented as a set of discrete binary signals through time. The time interval

between samples depends on how the continuous experimental data is processed. For simplicity, we assume

this time interval is equal to the time that each frame takes in the input movie. As a result, the samples of

these binary signals are exactly aligned with the frames of the given movie. The signals’ samples can either

be 1 or -1. If a cell’s signal is 1 in a specific time interval, it means that cell had an action potential in that

interval, otherwise the signal is recorded as -1. The signals of all cells can be represented as a 2D matrix;

each row illustrates one cell’s signal through time. Figure 11 shows the tensor and the matrix aligned with

each other on the time axis.
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Figure 11: The retina’s input is illustrated by a 3D tensor (top), while its output is represented as a 2D
matrix (bottom). Black dots on the matrix show entries valued +1, while white spaces show entries

valued -1.

As a result, one can mathematically describe the retina as a function from the space of all 3D tensors of the

correct size to the space of all matrices of the correct size, i.e.,

r : RT×H×W →{+1,−1}N×T . (16)

The experimental dataset can be mathematically formulated as

D = {QQQ,SSS} , QQQ ∈ RT×H×W , SSS ∈ {+1,−1}N×T . (17)

We know that the experimental data is an input-output set of the retina, i.e.,

r(QQQ) = SSS. (18)

The problem is to estimate the function r using the given input-output set D .

Estimating r with our current dataset is difficult since r is a complicated function; therefore, we simplify

the problem by making assumptions. The assumptions do not necessarily reflect the real function of the

retina; however, we take care not to oversimplify the problem. The first assumption is that the ganglion cells

operate independently from each other; in other words, r is a concatenation of N independent functions, each

receiving the same 3D tensor as input, but producing a different discrete binary signal as output,

r = [r0,r1,r2, ...,rN−1]

ri : RT×H×W →{+1,−1}T , ∀i ∈ {0, ...,N−1}.
(19)
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By this definition, we have N pairs of input-output in our dataset,

D = {(QQQ,s0s0s0),(QQQ,s1s1s1), ...,(QQQ,sN−1sN−1sN−1)}

sisisi = row i of matrix SSS,
(20)

each pair belonging to one function,

ri(QQQ) = sisisi , ∀i ∈ {0, ...,N−1}. (21)

The second simplifying assumption is that a ganglion cell’s response in a certain time interval depends only

on a fixed duration of the stimulus prior to the response. Let that duration be M preceding frames of the

movie; then, sample t of signal sisisi depends only on frames t−M+1 to t of the movie,

si[t] depends on {Qt−M+1Qt−M+1Qt−M+1,Qt−M+2Qt−M+2Qt−M+2, ...,QtQtQt} , ∀t ∈ {0, ...,T −1} , i ∈ {0, ...,N−1}

si[t] ∈ {+1,−1} , QtQtQt ∈ RH×W , ∀t ∈ {0, ...,T −1}.
(22)

This reduces each function ri to a simpler function which receives chunks of the whole stimulus and produces

one sample of the response at a time,

r′i : RM×H×W →{+1,−1}

r′i(Qt−M+1Qt−M+1Qt−M+1, ...,QtQtQt) = si[t] , ∀t ∈ {0, ...,T −1}.
(23)

To obtain ri from r′i, one should only feed all chunks of the stimulus to r′i, and then concatenate the responses,

ri(QQQ) = [r′i(Qt−M+1Qt−M+1Qt−M+1, ...,QtQtQt) , ∀t ∈ {0, ...,T −1}] = [si[t] , ∀t ∈ {0, ...,T −1}] = sisisi. (24)

Our input-output pairs are now composed of chunks of the video and binary responses,

D = {D0,D1, ...,DN−1}

, Di = {([Qt−M+1Qt−M+1Qt−M+1, ...,QtQtQt ],si[t]) , ∀t ∈ {0, ...,T −1}}.
(25)

Each Di comprises T input-output pairs; therefore, the whole dataset D consists of N×T input-output pairs.

Lastly, we split a cell’s function into two nested functions,

r′i(·) = gi(h(·)). (26)

The first function h extracts visual features from the video clips which are shared among all ganglion cells,

h : RM×H×W → RC

h(Qt−M+1Qt−M+1Qt−M+1, ...,QtQtQt) = ftftft , ∀t ∈ {0, ...,T −1},
(27)

where ftftft is a feature vector describing M video frames prior to and including frame t. The second function
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gi, which is specific to each ganglion cell, generates the cell’s response based on the input features ftftft ,

gi : RC→{+1,−1}

gi( ftftft) = si[t] , ∀t ∈ {0, ...,T −1}.
(28)

Figure 12 illustrates this simplifying step.

Figure 12: Each neuron’s function is composed of two nested functions. The first one (h) extracts visual
features from the input, and the second one (gi) generates the cell’s response based on the features.

In this thesis, function h is arbitrarily chosen from existing feature extraction algorithms such as SIFT [87],

3D-SIFT [100], pre-trained filters of a suitable CNN [101], etc. In contrast, function gi is learned using

the dataset Di. Since function h is chosen rather than learned, the problem is effectively reduced to finding

functions gi , ∀i ∈ {0, ...,N−1}. We can learn function h as well in the future of this research.

Since the features ftftft , ∀t ∈ {0, ...,T −1} are now known, our dataset is composed of pairs of feature vectors

and binary responses,

D = {D0,D1, ...,DN−1}

Di = {( f0f0f0,si[0]),( f1f1f1,si[1]),( fT−1fT−1fT−1,si[T −1])}.
(29)

After applying these simplifying assumptions, the problem becomes finding N functions gi based on N

datasets Di. Each dataset comprising T input-output pairs, where the input is a 1D vector and the output is a

binary number. This can be seen as N separate binary classification problems. Equation (30) shows the final
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formulation of the problem:

For each ganglion cell i :

gi : RC→{+1,−1}

gi( f0f0f0) = si[0]

gi( f1f1f1) = si[1]
...

gi( fT−1fT−1fT−1) = si[T −1]

=⇒ Find gi.

(30)

For the rest of this section, we focus only on one cell so we can drop the index i.

2.2.2 The Graph

The dataset is composed of T input-output pairs: D = {( f0f0f0,s[0]), ...,( fT−1fT−1fT−1,s[T − 1])}. Each input-output

pair is illustrated by a node in the similarity graph. Each node is associated with a time instant t; hence, each

node holds a feature vector ftftft . In contrast, the cell’s response at interval t is the graph signal’s sample on

node t. Figure 13 shows a handful of nodes and their signal samples.

Figure 13: Several nodes of the similarity graph and the signal samples on top.

The similarity graph can be complete, meaning that all nodes are connected to all other nodes. Even so, a

complete graph makes the training and validation process computationally expensive; therefore, only a num-

ber of edges should be selected for the graph according to a user-selected strategy. For instance, a certain

number of edges can be selected at random, or based on the closeness of the nodes’ time indices t. Both

of the aforementioned strategies are implemented in this thesis which will be thoroughly explained in Sec-

tion 2.3.

After selecting the graph’s edges, the weights of the edges determine the similarity of the node pairs at their

ends. In this thesis, the similarity is defined as

wi j ≜ e−di j , (31)

where wi j is the weight of the edge connecting nodes i and j, and di j is the distance of the node pair.
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Subsequently, the distance is defined as

di j ≜ ( fififi− f jf jf j)
TMMM( fififi− f jf jf j)

fififi, f jf jf j ∈ RC , MMM ∈ RC×C,
(32)

which is called the Mahalanobis distance[94]. fififi and f jf jf j are feature vectors of nodes i and j. The matrix MMM

is a metric matrix; it defines the space where the Mahalanobis distance is calculated. A metric matrix must

be positive semi-definite (PSD), meaning that it should satisfy the following constraint,

xxxT MMM xxx≥ 0 , ∀xxx ∈ RC ⇐⇒ MMM ∈ RC×C is PSD . (33)

This constraint is necessary to ensure that the distance di j is always non-negative. Negative distance is ill-

defined and would cause numerical issues later on. A PSD matrix is denoted MMM ⪰ 0. Since 0 ≤ di j < +∞,

the edge weights wi j will end up in the (0,1] range, with 1 corresponding to zero distance (di j = 0). As the

distance of fififi and f jf jf j increases to +∞, their similarity decreases to 0. Since MMM is positive semi-definite, the

distance may be zero for non-equal feature vectors as well. In mathematical terms, we have

fififi = f jf jf j⇒ di j = ( fififi− f jf jf j)
T MMM ( fififi− f jf jf j) = 000 MMM 000 = 0, (34)

but,

if MMM ⪰ 0 : di j = ( fififi− f jf jf j)
T MMM ( fififi− f jf jf j) = 0 ⇏ fififi = f jf jf j. (35)

The Mahalanobis distance is simple and visualizable, yet it has enough flexibility to match most of the data

distributions in the real world. To illustrate, let us rewrite the definition in Equation (32) as

di j =
C−1

∑
a=0

C−1

∑
b=0

Mab fa fb

, fff ≜ fififi− f jf jf j.

(36)

By this notation, one can see that pairs of entries of fififi− f jf jf j are multiplied and linearly combined to determine

the distance between nodes i and j. For better visualization, let us consider a 2D example of this; i.e.

fff = fififi− f jf jf j =

[
x

y

]
∈ R2

, MMM ∈ R2×2.

(37)

Thus, Equation (32) becomes

di j = fff TMMM fff = [x,y]

[
M00 M01

M10 M11

] [
x

y

]
= M00x2 +(M01 +M10)xy+M11y2,

(38)
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which is the parametric equation of conic sections minus the first-degree terms (with only x or only y). The

conic sections are the circle, ellipse, hyperbola and parabola. The entries of MMM can be adjusted based on the

data distribution in a way that its contours become any ellipse or circle; however, the contours can not be

hyperbolas or parabolas. To prove that any ellipse is feasible, consider the parametric equation of the ellipse,

x2

a2 +
y2

b2 = 1. (39)

To shape the contours into ellipses, we only need to define MMM as

MMM =

[
1
a2 0

0 1
b2

]
. (40)

By the definition in Equation (40), MMM is positive semi-definite,

di j = fff TMMM fff =
x2

a2 +
y2

b2 ≥ 0 ∀x,y ∈ R. (41)

To rotate the ellipse, we only need to multiply the rotation matrix RθRθRθ by the coordinates,

RθRθRθ =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
. (42)

Hence, to rotate the elliptical contours, we define the metric matrix MθMθMθ as in Equation (43),

MθMθMθ ≜RθRθRθ
T MMM RθRθRθ, (43)

where MMM is the same matrix in Equation (40). Now, the contours are derived by Equation (44),

di j = fff T MθMθMθ fff = fff T RθRθRθ
T MMM RθRθRθ fff = [x y]RθRθRθ

T MMM RθRθRθ

[
x

y

]
= const., (44)

which is the equation of a rotated ellipse by angle θ. Thus, any ellipse (rotated or unrotated) is feasible.

Parabolas are not feasible because their parametric equation requires the first-degree terms (with only x or

only y) which are not present in Equation (38). Hyperbolas are not feasible because their corresponding

matrix MMM is not PSD. To elaborate, consider the parametric equation of the hyperbola,

x2

a2 −
y2

b2 = 1. (45)

To shape the contours of the Mahalanobis distance into hyperbolas, we need to define MMM as

MMM =

[
1
a2 0

0 − 1
b2

]
, (46)
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where a,b are the same coefficients used in Equation (45). Consequently, this means that the distance

between any two points on a vertical line is negative:

if fff = fififi− f jf jf j =

[
0

y

]
, y ̸= 0 =⇒ di j =

02

a2 −
y2

b2 =− y2

b2 < 0. (47)

Therefore, hyperbolic contours do not satisfy the PSD constraint of MMM.

Figure 14 shows examples of the Mahalanobis distance contours, next to their corresponding metric matri-

ces. The Mahalanobis distance is reduced to the Euclidean distance if MMM = III. In principle, any definition of

distance can be used for the similarity graph. In this thesis, we use the definition in Equation (32).

(a) Circle (b) Unrotated ellipse 1

(c) Unrotated ellipse 2 (d) Rotated ellipse

Figure 14: Examples of Mahalanobis distance contours in 2D space, along with their defining metric
matrix.

Lastly, it is worth noting that, in our current scheme, the edge selection process did not incorporate anything

about the similarity of feature vectors. In fact, edge selection is completely separate from the definition of

similarity. As a future work, one can incorporate the edge selection process in the similarity definition as
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well, leading to more informative similarity graphs.

2.2.3 Training with GLR

To use our model, first we split the given dataset D into training and validation datasets Dt , Dv with sizes

Nt , Nv respectively. For training, we only consider the training nodes (i.e. input-output pairs). Edges be-

tween the nodes are selected based on a user-defined algorithm, and the metric matrix MMM is initialized. We

know that the goal of training is to optimize MMM in a way that the graph signal (i.e. the class labels) becomes

smooth on the resulting graph; in short, we want to maximize the smoothness.

Graph Laplacian Regularizer (GLR) is a commonly used prior for signal smoothness in GSP; it is defined as

GLR ≜ yyyTLLLyyy, (48)

where yyy is the graph signal and LLL is the graph Laplacian. We can rewrite Equation (48) as

GLR =
1
2

Nt−1

∑
i=0

Nt−1

∑
j=0

wi j(yi− y j)
2, (49)

where wi j is the weight of the edge between nodes i, j and yi is the graph signal’s sample on node i. Refer to

Appendix A for a proof.

Equation (49) shows that GLR is a linear combination of edge weights (wi j) multiplied by the square of the

difference between their end-nodes’ samples ((yi− y j)
2). Minimizing the GLR is equivalent to minimizing

the similarity (i.e. edge weight) of the nodes with different samples. As the difference of the nodes’ samples

increases, so does the importance of minimizing their similarity. Conversely, if the nodes have equal sam-

ples (i.e., yi = y j), then the weight of the edge connecting them (i.e., wi j) is completely removed from the

objective.

One might notice that using GLR as an objective only minimizes the similarity where suitable; however, it

does not maximize the similarity between similar nodes. As a result, if the optimization objective consists

only of the GLR, then the metric matrix MMM would tend to infinity, meaning that all nodes would be interpreted

as dissimilar; in other words, all edge weights would become zero. To prevent this, we add a penalty term to

the training objective; i.e., the training objective does not only consist of the GLR as in Equation (48), rather

it is given by

E ≜ ytytyt
TLtLtLtytytyt +µ tr(MMM), (50)

where ytytyt and LtLtLt are the graph signal and the graph Laplacian when only the training nodes are considered,

respectively. µ is a free scalar parameter that is set before the optimization process begins, and tr(MMM) is the

30



trace of the matrix MMM,

tr(MMM) =
C−1

∑
i=0

Mii. (51)

In the following, we explain how the tr(MMM) penalty prevents the edge weights tending to zero. Suppose that

MMM is real and symmetric (justification will be given later in the section); therefore, MMM can be decomposed as

MMM =UUUT
ΛΛΛUUU , (52)

where columns ofUUU are the eigenvectors of MMM and ΛΛΛ is a diagonal matrix with the corresponding eigenvalues

of MMM on its diagonal. Substituting this into Equation (32) we have

di j = ( fififi− f jf jf j)
TUUUT

ΛΛΛUUU( fififi− f jf jf j)

= xxxT
ΛΛΛxxx =

C−1

∑
k=0

λkx2
k

, xxx ≜UUU( fififi− f jf jf j).

(53)

The trace of a C×C matrix is equal to the sum of its eigenvalues

tr(MMM) =
C−1

∑
k=0

λk. (54)

Adding tr(MMM) as a penalty term ensures that this sum stays finite. Let the upper bound of tr(MMM) be p. Since

MMM is PSD, we also know that all of its eigenvalues are non-negative; therefore,

0≤
C−1

∑
k=0

λk ≤ p <+∞. (55)

Moreover, entries of UUU are in [−1,+1] range since all eigenvectors are of unit length; meaning that entries

of xxx are finite as well. Let max(xxx) show the maximum entry of xxx, then

0≤ di j =
C−1

∑
k=0

λkx2
k ≤ p . max(xxx)2 <+∞. (56)

This is how the penalty term upper bounds the distances.

To ensure that MMM is PSD, we define it as

MMM ≜BBBTBBB , BBB ∈ RC×C, (57)
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where BBB can be any real matrix. Recalling Equation (33), we can write

∀xxx ∈ RC : xxxTMMMxxx = xxxTBBBTBBBxxx = ∥BBBxxx∥2
2 ≥ 0 =⇒ MMM ⪰ 0. (58)

Finally, the whole training process is formulated as follows,

B∗B∗B∗ = arg min
BBB∈RC×C

E

= arg min
BBB∈RC×C

ytytyt
TLtLtLtytytyt +µ tr(BBBTBBB)

M∗M∗M∗ =B∗B∗B∗TB∗B∗B∗,

(59)

and ytytyt and LtLtLt depend on the training data Dt . This optimization problem is solved by the Gradient Descent

(GD) algorithm [102] in this thesis. Refer to Appendix B for the derivation of loss (which is required by

GD). The time complexity of the training process is analyzed in Appendix B as well. In the rest of the thesis,

we refer to this training approach as B-GLR; because the objective is GLR-based and the PSDness is ensured

by defining MMM =BBBT BBB. Two more training approaches will be introduced in the following sections.

2.2.4 Graph-based Large Margin Nearest Neighbor (GLMNN)

In Section 2.2.3, we saw that the first term of the training objective (i.e. GLR) only accounts for edges

between different-labeled nodes. Recall Equation (49); since the nodes’ labels are binary in our dataset, we

can separate the summation terms based on whether yi = y j or yi ̸= y j, thus we have

GLR =
1
2 ∑

i∈P−1

∑
j∈P−1

wi j(−1− (−1))2 +
1
2 ∑

i∈P−1

∑
j∈P+1

wi j(−1− (+1))2

+
1
2 ∑

i∈P+1

∑
j∈P−1

wi j(1− (−1))2 +
1
2 ∑

i∈P+1

∑
j∈P+1

wi j(1−1)2

= 2

[
∑

i∈P−1

∑
j∈P+1

wi j + ∑
i∈P+1

∑
j∈P−1

wi j

]
,

(60)

where P+1,P−1 are the sets of training nodes labeled +1 and -1, respectively. Since the graph is undirected

(wi j = w ji), we can write

GLR = 2

[
∑

i∈P−1

∑
j∈P+1

wi j + ∑
j∈P−1

∑
i∈P+1

w ji

]
= 4 ∑

i∈P−1

∑
j∈P+1

wi j. (61)

To prevent the node distances from tending to infinity, a penalty term was added to the objective,

E = 4 ∑
i∈P−1

∑
j∈P+1

wi j +µ tr(MMM). (62)

However, the distances between the same-labeled nodes (i.e. their feature vectors) are still left unused.

Incorporating these unused nodes into the objective can increase the accuracy of our model; hence, we
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introduce a new objective based on the well-known Large Margin Nearest Neighbour (LMNN) objective

[103]. We call this new objective Graph-based Large Margin Nearest Neighbour (GLMNN),

E = ∑
(i, j)∈Et |yi=y j

di j(MMM)+ρ ∑
(i, j),(i,l)∈Et |yi=y j=−yl

[di j(MMM)+ γ−dil(MMM)]+ , (63)

where di j(MMM) is the distance between nodes i, j which is a function of the metric matrix MMM. Moreover, Et is

the set of edges of the training graph, ρ,γ > 0 are free scalar parameters, and [·]+ is the Relu function,

[a]+ =

{
a, a≥ 0

0, O.W.

}
. (64)

The first term of Equation (63) minimizes the distance between same-labeled nodes, while the second term

maximizes the distance between different-labeled nodes. The parameter ρ determines the importance of one

term relative to the other term. Figure 15 illustrates the reasoning behind the second term. An explanation

of this term follows.

Figure 15: The GLMNN objective accounts for different-labeled nodes by considering a third node, and
comparing the distances between the same-labeled pair and the different-labeled pair. The distance

between the different-labeled pair should be larger by a specific margin (γ).

For each pair of different-labeled nodes (i, l), all nodes with the same label as i are considered. These third-

party nodes are denoted by j. The distance between i and l (i.e. dil) is compared with the distance between

i and j (i.e. di j). If dil is close to di j by a specific margin (γ), then node l appears in the objective. In other

words, if node l falls into the yellow circle in Figure 15, it is considered in the objective; otherwise, node l is

deemed far enough from node i and left out from the optimization.

The term concerning node l in the objective is [di j(MMM)+ γ−dil(MMM)]+. Minimizing this term means increas-

ing the difference of the distances dil and di j so much so that node l falls outside of the yellow circle in

Figure 15. After this happens, the Relu function removes the term concerning node l from the objective;

in other words, the objective only considers the different-labeled pairs that are dangerously close to each

other in a way that might lead to incorrect prediction. This mechanism keeps the objective from becoming

infinitely negative by pushing the different-labeled nodes to infinity; i.e., it ensures that the objective is lower

bounded.
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Another weakness of the GLR-based optimization approach in Section 2.2.3 is the relaxation of the SDP

constraint. Recalling Equation (57), we defined MMM as the multiplication of another matrix BBB with its own

transpose. This might be an over-relaxation as was discussed in Section 2.2.3. Hence, we employ a different

technique to ensure MMM’s PSDness in the GLMNN optimization approach. The aforementioned optimization

can be summarized as

M∗M∗M∗ = arg min
MMM⪰0

∑
(i, j)∈Et |yi=y j

di j(MMM)+ρ ∑
(i, j),(i,l)∈Et |yi=y j=−yl

[di j(MMM)+ γ−dil(MMM)]+

, di j(MMM) = ( fififi− f jf jf j)
TMMM( fififi− f jf jf j).

(65)

First, we rewrite the Mahalanobis distance,

di j(MMM) = ( fififi− f jf jf j)
TMMM( fififi− f jf jf j) = tr

(
( fififi− f jf jf j)

TMMM( fififi− f jf jf j)
)

= tr
(
MMM( fififi− f jf jf j)( fififi− f jf jf j)

T )
= tr(MMMFi jFi jFi j),

(66)

where Fi jFi jFi j ≜ ( fififi− f jf jf j)( fififi− f jf jf j)
T . Second, to linearize the Relu function [·]+, we define non-negative auxiliary

variable δi jl that is an upper bound on the distance of the l node to the yellow circle’s border in Figure 15,

δi jl ≥ di j(MMM)+ γ−dil(MMM). (67)

Then, we replace the Relu function with these upper bounds. If the distance di j(MMM)+ γ−dil(MMM) is positive,

minimizing its upper bound is equivalent to minimizing itself. However, the upper bound can only decrease

to zero since it is non-negative by definition; hence, if the distance is negative, the upper bound stays at zero.

This way, negative values of di j(MMM)+ γ− dil(MMM) are effectively ignored, which is the same role that [·]+
played before. Finally, the linearized GLMNN optimization is written as

M∗M∗M∗ = arg min
MMM⪰0,{δi jl∈R}

∑
(i, j)∈Et |yi=y j

tr(MMMFi jFi jFi j)+ρ ∑
(i, j),(i,l)∈Et |yi=y j=−yl

δi jl

s.t. δi jl ≥ tr(MMMFi jFi jFi j)+ γ− tr(MMMFilFilFil)

δi jl ≥ 0.

(68)

Equation (68) is a semi-definite program (SDP) [104], meaning it has a linear objective with linear con-

straints plus a PSD cone constraint for the metric matrix MMM. Many SDP solvers are already developed and

implemented such as SeDuMi [105], SDPT3 [106], Gurobi [107], etc. In our experiments, we used SeDuMi

implemented in a Matlab package called CVX [108]. From now on, we call this training approach SDP-

GLMNN.

SeDuMi’s time complexity is O(C3 +C2.5X +C0.5X2.4) where C is the number of features (MMM ∈RC×C), and

X is the number of δi jl variables which depends on the number of edges between same-labeled and different-

labeled nodes [109]. If the maximum degree of the nodes is fixed to Dt , then X is smaller than D2
t Nt .
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Hence, we can rewrite the complexity as O(C3 +C2.5NtD2
t +C0.5N2.4

t D4.8
t ). This runtime is intractable for

large datasets. The time complexity is reduced by employing a technique called Gershgorin Disc Perfect

Alignment (GDPA) [110]. The next section elaborates on this technique.

2.2.5 GDPA Speed-up

Gershgorin Disc Perfect Alignment (GDPA) approximates an SDP with iterative linear programs (LP) to

reduce its time-complexity. This technique is introduced in [110], and a Matlab implementation is provided

in [111].

GDPA leverages a theorem called the Gershgorin Circle Theorem (GCT) [112]. The GCT states that each

real eigenvalue λ of a real symmetric matrix MMM resides inside at least one Gershgorin disc Ψi corresponding

to row i, with center ci ≜ Mii and radius ri ≜ ∑ j ̸=i |Mi j|; i.e.,

∃i s.t. ci− ri ≤ λ≤ ci + ri. (69)

The corollary is that the smallest eigenvalue λmin is lower bounded by the smallest disc left end λ
−
min; i.e.,

λ
−
min(MMM)≜ min

i
Mii−∑

j ̸=i
|Mi j| ≤ λmin(MMM). (70)

Thus, to ensure M⪰ 0, one can enforce linear constraints,

λ
−
min(MMM)≥ 0, (71)

i.e., all disc left-ends are at least zero.

However, the aforementioned constraints might pose an overrelaxation since many PSD matrices have neg-

ative λ
−
min’s. This overrelaxation might lead to a low quality optimized metric matrix M∗M∗M∗, ultimately causing

the model’s failure. To address this issue, we take a similarity transform of MMM,

PPP = SSSMMMS−1S−1S−1. (72)

PPP shares all the eigenvalues of MMM. We choose SSS in a way that all disc left ends of PPP are aligned (i.e. equal to

each other). Then, we force all disc left ends of PPP to be non-negative. This will ensure MMM is PSD, while not

being too restrictive. Substituting PPP into Equation (71), we have

λ
−
min(PPP)≥ 0 =⇒ Mii− ∑

j| j ̸=i

∣∣∣∣siMi j

s j

∣∣∣∣≥ 0, ∀i ∈ {0, ...,C−1}. (73)
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To ensure the alignment of PPP’s Gershgorin discs, the matrix SSS should be defined as

SSS = diag(s1, ...,sC)

,si =
1
v∗i

, ∀i ∈ {0, ...,C−1},
(74)

where v∗v∗v∗ is the first eigenvector (i.e. corresponding to the smallest eigenvalue) of the optimized metric ma-

trix M∗M∗M∗ [110]. This presents a dilemma since we need SSS to obtain M∗M∗M∗, and we need M∗M∗M∗ to obtain SSS. As a

result, the linear program is solved in an iterative manner, where each step’s optimized metric matrix M∗kM∗kM∗k
determines the next step’s similarity transform Sk+1Sk+1Sk+1.

Finally, we can approximate the SDP in Equation (68) as a linear program (LP),

M∗M∗M∗ = arg min
MMM∈RC×C,{δi jl∈R}

∑
(i, j)∈Et |yi=y j

tr(MMMFi jFi jFi j)+ρ ∑
(i, j),(i,l)∈Et |yi=y j=−yl

δi jl

s.t. δi jl ≥ tr(MMMFi jFi jFi j)+ γ− tr(MMMFilFilFil)

δi jl ≥ 0

Mii− ∑
j| j ̸=i

∣∣∣∣siMi j

s j

∣∣∣∣≥ 0, ∀i ∈ {0, ...,C−1},

(75)

which is iteratively solved until the minimization objective converges to a constant value.

One linear program takes O((C+X)2.055) to compute, where C is the number of features and X is the number

of δi jl variables [113]. If the maximum node degree is fixed to Dt , then X is smaller than D2
t Nt ; thus, we

can rewrite the complexity as O((C+NtD2
t )

2.055). In our experiments, we demonstrate that the number of

LPs required to approximate the SDP remains constant for various sizes of the dataset; hence, the runtime

of the whole algorithm is effectively reduced to O((C+NtD2
t )

2.055). This approach is referred to as GDPA-

GLMNN in the rest of the thesis. In conclusion, we have introduced three objectives to use during training:

B-GLR(Equation (59)), SDP-GLMNN(Equation (68)), and GDPA-GLMNN(Equation (75)). Any of these

objectives can be used in the model.

2.2.6 Validation

After the training, we have obtained the optimized metric matrix M∗M∗M∗. In the validation phase, we predict the

labels of the validation data Dv, and compare our predictions with the ground-truth labels to compute the

accuracy.

Figure 16 illustrates the graph which is used for validation. The blue nodes and edges show the training

nodes and the edges between pairs of training nodes; these edges were selected in the training phase. For the

validation phase, we add the validation nodes to the graph as well; hence, new edges should be selected which

involve at least one validation node. These new edges and the validation nodes are colored red in Figure 16.
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Weights of all edges (blue and red) are computed using the nodes’ feature vectors and the optimized metric

matrix M∗M∗M∗. In our current scheme, the selected edges between pairs of training nodes do not change in the

validation phase.

Figure 16: The graph used for validation. Blue nodes and edges were selected in the training phase.
Red nodes and edges are newly added for the validation phase.

To estimate the validation labels, we interpolate the graph signal on the validation nodes using the reasonable

assumption that the whole signal is smooth. Again, we use the GLR as a smoothness quantity; therefore, the

validation loss becomes

E ′ ≜ yyyTLLLyyy =
[
ytytyt

T yvyvyv
T ] LLL

[
ytytyt

yvyvyv

]
, (76)

where yyy is the graph signal shown in Figure 16 including both the training nodes’ samples ytytyt and the valida-

tion nodes’ samples yvyvyv, and LLL is the same graph’s Laplacian. This time, the GLR is minimized with respect

to the validation labels,

y∗vy∗vy∗v = arg min
yvyvyv∈RNv

E ′

= arg min
yvyvyv∈RNv

[
ytytyt

T yvyvyv
T ] LLL

[
ytytyt

yvyvyv

]
.

(77)

Since y∗vy∗vy∗v has real entries, we discretized the entries to obtain the final binary predictions ŷv̂yv̂yv,

(ŷv)i =

{
+1 (y∗v)i ≥ 0

−1 O.W.

}
∀i ∈ {0, ...,Nv−1}. (78)
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At the end, we compute the accuracy by comparing the predictions with the ground-truth labels yvyvyv,

acc =
sum(I(ŷv̂yv̂yv = yvyvyv))

Nv
. (79)

To understand Equation (77) better, let us consider a simple case with only one validation node. Figure 17

illustrates this case.

Figure 17: Simple example of a graph with just one validation node.

Using Equation (49), we can rewrite the validation loss as

E ′ =
[
ytytyt

T yv
]
LLL

[
ytytyt

yv

]

=
1
2

Nt−1

∑
i=0

Nt−1

∑
j=0

wi j(yt,i− yt, j)
2 +

1
2

Nt−1

∑
i=0

wi Nt (yt,i− yv)
2 +

1
2

Nt−1

∑
j=0

wNt j(yv− yt, j)
2 +

1
2

wNt Nt (yv− yv)
2.

(80)

Since the graph is undirected, we have wi j = w ji ∀i, j; thus, we can simplify Equation (80) as

E ′ =
1
2

Nt−1

∑
i=0

Nt−1

∑
j=0

wi j(yt,i− yt, j)
2 +

Nt−1

∑
i=0

wi Nt (yt,i− yv)
2. (81)

The first term of Equation (81) only involves the training nodes; therefore, it can be removed from the

optimization objective; hence, the optimization formula becomes

y∗v = arg min
yv∈R

E ′

= arg min
yv∈R

Nt−1

∑
i=0

wi Nt (yt,i− yv)
2.

(82)

Let P+1,P−1 denote the sets of nodes labeled +1 and -1, respectively. Then, we can separate these nodes in
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the objective as follows,

y∗v = arg min
yv∈R

∑
i∈P−1

wi Nt (−1− yv)
2 + ∑

i∈P+1

wi Nt (+1− yv)
2, (83)

hence, the objective is just a weighted sum of the weights of the edges connecting the validation node to

training nodes. To illustrate this even further, one can expand the polynomials in Equation (83) and write the

objective as

y∗v = arg min
yv∈R

y2
v

[
Nt−1

∑
i=0

wi Nt

]
+2yv

[
∑

i∈P−1

wi Nt − ∑
i∈P+1

wi Nt

]
. (84)

The first term in Equation (84) keeps the magnitude of y∗v in a reasonable range, while the second term deter-

mines its value based on its cumulative similarity to +1 nodes or -1 nodes. As a result, the closer y∗v is to an

end of the interval [−1,1], the more confident we are in the prediction. y∗v is then thresholded with boundary

0 to obtain ŷv which is either -1 or +1.

Equation (77) has a closed form solution [114],

y∗vy∗vy∗v = arg min
yvyvyv∈RNv

[
ytytyt

T yvyvyv
T ] [ L11L11L11 L12L12L12

L21L21L21 L22L22L22

] [
ytytyt

yvyvyv

]
=⇒ y∗vy∗vy∗v =−(L22L22L22)

−1 L21L21L21 ytytyt ,

(85)

which can be viewed as filtering the graph signal ytytyt by the filter GGG to obtain a new graph signal y∗vy∗vy∗v ,

GGG ≜−(L22L22L22)
−1 L21L21L21. (86)

2.3 Programming Notes

2.3.1 Data

The data used in this thesis, accessible in [115], is collected as part of the study in [116]. A tiger salamander

was euthanized and the retina was separated from its eye under dim illumination. Then, the retina was flat-

tened and connected to a multi-electrode array from its ganglion cell side. A movie was played on a screen

in front of the retina (where the retina could “see” it) while the multi-electrode array recorded the response

at the end of the ganglion cells.

The movie is grayscale and shown at 60 frames per second. It is made to imitate a salamander’s point of

view. To illustrate, six random frames of the movie are shown in Figure 18. There are 1141 frames in total

corresponding to a 19-second-long video clip. This clip was repeated 297 times during the experiment. The

height and width of frames are 120×200 pixels; therefore, all of the input video can be stored as a Numpy

array of size 1141×120×200.
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Figure 18: Random frames of the stimulus shown to the retina

The response signals were later sorted by a custom software to delineate each neuron’s spikes through time.

The software was specifically developed to be used with the multi-electrode array [97]. 234 neurons passed

the standard tests for waveform stability and lack of refractory period violations. Of those, 160 cells whose

firing rates were most stable across stimulus repeats were made accessible in [115]. Of these remaining

neurons, 113 cells which had the highest quality are selected. This final selection of cells might be because

of decreases in cells’ responsiveness over time due to photobleaching, increases in their spiking as the cells

die, etc.

Afterwards, the signals are discretized into 1
60 second time bins and synced to the frames, so that a different

frame is playing during each time bin. Moreover, the responses are binarized; each time bin with at least

one action potential is given the value +1, while all other time bins are given the value -1. Consequently, all

of the responses are stored in a binary tensor with dimensions of “repeat × frame in a repeat × cell”, i.e.,

297×1141×113.

We ranked the neurons based on the amount of information in their response signals, measured by the fol-

lowing equation,

I(cell; stimulus) =
1
T ∑

t

r(t)
r̄

log2

(
r(t)

r̄

)
, (87)

where T is the total number of time bins , r(t) is the firing rate in each bin (calculated by taking the mean

response over all repetitions), and r̄ is the mean response over the entire movie. Justification for this formula

can be found in [117].

The quantity in Equation (87) is calculated for each cell, and cells are ranked by this measure in descending

order. Top ranked cells contain the most amount of information in their spike signals; therefore, they are

most suitable for analysis. Figure 19 shows responses of the 10 most informative cells during all 1141

frames of the first repeat of the movie. Black dots mark +1 values while white spaces represent -1. The

neurons’ identifying indices in the dataset are shown on the y-axis; neurons at the top are more informative
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than neurons at the bottom.

Figure 19: Responses of the most informative neurons during the first repeat of the movie. Black dots
represent spikes. Y-axis shows the neurons’ indices in the dataset.

Grouping
Only 3.00% of the time bins are labeled +1 among all neurons and all repeats of the whole movie. This

sparsity complicates the assessment of our model’s accuracy, since one can achieve a staggering 97% accu-

racy by simply labeling all time bins -1. As a result, we considered a group of all 113 neurons. The group’s

response in a specific time bin is defined as +1 if any of the neurons spikes in that time bin, and -1 otherwise.

In other words, the group’s response is equivalent to the OR of all neurons’ responses. The group’s response

is +1 in 68.47% of the time bins which makes a more balanced dataset.

Nevertheless, one can devise better grouping techniques. For example, grouping ganglion cells based on their

type leads to more meaningful results since each type responds to a specific feature of the visual input [24].

However, to group cells based on their type, their responses to random noise (i.e. checkerboard stimulus) is

required which is currently out of our reach.

2.3.2 Feature Extraction

The group’s response (as described in Section 2.3.1) comprises a dataset of 297×1141 time bins each hold-

ing a binary label ({+1,−1}). As explained in Section 2.2.1, each time bin must be associated with a number

of frames preceding and including the frame synced to the time bin in question. We call these frames the

“frame batch” of the time bin. Various features are extracted from the frame batches to form the feature

vectors that are given to the similarity graph (Recall Equation (29)). The number of frames in a batch is

determined based on the utilized feature extraction algorithm.

This thesis uses three methods of feature extraction. The first method is filtering the batches with the pre-

trained first-layer filters of a CNN called “slowfast-r50” accessible in PyTorchVideo Library [118]. The

CNN is introduced in an accompanying paper [119]. The second method is a 3D version of the well-known

Scale Invariant Feature Transform (SIFT) [87], introduced in [100]. The code is made publicly accessible

on GitHub [120]. The third method is using the filters of a neural network developed for simultaneous audio-

video texture analysis called SOE-Net [121]. SOE-Net’s code is accessible in [122]. CNN features and SIFT

features both use batches of 32 frames. SOE-Net uses batches of 42 frames.

41



Lastly, we needed a completely different dataset to compare the fish movie’s result with. Therefore, we

extracted SIFT features from the MNIST dataset [123], which consists of images of hand-written digits from

0 to 9 and their labels. Since the fish movie dataset has binary labels, we only selected 0 and 1 digits from

MNIST. The SIFT algorithm works by finding keypoints in the image which are invariant to rotation, scal-

ing and illumination. These keypoints are also resistant to changes in contrast and the viewpoint’s angle to

some degree. Each keypoint is then assigned a descriptor. A descriptor is a 128-dimensional vector which

describes a local area around the keypoint. The SIFT algorithm is thoroughly described in Section 2.3.3.

An image can have any number of keypoints. This causes an issue for our model since we need all feature

vectors to be of the same length. To solve this issue, we disregarded all images that had fewer than two

keypoints, and kept exactly two keypoints in the remaining images. To choose the keypoints, we computed

the distance of all keypoints in an image to the top-left and bottom-right corners; then, we kept one keypoint

closest to each corner. The reason behind this decision was to urge the descriptors to cover the largest pos-

sible area of the image. Nevertheless, more sophisticated approaches for keypoint selection can be made in

the future. After selecting the keypoints, their descriptors are concatenated to form 256-dimensional feature

vectors. These feature vectors are then used for training and validation.

The 3D-SIFT method follows a similar approach. The only difference is that the keypoints are found in

3D blocks representing frame batches instead of 2D images. Moreover, the descriptors are 768 dimensional

and describe a local cube around each keypoint. The 3D-SIFT algorithm is described in Section 2.3.3 in

more depth. Predictably, the same issue regrading the number of keypoints arises with 3D-SIFT; therefore,

we used a similar keypoint selection approach to address it. For the 3D-SIFT features, we chose only one

keypoint closest to the center of the frame batch.

For the CNN features, we downloaded the pretrained model. Then, replaced all layers after the first one with

identity layers (i.e. output equals input). Then, used the model’s output as features. All feature vectors (in

all feature extraction methods) are subsampled as required to increase processing speed.

After equipping each time bin with a feature vector, random data points (i.e. time bins) between a minimum

and a maximum time index are chosen to create the training and validation datasets. An option is provided

in the code to ensure that each set contains an equal number of +1 and -1 nodes. By changing the minimum

and maximum time index, one can choose only a certain repeat of the 19-seconds video clip for the model

instead of the whole dataset.

2.3.3 SIFT and 3D-SIFT

To realize the advantage of our model’s explainability, we need to know how the features are extracted. This

section explains two utilized feature extraction algorithms in this thesis which are fully explainable; SIFT

and 3D-SIFT.
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A) SIFT
Scale-Invariant Feature Transform (SIFT) was first introduced in 2004 [87]. SIFT is usually used for image

matching; i.e. determining whether two images are taken from the same object. SIFT is invariant to rotation

and scaling. Moreover, it is resistant to changes in illumination and small changes in the viewpoint’s angle.

Furthermore, SIFT features are local; hence, if parts of the object are obstructed by clutter in the scene, SIFT

can still match the visible parts.

There are four steps in SIFT:

1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

In the first step, the image is blurred with a Gaussian kernel at different scales (i.e. σ). The scale is multiplied

by a constant k at each step (σi+1 = kσi). Following this, the image is subsampled with 2:1 rate and blurred

again at various scales. This process continues for a given number of times. Each set of blurred images with

a certain size is called an “octave”. The Difference of Gaussian (DoG) for consecutive pairs of images are

calculated in all octaves. Figure 20 illustrates two octaves, different scales in each octave, and the calculated

DoGs.

Figure 20: The Scale-space and Difference of Gaussian in SIFT.

After the DoGs are obtained, they are searched for local extrema. Each pixel is compared with 26 other

pixels; its 8 neighbors in the same scale, 9 in its previous scale and 9 in its next scale. If the pixel in question
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Figure 21: Search for extrema in the DoG pyramid.

is a local extremum, it is flagged as a potential keypoint. Figure 21 illustrates this search for extrema. The

paper provides empirically-found optimum parameters for this step: number of octaves = 4, number of scale

levels = 5, initial σ = 1.6, k =
√

2.

In the second step (keypoint localization), the potential keypoints that were found in the first step are refined.

SIFT utilizes Taylor series expansion of the scale-space to obtain more accurate location of extrema, and

if the intensity at a certain extremum is lower than a threshold (0.03 in the paper), it is rejected. Further-

more, some of the extrema found in the first step may be located on edges (which are undesirable) instead

of corners. SIFT computes a 2× 2 Hessian matrix and its eigenvalues. If the extremum is on an edge, one

eigenvalue is significantly larger than the other. SIFT removes all extrema for which the ratio of the eigen-

values is larger than a threshold (10 in the paper). As a result, low-contrast extrema and edge extrema are

removed; therefore, only strong keypoints remain.

In the third step, an orientation is assigned to each keypoint to achieve invariance to rotation. A neighbor-

hood around each keypoint is considered, and the gradient magnitude and direction are calculated in that

region. The size of the neighborhood depends on the keypoint’s scale. An orientation histogram with 36 bins

covering 360 degrees is created. The highest peak of the histogram determines the keypoint’s orientation. If

other bins in the histogram are above 80% of the highest bin, other keypoints are created in the same location

and scale, but with different orientations. If the image is rotated by θ degrees, all the keypoints’ orientations

are also rotated by θ; hence, SIFT can build invariance to rotation.

Figure 22 shows SIFT keypoints on an image. The size of the circles around the keypoints are proportional

to the keypoints’ scales. The keypoints’ orientations are illustrated with lines inside the circles. It is observed

that some circles have more than one line; these show multiple keypoints in the same location and scale but

with different orientations. Figure 22 is taken from [124].

In the fourth step, a 128-dimensional vector is assigned to each keypoint which describes a neighborhood

around the keypoint; the vector is called the keypoint’s “descriptor”. A 16×16 neighbourhood around each

keypoint is considered. Then, it is divided into 16 sub-blocks of 4×4 size. The gradient magnitude and di-
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Figure 22: SIFT keypoints with various scales and orientations.

rection, relative to the keypoint’s orientation, are calculated in all sub-blocks. Then, an orientation histogram

is created for each sub-block with 8 bins covering 360 degrees. All the histograms are concatenated to create

the descriptor. Since there are 16 histograms each with 8 bins, the resulting descriptor has 128 dimensions.

Figure 23 illustrates the calculation of the descriptor. The keypoint is located in the center of the 16× 16

block at the left. Black arrows in the middle block represent gradient vectors. In the rightmost block, orien-

tation histograms are drawn inside their relevant sub-block. The magnitude of an arrow in a histogram shows

the accumulated magnitude of all gradients in that direction. Figures 20, 21, and part of Figure 23 are taken

from the original paper [87].

Figure 23: A 16×16 neighborhood around the keypoint is divided into sixteen 4×4 sub-blocks.
Orientation histograms are created for all sub-blocks, each with 8 bins covering 360 degrees.

One application of SIFT is matching an image to another image in a given set. To carry out this task, the

descriptors of the test image are matched to their nearest neighbors in all of the given images. Sometimes, a

keypoint in the test image does not have any correct match in the given set because it arises from background

clutter or noise. To prevent false matches, the ratio of the distance to the closest neighbor and second-closest

neighbor is computed. If the ratio is greater than 0.8 the match is rejected. This approach eliminates around

90% of false matches while discarding only 5% of correct matches, as per the paper.
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B) 3D-SIFT
3D-SIFT finds keypoints and descriptors in 3D blocks of pixels representing 3D images (or short video clips)

in the same fashion that SIFT finds them on 2D images. Several algorithms have been introduced as a 3D

version of SIFT [125, 126, 127, 128]. In this thesis, we use the one introduced in [100], and implemented in

[120].

In the first step of the 3D-SIFT algorithm, the scale-space is created by blurring the 3D image with Gaussian

kernels of various scales, and subsampling the 3D image between octaves. Then, the extrema of the DoG

pyramid are flagged as potential keypoints. Small modifications are made in this step compared to SIFT.

In the second step, potential keypoints whose intensities are lower than a threshold are rejected. The thresh-

old depends on the contrast of the whole 3D image instead of being a fixed number as in SIFT. The proposed

3D-SIFT in [100] does not use Taylor series expansion for better localization of keypoints since it did not

significantly improve their results.

In the third step, a neighborhood around each keypoint is considered; the size of the neighborhood depends

on the keypoint’s scale. Then, gradient components are computed in this neighborhood, and the correlation

of gradient components (otherwise known as the “structure tensor”) is obtained by the following equation,

KKK =
∫

ω(xxx) ∇I(xxx) (∇I(xxx))T d(xxx) ,KKK ∈ R3×3, (88)

where ∇I(xxx) is the gradient of image I at location xxx, and ω(xxx) is a Gaussian window centered at the keypoint,

the width of which is a constant multiple of the keypoint scale. Afterwards, the eigendecomposition of KKK is

calculated,

KKK =RRR ΛΛΛ RRRT ,RRR ∈ R3×3, (89)

and matrix RRR is assigned to the keypoint as its orientation in 3D space. Additional notes are given in the

paper to make sure that RRR is unique, and to remove degenerate keypoints which cannot be reliably oriented.

In the fourth step, the descriptors are constructed. A neighborhood around the keypoint is considered; the

size of the neighborhood depends on the keypoint’s scale. The neighborhood is divided into a 4×4×4 array

of cubical sub-regions. These sub-regions are illustrated in Figure 24. Gradient magnitude and direction are

computed and an orientation histogram is formed in each sub-region. Histogram bins represent vertices of a

regular icosahedron. An image of the icosahedron is provided in Figure 25a.

When a gradient vector intersects with one of the icosahedron’s faces, its magnitude is interpolated onto

the three vertices of that face; hence, parts of the gradient’s magnitude are considered for all three bins

corresponding to the three vertices. This interpolation is illustrated in Figure 25b. Both images in Figure 25
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Figure 24: 64 sub-regions around the keypoint are considered in 3D-SIFT. Orientation histograms are
computed for all of them and concatenated to form the descriptor. Histogram bins correspond to

vertices of a regular icosahedron.

(a) (b)

Figure 25: (a) Vertices of a regular icosahedron are used as bins in orientation histograms to create
3D-SIFT descriptors. (b) The gradient vector is interpolated onto the three vertices of the intersected

face. The interpolated values are accumulated for all vertices to form the orientation histogram.

are taken from the paper [100]. The orientation histograms are concatenated to form the descriptor. Since

the icosahedron has 12 vertices, and there are 64 sub-regions around the keypoint, the descriptor has 768

dimensions.

2.3.4 Training Graph Construction

As discussed in Section 2.2.2, if all pairs of training nodes are connected by an edge (i.e. we have a complete

training graph), the training process becomes prohibitively time-consuming; therefore, only a certain number

of edges should be selected for the graph. Two strategies for selecting edges are developed in this thesis.

In both strategies, the degrees of all nodes are upper-bounded by a given number called Dt ; therefore, the

number of all edges in the training graph is less equal to 1
2 DtNt where Nt is the number of training nodes.

Both strategies are described below.

Algorithm 1 selects edges randomly, while Algorithm 2 selects edges based on the temporal closeness of

their end-nodes; the closer the end-nodes’ corresponding time bins are, the better.
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Algorithm 1 Random Edge Selection Between Pairs of Training/Validation Nodes

Require: Nt ,Dt

Ensure: 0≤ Dt ≤ Nt

1: for nodei← 1 to Nt do
2: candidates← list of all training nodes (excluding nodei) with a lower degree than Dt

3: if len(candidates) ≤ Dt −degree(nodei) then
4: connect all nodes in the candidates list to nodei

5: else if len(candidates) > Dt −degree(nodei) then
6: temp← Dt −degree(nodei) randomly chosen nodes from the candidates list
7: connect all nodes in temp to nodei

8: end if
9: end for

Algorithm 2 Time-based Edge Selection Between Pairs of Training/Validation Nodes

Require: Nt ,Dt

Ensure: 0≤ Dt ≤ Nt

1: for nodei← 1 to Nt do
2: candidates← list of all training nodes (excluding nodei) with a lower degree than Dt

3: if len(candidates) ≤ Dt −degree(nodei) then
4: connect all nodes in the candidates list to nodei

5: else if len(candidates) > Dt −degree(nodei) then
6: define time(nodei)≜ the index of the time bin corresponding to nodei

7: t← |time(nodei)− time(node j)| ∀ j← 1 to Nt , j ̸= i
8: sort all nodes in the candidates list based on their corresponding value in t
9: connect the first Dt −degree(nodei) nodes in the sorted candidates list to nodei

10: end if
11: end for
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The training graph is denoted by Gt

Gt = {Vt ,Et}, (90)

where Vt is the list of all training nodes, and Et is the list of all edges between training nodes.

2.3.5 Validation Graph Construction

As discussed in Section 2.2.6, after the training is done, new edges should be selected which involve at least

one validation node. These edges are separated into two categories: edges between pairs of validation nodes,

and edges between one validation node and one training node. To select edges connecting pairs of validation

nodes, similar algorithms to Algorithm 1 or Algorithm 2 are used. The only difference is that the parameter

determining the maximum degree is noted by Dv instead of Dt .

To select edges between validation and training nodes, an equal number of training nodes from each label

({+1,−1}) are selected; the training nodes can be selected randomly or based on their temporal closeness

to the validation nodes. The number of all training nodes connected to each validation node is given by

Dvt . Algorithms 3, 4 illustrate the edge selection process. The sets of training nodes labeled +1 and -1 are

represented by P+1,P−1, respectively.

Algorithm 3 Random Edge Selection Between a Validation Node and Training Nodes

Require: P+1,P−1,Nv,Dvt

1: N+1← len(P+1) and N−1← len(P−1)
2: Ensure 0≤ ⌈Dvt

2 ⌉ ≤ N−1

3: Ensure 0≤ ⌊Dvt
2 ⌋ ≤ N+1

4: for nodei← 1 to Nv do
5: candidates← list of ⌈Dvt

2 ⌉ randomly chosen training nodes with label -1
6: connect nodei to all nodes in the candidates list
7: candidates← list of ⌊Dvt

2 ⌋ randomly chosen training nodes with label +1
8: connect nodei to all nodes in the candidates list
9: end for

After selecting the new edges, we have an extended graph comprising of both training and validation nodes

as in Figure 16. The upper bound of a training node’s degree in this extended graph is Dt +Dv, and the upper

bound of a validation node’s degree is Dv +Dvt .

As a last note, the objective’s free parameter µ is optimized by a cursory trial and error; i.e., we tried var-

ious values and chose one that yielded the best results. In the future, more sophisticated hyperparameter

optimization should be carried out.
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Algorithm 4 Time-based Edge Selection Between a Validation Node and Training Nodes

Require: P+1,P−1,Nv,Dvt

1: N+1← len(P+1) and N−1← len(P−1)
2: Ensure 0≤ ⌈Dvt

2 ⌉ ≤ N−1

3: Ensure 0≤ ⌊Dvt
2 ⌋ ≤ N+1

4: for nodei← 1 to Nv do
5: define time(nodei)≜ the index of the time bin corresponding to nodei

6: t← |time(nodei)− time(node j)| , ∀ j ∈ P−1
7: sort all nodes in P−1 based on their corresponding value in t
8: connect nodei to the first ⌈Dvt

2 ⌉ nodes of the sorted P−1
9: t← |time(nodei)− time(node j)| , ∀ j ∈ P+1

10: sort all nodes in P+1 based on their corresponding value in t
11: connect nodei to the first ⌈Dvt

2 ⌉ nodes of the sorted P+1
12: end for

2.3.6 Validation Time-Complexity

To directly solve Equation (85), one can use the row reduction method to compute the inverse of L22L22L22 which

takes O(N3) operations [129], then multiply L22L22L22
−1 by L21L21L21 by ytytyt which takes O(N3) again. To reduce com-

plexity, we take advantage of the fact that LLL (and consequently L22L22L22 and L21L21L21) are sparse. We can write

Equation (85) as a system of linear equation,

L22L22L22 y∗vy∗vy∗v =−L21L21L21 ytytyt . (91)

Multiplying L21L21L21 by ytytyt takes O(m) time where m is the number of non-zero elements in L21L21L21. Since L21L21L21 is

sparse, we have m ∈ O(Nv).

Now, we have a system of linear equations whose coefficient matrix (L22L22L22) is sparse, positive definite, sym-

metric and real. In this case, we can use the Conjugate Gradient Algorithm [130] to compute y∗vy∗vy∗v in O(n
√

κ)

time, where n is the number of non-zero elements in L22L22L22 and κ is the condition number of L22L22L22 [131]. Typ-

ically, κ ∈ O(N
2
d

v ) for d-dimensional spaces [131]. In our case, we have a Nv-dimensional space, so the

complexity of the whole algorithm is O(N
1+ 2

Nv
v ) which tends to O(Nv) for large Nv.
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3 Experiments

At the beginning of this research, we implemented a simple version of our model to gauge its potential. The

results of our experiment with this preliminary implementation are given in Section 3.1. Since the experi-

ment’s results were promising, we continued to implement a large and modular version of the model, with

various visualization and experimentation tools. The quantities that are used to assess the model’s perfor-

mance in its final implementation are explained in Section 3.2.

Section 3.3 explores the advantages of our model’s explainability using two feature sets: SIFT and 3D-SIFT.

Conversely, Sections 3.4, 3.5 and 3.6 are about performance; our model’s performance is investigated on

all three training optimizations (see Section 2.2), all feature sets in Section 2.3.2, and several benchmark

approaches. Finally, Sections 3.7, 3.8, 3.9, and 3.10 explore the effect of changing the hyperparameters on

performance.

3.1 Preliminary Experiments

To test our model, we first implemented a quick and simple example of our model and compared it with an

equivalently simple neural network. Figure 26 illustrates the architectures of both methods. Figure 26a show

the similarity graph model. It comprises two blocks; feature extraction and classification. The data used in

this experiment consist of 0 and 1 digits from the MNIST [123] dataset; thus, the labels are binary ({0,1}).
The feature extraction block finds SIFT [87] keypoints in images, chooses two keypoints for each image and

concatenates their descriptors to form 256-dimensional feature vectors as described in Section 2.3.2.

(a) Block diagram of the similarity graph model (b) The neural network

Figure 26: A simple example of the similarity graph model is compared with a simple neural network to
benchmark its performance

The second block in Figure 26a illustrates the similarity graph model which is described in Section 2.2. In

this experiment, the training graph is complete; meaning that all pairs of training nodes are connected by

edges. The validation graph is also complete; meaning that all validation nodes are connected to all training

nodes and all other validation nodes. The optimization formula solved during the training is presented in

Equation (59). This formulation is explained in Section 2.2.3. Furthermore, Equation (85) is solved during

validation. In this experiment, the inverse of L22L22L22 is computed which is time-consuming; therefore, this part

51



is replaced with the Conjugate Gradient algorithm (see Section 2.3.6) in the final implementation.

Figure 26b illustrates the neural network that benchmarks our model. It has a simple architecture with

only one hidden layer and five hidden neurons. Hidden neurons’ activation function is Relu as defined in

Equation (64). The last layer has a Softmax activation instead of Relu; the Softmax function is defined in

Equation (92),

σ(zzz)i =
ezi

∑
K
j=1 ez j

, (92)

where σ(zzz)i shows the ith element of the function’s output vector. In Figure 26b, zzz =W2W2W2 z1z1z1 +b2b2b2, and K is

the dimensionality of zzz which is 2. The last circle in Figure 26b, right before the prediction, represents a

maximizing function where the label with the highest corresponding value in the last layer is chosen as the

final prediction.

The loss function of this neural network is cross-entropy, a commonly used loss for machine learning. W1W1W1,W2W2W2

and b1b1b1,b2b2b2 are the weights that get optimized during training. The optimization is done by the Gradient De-

scent (GD) algorithm [102]. This algorithm finds a local minimum by iteratively moving in the opposite

direction of the objective’s gradient. The number of iterations run in each GD optimization is set to 10 for

this experiment. Correspondingly, the similarity graph’s training optimization in Equation (59) is also solved

by the GD algorithm with 10 iterations. We chose 10 iterations because the objectives seem to stay almost

constant after 10 iterations.

Figure 27 shows the accuracies obtained by the two methods for various sizes of the validation dataset. The

ratio of the training set size to the validation set size is 3 to 2; in other words, as the validation set size grows,

so does the training set size. However, only the validation set size is shown on the plot. To randomize the

experiment, we repeat the experiment many times for each validation set size. Each blue point on the plot

shows the mean accuracy obtained over 10000 runs of the neural network. The blue error bars show the

standard deviation of the obtained accuracies. The same is true for orange points and error bars; the only

difference is that the similarity graph experiments are repeated 500 times for each point instead of 10000.

The reason is the similarity graph model’s long runtime.

One might notice that the similarity graph model has horizontal error lines as well as vertical ones. The hor-

izontal lines are due to the fact that some MNIST images are discarded during feature extraction because the

contain fewer than two keypoints. Hence, the final size of the validation set my be smaller than the initially

chosen set. That difference in size is illustrated by horizontal error lines. It is witnessed that the similarity

graph model performs comparably with the benchmark.

In the preliminary implementation, the feature extraction block is considered part of our proposed model;

hence, the neural network is trained and validated on raw pixel values of the images. However, in the final
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Figure 27: Accuracies obtained by two different methods for various sizes of the dataset.

implementation, the feature extraction block is considered separate from the similarity graph model; thus,

the benchmarks in the next sections are trained and validated on the same features that are associated with

the similarity graph’s nodes.
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3.2 Assessment Quantities

After achieving promising results in the preliminary experiment, a modular and expanded version of the

code was implemented, which is made publicly accessible on GitHub [132]. All features of the code and

instructions on how to run them are explained in Appendix C. To summarize, we can train the similarity

graph with three approaches:

1. B-GLR: the objective is GLR plus trace of the metric matrix, and it is optimized by Gradient Descent

2. SDP-GLMNN: the objective is GLMNN, and it is optimized as an SDP

3. GDPA-GLMNN: the objective is GLMNN, and it is optimized using GDPA approximation

Furthermore, we have three sets of features:

1. Slowfast: first-layer filters of “slowfast-r50”

2. 3D-SIFT: descriptor of one keypoint in each frame batch

3. SOE-Net: second layer outputs of SOE-Net

For our first experiment, we predicted the group response of all ganglion cells (as explained in Section 2.3.1)

using the B-GLR model and Slowfast features. Figure 28 illustrates the results.

(a) Accuracy vs. training set sizes (b) Accuracy vs. validation set sizes

Figure 28: Performance of the similarity graph when predicting a single neuron’s response.

Figure 28a plots four performance curves with respect to the training set size. Two subplots exists in the

figure; the only difference between the subplots is the size of the validation datasets. To obtain each plot-

point and its error bar, the mean performance and its standard deviation are calculated over 100 experiments.

The training and validation datasets are randomly created for these experiments; 10 random training sets are

paired with 10 random validation sets. The validation sets are newly created for each new training set. The

number of random training and validation sets are observed next to the plots.
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The mean and standard deviation of all four quantities in Figure 28a are calculated for each validation set

size, and plotted in Figure 28b. This figure serves to analyze the effect of the validation set size on our

performance assessment. Logically, there should not be a considerable difference between our model’s per-

formance on various validation set sizes; hence, if we see a difference, it means our experiment setting should

change.

The performance quantities shown in Figure 28 include: validation accuracy (val acc), minimum accuracy

(min acc), missed detection rate (missed), and false alarm rate (false alarm). Validation accuracy is calcu-

lated by dividing the number of correct predictions (i.e. the predicted label is equal to the ground-truth label)

by the number of all predictions,

Accuracy ≜
# of correct predictions

# of val. data points
. (93)

Minimum accuracy (min acc) is obtained when all the data points are given the same prediction; therefore,

the minimum accuracy rate depends on the distribution of labels in the dataset. For example, if 70% of the

dataset is labeled +1 and 30% is labeled -1, the minimum accuracy is 70% and it is obtained when all labels

are predicted as +1.

Missed detection rate is defined as the number of data points that are labeled +1 but detected as -1 by the

model, divided by the number of all +1 labeled data points,

Missed detection ≜
# of val. data points predicted as -1, while truly labeled +1

# of val. data points labeled +1
. (94)

False alarm rate is defined as the number of data points that are labeled -1 but detected as +1 by the model,

divided by the number of all -1 labeled data points,

False alarm ≜
# of val. data points predicted as +1, while truly labeled -1

# of val. data points labeled -1
. (95)

Figure 29 illustrates these concepts; the horizontal axis shows the true labels of validation data points, while

the vertical axis shows the predicted labels.

In Figure 28, the minimum accuracy (min acc) is about 75% which is quite high. A high minimum accuracy

leaves little space for improvement to our model. This happens because about 70% of our dataset (described

in Section 2.3.1) is labeled +1; so when data points are randomly chosen to form the training and validation

datasets, about 70% of them will be labeled +1. To fix this issue, we started making sure that our training and

validation datasets are equally distributed between the two labels. In other words, 50% of a set is randomly

chosen from the +1 nodes, and 50% from the -1 nodes. All of our following experiments are done with such

balanced sets.

In addition to the quantities in Figure 28, we also measure the experiments’ runtime. An example of a
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Figure 29: Illustration of the concepts of accuracy, missed detection rate and false alarm rate.

runtime plot is provided in Figure 30. This figure shows the runtime of an experiment with a complete graph.

As expected, the time complexity is O(N2) where N is the number of training nodes. This complexity is

mostly due to computing the derivation of loss in GD. A justification is given in Appendix B.

Lastly, we visualize the optimized metric matrices. Figure 31 illustrates three examples. We mark the

relatively large entries with red dots. The definition of “large entry” can vary from experiment to experiment.

However, in most of our experiments, all entries within 30% of the largest entry are marked.
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Figure 30: Runtime of a randomized experiment.

(a) Repeat 1 (b) Repeat 2 (c) Repeat 3

Figure 31: Visualizations of three optimized metric matrices. All entries within 30% of the maximum
entry are marked with red dots.
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3.3 Explainability

3.3.1 SIFT on the MNIST dataset

Figure 32 shows several examples of SIFT keypoints found on MNIST images. Two keypoints are selected

in each image; one closest to the top-left corner, and the other closest to the bottom-right corner. These

keypoints’ descriptors are concatenated to form the feature vector of an image.

Figure 32: Examples of SIFT keypoints on MNIST images.

The B-GLR model is trained on these features. Then, the optimized metric matrix M∗M∗M∗ is analyzed to gain

insight into the prediction process. Figure 33 shows the optimized metric matrix, where all entries within a

certain percentage of the maximum entry are marked with red dots. That certain percentage is stated below

the images; we have 45%, 65% and 75%.

(a) 45% (b) 65% (c) 75%

Figure 33: The optimized metric matrix by B-GLR on MNIST-SIFT features. Entries within a certain
percentage of the maximum entry are marked with red dots. The percentage is stated below the images.

First, we analyze the diagonal entries of M∗M∗M∗. Recall Equation (36). We can separate the diagonal and
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non-diagonal elements in Equation (36) and write it as

di j =
C−1

∑
a=0

Maa f 2
a +

C−1

∑
a=0

C−1

∑
b=0,b̸=a

Mab fa fb

fff = fififi− f jf jf j.

(96)

Thus, we observe that the diagonal entries of M∗M∗M∗ determine the weights of single entries of the feature vector

in the calculation of distance. Features with larger corresponding entries in M∗M∗M∗ have larger effects on the

prediction; therefore, one can view the diagonal entries of M∗M∗M∗ as contribution scores assigned to the features.

Figure 34 shows the diagonal entries of the matrix in Figure 33. The red horizontal line delineates 45% of

the maximum entry. All entries above the red line are marked with red numbers; the numbers indicate the

order from the largest entry to the smallest one. Feature 153 has the largest corresponding M∗M∗M∗ entry, and

feature 131 is the second largest.

Figure 34: Diagonal entries of M∗M∗M∗. The red line marks 45% of the maximum entry. All entries above
the red line are numbered starting from the largest entry to the smallest.

The diagonal entries can be separated into two 128-dimensional vectors, each corresponding to one key-

point’s descriptor. As described in Section 2.3.3, SIFT descriptors consist of histograms of local image

gradients around the keypoint; hence, one can visualize a descriptor by drawing the histograms as in Fig-

ure 23. In Figure 35 a similar visualization is made out of the diagonal M∗M∗M∗ entries. The left image illustrates

the first half of the diagonal entries corresponding to the top-left keypoint, and the right image illustrates the

second half corresponding to the bottom-right keypoint.
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The top diagonal entries which were marked in Figure 34 are also marked in Figure 35 with the same num-

bers. Both of the largest entries belong to the bottom-right keypoint. Moreover, the median of the first half

of the entries is 0.0246 which is 34% smaller than the median of the second half (= 0.0373). Based on these

facts, we conclude that the bottom-right keypoint is generally more informative than the top-left keypoint.

(a) Top-left keypoint (b) Bottom-right keypoint

Figure 35: Visualization of the diagonal entries of M∗M∗M∗ corresponding to local gradients of the image.
The same entries marked in Figure 34 are colored red and numbered.

By observing Figure 35, we can easily conclude that the feature that contributes most to the prediction is the

accumulation of the gradient magnitudes between 22.5 and 67.5 degrees in a region of 4×4 pixels starting

from the keypoint and going to the left and top. Moreover, the keypoint in question is the one closest to the

bottom-right corner of the image. We can describe the next most contributing features in the same manner.

Figure 35 may be counter-intuitive because the top contributing features have inclined orientations. One

might expect the vertical orientations to be more important because number 1 is a vertical line and 0 is a

circle which does not prioritize any direction over the others. We can analyze “how” these features can

distinguish 1 from 0, and whether this leads to new algorithms for distinguishing 1 from 0 that do not imme-

diately occur to humans. This can be explored further in the future.

The non-diagonal entries of M∗M∗M∗ can be interpreted as contribution scores assigned to pairs of features, or

as the covariance of the pair. The largest non-diagonal entries in Figure 33b are (153, 105), (153, 131) and

(153, 154). Each of these pairs is distinguished by a different color in Figure 36.
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(a) Top-left keypoint (b) Bottom-right keypoint

Figure 36: Highly informative pairs of features which correspond to the largest non-diagonal entries of
M∗M∗M∗ are distinguished by red, green and blue arrows. The magnitude of the arrows correspond to

diagonal entries of M∗M∗M∗ as in Figure 35.

As a possible future analysis, one can create an image based on the local gradients given by the diagonal

entries of M∗M∗M∗. In other words, one can craft feature vectors that get the highest (or lowest) possible distance

by the formula in Equation (96). These crafted features may reveal further insight about the reasoning behind

the predictions.
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3.3.2 3D-SIFT on the RGC dataset

Every 32 consecutive frames of the fish movie in the RGC dataset are aggregated in 3D tensors which are

given to 3D-SIFT as input. 3D-SIFT finds multiple keypoints in each of these 3D tensors which we will call

“frame batches”. Of all the keypoints, one which is closest to the frame batch’s center is selected and kept

while all the other keypoints are discarded. These selected keypoints are illustrated in Figure 37 on the same

frames where they are located. The descriptors of these keypoints are used as feature vectors describing the

frame batches.

Figure 37: Selected 3D-SIFT keypoints in various frame batches of the RGC dataset.

We trained the B-GLR model on these features; however, we subsampled the feature vectors with 2:1 rate to

cut our experiment’s runtime to 1
4 . The relationship between our model’s time complexity to the number of

features is given in Appendix B. As a result, half of the features are not used in the experiment; even so, our

model still achieves an acceptable 75% accuracy as seen in Figure 45. The optimized metric matrix is shown

in Figure 38. Large entries are marked with red dots similar to Figure 33.

(a) 30% (b) 50% (c) 60%

Figure 38: The optimized metric matrix by B-GLR on 3D-SIFT features. Entries within a certain
percentage of the maximum entry are marked with red dots; the percentage is stated below each image.
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Analogous to Section 3.3.1, we start by analyzing the diagonal entries of M∗M∗M∗; these entries are plotted in

Figure 39. The red horizontal line delineates 50% of the maximum entry. All entries above the red line are

numbered from the largest to the smallest; these entries are the 247th, 270th, and 277th, respectively. The

corresponding sub-regions are illustrated in Figure 40; numbers on top of the sub-regions denote the same

features as in Figure 39.

Figure 39: Diagonal entries of the optimized metric matrix M∗M∗M∗ which is shown in Figure 38. The red
line marks 50% of the maximum entry. All entries above the red line are numbered from the largest to

the smallest.

We computed the medians of diagonal M∗M∗M∗ entries corresponding to all sub-regions. These medians are plot-

ted in Figure 41. The red line marks 70% of the peak, and all bins above the red line are numbered in order.

The numbered sub-regions are also highlighted in Figure 42 bearing the same numbers.

Similar to Section 3.3.1, we can conclude from Figure 40 that the most contributing feature appears in a sub-

region of a specific size in (x,y,z) = (0,1,1) coordinates relative to the keypoint’s location. Moreover, this

feature shows the accumulation of gradient magnitudes in a specific direction described by vertex #2 of the

icosahedron in that sub-region. Other highly contributing features are similarly describable. Consequently,

we can analyze the model further to find out “how” the top features can distinguish between 1 and -1 labeled

frame batches.

Orientation histograms for all sub-regions are drawn in Figure 43. The histograms show diagonal entries of
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Figure 40: Sub-regions of the most contributing features. The numbers on top of the sub-regions denote
the same features as in Figure 39.

M∗M∗M∗ instead of any 3D image’s gradients. Since we subsampled the feature vectors during training, only 6

directions are still included in the histograms (the other 6 are discarded). The largest non-diagonal elements

of the matrix in Figure 38b are (247, 270) and (247, 277). These pairs are distinguished in Figure 43 with

green and red colors, respectively. The relevance of the features and M∗M∗M∗ entries to the prediction can be

further explored in the future of this research, realizing the full potential of our model’s explainability.
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Figure 41: Medians of diagonal M∗M∗M∗ entries corresponding to all sub-regions. The red line marks 70% of
the peak. All bins above the red line are numbered from the largest to the smallest.

Figure 42: Sub-regions with the largest medians of corresponding diagonal M∗M∗M∗ entries. Numbers
indicate the same regions as in Figure 41.
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(a) Histograms of the lowest plane of sub-regions (z = 0)
(b) Histograms of the second-lowest plane of sub-regions (z =

1)

(c) Histograms of the second-highest plane of sub-regions (z =
2) (d) Histograms of the highest plane of sub-regions (z = 4)

Figure 43: Orientation histograms of all sub-regions in 3D-SIFT. Histograms show the diagonal entries
of M∗M∗M∗ instead of image gradients. Highly correlated pairs of features are distinguished by different

colors and numbers.
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3.4 B-GLR with All Sets of Features

We trained and validated the B-GLR method on all four feature sets described in Section 2.3.2. Figure 44

illustrates the results of the Slowfast features. The Slowfast feature vectors have 4732 dimensions. Running

the experiment with the original feature vectors is prohibitively time-consuming; therefore, the feature vec-

tors are subsampled into 474 dimensions. The experiment took about 3 days with 474-dimensional vectors.

Since the time complexity has a quadratic relationship with the number of features (see Appendix B), using

the original feature vectors would extend the experiment’s runtime to about 12 days.

(a) Performance (b) Runtime

Figure 44: Results of the B-GLR model on Slowfast features

Figure 45 illustrates the results of the 3D-SIFT features. The original 3D-SIFT feature vectors have 768

dimensions. In this experiment, they are subsampled into 384 dimensions.

(a) Performance (b) Runtime

Figure 45: Results of the B-GLR model on 3D-SIFT features
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Figure 46 illustrates the results of the SOE-Net features. SOE-Net features have different dimensions based

on which layer of the SOE-Net they come from. The first through fifth layer feature vectors have dimension

20, 400, 800, 1600, 3200, respectively. In this experiment, second layer feature vectors are used without

subsampling.

(a) Performance (b) Runtime

Figure 46: Results of the B-GLR model on SOE-Net features

Figure 47 illustrates the results of the SIFT features extracted from MNIST images. Feature vectors are 256-

dimensional, and they are not subsampled for the experiment in Figure 47. We used this dataset to see how

our model performs on a dataset which is known to be “easy” for machine learning models. As observed,

our model achieves an acceptable 97% accuracy.

(a) Performance (b) Runtime

Figure 47: Results of the B-GLR model on MNIST-SIFT features
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3.5 Benchmarks

Figure 48 compares the performance of the B-GLR model with several bechmarking methods on Slowfast

features. The first benchmark is XGBoost or eXtreme Gradient Boosting [92], a popular machine learning

algorithm specially famous for winning Kaggle challenges [133]. This algorithm iteratively trains an en-

semble of shallow decision trees where each new decision tree reduces the prediction error in a formalized

manner similar to gradient descent. The final prediction is a weighted sum of all the tree predictions. The

number of boosting rounds (i.e. number of decision trees) for the curve in Figure 48 is 16. We also tried

training with 10000 boosting rounds which did not make much improvement over 16 rounds; therefore, 16

rounds is the chosen value for future experiments.

Figure 48: B-GLR model on Slowfast features along with several benchmark methods comprising
XGBoost, K-nearest neighbors (kNN), neural network (NN) and logistic regression (LR)

The second benchmark is K-nearest neighbors (kNN) [93]. This classifier estimates the label of a query

point by taking a simple majority vote of its nearest neighbors. The number of voting neighbors is K which

is set to 3 in Figure 48. This value is optimized by cross-validation. Figure 49 shows the accuracy score for

various values of K. It is observed that the best performance is obtained when K = 3.

The third benchmark is neural network (NN). The network in Figure 48 has 2 layers each with 10 neurons.

By increasing the number of layers and neurons in the network, the accuracy increases. However, it did not

surpass XGBoost in any of our experiments with various network architectures. The fourth benchmark is

Logistic Regression (LR) [134]. The only hyperparameter of this model is the number of gradient descent

iterations that it takes to minimize the loss which is set to 16 in Figure 48.

Figure 50 illustrates the performance of the B-GLR model on 3D-SIFT features compared with the four

benchmarks. The neural network in this figure has 5 layers each with 20 neurons. By observing Figures 48
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Figure 49: Accuracy scores for various values of K are shown for the K-nearest neighbors benchmark.
K = 3 yields the best performance.

and 50, we can conclude that B-GLR performs comparably with the benchmarks. It is worth mentioning

that while our benchmarks’ hyperparameters are tuned using cross-validation, the B-GLR’s hyperparameters

(µ,Dt ,Dv,Dvt) are tuned by manually trying several values. We were not able to run cross-validation for

B-GLR since it was prohibitively time-consuming.
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Figure 50: B-GLR model on 3D-SIFT features along with several benchmark methods comprising
XGBoost, K-nearest neighbors (kNN), neural network (NN) and logistic regression (LR)
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3.6 SDP-GLMNN and GDPA-GLMNN

Figure 51 shows the obtained accuracies of the B-GLR model and the SDP-GLMNN model. This experi-

ment is conducted on SIFT features extracted from MNIST images, and with a sparse similarity graph. As

expected, SDP-GLMNN achieves higher accuracies since GLMNN incorporates an additional requirement

into the optimization: that the distance between same-labeled nodes should be small. Refer to Section 2.2.4

for more explanation.

Figure 51: Accuracy of B-GLR and SDP-GLMNN models

Figure 52 compares the accuracies of the SDP-GLMNN and the GDPA-GLMNN optimizations. Both of

these approaches optimize the same objective with the same semi-definite constraint. However, SDP solves

the program exactly while GDPA relaxes the semi-definite constraint to speed up the computation (see Sec-

tion 2.2.5 for more information). Although GDPA-GLMNN is a relaxation, Figure 52 shows that it achieves

comparable accuracy with SDP-GLMNN.

To compare the models’ runtimes, we counted the number of linear programs (LP) that are solved in GDPA-

GLMNN until it converges to an answer. Figure 53 shows this number for various sizes of the training

dataset. SDP-GLMNN’s solver, SeDuMi [105], takes O(C3 +C2.5NtD2
t +C0.5N2.4

t D4.8
t ) to find the opti-

mization’s answer, while each LP takes O((C +NtD2
t )

2.055). Figure 53 shows that the number of LPs re-

mains almost constant for various dataset sizes. As a result, the time complexity of GDPA-GLMNN is

O(cnst × (C + NtD2
t )

2.055) = O((C + NtD2
t )

2.055). In other words, GDPA reduces time complexity from

O(C3 +C2.5NtD2
t +C0.5N2.4

t D4.8
t ) to O((C+NtD2

t )
2.055).
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Figure 52: Accuracy of SDP-GLMNN and GDPA-GLMNN

Figure 53: Number of linear programs solved in GDPA-GLMNN to approximate the SDP formulation
of GLMNN.
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3.7 Complete Graph vs. Sparse Graph

To demonstrate the benefit of edge selection, we trained and tested the B-GLR model on the Slowfast features

with the same parameters except for graph structure. In our first experiment, the similarity graph is complete,

meaning that all pairs of nodes are connected by edges. In the second experiment, the maximum degree of

the nodes is fixed; training node degree (Dt) is 50, the number of edges connecting each validation node to

training nodes (2 Dvt) is 52, and there are no edges between pairs of validation nodes (Dv = 0)). Figure 54

shows the performance plots of both experiments. Figure 55 puts similar curves of both experiments on the

same plots. Performance-related quantities are virtually maintained, but runtime is reduced by a substantial

amount.

(a) Complete graph (b) Sparse graph

Figure 54: Three performance assessment quantities are compared between two experiments where the
features and the objective remain the same, but the graph’s structure changes from a complete graph to

a sparse graph where the maximum degree of the nodes is fixed.

This section answers a question that comes up about this work: Why do we need a graph? The data points

can be interpreted as points in a high-dimensional space instead of nodes of a graph. The edge weights

represent the distance between pairs of points by some definition of distance in the high-dimensional space.

Moreover, the training and validation processes are formulated as optimization problems which have well-

studied linear algebraic interpretations. So, where in the process do we need a graph interpretation?

The linear algebraic interpretation seems sufficient when we consider a complete graph; however, the need for

a graph becomes apparent when we start removing some of the edges. In the linear algebraic interpretation,

all pairs of nodes have a distance; therefore, there is no way to distinguish between a distance that we want to

remove from calculations and a distance that we want to retain. To keep a record of the retained distances, we

need to represent those distances with edges, which means we now have a graph instead of scattered points

in a space. As a result, the graph interpretation allows us to reduce the time complexity while maintaining

the performance as demonstrated in Figure 55. It might even enable the model to achieve a better accuracy

if the edges are chosen in a more sophisticated manner than our current scheme.
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(a) Accuracy (b) Runtime

(c) Missed detection (d) False alarm

Figure 55: Performance and runtime of a complete similarity graph is compared with a sparse similarity
graph. Runtime is greatly reduced while performance is virtually maintained at the same level.
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3.8 Time-based vs. Random Edge Selection

In this section, we compare our two proposed strategies of edge selection during the similarity graph’s con-

struction. We train and validate the B-GLR model on 3D-SIFT features (subsampled into 384 dimensions)

with two different graph structures. The maximum degrees of nodes (Dt ,Dv,Dvt) are equal between the two

experiments. The free scalar parameter (µ) is set to 1 in both, and all parameters of the gradient descent are

the same as well. The only difference is the algorithms used to select edges.

In the first experiment, edges are selected based on the proximity of their end-nodes’ corresponding time

bins. To elaborate, edges between pairs of training and pairs of validation nodes are selected with Algo-

rithm 2, and edges between training and validation nodes are selected with Algorithm 4. In the second

experiment, edges are selected randomly. In other words, Algorithm 1 is used to select edges between pairs

of training/validation nodes, and Algorithm 3 is utilized to select edges between training and validation

nodes. Figure 56 illustrates the performance and runtime curves of the two experiments. It is witnessed that

time-based edge selection greatly increases the accuracy of our model, while the runtime remains virtually

the same.

(a) Accuracy (b) Runtime

(c) Missed detection (d) False alarm

Figure 56: Performance and runtime of the B-GLR model with two different similarity graphs; one
where edges are selected randomly and one where edges are selected based on their end-nodes’

corresponding time bins.
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3.9 Dv = 0 vs. Dv > 0

One advantage of our model is that it does not ignore the similarities between the validation nodes, unlike

deep learning models. As explained in Section 2.1.2, if edges exist between pairs of validation nodes, their

similarity to each other affects the objective as well as their similarity to the training nodes. To test this

property, we ran two experiments with the B-GLR model on 3D-SIFT features. All parameters between the

two experiments remain the same except for Dv.

In the first experiment, Dv = 0 which means no edges exist between pairs of validation nodes. In this case,

the similarity of validation nodes to each other is ignored; in other words, the validation nodes’ labels are

estimated only based on their similarity to training nodes. In the second experiment, Dv = 25, which means

each validation node is connected to at most 25 other validation nodes. Figure 57 illustrates the performance

and runtime curves of the two experiments.

(a) Accuracy (b) Runtime

(c) Missed detection (d) False alarm

Figure 57: Performance and runtime of two similarity graph models where the only difference is the
connectivity between pairs of validation nodes (3D-SIFT features).

Contrary to our expectation, the accuracy did not improve by connecting the validation nodes. This means

that the similarity between pairs of validation nodes effectively holds no new information about the labels.

We run the same experiment with Slowfast features as well, whose results are observed in Figure 58. Again,

the similarity between validation nodes does not add any new information to the model. Moreover, connect-

ing the validation nodes to each other increases the runtime. This experiment may have a different result if
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we experiment with other feature sets, or other edge selection strategies.

(a) Accuracy (b) Runtime

(c) Missed detection (d) False alarm

Figure 58: Performance and runtime of two similarity graph models where the only difference is the
connectivity between pairs of validation nodes (Slowfast features).
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3.10 Feature Normalization

In this section, we test the effect of normalizing the feature vectors. We tested the B-GLR model on the

Slowfast features. All model parameters remain the same between the two experiments. The only difference

is that in one of the experiments, we normalized the feature vectors with Algorithm 5. The performance and

runtime of both experiments are compared in Figure 59.

Algorithm 5 Feature Normalization

Require: F = { fififi|i = 0, ...,Nt −1},σ f , ls
Ensure: 0≤ σ f , ls

1: Feature-wise normalization:
2: find mmm = [mi|i = 0, ...,C−1]T where mi is the mean of the ith entry of all feature vectors in F .
3: fififi← fififi−mmm ∀i = 0, ...,Nt −1.
4: find ΣΣΣ = [σi|i = 0, ...,C−1]T where σi is the standard deviation of the ith entry of all feature vectors

in F .
5: fififi← σ f ( fififi⊘ΣΣΣ) ∀i = 0, ...,Nt −1, where ⊘ stands for element-wise division and σ f is the desired

standard deviation for features.
6: Sample-wise normalization:
7: fififi← ls ( fififi/∥ fififi∥2), where ls is the desired norm for each feature vector.

It is observed that normalizing the Slowfast features reduces the accuracy as the dataset size grows. More-

over, it increases the runtime as expected. The decrease in accuracy is mostly due the the increase in false

detection rate rather than the missed detection rate. In conclusion, we should not normalize the extracted

Slowfast features.
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(a) Accuracy (b) Runtime

(c) Missed detection (d) False alarm

Figure 59: Performance and runtime of the B-GLR model with the same parameters on normalized
Slowfast features compared with original Slowfast features.
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4 Conclusion

This thesis demonstrates a classification model based on a similarity graph which provides more explainabil-

ity than state-of-the-art methods, while achieving a comparable accuracy. The model learns a metric matrix

defining the distance between the data points. The data points are represented as nodes in the similarity

graph, and their distance to each other as the weights of the edges connecting them. By strategically choos-

ing edges to make a sparse similarity graph, the model’s complexity is reduced to O(Nt C2) where Nt is the

number of training nodes and C is the number of features.

Each node of the similarity graph is assigned a label; the set of all labels form a graph signal which must

be smooth, i.e. have a small graph Laplacian regularizer (GLR), to make a sensible similarity graph. More

explanation can be found in Section 2.1. Based on this criterion, a training process is proposed in this

thesis which is formalized in Equation (59). An alternative training process is proposed based on the well-

studied Large Margin Nearest Neighbor approach which we call Graph-based Large Margin Nearest Neigh-

bor (GLMNN). This process is formalized in Equation (68). The GLMNN can be solved as a semi-definite

program (SDP) whose time complexity is O(C3 +C2.5NtD2
t +C0.5N2.4

t D4.8
t ).

To reduce the time complexity, we use a technique called Gershgorin Disc Perfect Alignment (GDPA). More

information about this technique is found in Section 2.2.5. The GDPA-infused GLMNN is formalized in

Equation (75). This approach effectively reduces time complexity to O((C +NtD2
t )

2.055). We say “effec-

tively” because the complexity depends on the constant number of linear programs (LP) that are solved

during the GDPA-infused GLMNN. This constant number is experimentally demonstrated in Figure 53;

however, we have no theoretical proof that the number of LPs will remain constant.

The model’s explainability relies on the ability to analyze the optimized metric matrix. The diagonal ele-

ments of this matrix show the contribution of each single entry of the feature vector to the label’s prediction;

hence, they can be used as contribution scores similar to the scores that are calculated in several other Ex-

plainable AI approaches. Furthermore, the off-diagonal elements of the metric matrix show the relevance of

pairs of feature vector entries to each other. We can interpret these elements as the learned covariance of the

features.

In addition, the high valued elements of the metric matrix can serve to separate the most relevant features to

the prediction from the irrelevant ones. Figure 31 shows several examples of this separation by marking the

high-value elements with red dots. If the features are explainable themselves (i.e. if an explainable feature

extraction algorithm is utilized), visualizing the highly informative features can lead to further discoveries

about the prediction process. As an example, Figure 37 illustrates keypoints of the 3D-SIFT features used in

a model. The location of these keypoints can unveil a reasoning behind their relevance to the prediction.

We extracted three different sets of features from our original dataset as described in Section 2.3.1. The first

set of features is extracted by using the first-layer filters of a pre-trained CNN called “slowfast-r50”. The
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“slowfast-r50” network is originally trained for action recognition in videos. The second set of features is a

3D version of the well-known Scale-Invariant Feature Transform (SIFT). A description of this algorithm was

given in Section 2.3.3. The third and last feature set is extracted using pre-trained filters of a CNN used for

simultaneous audio-video texture analysis called SOE-Net. Section 3.4 illustrates our model’s performance

on all three feature sets. The performance on all feature sets is generally in the same range.

On the other hand, we compared the performance of our model with four benchmarks: XGBoost, K-Nearest

Neighbors, Neural Network and Logistic Regression. Section 3.5 illustrates the accuracy of our model with

the first proposed training process (called B-GLR) next to the benchmarks. Our model achieves comparable

accuracy with the benchmarks. Running the same experiments in Section 3.5 with the SDP-GLMNN and

GDPA-GLMNN approaches was not feasible since these methods are quite time-consuming. Hence, the

performance of these two methods is compared with the B-GLR model and each other using smaller datasets

in Section 3.6. It is witnessed that the GLMNN-based methods achieve a higher accuracy than B-GLR.

Moreover, the time efficiency of GDPA-GLMNN is demonstrated compared to SDP-GLMNN.

Our model can take advantage of the similarities between the validation data points (as well as training

data points) to predict the validation labels. The effectiveness of this property is tested in Section 3.9.

Additionally, the effect of the similarity graph’s structure is explored in Sections 3.7 and 3.8. Section 3.10

examines the effect of normalizing the feature vectors on the prediction accuracy.

4.1 Future Work

For the continuation of this project, the proposed model can be used to predict the responses of smaller sub-

groups of neurons. Instead of one group which comprises all neurons, we can group neurons based on their

type. RGCs of the same type respond to similar features in the stimulus; hence, analyzing the trained model

for these smaller subgroups can reveal more useful information about the features that are extracted by the

cells, or the parts of the visual input to which they are sensitive (i.e. their receptive fields). Since our current

experiments consider a large group of all neurons, the analysis is not as useful or meaningful as it can be for

neurobiological purposes. Taking this idea a step forward, we can even experiment on single ganglion cells

instead of subgroups.

So far, we have focused on predicting single response signals whether that signal belongs to a single cell or it

is a mix of several cells’ responses. However, it is observed that patterns of responses in a neuron population

appear repeatedly regarding a stimulus; therefore, information may be encoded in the pattern rather than

independent neuron responses. To account for this dependence, we can define a similar classification problem

where the time bins’ labels are the number of spiking neurons in that specific moment; thus, the labels will

no longer be binary. Rather, they will be whole numbers between zero to the number of all neurons in the

dataset. Taking this idea one step further, we can label the time bins with vectors (instead of whole numbers)

that contain the responses of all neurons in that specific moment. This would allow the model to differentiate

between all the possible patterns that might arise in the population’s response to the stimulus.
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[61] F. J. Montáns, F. Chinesta, R. Gómez-Bombarelli, and J. N. Kutz, “Data-driven modeling and learning

in science and engineering,” Comptes Rendus Mécanique, vol. 347, no. 11, pp. 845–855, 2019.
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Appendices

A Proof of Equation (49)

This section proves that the GLR (Equation (48)) can be written in summation format as Equation (49).
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On the other hand, we know that the graph is undirected; therefore, its adjacency matric WWW is symmetric;

hence, we can write
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From Equation (97) and (98), we can conclude that
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B Derivation of Loss In Equation (59) For Gradient Descent

Equation (59), which describes one possible approach to train the similarity graph model, is solved via the

Gradient Descent (GD) method in this thesis. GD requires the derivative of the objective with respect to the

optimization variables. This section calculates the aforementioned derivative to be used in GD. In addition,

the time complexity of computing the derivative is analyzed.

B.1 Problem Description

Given BBB s.t. BBB ∈ RC×C , (100)

MMM =BBBT BBB , (101)

The graph’s adjacency matrix: WWW ∈ RNt×Nt , (102)

Wi j = e−di j , (103)

di j =
(

fff (i)− fff ( j)
)T

MMM
(

fff (i)− fff ( j)
)
, (104)

LLL =DDD−WWW = diag(WWW111)−WWW , (105)

r = yyyT LLL yyy , (106)

l = µ tr(MMM) , (107)

E = r+ l . (108)

Find
dE
dBBB

. (109)

B.2 Solution

dE
dBBB is defined as

dE
dBBB

=

[
dE

dBi j
∀i, j = 0, ...,C−1

]
=


dE

dB00

dE
dB01

... dE
dB0(C−1)

...
...

. . .
...

dE
dB(C−1)0

dE
dB(C−1)1

... dE
dB(C−1)(C−1)

 ∈ RC×C. (110)

By applying the sum rule of derivation, we have

dE
dBBB

=
dr
dBBB

+
dl
dBBB

. (111)

Therefore, this solution has three parts.

In Part 1, we prove dl
dBBB = 2µBBB.

In Part 2, we prove dr
dBBB =BBB

[
dr
dMMM +

( dr
dMMM

)T
]
.

In Part 3, we prove dr
dMst

=−1
2 sum(WWW ⊙YYY ⊙FsFsFs⊙FtFtFt), where ⊙ stands for element-wise multiplication.

94



B.3 Part 1

l = µ tr(MMM) = µ
C−1

∑
i=0

Mii. (112)

If we show column i of BBB with bibibi, then we have

MMM =BBBTBBB =⇒ Mii = ∥bibibi∥2
2, (113)

which implies

dMii

dBst
=

{
0 , t ̸= i

2 Bst , t = i

}
. (114)

Thus, we can write

dl
dBst

= µ
C−1

∑
i=0

dMii

dBst
= 2 µ Bst

=⇒ dl
dBBB

=

[
dl

dBst
∀s, t = 0, ...,C−1

]
= 2µ [Bst ∀s, t = 0, ...,C−1] = 2 µ BBB .■

(115)

B.4 Part 2

According to the chain rule of derivation, we have

dr
dBi j

=
C−1

∑
s=0

C−1

∑
t=0

dr
dMst

× dMst

dBi j
. (116)

On the other hand, we can write

MMM =BBBTBBB =⇒ Mst =
C−1

∑
p=0

Bps Bpt =⇒ dMst

dBi j
=


0 , j ̸= s, j ̸= t

Bit , j = s, j ̸= t

Bis , j ̸= s, j = t

2 Bi j , j = s, j = t

 . (117)

Hence,
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dr
dBi j

=
C−1

∑
s=0,s̸= j

C−1

∑
t=0,t ̸= j

dr
dMst

×0+
C−1

∑
s=0,s ̸= j

dr
dMs j

×
dMs j

dBi j
+

C−1

∑
t=0,t ̸= j

dr
dM jt

×
dM jt

dBi j
+

dr
dM j j

×
dM j j

dBi j

=
C−1

∑
s=0,s̸= j

dr
dMs j

×Bis +
C−1

∑
t=0,t ̸= j

dr
dM jt

×Bit +
dr

dM j j
× (2 Bi j)

=
C−1

∑
s=0

dr
dMs j

×Bis +
C−1

∑
t=0

dr
dM jt

×Bit .

(118)

We notice that various terms of Equation (118) correspond to rows and columns of known matrices. Equa-

tion (119) illustrates the resemblance,[
dr

dMs j
∀s = 0, ...,C−1

]
= j ’th column of

dr
dMMM

[Bis ∀s = 0, ...,C−1] = i ’th row of BBB[
dr

dM jt
∀t = 0, ...,C−1

]
= j ’th row of

dr
dMMM

[Bit ∀t = 0, ...,C−1] = i ’th row of BBB.

(119)

Using Equation (119), we can write Equation (118) as matrix multiplications. Thus, we have

dr
dBBB

=

[
dr

dBi j
∀i, j = 0, ...,C−1

]
=BBB

dr
dMMM

+BBB
(

dr
dMMM

)T

=BBB

[
dr
dMMM

+

(
dr
dMMM

)T
]
.■ (120)

B.5 Part 3

Using Equation (49), we can write

dr
dWi j

=
1
2
(yi− y j)

2 . (121)

Let us define

fff (i)− fff ( j) ≜ fff (i j). (122)

Then, we can use the definition of matrix multiplication to write

di j =
(

fff (i j)
)T

MMM fff (i j) =
C−1

∑
s=0

C−1

∑
t=0

Mst f (i j)
s f (i j)

t , (123)

which implies

dWi j

dMst
=−e−di j f (i j)

s f (i j)
t . (124)
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Using Equations (121) and (124), we can write

dr
dMst

=
Nt−1

∑
i=0

Nt−1

∑
j=0

dr
dWi j

×
dWi j

dMst
=

Nt−1

∑
i=0

Nt−1

∑
j=0
−1

2
(yi− y j)

2 e−di j f (i j)
s f (i j)

t

=−1
2

Nt−1

∑
i=0

Nt−1

∑
j=0

(yi− y j)
2 Wi j f (i j)

s f (i j)
t .

(125)

Let us define the following matrices.

YYY ≜
[
(yi− y j)

2 ∀i, j = 0, ...,Nt −1
]

(126)

FsFsFs ≜
[(

f (i)s − f ( j)
s

)
∀i, j = 0, ...,Nt −1

]
(127)

FtFtFt ≜
[(

f (i)t − f ( j)
t

)
∀i, j = 0, ...,Nt −1

]
. (128)

Using the above definitions, we can rewrite Equation (125) in a compact way as in Equation 129,

dr
dMst

=−1
2

sum(YYY ⊙WWW ⊙FsFsFs⊙FtFtFt) , (129)

where ⊙ means element-wise multiplication and sum(AAA) adds all elements of AAA. ■

B.6 Time Complexity

In this section, we count the number of operations to evaluate dE
dBBB .

1. First, we compute dr
dMst

as in Equation (129), which comprises three element-wise multiplications (i.e.

3 N2
t operations) and one sum(·) (i.e. N2

t operations).

2. Now, we obtain dr
dMMM =

[
dr

dMst
∀s, t = 0, ...,C−1

]
. This means that step 1 is repeated C2 times.

3. We obtain dr
dBBB =BBB

[
dr
dMMM +

( dr
dMMM

)T
]
. C2 summations are done inside the bracket, plus C2 multiplications

on the bracket’s result and BBB.

4. Finally, we evaluate dE
dBBB = dr

dBBB +2µBBB. Computing the second term takes C2 multiplications. Moreover,

C2 summations are made between the two terms.

In total, 4N2
t C2 +4C2 operations are done to evaluate dE

dBBB for one iteration of GD, where Nt is the number of

training nodes and C is the number of features.

Since we run GD for a fixed number of iterations in our approach, the total time complexity of our model’s

training, with B-GLR optimization, is O(4N2
t C2). The other computations in our approach (constructing

training and validation datasets and edge selection) are less complex; therefore, our model’s complexity is
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decided by derivation evaluation.

The above analysis assumes that the graph is complete; i.e., all entries of WWW can be non-zero. If we fix the

degree of the nodes, the number of edges in the graph will have a linear relationship with the number of

nodes; i.e., only a maximum of 2DtNt elements of WWW are non-zero. Hence, step 1 will take only O(Nt) opera-

tions, instead of O(N2
t ). As a result, the time complexity of the derivation will be reduced to O(4NtC2+4C2)

which is linear with respect to Nt . In this case, if our edge selection takes linear time, the whole training will

have a linear time complexity.

In our current implementation of time-based edge selection (Algorithms 2, 4), we sort the edges by their

time indices which takes O(Nt log(Nt)) to compute; hence, sorting becomes the bottleneck and increases

the model’s complexity to O(Nt log(Nt)). However, if we assume that the feature vectors are given to the

similarity graph according to their temporal order, then sorting is not necessary; hence, the model’s time

complexity remains O(Nt).
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C How to run the scripts?

The developed model in this thesis, and all the experiments, can be accessed on GitHub [132]. This section

provides instructions on how to use the model in your own work. Furthermore, we introduce several helpful

Jupyter notebooks; these notebooks can be read as tutorials of using various features of our model, extracting

features from a video, or to reproduce the same results presented in this thesis. All directories in this section

are given relative to the GitHub repository’s root directory in [132].

C.1 Main Scripts

The core functionalities of our code are stored in the following directory: /my packages/. This folder con-

tains four sub-directories: /dataprocess/, /simgraph/, /assessment/, and /package tests/. Figure 60 shows the

structure of the main scripts.

Figure 60: The structure of the scripts implementing the similarity graph model

Inside /my packages/dataprocess/, four Python scripts are listed: my first feature extractor.py belongs to the

preliminary experiment. It downloads MNIST images and prepares training and validation datasets for the

similarity graph model as explained in Section 3.1. The next three files (data handler 01.py, etc.) belong to

the expanded (i.e. official) code; they represent three versions in chronological order. A description of each

version’s modifications is written at the top of the script, plus extensive documentation of all the APIs inside.

Two APIs for creating random training and validation sets are provided. One of these APIs makes sure that

the sets are equally distributed between the labels, while the other one just randomly picks data points from

the whole dataset.

/my packages/simgraph/ contains the model’s core files. sift on mnist.py belongs to the preliminary exper-

iment, while all the other files (my simgraph 01.py, etc.) belong to the expanded code. Again, numbers at

the end of filenames indicate chronological order; the main version, which is used in most of the experi-

ments, is my simgraph 06.py. Documentation for all the APIs and the package as a whole is written inside

the script. my simgraph 06.py only implements the first proposed training optimization as in Equation (59).

The GLMNN-based optimizations are implemented in Matlab and accessed from Python notebooks using a

Matlab Engine [135]. SDP-GLMNN is implemented in /15 cheng/lmnn-offtheshelf/lmnn cvx python.m, and

GDPA-GLMNN is implemented in /15 cheng/lmnn-gdpa-2/lmnn gdpa python.m

Most of the APIs in my simgraph 06.py are used for edge selection, implementing all proposed strategies in

this thesis (Algorithm 1,2,3,4). Then, there are three APIs that implement the loss (see Equation (50)), the
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Gradient Descent optimization [102], and estimation of validation labels (see Equation (85)) by using the

Conjugate Gradient algorithm (see Section 2.3.6). Furthermore, two auto-run APIs are provided: fit graph

which automates the training process, and get acc which automates the validation process. Lastly, several

utility APIs are supplied for analysis and visualization of the trained model.

/my packages/assessment/ holds scripts that automate the randomized experiments (assess simgraph 01.py,

assess simgraph 02.py, etc.). They run numerous experiments with various sizes of training and validation

datasets and plot the results. To form training and validation datasets with different sizes, random data points

are chosen from the whole dataset.

assess simgraph 02.py appraises the first proposed training optimization as in Equation (59). The scripts fol-

lowing assess simgraph 02.py each appraise and compare two methods together; both methods are trained

and validated on the exact same datasets. The methods’ names are included in the script’s name; for instance,

assess simgraph 03 gdpaobj2 lgrg.py runs randomized experiments with GDPA-GLMNN and Logistic Re-

gression [134] using the same datasets for both methods. Then, it compares the results of the two models.

Appendix C.2 gives a detailed account of all the plots and files generated by an assessment script.

C.2 Assessment Script Outputs

The assessment scripts run randomized experiments with all three training approaches and all the mentioned

features in this thesis. These scripts create several plots and files which are all stored in a user-given directory.

Figure 61 illustrates a tree structure of all the files and directories created by an assessment script.

Figure 61: All generated files by an assessment script.

The first three images in Figure 61 are explained in Section 3.2. train curves.png plots four performance

quantities with respect to various training set sizes. An example is given in Figure 28a. val curves.png

computes the mean and standard deviation of the performance quantities over all training set sizes and plots

them with respect to the validation set sizes as seen in Figure 28b. runtime curves.png plots the experiments’

runtimes for each training set size. An example is provided in Figure 30.

Assessment scripts that compare two methods generate an extra plot illustrating the obtained accuracies of

both methods. This extra plot is stored as val acc compare.png. All performance quantities and runtimes
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that are plotted in the aforementioned images are also stored in text files in the /curves/ directory. /figures/

contains visualizations of the optimized metric matrices of all repeats of the experiment the likes of which

are given in Figure 31. Additionally, the optimized metric matrices are stored as Numpy arrays in /matrices/.

Lastly, the performance-related quantities of all repeats of the experiment are stored in a file named log.txt.

C.3 Helpful Jupyter Notebooks

Several Jupyter notebooks are provided that serve as tutorials of how to use the scripts. Please note that older

Jupyter notebooks use older versions of the main scripts; you can not use a newer version of a script with

older notebooks. The first notebook can be accessed in the following directory:

/14 comparison/08 cvxlmnn gdpalmnn factobj1.ipynb.

This notebook runs a single experiment (as opposed to multiple randomized experiments) on all three pro-

posed training objectives; i.e. B-GLR (Equation (59)), SDP-GLMNN (Equation (68)) and GDPA-GLMNN

(Equation (75)). Several other Jupyter notebooks demonstrate how to use the assessment scripts to run ran-

domized experiments, including the following:

/14 comparison/09 cvxlmnn factobj1 assess.ipynb

/14 comparison/10 cvxlmnn gdpalmnn assess.ipynb

These notebooks start by importing suitable versions of the main scripts explained in Appendix C.1. Then,

they load the neurons’ spike data (see Figure 19) on RAM. Afterwards, they set the parameters required to

retrieve the correct set of features for the model’s input. Four types of features are provided as described

in Section 2.3.2; Slowfast, 3D-SIFT and SOE-Net features that describe the fish movie, and a fourth set of

SIFT features describing MNIST images. The parameters for all feature sets are written in the notebook; one

only needs to uncomment the corresponding lines to use the features.

For further information about the process of extracting the aforementioned features, refer to the following

Jupyter notebook.

For Slowfast:

• /07 slowfast/02 slowfast ft.ipynb

• /07 slowfast/03 half slowfast ft.ipynb

• /07 slowfast/04 slowfast ft sanity.ipynb

For 3D-SIFT:

• /09 sift3d/01 sift3d ft.ipynb

• /09 sift3d/02 sift3d kpselection.ipynb

• /09 sift3d/05 save framebatch data.ipynb
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• /09 sift3d/08 visualize sift keypoints.ipynb

For SOE-Net:

• /13 soenet/01 soenet ft.ipynb

• /13 soenet/03 merge and convert to numpy.ipynb

For SIFT features from the MNIST dataset:

• /03 mnist/03 sift on mnist/sift on mnist 06.ipynb

• /03 mnist/04 nn vs sift/sift vs nn on mnist.ipynb

After setting up the data parameters, the scripts continue to set up model-related parameters. These include

parameters that describe the similarity graph’s connectivity, the Gradient Descent algorithm, free scalars in

the optimization objectives, the random seed, and parameters about the metric matrix visualization as seen

in Figure 31. Assessment notebooks determine an extra set of parameters in this step regarding the random-

ization of the experiment. Moreover, assessment notebooks determine the directory where the experiment’s

results will be stored.

We used the code found in [111] for GDPA-GLMNN which is written in Matlab. Consequently, the code

for SDP-GLMNN was written by making changes to GDPA-GLMNN’s code; hence, SDP-GLMNN is also

written in Matlab. To run these modules from Python, we use a Matlab Engine [135]. Since data files need

to be transferred between our Matlab and Python scripts, we designate certain directories to save and load

data files. We call these directories “swap directories”. Swap directories are also given to the model as

parameters. There are several additional steps in 08 cvxlmnn gdpalmnn factobj1.ipynb which compare the

results of all three training approaches with Logistic Regression.

To reproduce the preliminary experiment (Section 3.1), refer to the following notebook:

/03 mnist/04 nn vs sift/sift vs nn on mnist.ipynb

Two more Python scripts can be found in the same directory containing the implementations of the similarity

graph model and the neural network benchmark.

To run random experiments with all four benchmarks introduced in Section 3.5, refer to the following note-

book.

code/11 knn and lgrg/07 knn xgb nn lgrg assess.ipynb

Additionally, this notebook plots the results next to the similarity graph’s performance curves.

The following Jupyter notebook analyzes the B-GLR model on 2D synthetic data as in Section ??
/05 simple features toy examples/07 toy example.ipynb
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To produce feature visualizations akin to the ones in Section 3.3, refer to the following notebooks:

/16 mnist sift on sg/10 visualize features.ipynb

/09 sift3d/08 visualize sift keypoints.ipynb
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