
An Adaptive Architecture for Internet of Things
Applications

Brian Ramprasad

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE

STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND

TECHNOLOGIES

YORK UNIVERSITY

TORONTO, ONTARIO

SEPTEMBER 2018

c© BRIAN ANNIL RAMPRASAD, 2018

Abstract

The number of IoT devices has been growing exponentially as new products are being

developed and legacy systems are becoming Internet enabled. As a consequence of this

trend, the large amounts of traffic generated by IoT devices require new approaches to

platform design and workload management. The primary challenge with managing IoT

devices is that the traffic can be highly variable due to the type and the time of use. To

be able to maintain quality of service standards on an IoT platform, these traffic patterns

need to be modeled and understood so we can adapt the architecture dynamically. To

address these challenges, we propose an adaptable architecture, a platform to emulate

IoT devices, and a smart testing framework to detect bottlenecks that can predict the

demand for computing resources. We show that in certain cases we can predict the

demand for computing resources with a high degree of accuracy.

ii

Acknowledgements

I would like to thank Dr. Marin Litoiu for his guidance over the years as my supervisor.

He introduced me to academic research and has been a great mentor.

I would also like to thank Dr. Marios-Eleftherios Fokaefs for his assistance in develop-

ing this platform and providing me with knowledge about how to conduct experiments

and how to become a better researcher.

My gratitude goes to Dr. Joydeep Mukherjee for helping me with designing the ex-

periments and reviewing my thesis. His feedback was very much appreciated.

I would like to also like to give a special thanks to Lisa Nguyen. She provided many

years of support and guidance throughout this thesis. I am eternally grateful for her

advice and wisdom along this journey.

Lastly, I would like to thank my parents, family, friends and lab colleagues for pro-

viding support during this thesis.

iii

Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

List of Equations . xi

Chapter 1: Introduction . 1

1.1 Motivation . 3

1.2 Research Objectives . 4

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 8

Chapter 2: Background and Related Work 9

2.1 Background . 10

2.1.1 Cloud and Edge Computing 10

2.1.2 Internet of Things (IoT) . 12

2.1.3 Microservices . 14

2.1.4 Big Data . 15

2.1.5 Prediction Algorithms . 16

2.2 Related Work . 17

2.3 Chapter Summary . 21

iv

Chapter 3: EMU-IoT System Design 22

3.1 A Customizable Virtual Lab . 23

3.2 Device Properties . 26

3.3 Virtualized IoT . 27

3.3.1 Device . 27

3.3.2 Gateway . 28

3.4 Network Architecture . 30

3.4.1 Producer Host . 31

3.4.2 Gateway Host . 32

3.4.3 Application Host . 33

3.5 Smart Testing Framework . 34

3.5.1 State Machine . 34

3.5.2 Bottleneck Detection . 36

3.5.3 Test Case Definition . 36

3.5.4 Test Case Types . 36

3.5.5 Prediction Engine . 38

3.6 Chapter Summary . 40

Chapter 4: Implementation . 41

4.1 Requirements . 41

4.2 Hardware Configuration . 42

4.2.1 IoT Temperature and Light Sensor 42

4.2.2 IoT Camera . 44

4.2.3 Virtual Machines . 46

4.3 Software System Implementation . 46

4.3.1 Applications . 46

v

4.4 Key Modules . 53

4.4.1 IoT Device Service . 54

4.4.2 IoT Load Balancer . 54

4.4.3 IoT Monitor . 55

4.4.4 IoT Experiment . 56

4.5 Chapter Summary . 58

Chapter 5: Performance Evaluation 59

5.1 Evaluation Methodology . 60

5.2 System Testing and Validation . 60

5.2.1 Data . 61

5.2.2 Data Integrity . 61

5.2.3 Message Delivery . 61

5.3 Experimental Plan . 62

5.3.1 Testing Instruments . 63

5.3.2 Experiment Configuration 64

5.4 Results . 64

5.4.1 IoT Temperature and Light Device 65

5.4.2 IoT Camera . 69

5.4.3 IoT Camera + Temperature and Light Device 74

5.5 Chapter Summary . 81

Chapter 6: Conclusion . 82

6.1 Future Work . 84

Bibliography . 86

Appendices. 89

Chapter A: User Guide. 90

vi

List of Tables

4.1 SensorTag embedded sensors . 42

5.1 Experiment Plan Exhaustive Search 62

5.2 Experiment Plan Linear Regression Search 63

5.3 Prediction Summary for IoT Light and Temperature 67

5.4 Prediction Summary for IoT Camera 72

5.5 Prediction Summary for IoT Camera + Temperature and Light 79

vii

List of Figures

2.1 Cloud Computing Service Models 10

2.2 Edge Computing Architecture . 12

2.3 Microservices Architecture . 14

3.1 Virtualized Sensor . 28

3.2 Virtualized Gateway . 29

3.3 Network Architecture . 30

3.4 Producer Host . 31

3.5 Gateway Host . 32

3.6 Application Host . 33

3.7 Smart Testing State Machine . 35

3.8 Rules for Geographical Distribution 37

3.9 Rules for Temporal Distribution . 37

3.10 Rules for Heterogeneity . 37

3.11 Rules for Network Connectivity Variety 37

3.12 Rules for Network Protocol Variety 38

3.13 Rules for Scaling . 38

3.14 Prediction Engine . 39

4.1 Physical Sensor Tag . 43

4.2 Temperature Sensor Message Format 43

viii

4.3 Lux Sensor Message Format . 44

4.4 Raspberry Pi with Camera Module 45

4.5 IoT Camera Data Format . 45

4.6 Kafka Implementation . 47

4.7 Spark Streaming Implementation . 48

4.8 Cassandra DB Implementation . 49

4.9 Physical IoT Device to Raspberry Pi Prototype 50

4.10 Virtual IoT Device to Virtual Raspberry Pi 51

4.11 Virtual Raspberry Pi Multiplexed . 52

4.12 Node Red Flow Virtual Raspberry Pi 52

4.13 Node Red Kafka Configuration . 53

5.1 Bottleneck Point - IoT Temperature and Light 65

5.2 Exhaustive Search Results IoT Temperature and Light 66

5.3 Regression IoT Temperature and Light 67

5.4 IoT Light and Temperature Prediction @ 17.50% CPU 68

5.5 IoT Light and Temperature Prediction @ 20.00% CPU 68

5.6 IoT Light and Temperature Prediction @ 22.50% CPU 69

5.7 Bottleneck Point - IoT Camera . 70

5.8 Exhaustive Search Results IoT Camera 71

5.9 Regression IoT Camera . 72

5.10 IoT Camera Prediction @ 32.5% CPU 73

5.11 IoT Camera Prediction @ 35% CPU 73

5.12 IoT Camera Prediction @ 37.5% CPU 74

5.13 Bottleneck Point - IoT Camera + Temperature and Light Device . . . 75

5.14 Exhaustive Search Results IoT Camera + Temperature and Light . . . 76

ix

5.15 Regression IoT Camera + Temperature and Light 77

5.16 IoT Camera + Temperature and Light Prediction @ 27.5% CPU . . . 78

5.17 IoT Camera + Temperature and Light Prediction @ 30% CPU 78

5.18 IoT Camera + Temperature and Light Prediction @ 32.5% CPU . . . 79

A.1 Docker Physical PI . 91

A.2 Virtual Cloud PI . 91

A.3 Virtual Sensor Temperature and Light 91

A.4 Kafka Docker Setup . 91

A.5 Docker Overlay Network . 92

A.6 Docker Cassandra . 92

A.7 Docker Bash Cassandra . 92

A.8 Cassandra Keyspace . 92

A.9 Cassandra Schema . 93

A.10 Spark Master . 93

A.11 Spark Workers . 93

A.12 Spark Job . 94

A.13 Copy Streaming JAR to Container 94

A.14 Start Job . 94

x

List of Equations

5.1 IoT Light and Temperature Prediction Function 67

5.2 IoT Camera Prediction Function . 72

5.3 IoT Camera + Temperature and Light Prediction Function 77

xi

Chapter 1

Introduction

As the volume and variety of connected devices grows, the demand on the supporting

infrastructure is ever changing. An IoT device can be considered any device with a

connection to the Internet that will likely produce data that is consumed by another

service. An example IoT device would be a smart home thermostat that can upload

its data to the cloud. Homeowners can then view this data on a smart phone and even

control the thermostat remotely. This is an example of the value that Internet enabled

devices provide because they have the ability to gather data about the operating envi-

ronment so that that can be analyzed. Prior to the IoT era, non-connected devices kept

this data local to the device. With the increased number of connected devices we must

develop new ways of processing this data. IoT applications that ingest this data and

make sense of the information require us to design an architecture that can handle a

large number of devices. One of the challenges with IoT networks is maintaining qual-

ity of services because of the fluctuations in the number of active devices and the data

they produce [1–3]. IoT networks are typically heterogeneous, meaning that there are

many types of IoT devices that behave differently which are connected to the network.

1

This is contrast to homogeneous IoT networks where all the IoT devices are identi-

cal. Fluctuations occur because IoT devices may operate under time of use policies to

save energy or devices fail in the environment or their up link to the Internet may be

temporarily off line. Being able to reliably predict resource utilization in a dynamic

environment can help overcome some of the challenges with precisely scaling IoT net-

works. Prediction with high accuracy allows us to plan ahead for changes in demand.

For e.g., some critical IoT devices that are used in the medical field require that the

data be processed with minimal latency [4]. If the CPU utilization becomes too high, it

may impact the time to process the data because the CPU is busy handling many tasks.

2

1.1 Motivation

To investigate and learn about the behaviors of IoT networks at scale is not economi-

cally feasible and research in this area is largely fragmented as others have attempted

to create simulation or emulation tools to test and evaluate only partitions of an IoT

network and in some cases only for a specific scenario [5–8]. The primary challenge

with designing these research tools is how to create a platform that can be used to eval-

uate the behavioral performance of a diverse set of applications and devices from end

to end, in a uniform way [9]. Without collecting usage data in a uniform way, the re-

sources metrics we collect may not be comparable because different sampling methods

are used. For example, CPU utilization can be polled from the hardware, the operating

system, the container level or the application level. This could yield different results

depending on which processes are included in the calculation of the CPU usage met-

ric. Also, each application will use memory and CPU in a different way because each

application may have different processing patterns. Sometimes these applications may

be installed on different hardware where the type of available computing resources is

affecting the performance of the application. To the best of our knowledge there is no

existing application that can provide an end to end evaluation of an IoT network that

can also be installed on the production hardware. Most applications that provide IoT

simulation/emulation are constrained to a particular test environment or local machine.

Towards the goal of providing a solution to scale and evaluate IoT networks in a uni-

form way, we propose a virtual lab, Emulated Internet of Things or (EMU-IoT). EMU-

IoT is an adaptable architecture and a smart testing framework that network designers

can implement that will allow them to reliability scale an IoT network autonomically.

Autonomic in this context is defined as system that is capable of continuously mon-

itoring and having the ability to take corrective action to maximize the performance

3

goals of the application. In this case, corrective action would be detecting that a target

utilization has been reached and a scaling decision needs to be made to maintain the

quality of service on the network. A quality of service goal would be defined by the

user. For example a corrective action could be, based the goal of preventing the CPU

utilization from going over a certain value which has been known to affect response

time, a decision could be to horizontally scale by adding a new virtual machine thus

giving us more CPU cores. In this work, we focus on investigating the optimal scal-

ing methods for the application infrastructure based on quality of service goals in IoT

networks. The investigation is primarily about how to best to arrive at the trigger point

for a scaling decision based on the number and types of IoT devices that are operating

in the network. Our overall goal is to provide an emulation environment so that others

can install our platform to be able to investigate how their IoT application will perform

on their specific network.

1.2 Research Objectives

Our work is focused on understanding the behavior of highly dynamic IoT networks

to discover the bottlenecks and being able to more precisely predict the resource uti-

lization. The lack of knowledge regarding bottlenecks in the IoT networks can cause

the quality of services of applications to degrade. Quality of service factors may be

important to certain types of applications that require priority processing where users

require fast answers to queries. For example, if it has been agreed that a query on a

set of IoT data should take no longer than 3 seconds to complete, then we should be

able to predict at what resource utilization level the query takes longer than 3 seconds

complete. To do this we need to develop a method of experimentation and to create

4

a process to evaluate the smart testing framework. We can achieve these objectives

through answering the following research questions:

• RQ-1: Is it possible to build a system that can be used to experimentally identify

the bottlenecks and test the capacity of large scale heterogeneous IoT networks?

• RQ-2: Can we trigger an adaptation by using a prediction algorithm to pro-

pose a corrective action before a service level violation occurs in a dynamic IoT

network?

Research Questions in Detail:

RQ-1:

Awareness of bottleneck points is usually unknown before a system is deployed. This

is mostly due to the reason that once a system has been released into production the

operating environment is not exactly the same as the development environment. There-

fore it is crucial that we have tool and a process for evaluating these conditions by being

able to replicate all aspects of the network infrastructure and the applications running

on that network.

RQ-2:

Applications and the devices that are present on an IoT network are constantly subject

to change. Since the volume and variety of IoT devices on a network can be dynamic,

it becomes a challenge to predict the need for computing resources. Therefore an in-

vestigation and comparison of bottleneck prediction methods is an important process

that IoT network architects must undertake before one can be confident that the system

will perform according to established quality of service levels.

5

1.3 Thesis Contributions

In this section we discuss the contributions of this thesis to the field of IoT and the

performance modeling of applications that support IoT networks.

We demonstrated that we can build a customizable virtual lab (EMU-IoT) that

can be used to model heterogeneous IoT networks on an adaptable architecture.

We are able to deploy all the necessary components to have a fully working solution that

is reproducible by others. The software is executable on nearly any cloud computing

service and can be installed without the need of any specialized hardware. EMU-IoT

in its present state is capable of monitoring any IoT application as long as it is con-

tainerized and can easily be adapted to monitor non-containerized applications.

A methodology and specification was created to define what an emulated IoT de-

vice is. We provide a generic design and a minimum set of characteristics that an

emulated IoT device must have. This allows EMU-IoT to be able to be extended so

that others can create any software defined version of a physical IoT device to meet

their custom requirements.

An IoT application resource utilization prediction engine was developed based on

a Smart Testing Framework for Adaptation. This allows us to execute repeatable

experiments to learn about IoT device resource utilization so that we can trigger adap-

tations to add or remove computing resources. The framework also allows for new

prediction modules to be implemented including learning models through a systematic

collection of historical data and analysis. For example, we can set the data collection

feature of the framework to continuously monitor all changes in device count and type

on the network. We can then store this information in a persistent database store to

generate a large dataset. In theory, the more data we can use to train a model the more

the accurate that model should be in predicting resource utilization.

6

Validation experiments were conducted to show that the system can detect bottle-

necks and predict CPU resource utilization based on a set of requirements. We

successfully replicated three common scenarios on IOT networks. First we modeled

homogeneous IoT networks where we have a set of IoT devices that only produce

small amounts of data. Then we experimented with only IoT devices that generate

large amounts of data. Lastly we modeled heterogeneous IoT networks were we had

a combination of devices that produce small and large amounts of data. We executed

two types of experiments. First, we executed experiments using an exhaustive search

method on three dimensions, with a Temperature and Light sensor, an IoT Camera and

a combination of both IoT device types. The goal of these experiments was to de-

termine what amount of devices would it take to reach a target CPU utilization. The

experiments were executed successfully and we showed that we could detect bottle-

necks for a chosen target. This data was then used as input data for a linear regression

prediction model to find the device count for a unknown CPU utilization target. We

were able to show that predicting the usage patterns of light weight IoT Devices can

be done with linear regression models with a high degree of accuracy(within 0.02% of

our goal). Based on these experiments we can also show that linear regression models

become less accurate for prediction in heterogeneous IoT networks where we have a

combination of devices with different characteristics.

7

1.4 Thesis Organization

This thesis is structured as follows. In Chapter 2 we discuss the background and related

work of what others have done in the field of IoT research. In Chapter 3 introduce our

design for a virtual lab (EMU-IoT) to execute experiments on adaptable architecture.

In Chapter 4 we discuss the implementation of the both the hardware and software

systems. In Chapter 5 we discuss the validation experiments and the results. In Chapter

6 we conclude and discuss future work.

8

Chapter 2

Background and Related Work

In this section we provide an overview of cloud computing, microservices architectures

used for rapid instantiation of applications. We discuss technologies that will allow us

to create emulated IoT devices and the supporting application infrastructure. We also

discuss other simulation tools for IoT networks as it relates to our work. To evaluate

our methodology, we discuss different algorithms that will be used to scale the het-

erogeneous IoT network so that we can achieve the goals described in our research

questions.

9

2.1 Background

2.1.1 Cloud and Edge Computing

Figure 2.1: Cloud Computing Service Models
Adopted from1

Cloud computing refers to a combination of both software and hardware to deliver

computing as service to the public [10]. The concept of the cloud is meant to represent

an infinite set of computing resources that can be reserved and released on demand [11].

Users may create applications that run on the cloud. As shown in the figure 2.1, several

services can be run in the cloud. In this case the type of cloud service is called Software

as a Service. In other scenarios, users may have more fine grain control of the services

and request compute resources such as CPU and memory to run a virtual machine or

container. In this case the type of cloud service would be Infrastructure as a Service

or Platform as a Service. In these cases both the hardware resources and the software

is provided to the user without specific knowledge of the physical underlying infras-

1https://www.sevone.com/white-paper/monitoring-cloud-infrastructure\

-performance-eliminate-visibility-gaps

10

https://www.sevone.com/white-paper/monitoring-cloud-infrastructure\-performance-eliminate-visibility-gaps
https://www.sevone.com/white-paper/monitoring-cloud-infrastructure\-performance-eliminate-visibility-gaps

tructure [12]. As the user is abstracted away from the physical machine, the resources

can be provisioned from a diverse set of geographic locations. Clouds can be private

or public. Private clouds are computing resources that are exclusively for the use of

a single organization. In contrast to this are public clouds that provide computing re-

sources to the public at large. Examples of public clouds are Amazon Ec2 and Google

Compute Engine. Some clouds provide a testbed environment to support research into

the behaviors of computing resources and provide a platform for the evaluation of next

generation services and applications. The cloud that we have available to us is SAVI

(Smart Application Virtual Infrastructure) that will provide computing resources for

our experiments with IoT networks [13]. The SAVI cloud is a set of computing re-

sources that is shared by several Canadian Universities located across Canada. It is a

hierarchal design with a centralized core containing large amounts of computing power

and smaller lower powered edges located at each university. This gives us the ability to

build and execute experiments that require geographic computational awareness. Since

IoT devices can be located in many different locations and require connectivity, this is

an important feature to have when choosing a cloud environment.

An increasingly common use case for cloud computing has been to connect a large

variety of everyday devices to the Internet so that they can transmit their data. For

example thermostats, fridges, etc. These are also known as IoT devices. The usage

pattern for these devices is the data is sent to the cloud for processing and in some

cases a response is sent back to the device. Depending on where the cloud is located,

this can increase latency. The proposed solution is to bring the processing power closer

to the device [14]. This has created the concept of edge computing where applications

are designed to take advantage of computing power on smaller clouds that process data

2https://hackernoon.com/edge-computing-a-beginners-guide-8976b6886481

11

https://hackernoon.com/edge-computing-a-beginners-guide-8976b6886481

Figure 2.2: Edge Computing Architecture
Adopted from 2

locally. As shown in 2.2 the edge clouds also aggregate data and send the information

back to the central cloud for long term storage and future processing.

2.1.2 Internet of Things (IoT)

As an emerging subfield in computing, the concept of the Internet of things (IOT) can

be defined differently depending on the application domain and the perspective of the

participants. For example, for end consumers (the public at large) IoT can mean hav-

ing new smart home devices such as fridges that reorder food and thermostats that

stream data to cloud and can be controlled with smart phones [15]. In contrast to this

perspective, IoT in industrial applications can mean upgrading legacy systems to be-

come connected the Internet or the creation of new devices that are developed with

Internet connectivity from inception [16]. IoT devices can be broadly placed into two

categories, devices that emit data and devices that can also actuate based on instruc-

tion from an internal state change or a remote controller. In both cases these devices

12

produce data that can be used to improve the value that the IoT device provides over

traditional non-connected devices. For example, a non-IoT enabled security camera

that records video is limited because the video cannot be analyzed for a pattern detec-

tion. Whereas an IoT camera can stream its data to a remote location where analytics

can be performed, and an action can be taken as a result of that analysis. Another

facet of IoT can be described as the underlying infrastructure that supports the devices

themselves. Device-to-device communication and external connectivity are common

characteristics for IoT devices. New network topologies and protocols have been cre-

ated to specifically support the communication needs of IoT devices as they do not

behave like typical computing devices such as personal computers and servers. De-

vices may be low powered, geographically dispersed and be located in the external

environment [17]. Another characteristic of IoT networks is that they can be heteroge-

neous. Heterogeneous in the context of IOT networks can be defined as having devices

with different characteristics operating on the network simultaneously. IoT devices

vary widely in terms of function and behavior. We can have sensors that produce small

amounts of data and very fast frequencies. In other cases we have can have devices that

produce large amounts of data infrequently. We may also have devices that continu-

ously stream data on a constant basis. Due to this variety of data stream patterns, the

network that supports these devices must be able to adapt to changing requirements as

new devices are added and removed from the network. One approach to solving this

issue has been to use a containerized method which is a software based approach to

allow different gateways to be added dynamically when a new IoT device is added to

the network [18]. The gateway is a service that provides connectivity between IoT de-

vices and the processing infrastructure. The processing infrastructure consumes, stores

and makes the data available for use by analytics services or other systems. Another

13

facet of the IoT network that can be heterogeneous is the gateway hardware itself since

low powered devices such as Raspberry Pi’s and Arduinos’ can be placed closer to

the IoT devices compared to full sized servers [19]. Exploring different techniques

to determine which is the best type of device to use in terms of cost reduction, while

maintaining quality of service, is an important factor when designing an IoT network.

IoT devices themselves may also become part of the processing infrastructure as

devices gain more CPU power [20]. This is seen as new generation of IoT devices that

gives a device dual purpose as opposed to the typical scenario where a device has a

single purpose. An example of this would be a simple sensor that reads temperature

which has almost no processing power and just emits data. Our design will need to

have the capability to accommodate these new devices.

2.1.3 Microservices

Figure 2.3: Microservices Architecture
Adopted from3

A key challenge when deploying applications in a cloud-based network is provi-

sioning time. Traditionally this would be done by first creating a virtual machine on a

3http://www.bigdatatraining.in/wp-content/uploads/2016/06/dockerc.png

14

http://www.bigdatatraining.in/wp-content/uploads/2016/06/dockerc.png

physical server. Once this was completed all the supporting operating system and ap-

plication frameworks needed to be installed. This can take a significant amount of time

and it also presents another challenge of how to reliably run many applications simul-

taneously on the same physical server/virtual machine. A microservices architecture

uses a containerized approach and has been proven to be faster to provision compared

to physical and virtual machines. As shown in figure 2.3 containers essentially encap-

sulate a process with the required dependencies so that it can be run in isolation inside

of a virtual machine. In IoT networks, we can have many different types of applications

running inside containers that share the resources which is more optimal compared to

deploying one application per virtual machine or server. [21]. Another key feature of

using microservices is the ability to orchestrate the creation and destruction of these

processes. Docker is currently the most widely used container platform and has been

used for simulation projects by others [22, 23]. It provides an API that allows you to

programmatically remotely instruct clusters of servers to execute functions related to

managing containers. The simulation tool we seek to develop will require such capa-

bilities.

2.1.4 Big Data

Current projections for the number of IoT devices to be connected by the year 2020 is

in the tens of billions [24]. This represents a massive increase in the amount of data

that is generated from these devices. One of the primary drivers for connecting these

devices is to be able to perform analytics to gain insight into trends and detect patterns

so that timely action can be taken. Achieving these goals require that the corresponding

infrastructure be able adapt to such queries by maintaining quality of services. For

example, a video camera can generate gigabytes of data in a single hour, which is a

15

tremendous amount of data to process if you have hundreds of cameras on a single

network A number of database and streaming technologies have emerged ever since

Google began to index the web in the early 1990’s. Variants of this technology exist

today in the form of distributed databases and processing frameworks such as Hadoop,

HDFS, Storm, Spark and Cassandra [25]. Selecting and evaluating a technology for

a given application will become even more important as the traffic continues to grow.

IoT traffic tends to be very dynamic and distributed applications that have a big data

component need to adapt to these changes through scaling mechanisms to optimize

available computing resources [26]. It is critical that researchers have a methodology

that can accurately model their big data needs. In our work we seek to provide a

platform that will enable these types of experiments.

2.1.5 Prediction Algorithms

A common trait in IoT networks is the variability of traffic patterns due to the diverse

types of devices and fluctuations in the number of devices. As previously mentioned

the goal of this work is to determine how we can adapt changes in a heterogeneous

IoT network while maintaining a set quality of service goals. To be able to achieve

this goal we need a methodology to examine how the different IoT devices affect the

performance, and to be able to identify the bottlenecks when the volume of the work-

load (the number of IoT Devices) and the mix (the type of IoT Devices) change. For

this, we can use algorithms that predict the utilization as a function of workload (mix

or/and intensity)

Linear Exhaustive Search

To drive the following prediction algorithms a complete search of the solution

space is needed. Although this form of search can be highly compute intensive

16

it is good for finding small variations in the variable under observation [27]. The

dataset that is generated through this method will be used to train other models.

Linear Regression

Using a linear regression approach, we will attempt to predict the CPU utilization

for a given set of IoT devices. This would include a configuration where we

have a single IoT device type such as a temperature sensor and a scenario with

a mixture of device types, for example a temperature sensor and a camera that

streams images. This method of predicting CPU utilization is a widely used

statistic when evaluating cloud-based systems [28].

2.2 Related Work

There have been several initiatives towards creating a tool that can reliably and accu-

rately simulate IoT networks. Chernyshev, identified 3 types of IoT simulators that are

actively being researched [29]. Full stack simulators, Big Data Processing simulators

and Network simulators. Full stack simulators are defined as simulators that provide

end-to-end support for devices and applications. Big Data simulators focus on using

cloud computing resources for big data processing in an IoT context. Lastly Network

simulators focus on network traffic and evaluating different protocols that are typically

used in IoT networks. We discuss the current state of the work done in these categories

and compare them to the goals of our IoT Emulator. Our approach is to combine all

three types of simulators to create a comprehensive solution.

In the full stack category, we have Devices Profile for Web Services Simulator(DPWSim)

which allows users to define and create simulated IoT networks [6]. It provides a ro-

bust set of tools, however the platform is limited to using DPWS(Devices Profile for

17

Web Services) standards which is based on WSDL(Web Services Description Lan-

guage). Our goal is to create a tool where any communication standard can be used.

In addition to singular protocol being used in DPWSim, it also implements the SOAP

which is mainly used in defining message exchange rules between enterprise applica-

tions. SOAP messages incur a large amount of overhead by design. IoT protocols are

typically designed to be light weight due to limited available processing power and

bandwidth. In our work, the goal is to implement emulated devices that use IoT type

protocols such as messaging over MQTT or HTTP. Also, in the full stack category we

have iFogSim which allows for end to end simulation of devices, edges and the pro-

cessing infrastructure for IoT networks [30]. While this toolkit provides all the features

of a simulation environment it does not use the actual hardware to execute the simula-

tion making the results of experiments difficult to compare with a physical system. Our

work improves upon this model by providing a tool that can be executed on the actual

network where the real system will run on.

In the big data simulator category there is IoTSim and SimIoT. In the case of IoT-

Sim, it does provide the capability to simulate large scale IoT networks but has two

major drawbacks [8]. The first limitation of of IoTSim is that the workload genera-

tion process is only based on the MapReduce model. While this is a common scenario

when processing IoT data, many other types of scenarios exist. For example, image

recognition of live video streams requires a completely different set of steps required

to analyze the data as compared to batch processed numerical data such as those gen-

erated from environmental sensors. Moreover this limitation leads to the inability to

emulate heterogeneous IoT networks since we can only support devices that generate

MapReduce type data. In our approach we have an emulator that is capable of evaluat-

ing the performance of any IoT big data application as long as it can be containerized.

18

The second limitation of IoTSim is that it cannot be executed in the actual environment

as it is also extension of CloudSim meaning it has same limitation as the previously

mentioned simulator iFogSim. This is a significant drawback because big data appli-

cations all behave differently depending on what type of hardware is available to them.

For example, Spark is a memory intensive application and Cassandra is a disk inten-

sive application. If we only have machines with large amounts of disk space and small

amounts of memory, Spark will perform poorly compared to Cassandra. We need a

way of identifying these types of bottlenecks which our platform can detect. In the

case of SimIoT it also lacks the support for heterogeneous IoT networks [31]. This

is a key characteristic of IoT networks where many types of devices are present. As

previously mentioned, in our approach the platform will currently support any type of

software defined version of and IoT device without requiring changes to the underlying

platform. SimIoT also lacks the ability to track QoS metrics to drive network optimiza-

tion such as adding or removing computing resources. In our approach we solve this

by implementing a smart testing framework.

Lastly, we have the network simulator category. This category has the most activity.

Network simulation is a well-researched area that predates IoT research by several

decades, so it makes sense that tools that were designed to simulate network traffic

are being extended and repurposed to IoT network research. One such popular tool is

CupCarbon which has been extended to include IoT features for emulation [5]. While

this emulator can execute a simulation on real hardware it is limited to running on

Raspberry Pi’s and requires modification to work on each new platform. One of our

goals is to make our emulator platform agnostic so that it can be installed on any cloud

provider. Another popular tool is Cooja which is used primarily for simulating wireless

sensor networks [7]. This simulator overcomes the limitations of CupCarbon but it only

19

allows simulation of the devices and not the applications that process the sensor data.

You would still need another simulator to handle the data ingestion functions making

it difficult to evaluation an end to end scenario on an IoT network.

20

2.3 Chapter Summary

After conducting the background research and literature review, we have discovered

several approaches and key technologies that will support our goals of answering our

research questions. First, we discovered using that using microservices, namely the

Docker implementation will allow us to create and run experiments as others have

successfully have used the technology for this purpose. We also learned about the vari-

ations in the composition of IoT networks. We determined that our approach needs to

be flexible enough to handle wide variety of IoT devices and different topologies. This

knowledge will guide our approach in designing a system that can be easily extended

to meet to the future needs of IoT networks. An important component of our system

is the resource prediction mechanism since we want to answer our research question

regarding be able to provide an optimal way to trigger an adaptation in a dynamic IoT

network. Lastly, we investigated the related works in IoT simulation and discovered

that there are three major types of simulators/emulators, namely Full stack simulators,

Big Data Processing simulators and Network simulators. We found that there are many

solutions that provide good ways to simulate or emulate various subsets of an IoT net-

work but there appears to be no system that provide functionality to evaluate and end

to end solution. Additionally, many of the simulators/emulators don’t allow others to

make use of the actual hardware that the system will run on. This is an important gap

that our work will seek to fill.

21

Chapter 3

EMU-IoT System Design

The surge in the number and variety of devices has created a challenge for the systems

that support the data streams from IoT sensors. To transform raw data into meaningful

and actionable intelligence we require fast methods to ingest and process IoT device

data. The variety of IoT devices adds to the complexity of designing an architecture

that can be flexible enough to handle new devices and provide good scalability as the

number of devices increases. Designing a suitable architecture to meet specific quality

of service goals requires that we have a model that can be analyzed so that we can

determine if those goals are being met [32]. The feasibility of executing large scale

physical models can be very costly and often experiments rely on analyzing a scaled

down version of the system to be [29]. The primary issue with using a scaled down

physical model is that results may not be the same as running the experiments on the

actual system. Due to the limitation in the value of the results generated by a scaled

down model, an architecture cannot be deemed reliable for implementation because it

has not been shown to support that system. We propose a virtual IoT lab (EMU-IoT)

which is lightweight, platform agnostic and easily configurable to execute experiments

22

that nearly replicate the system to be. When deploying an architecture to support sen-

sor streams, we typically look to evaluate that architecture based on the performance

bottlenecks of reading those sensor streams. This also includes processing the data and

executing queries. In the proposed virtual lab, we address these challenges by provid-

ing the ability to create software versions of IoT devices and the ability to configure

workloads for a given use case, that is executable on any computing infrastructure (ex.

local network, Amazon Ec2, or Microsoft Azure). For example, if we have environ-

mental sensors, we may want to see how many sensors we can support using a specific

set of hardware and then run queries on that data. A model using both the true number

and type of sensors is much more meaningful because it is a closer representation of

the system to be.

3.1 A Customizable Virtual Lab

In this section we describe the properties that a virtual lab should have to be able to

emulate real world IoT networks. The aim of this work is to be able to emulate the

topology and behavioral patterns that may occur in an IoT network.

A) Geographical Distribution

The very nature of IoT devices is that they are dispersed throughout the en-

vironment meaning that they are externally located away from the centralized

computing infrastructure. For example, you may have a centralized analytics ap-

plication located in one city, but you may have IoT devices spread across many

cities and countries. This is done to reduce the cost and complexity of the IoT

network. Therefore, to replicate this scenario and get results similar to a produc-

tion deployment we need an emulator that is capable allowing others to install

23

the software onto their physical production hardware rather than in a test envi-

ronment where the results generated could be different.

B) Temporal Distribution

IoT devices are typically configured to suit the usage patterns of the environ-

ment in which they are deployed. For example, during the day a temperature

sensor may be configured to take more frequent readings because during work

hours more humans can mean more temperature fluctuations in the space. Since

we have more frequent readings, the load on the network becomes larger. Con-

versely at night, the temperature is much more stable because everyone has gone

home and now we can configure the sensor to take readings every hour instead

of every 5 minutes during work hours. An emulator for IoT networks will need

to have this feature to replicate this scenario.

C) Heterogeneity

Perhaps the most obvious characteristic of IoT networks is the variety of device

types that exist in the environment. Many new devices are being deployed and

others are being decommissioned on a regular basis. This presents two main

challenges. First, we need an emulator that is easily extendible and generic

enough so that someone can create new emulated IoT devices. Second, we need

to design the emulator in such a way that it does not disturb the stability of the

existing network when we remove and add new devices. This is a critical feature

for the emulator, because for real world networks downtime is not acceptable.

D) Network Connectivity Variety

As previously mentioned there could be many types of sensors on an IoT net-

work. These devices may also use different technologies to establish connections

24

to the cloud network. For example, you could have Bluetooth, Wi-Fi, Ethernet

etc. These different types of connectivity have different bandwidth speeds. An

IoT emulator would also need to have this feature so that we can compare the

delay and bottlenecks between using different network connectivity types.

E) Network Protocol Variety

IoT networks can also be diverse in terms of the protocols that are used to provide

communication between devices and the computing infrastructure. Additionally,

existing protocols are always being updated and new ones may appear in the

future. One of the main goals for our emulator is to abstract the design in such

a way that you can use any communication protocol. No reconfiguration should

be necessary to implement a new protocol or to have multiple protocols running

at the same time.

F) Infinitely Scalable Design

A common theme appearing in the research of IoT networks and is that the num-

ber of connected devices is growing exponentially and this trend is expected to

continue for the foreseeable future. A major concern for application developers

and network designers is how to prepare for the growth ahead. There are two

major concerns in this problem space. First how do we quickly scale to meet the

demand and how do we avoid having idle resources in our infrastructure that will

unnecessarily increase cost. An emulator must have the capability to deal with

these two problems. Towards this goal we develop a prediction engine that will

help to better understand these usage patterns in IoT networks.

25

3.2 Device Properties

A virtualized IoT device must fully emulate the behavior and characteristics of the

actual device. In this section we describe in the context of IoT emulation what are the

three generic properties that a virtualized IoT device should have.

1. Connectible

IoT devices vary in terms of their ability to connect to a receiving device that will

read the emitted data. The typical connection types are over, Bluetooth, WIFI,

and hardwired (serial, Ethernet). A receiving device could be a controller that

aggregates several sensors or other IoT devices that communicate in a peer to

peer topology. The consequence of this is that different connectivity modes may

have different transmission rates of speed. For example, transmitting data over

Ethernet is faster compared to WIFI and Bluetooth. To deal with this variation,

a virtualized IoT device must have the ability to set its transmission type so you

can model the actual physical device. When instantiating an IoT device in the

EMU-IoT environment, the connectivity type can be set at run time.

2. Configurable

Since IoT devices also vary greatly in terms of the types of on board sensors

(temperature, movement, video, audio, etc.) developing a software-based com-

ponent that is configurable is more practical rather than several individual de-

vices. In the first iteration of our design we focused on creating a virtualized

IoT device with the ability to configure the emission rates to simulate different

connectivity types and setting the reading ranges for a temperature and luminos-

ity sensor. In future iterations we hope to expand the number of generic sensor

types that are supported.

26

3. Deployable

The most important feature of the EMU-IoT platform is the ability to rapidly

instantiate IoT devices. To achieve these goals, we use a microservices approach

by containerizing the software component so that it can be quickly activated. A

virtualized sensor is a small lightweight application that begins emulating the

behavior of an IoT device once a container has been started. This primary ad-

vantage of this that an unlimited number of virtualized IoT devices can be acti-

vated and they can be selectively dispersed on different networks according to

the needs of the user. Another advantage of using microservices is that you can

have a common way to communicate with the containers even though they may

be running different IoT software components inside the container.

3.3 Virtualized IoT

In this section we describe the two main components that are fully virtualized which

enable workloads to be executed on EMU-IoT. These components can be rapidly in-

stantiated and deployed at scale.

3.3.1 Device

A virtualized IoT device in the context of the EMU-IoT lab is an encapsulated service

that emits data. It adheres to the three properties as described in section 3.2 which

are connectible, configurable, and deployable. As shown in figure 3.1 we have three

different components inside of a virtualized IoT device. At build time, parameters to

modify the behavior of the device can be passed to the service running inside of the

container. Once the configuration has been set, the data generator service begins to

27

produce the emulated data. This data is then encoded in the appropriate format for the

transport protocol being used, and then the data is transmitted to another service that

is external to virtualized IoT device. A virtual IoT device can also be configured to

accept new data at runtime if the device needs to obtain new information once the data

generation service has been started.

Figure 3.1: Virtualized Sensor

3.3.2 Gateway

A virtualized IoT gateway in the context of the EMU-IoT lab is an encapsulated service

that receives, formats, and forwards data onward to an external service that collects data

from many gateways. Virtual gateways may also support physical IoT Devices.

As shown in figure 3.2 we have four different components inside of a virtualized

IoT gateway. At build time, parameters to modify the behavior of the gateway can

28

Figure 3.2: Virtualized Gateway

be passed to the service running inside of the container. Once the configuration has

been set, the data receiver service starts and waits for incoming data from the physical

or virtualized IoT devices. This data is then checked to make sure it is in the correct

format and then each reading from the IoT device is formatted into a common message

standard that is used on the IoT network. The data forwarder then makes a connection

to a data aggregation service that is waiting for this information.

29

3.4 Network Architecture

In this section we discuss the network design that can support an emulated IoT environ-

ment that is comprised of virtual machines and both physical and virtual IoT devices.

We also discuss the data pipelines that allow the movement of data between the partic-

ipants in the IoT network.

Figure 3.3: Network Architecture

In the IoT network we have 3 separate segments that operate independent of each

other. Across all three segments the applications are running on a containerized ar-

chitecture which we described in section 2.1.3. The use of containers is a mandatory

requirement for both the producers and gateways, but the applications can be run di-

rectly on the virtual machine or directly on the hardware. As shown in figure 3.3 can

see that the virtual sensors push their data to the gateways, then the data is forwarded

to the application side. In this example, on the application side, the data is passed from

App A to App B then to App C. These could also be standalone services that are not

dependent on each other. We could also have more than three App’s. The design in this

part of the architecture is based on the needs of the users particular IoT application.

30

3.4.1 Producer Host

Figure 3.4: Producer Host

A producer can be defined as an virtualized IoT device that produces data that

is emitted and read by an outside service. As shown in figure 3.4 we have a virtual

machine that can host many instances of the virtual IoT device. The purpose of this

design is to allow us to deploy IoT devices easily on any host as needed. The containers

are designed to have a very small footprint so that large numbers of virtual IoT Devices

can be hosted on a single VM. The producer once started, will emit the readings and

send the messages to the receiver gateway (the controller). Creating IoT devices as

one per container allows us to better emulate a standalone device which is the way

physical devices operate. This is as opposed to creating several devices as threads

sharing resources inside a single container when doesn’t truly emulate a standalone

device scenario . For example, a smart watch has its own base set of services and

its communication component only provides connectivity for that one smart watch. It

doesn’t share its Internet connectivity link with other smart watches

31

3.4.2 Gateway Host

Figure 3.5: Gateway Host

Similar to the Producer Host we have a virtual machine that will host the gateways

where IoT devices will transmit their data to. The gateways can be configured to receive

data from many IoT devices. Therefore you do not need as many virtual gateways as

virtual IoT devices. This is a key feature of EMU-IoT as we can experiment with

different workloads on the gateways to determine the optimal number of IoT devices

that can be supported on a given virtual gateway. This is an important feature because

the fixed resource requirements for a virtual gateway are much higher compared to a

virtual IoT device so we would like to optimize our computing resources by limiting

the number of virtual gateways.

32

3.4.3 Application Host

Figure 3.6: Application Host

The Application hosts in EMU-IoT represent the environment for the containerized

applications that support the IoT services running on the network. Typically they are

services that ingest, process and store the incoming data from the various IoT devices

on the network. As shown in figure 3.6 they can run inside containers similar to the

producers and gateways. Generally the resource usage is what we observe when eval-

uating IoT applications. Performance measures such as CPU utilization are monitored

to maintain the quality of services on the network. As mentioned in our research goals

we aim to build a system that will allow us to understand the behavior of IoT networks.

Towards this goal we will be executing experiments designed to find the bottlenecks of

these applications based on the CPU utilization.

33

3.5 Smart Testing Framework

In this section we describe the Smart Testing Framework and how it will help us to

achieve our research goals of being able to intelligently trigger scaling adaptations in

highly dynamic IoT networks. First we describe the Smart Testing State machine and

the purpose of each state. Then we define what a bottleneck is in the context of an

IoT network and how the Smart Testing Framework can be used to find it. Lastly

we describe the how test cases drive the bottleneck detection process using different

goals and decision algorithms. Once a bottleneck as been detected we can use this

as threshold to execute an adaptation in the environment by adding more computing

resources or removing computing resources. The actual process of scaling is a feature

that is external to the Smart Testing Framework.

3.5.1 State Machine

The primary component of the Smart Testing framework is the state machine. It con-

trols the process of creating workloads and detecting the bottlenecks. There are three

distinct states that the machine can be in until it exits.

1. Generate Test Case

Based on the type and configuration of a test case, a new case is created each

time this state is reached. This means that a new set of IoT devices is created or

removed and there will be a resulting change in the traffic on the network that

can be observed and monitored. The test case can be generated based on a set of

predefined rules or a set of rules generated by the prediction engine that will be

discussed in section 3.5.5.

2. Collect Resource Utilization

34

Figure 3.7: Smart Testing State Machine

In this state the live resource utilization is checked to see if the defined goal target

has been reached. For example, if CPU utilization is the resource we want to

check, then this information is polled from the server and checked to determine

if it is greater than or equal to the goal (if we are looking at the upper boundary).

We can also look for a lower boundary meaning a test case would now remove

IoT devices instead of adding them.

3. Collect Resource Utilization (Moving Average)

The purpose of this state is to temporarily pause the generation of new test cases

to observe the resource utilization under more stable conditions. This is because

after the test case has created new IoT devices they may require sometime to

35

initialize and begin creating traffic. This state is also important to average out

random resource spikes in the IoT network due to application background pro-

cesses that are unrelated to the IoT traffic.

3.5.2 Bottleneck Detection

The triggering of the end state in the state machine is that a bottleneck in the IoT

network has been detected. A bottleneck in the context of the IoT network is any

point in the application infrastructure which has breached the established quality of

service level threshold. Bottlenecks are a threat to application stability. Since many

applications operate on the network we can have multiple bottlenecks.

3.5.3 Test Case Definition

Test cases are designed to allow us to model and investigate the behavior of an appli-

cation in response to a particular scenario on the IoT network. For example, in a smart

building we may want to activate IoT environmental control devices during the day

and shut them down at night. So, to emulate this scenario we would define the rules to

generate a test case that creates IoT devices at certain times of the day. These test case

rules are discussed in the next section.

3.5.4 Test Case Types

In section 3.1 we described several features that EMU-IoT will have to emulate dif-

ferent IoT usage scenarios. To recap these are Geographical Distribution, Temporal

Distribution, Heterogeneity, Network Connectivity Variety, Network Protocol Variety,

and Infinitely Scalable Design. We can define each of these as a test case to emulate

the scenarios.

36

Generate "n" IoT devices on Producer host "A" located on Edge "1"

Generate "n" IoT devices on Producer host "B" located on Edge "2"

Figure 3.8: Rules for Geographical Distribution

In figure 3.8 we model the scenario where we create IoT Devices on different edges.

These edges would be located in different locations such as different cities

Check Time of Day

If time of day == "business hours"

Generate "n" of IoT Device Type "A"

If time of day == "after hours"

Remove "n" of IoT Device Type "A"

Figure 3.9: Rules for Temporal Distribution

In figure 3.9 we model the scenario where we create IoT Devices during the day

and then remove them during the night time to conserve resources.

Generate "n" of IoT Device Type "A"

Generate "n" of IoT Device Type "B"

Figure 3.10: Rules for Heterogeneity

In figure 3.10 we model the scenario where we create different types of IoT De-

vices. EMU-IoT is capable of supporting an unlimited number of IoT device types.

Generate n of IoT Device Type "A" ("configure with throttle to limit

bandwidth usage")

Figure 3.11: Rules for Network Connectivity Variety

In figure 3.11 we model the scenario where we create IoT devices with the con-

figuration parameters passed to the service so that the user can select which network

37

connection type to use, eg. Wifi, Bluetooth, etc.

Generate "n" of IoT Device Type "A"(configure to use "MQTT")

Generate "n" of IoT Device Type "B"(configure to use "HTTP")

Figure 3.12: Rules for Network Protocol Variety

In figure 3.12 we model the scenario where we create IoT devices with different

protocols. HTTP is the most common protocol on the Internet. MQTT is a protocol

commonly used in IoT networks.

while CPU Utilization <= "80%"

Generate "n" of IoT Device Type "A", every "5" seconds

if CPU Utilization in Application "A" > "80%"

Trigger scaling action to add more resources.

Figure 3.13: Rules for Scaling

In figure 3.13 we model the scenario where we create IoT devices based on finding a

bottleneck and then we trigger a adaptation scaling action. This is done via a prediction

algorithm or workload generator which will be described in further detail in section

3.5.5.

*At the moment we must hard code these scenarios, in the future we hope to build

a rule-based processing engine to generate the test cases.

3.5.5 Prediction Engine

Another part of the smart testing framework is the utilization prediction engine. Based

on the related works there are many approaches that can be used for prediction. In this

section we will discuss the primary components of the engine. The data processor, the

predictor and the test case generator. Together they provide users with the ability build

custom prediction algorithms and execute test cases to detect bottlenecks.

38

Figure 3.14: Prediction Engine

1. Data Processor

The role of the Data Processor is to consume the historical usage information that

has been collected. We can use this data to make predictions about usage patterns

that have not yet been observed. The processor ingests, validates, formats the

data and passes it to the Predictor

2. Predictor

The role of the Predictor component is to apply a prediction algorithm on the

incoming data that has been passed to it. For example as shown in 3.14 we

can import a regression library and use it to generate a predicted value. In our

experiments we used CPU utilization as the value we want to predict based on

the number of active IoT devices on the network. This will be explained in detail

in the experiment chapter.

3. Test Case Generator

The role of the Test Case Generator is to pass the action to EMU-IoT. This action

would be for example create a specific number of IoT devices as specified in the

rules generated defined by the Predictor.

39

3.6 Chapter Summary

In this chapter, we have discussed the architecture of the system, the major system

components and how they are related to meeting our research goals of building a sys-

tem that can emulate IoT networks to drive adaptations. We introduce the concept of

a Smart Testing Framework for IoT networks. This will allow use to execute experi-

ments that can detect bottlenecks which helps with our research goals with optimizing

resource usage by using intelligent scaling algorithms. The Smart Testing Framework

also allows the system to learn from each iteration as it has more data to work with

when using the Prediction engine to drive the test cases. The design is modular and

allows for future extendibility while maintaining stability. This was a big challenge for

us because we needed to identify subsystems and types of objects that needed to be

configurable and yet not be heavily depended on other subsystems. In the end we were

able to provide a true end to end solution (from the device side through all application

layers) for evaluating IoT networks. In the next section we will provide more detail

about how the design was implemented as a software system.

40

Chapter 4

Implementation

In this section, we describe the approach that was used to transform the design into

a working system. We discuss how we met our research objectives of being able to

produce a working emulator, the smart testing component and a tool to measure the

performance of our system. The microservices platforms, infrastructure, programming

language libraries, and the hardware devices that we used as a guide to implement our

virtualized devices is also briefly discussed in this chapter. Lastly, the implementation

of the main modules of EMU-IoT are discussed. The results of the experiments will be

presented in section 5.

4.1 Requirements

To meet our research objectives and to carry out our experiments as described in the

introduction section we require the following:

• A fully functioning set of virtual machines with Docker + all required applica-

tions installed.

41

• We need to use a programming language with suitable libraries.

• We need tools to measure the performance of the IoT network.

4.2 Hardware Configuration

IoT devices come in a variety of types and legacy devices are being retrofitted with

Internet connectivity. In this section we describe the process of transforming two com-

mon IoT device types and define the data structures that they emit. We also discuss the

virtual machines that were used to support our IoT application.

4.2.1 IoT Temperature and Light Sensor

As mentioned in the background section, environment monitoring is a common use

case for IoT devices. Therefore to meet our research objectives of providing a platform

for emulating IoT networks, we decided to implement an environmental IoT device. In

our design we used the Texas Instruments SensorTag as the model for our virtualized

IoT device that produces temperature and luminosity data. A physical model of the IoT

device is show in figure 4.1. The TI SensorTag has several embedded sensors that emit

readings with various data types as shown in table 4.1. The data types are all numerical

which means that from a size perspective, each set of emitted readings it is quite small.

Resource Name Unit Type Description
pressure hPa float Pressure sensor air pressure
pressure t C float Pressure sensor temperature
humidity %RH float Humidity sensor relative humidity
humidity t C float Humidity sensor temperature
objtemp C float IR temp sensor object temperature
light Lux float Light sensor illuminance
battery mV float Battery voltage level

Table 4.1: SensorTag embedded sensors

42

Figure 4.1: Physical Sensor Tag

• Features

The device works by simply emitting readings for each sensor type at a given in-

terval, for e.g. every 1 second or 10 seconds. Since we know the data types and

emission rates, we can reliably reproduce this data without the need for the physical

device by designing a software version of the sensor.

• Message Format

To be able to process the data in a standardized way we have defined a message

format that is based on the JSON standard. This allows us to validate the message

integrity as it gets passed between applications on the IoT network. Figure 4.2 is a an

example of a temperature and luminosity reading. Since we use a common message

format, that also allows us to store the information in the same database schema.

{

sensorID:"IoTProducer1_IoT_temperature_sensor_65_3001"

,sensorType:"room_temperature"

,value:"16"

,timestamp:"1533663203"

,daydate:"20180807"

}

Figure 4.2: Temperature Sensor Message Format

43

{

sensorID:"IoTProducer1_IoT_temperature_sensor_65_3001"

,sensorType:"lux_meter"

,value:"192"

,timestamp:"1533663203"

,daydate:"20180807"

}

Figure 4.3: Lux Sensor Message Format

4.2.2 IoT Camera

Another type of IoT device that poses challenges for network designers are devices that

generate large amount of traffic. An example of such a device is a camera. Cameras are

an important tool in monitoring the environment and cameras produce video streams

that can be analyzed in real time. To understand the behavior of this type of IoT device,

we created a prototype camera using the Raspberry Pi Kit that came with a camera

module as show in figure 4.4.

• Features

To create a virtualized representation of the IoT camera we documented several nec-

essary characteristics for a fully working camera. The camera must produce video,

must have a connection to the Internet and must be able to stream the video to a

recipient. Towards this goal we created an application that stores a video file, we

implemented several libraries for image processing and created a connector to a

database to store the video data. The application creates streams by looping through

the video file, breaking the video down into frames, encoding the images into a string

based format and then writes this data to a table in Cassandra.

• Message Format

The messaging format shown in figure 4.5 was created to transmit and store the data.

We store each image in the database with a frame id. This is a concatenation of the

44

Figure 4.4: Raspberry Pi with Camera Module

camera id and timestamp. This allows us to reconstruct the video frame by frame if

necessary. The advantage of storing the images by frame allows other applications

to perform image recognition tasks without have to repeatedly break down the video

into frames each time the camera data is queried.

{

camera_id:"IoTProducer2_IoT_camera_68_3010"

,frame_id:"153467408132"

,value:"base64_encoded_value_here"

,timestamp:"1533663203"

,daydate:"20180807"

}

Figure 4.5: IoT Camera Data Format

45

4.2.3 Virtual Machines

The EMU-IoT application is able to run directly on server hardware and also on virtual

machines. As mentioned earlier our implementation was on virtual machines provided

by the SAVI network. The specification of these machines and the software stack will

be described in greater detail in section 5.1.

4.3 Software System Implementation

In this section we describe the software components that are present in EMU-IoT. As

described in section 3.1 we have several applications that marshal the data from the

IoT device to the database. We describe the process of creating virtualized controllers

that allow the virtualized IoT devices to connect to the network. The controllers act

as aggregation points in the network which is a hierarchical architecture that reduces

the number of connections to the IoT network. We also describe an example big data

application that we implemented using Apache Kafka1, Spark2 and Cassandra3, that

reads the IoT data and streams it into the database.

4.3.1 Applications

The applications in EMU-IoT can be split into two layers. In the first layer we have the

microservices infrastructure that provides the hosting environment for our virtualized

devices, gateways and business applications. The second layer is the actual virtualized

IoT devices and the business applications that process the data from the virtualized IoT

devices.
1https://kafka.apache.org
2https://spark.apache.org
3https://cassandra.apache.org

46

https://kafka.apache.org
https://spark.apache.org
https://cassandra.apache.org

• Docker

The the first layer is where we have the container provider service. We have previ-

ously discussed the role of microservices and how it helps our design, please refer

to section 3.4. Docker was installed onto the virtual machines and was controlled

remotely by our IoT Experiment Manager application that will be discussed in sec-

tion 4.4.4. This part of the implementation was not customized beyond the standard

features provided by Docker so we omit the configuration details. The instructions

for setting up the environment can be found in Appendix A.

• Kafka

Apache Kafka is a distributed application that is based on the publish and subscribe

Figure 4.6: Kafka Implementation

data model. To realize this data model, Kafka nodes store topics that producers

of information push data to and anyone interested in that data can subscribe to the

topic and check the topic periodically to determine if new messages are available to

be pulled. Kafka serves as a broker of information. The advantage of using Kafka in

this context is that it has been designed to deal with large volumes of messages. In

our IoT application we will be generating hundreds of messages per second. Another

advantage of using Kafka is that the data can be set to be stored for a specified in

period of time in case we need to reread the data. In our case we mark the message

as read once the streaming job has downloaded the message. As shown in figure 4.6

47

the messages are first posted from the virtualized IoT device to the gateway. This

transmission is done over HTTP is done via a POST transaction. The virtual Pi has

a web server that reads the messages. The messages are then pushed to the topic we

created called SensorData. The topic manager inside Kafka will assign the incoming

message to the correct topic. The pull or subscribe process is discussed in the Spark

section.

• Spark

Figure 4.7: Spark Streaming Implementation

Apache Spark is distributed data processing framework that can be used to trans-

form data from various sources. Transformations could be computations, movement

of data from a source to sink. Generally any type of data manipulation can be per-

formed. Users or applications submit jobs to Spark and the task is then executed in

memory. The role that Spark plays in our application is a data stream processor. As

shown in figure 4.7 the job runs on a 5 second interval where it checks the Sensor-

Data topic in Kafka. If there are new messages since the last check, the job pulls the

new messages in and marks these messages as read. Once Spark has downloaded

these messages it transforms them into objects that mirror the data format used in

the Cassandra database schema. For here the last step in the job executes an Insert

48

operation so that the data can be serialized to the Cassandra database. The Cassandra

database will be discussed in the next section.

• Cassandra

Apache Cassandra is a NoSql distributed database that is suited for storing large

Figure 4.8: Cassandra DB Implementation

volumes of data. For our application, Cassandra serves as a persistent data store for

the IoT messages. As shown in figure 4.8 the second task of the Spark streaming

job is to format the data to match the schema we have created inside Cassandra. The

details of the schema can be found in Appendix A.

• Node Red

Node-Red4 is an interactive web based visual development tool for wiring together

devices. It is built on top of node.js and makes use of the hundreds of thousands

of existing Node.js packages that have already been developed. When we create

an application in Node-Red, essentially, we compose our application from many

types of node libraries and make minor changes to suit our needs. Node-Red is all

about the flow of information between nodes. Some nodes produce data so they

only output data. Some nodes transform and transmit data so they have both and

input and output. Some nodes consume information to transmit out of the Node-

red environment (eg. print to console, forward to TCP socket, etc.) so these nodes

4https://nodered.org/

49

https://nodered.org/

only have an input point. We have chosen to have a local instance of the node-red

application on our raspberry pi to establish direct connectivity with the sensors. We

can use this simple drag and drop tool to get our sensors connected to our Kafka

messaging queue. Once the application has been configured it no longer requires

human intervention to connect to the IoT devices.

Gateway Implementation

In the first phase of our experiments we used a physical Raspberry Pi and a physical

sensor which was connected to the Pi over Bluetooth as shown in figure 4.9. After

developing this prototype we virtualized these two components to create EMU-IoT.

On the virtualized Pi we installed a containerized instance of IBM’s Node-Red tool.

The gateway component that we built using Node Red will make the connection to

the Zookeeper to obtain the address of the Kafka broker nodes so that the messages

can be transmitted.

Figure 4.9: Physical IoT Device to Raspberry Pi Prototype

As shown figure in 4.10 to be able to get the data from the virtual IoT device we

50

Figure 4.10: Virtual IoT Device to Virtual Raspberry Pi

replaced the Bluetooth receiving function with an HTTP web server that receives

messages from the IoT device. When the data is received from the IoT device we

pass the data onto Kafka.

Gateway Multiplexing

One of the import features of a virtual gateway is to take advantage of its connection

to the IoT network. As mentioned in section 3.4.2, we designed the gateways to

handle many incoming connections. For example a single virtualized gateway may

accept messages from 10 individual IoT devices and a virtual machine can host up

to 3 virtual gateways as show in figure 4.11 This requires us to only maintain 3

connections to the IoT network but we are able to serve 30 devices.

Gateway Configuration

The virtual gateways were designed to be created without changes at run time so

the configuration is set at build time. As show in figure 4.12 we created a flow with

several nodes. This will enable the gateway to forward the data to the big data IoT

51

Figure 4.11: Virtual Raspberry Pi Multiplexed

Figure 4.12: Node Red Flow Virtual Raspberry Pi

application we created. First we have the leftmost node which represents our HTTP

web server that receives the incoming IoT messages. Then we have two nodes in

orange that represent different pages that accept HTTP POST transactions from the

IoT devices. In our example application, we have one page for the temperature read-

ings and one for the lumen readings. The rightmost node (labeled KafkaDockerSim)

is where the information flows out of the gateway to the messaging broker (Kafka).

For this we have to add the Cloudera Node-Red library that contains the driver’s to

make the connection to the database. As previously mentioned, in Kafka the fun-

52

damental concepts are that we have producers and consumers. Therefore we need

to use a producer node in our Node-Red application to send messages to our Kafka

cluster.

Figure 4.13: Node Red Kafka Configuration

As shown in figure 4.13 we provide the IP address of the Zookeeper than maintains

a list of the Kafka nodes where the messages containing the sensor data can be sent

to. The Zookeeper then returns a list of Kafka nodes. Once the we have the address

of the Kafka node we can then begin to send the messages.

4.4 Key Modules

In this section we discuss the most important modules that were created to support

the major functions of the EMU-IoT application. These key components are: the IoT

Monitor that gets the performance data, the IoT Device Service that enables virtual

IoT devices to be created and destroyed, the IoT Load Balancer that manages the deci-

sions about how the virtual IoT device is placed on the network, IoT Experiment which

executes configurable experiments, the Smart Testing Function that is used to find bot-

53

tlenecks and the example regression library that provides the Smart Testing function

with its inputs. There are many more modules that provide vital services in the EMU-

IoT application and they can be viewed at the Github repository. Please see the user

guide in Appendix A for the link.

4.4.1 IoT Device Service

The IoT Device service provides the primary functionality for creating and destroy-

ing virtualized devices in EMU-IoT. The service abstracts many layers of the device

creation process that eventually reach the container service provider libraries(Docker).

This function will carry out the actual tasks of creating the containers. This allows us

in the future to change container service providers if necessary. In our example appli-

cation we created IoT Temperature and Light Sensor and IoT Camera. In each of these

cases the IoTDeviceService class is extended as a subclass to represent the new type.

This allows future users of EMU-IoT to create their own custom IoT device types while

not requiring any further changes in other classes because they are forced to implement

the same methods. The key methods of this service are:

addVirutalIoTDevice(IoTLoadBalancer, MonitorManager)

removeVirtualIoTDevice (IoTLoadBalancer, MonitorManager)

4.4.2 IoT Load Balancer

The IoT Load Balancer provides several functions for orchestrating the management

of IoT Nodes and the assignment of IoT devices to those IoT Nodes. IoT Nodes are

objects that represent physical/virtual machines which are the computing resources

from the cloud service provider. IoT Nodes belong to IoT Network which is an object

that represents the relationships between IoT Nodes. The orchestration functions of

54

IoT Load Balancer ensure that whenever a request to create a IoT device or Gateway

is made, the correct IoT Node is provided based on the Load Balancing policy. This is

an important feature for EMU-IoT because we want to be able to execute experiments

that are geographically disbursed. For example we can set a policy to force all newly

created IoT Devices to a particular IoT Node in a certain geographic location. IoT Load

Balancer is also responsible for maintaining the overall health of the IoT network. IoT

Load Balancer can perform cleaning and reset functions in case an experiment did not

execute completely and remove lingering IoT devices on the network. Lingering IoT

Devices are emulated IoT devices that are no longer needed. The key methods of this

service are:

iot_network_cleanup()

get_free_IoTProducerHost()

set_distribution_policy()

4.4.3 IoT Monitor

The IoT Monitor provides all of the data gathering capability from across the entire

IoT Network. The gathered data can be statistics of the resources in use on a particular

node, such as CPU, Memory, Disk and Network bandwidth utilization. We can also

gather information about the container services such as the number of containers and

whether they have terminated or are still running. The resource utilization information

that IoT Monitor gathers is the input data for the prediction engine. In our imple-

mentation we collect all of the metrics mentioned above, but we only use the CPU%

utilization as the primary data source to make predictions. At the moment the data

is stored in separate data files which allow us to map the files to specific instances of

experiments so we know the genesis of the data. This became very useful when we

55

wanted to separate out the training data to be used by the prediction engine. Another

major benefit of IoT Monitor, is that the application was designed to be multi-threaded,

therefore we can monitor many nodes and services independently and specific moni-

tors can be disabled if not needed. To implement this feature we created the Monitor

Manager that allows for the coordination of the all monitoring functions. There are

several key methods that allow the monitor to function, which are:

iot_network_cleanup()

get_free_IoTProducerHost()

set_distribution_policy()

4.4.4 IoT Experiment

The IoT Experiment Module is the main access point for the user to run coordinated

experiments based on a set of configuration parameters that can be provided at build

time. This module is extendible depending on what type of experiments you want to

run. For example in our case we ran experiments based on exhaustive search. This

means we are targeting a particular CPU% utilization point to find a bottleneck. In

another case, we implemented a linear regression based experiment that learned from

the exhaustive search data and then used the Smart Testing function to make predictions

about unknown bottlenecks in an IoT application.

• Smart Testing Function

The Smart Testing function that is implemented in IoT Experiment allows us to

generate test cases based on the rules described in section 3.5.4. For example

in our experiments we created a Heterogeneous experiment type combined with

the Scaling type experiment where we defined 3 different test case types. Case

1: only temperature and light devices, Case 2: Only IoT Camera and Case 3:

56

Where we create 2 temperature and light devices for every 1 IoT camera sensor.

A more detailed discussion of the experiments can be found in Chapter 5 We

use the method configureExperiment(experiment type) to set the type of

experiment we want to run. This function will set the correct monitors based on

what application we want to monitor to detect a bottleneck. For example with

temperature and light devices we want to examine Kafka for bottlenecks so we

turn off the Spark and Cassandra Monitors. The method executeWorkload()

then takes these configuration settings and triggers the generateTestCase()

until the target utilization is met.

• Regression Library

As an add-on to the IoT Experiment module, we implemented a Regression

library that is used to generate the test cases. This is based on the Python

statsmodels5 package. We set the target utilization which is a value that we

want to find the bottleneck for and then the regression library loads the training

data and computes the regression function. This function is then fed into the

test case generation logic. The regression library implements an already tested

and open sourced module provided to the Python community so we treat the

computational methods as a black box.

5https://www.statsmodels.org

57

https://www.statsmodels.org

4.5 Chapter Summary

In this chapter we described how the major system components were developed. We

discussed the process of taking a physical IoT device and transforming it into a virtu-

alized IoT device that could be replicated at scale. We also described the key modules

that are used in EMU-IoT and we discussed the example IoT application that was cre-

ated to validate our design using the virtualized IoT Devices. There were significant

challenges during the implementation phase of this project. For example, while devel-

oping the IoT camera it took several iterations and experiments to select an appropriate

image resolution and frame rate to emulate a typical IoT camera. This because if the

frame rate and resolution was very high, we would easily overwhelm the network by

consuming all of the available bandwidth with just a dozen cameras. This would have

made running experiments with large numbers of cameras difficult since we would only

be able to create a small number of them.

Another one of the main challenges was developing IoT Monitor which collects

the utilization data from IoT Nodes on the IoT network. Since we needed to run the

various monitors in parallel, keeping the threads synchronized was challenging. To

overcome this issue we implemented several thread management functions that monitor

the threads and ensure they are terminated in a orderly fashion to prevent the overall

application from crashing. This feature took a substantial amount of time to debug,

but given that it was a critical function for collecting the data from our experiments,

the testing and validation time was justified. With the camera configuration and multi

threading issues solved, we were able to fulfill our research goals of having a system

that is capable of detecting bottlenecks in IoT networks.

58

Chapter 5

Performance Evaluation

In this chapter we describe the methods we used to evaluate the bottleneck detection

features of EMU-IoT. In section 5.1 we discuss the methodology for evaluating the

results of our experiments by defining the measures that we use to compare the perfor-

mance of each experimental case. Then in section 5.2 we discuss how the system was

validated using control methods to make sure that the results of our experiments were

reliable. In section 5.3 we discuss the variables that we will manipulate and the vari-

ables that we will observe in an attempt to show that EMU-IoT can be used for reliable

bottle neck detection and prediction. We define a set of experiments and discuss the

reasons for why we chose them. Then in section 5.4 we discuss the results of the ex-

periments and attempt to determine if the bottlenecks were found and the degree of the

accuracy using our prediction mechanism. This will allow us to see if certain scenarios

are harder to predict with respect to target utilization compared to other scenarios.

59

5.1 Evaluation Methodology

In this section, we define and describe the choices we made regarding the types of

metrics to collect, and how they are measured. For the metrics component, we decided

to focus on CPU utilization as it is a widely accepted measure identified in the literature

review for evaluating application performance.

The evaluation consisted of two phases. In the first phase, we collected the CPU

utilization metrics from running the application where we search for a target utilization

using the exhaustive search method. In the second phase of the experiment we use

the collected metrics to derive a regression function that is used for prediction. We

then execute a set of experiments to see if the predicted utilization it close to the actual

utilization of the test case. In the context of our application, CPU usage is defined as

the percentage of the available CPU cycles that is consumed by the container being

monitored.

5.2 System Testing and Validation

In this section, we explain the various methods that are used to determine that the

system is functioning correctly. First, we define what is a correctly functioning system

and the various ways that it might not function correctly.

To be able to measure the performance of the system we built a monitor to collect

the metrics from the various Docker containers that exist in our architecture. This

monitor performs data collection on a predefined timed interval. Since we collect this

information regularly this allows us to determine if there are any components that are

not functioning in our system. If a component is not reporting any statistics, it has gone

down. Therefore, we can describe a fully functioning system as operating as normally

60

if we can read data from the IoT devices, pass that data to the gateway and process that

information stream to be ultimately stored in the database.

5.2.1 Data

The data produced by physical IoT devices are readings sensed from the environment.

Since these values have a fixed type and size we can reliably reproduce them synthet-

ically. Since we are interested in the volumes of messages, not the meaning of the

contents, using the synthetic data will allow us to produce workloads that can be used

to evaluate the performance of the architecture.

5.2.2 Data Integrity

In our IoT network, we can only process correctly typed and complete messages for a

given sensor reading. As described in previous sections regarding message design, the

integrity of the messages is checked at the processing point in Spark. This is done to

ensure that valid information that meets our schema design is written to the database.

Any messages that does not meet our specifications are ignored.

5.2.3 Message Delivery

When the system receives a message from the IoT device we must make sure that this

information can successfully make it through the pipeline and into the database. To

ensure delivery we can count the number of messages that are generated and compare

that count to what is written to the database. These message counts can be checked at

the Kafka and the Cassandra Database.

61

5.3 Experimental Plan

In this section we describe the types of experiments, the configuration and how the

data is collected. As identified in section 2 we, use the CPU utilization as a measure

for comparing experiments. The experiments are divided into two phases. In the first

phase as shown in table 5.1 we execute the exhaustive search up to a chosen CPU%

target. This means that we obtain the CPU readings for all cases until we reach the

target. We identified 3 types of experiments that cover 3 typical IoT scenarios. First we

have the Temperature and Light sensor experiment which represents IoT devices that

generate very small amounts of data. Second we have IoT Camera which represents an

IoT device that will generate large amounts of traffic. Lastly, we have a combination of

the two types that models the scenario of a heterogeneous IoT network as this was one

of our research goals to provide a platform with this capability. We repeat this same

process ten times for three levels for each of the 3 experiment types. The exhaustive

search experiments therefore yields 10 x 3 = 30 runs.

Device Runs Type Application Target CPU %
Temperature and Light 10 Exhaustive Kafka 15.00%
IoT Camera 10 Exhaustive Cassandra 30.00%
Temperature and Light(2) +
IoT Camera(1)

10 Exhaustive Cassandra 25.00%

Table 5.1: Experiment Plan Exhaustive Search

In phase two of the experiments we will attempt to make predictions based on

the data that is gathered in the first phase of the experiments. As shown in table 5.2

we chose prediction targets that are beyond the data collected so that we can predict

unknown values. For example, for IoT camera we collect data up to the 30% utilization

point and then we try to predict how many IoT Cameras are required to increase the

CPU utilization up to 32.50%, 35.00%, and 37.50%. We repeat this same process five

62

Device Runs Type Application Target CPU %
Temperature and Light 5 Regression Kafka 17.50%
Temperature and Light 5 Regression Kafka 20.00%
Temperature and Light 5 Regression Kafka 22.50%
IoT Camera 5 Regression Cassandra 32.50%
IoT Camera 5 Regression Cassandra 35.00%
IoT Camera 5 Regression Cassandra 37.50%
Temperature and Light(2) +
IoT Camera(1)

5 Regression Cassandra 27.50%

Temperature and Light(2) +
IoT Camera(1)

5 Regression Cassandra 30.00%

Temperature and Light(2) +
IoT Camera(1)

5 Regression Cassandra 32.50%

Table 5.2: Experiment Plan Linear Regression Search

times for three levels for each of the 3 experiment types. The regression experiments

therefore yields 5 x 3 x 3 = 45 runs.

5.3.1 Testing Instruments

Hardware

The hardware specs are described in the implementation section. They are physical

Raspberry Pi’s that are similar to devices used in industry for interconnecting IoT De-

vices to networks. Since we are using a virtual test bed environment we instead have

virtual machines that host our Docker containers which run all applications in our net-

work.

Software

At the platform level, the software stack that is used across the network is Ubuntu 16.04

and the latest version of Docker Community Edition 18.03.1-ce. At the appli-

cation level we have Apache Kafka 1.0.0, Spark 2.1.0, and Cassandra 3.1

which are all deployed as containers on Docker. For the linear regression prediction

function we used the Python statsmodels package.

63

5.3.2 Experiment Configuration

Experimental Setup

In this section we described all of the experiments that will be executed on the both the

exhaustive search and the prediction experiments using linear regression. The variables

that will be used across all experiments are presented in the following sections.

Dependent and Independent Variables

In the exhaustive search experiments we want to see if there is a fluctuation in the num-

ber of IoT devices for a given CPU target so therefore the device count becomes our

dependent variable and the CPU becomes our independent variable. In the regression

experiment we want to measure the changes in the CPU utilization based on the number

and type of IoT devices. So the CPU utilization now becomes our dependent variable

and the count and type of device becomes our independent variables. Please see table

5.2 for a complete list of experiment permutations that will be executed.

Experiment Constants

In the exhaustive search experiments we are interested only in observing the fluctu-

ations in the IoT device count, so therefore we hold the CPU utilization target(the

bottleneck) at a fixed amount. This was fixed across all 10 runs of the experiment for a

given device type.

5.4 Results

In this section we present the results of all the experiments that were executed on EMU-

IoT. These experiments were intended to show that based on our research goals we

could first measure the performance of an IoT application from end to end, and second,

be able to perform bottleneck detection that would trigger an adaptation for a given

64

IoT application. We discuss the experiment results for both the exhaustive search and

linear regression.

5.4.1 IoT Temperature and Light Device

Figure 5.1: Bottleneck Point - IoT Temperature and Light

In the IoT Temperature and Light experiment our goal is to find the bottleneck when

running a lightweight type of device. Once the bottleneck is found this would in theory

trigger an adaptation in the infrastructure(scale up i.e. add more computing resources).

For this type of IoT device the traffic is emitted and then sent to gateway where it is

then forwarded to Kafka which is our aggregation point. From there the data is read by

Spark and then stored in Cassandra. Prior to running these experiments we examined

all three of these applications in the architecture and found that the CPU utilization

rises the most with Kafka compared to the other applications. This is why we chose to

examine only Kafka when experimenting with this IoT device type as shown in figure

5.1.

IoT Temperature and Light Discussion: Exhaustive Search

65

After executing the experiment 10 times, the results of the IoT Temperature and Light

Figure 5.2: Exhaustive Search Results IoT Temperature and Light

device type experiment show that there is little variation in the number of IoT devices

required to hit the 15% CPU utilization target. As shown in figure 5.2, for example the

lowest number of IoT devices in the results is 260 and the highest number of devices

required to hit the target is 275. The average number of IoT devices over the 10 runs

is approximately 265. We can compute the standard deviation and it is within approxi-

mately 2% of the mean. This suggests that there is little variance in the data. The most

likely cause of the minor variation in the results is due to cloud variability and other

background processes running inside the container.

IoT Temperature and Light Discussion: Linear Regression

After executing the 10 runs from the exhaustive search we can derive the regression

function (Equation 5.1) from the data in an effort to predict values beyond the 15%

CPU utilization target. We plot the data from the exhaustive search experiments shown

in figure 5.3 and we can see that there is strong positive linear relationship between the

66

IoT Temperature and Light device count and the CPU utilization.

(Number o f Coresi) × (Utilizationi) = 0.2184 × (Device counti)+3.1088 (5.1)

Figure 5.3: Regression IoT Temperature and Light

Using the regression function we execute three experiments by setting the Utilizationi

to 18%, 20%, and 23% and solve for Device counti which is the number of IoT Tem-

perature and Light devices required to reach the chosen target utilization. We then ran

each of the experiments 5 times. We also calculated the standard deviation to determine

how close the results of our experiments were to the mean. The results are presented

in table 5.3.

Predicted
number of
Devices

CPU Target Actual Average CPU Std Dev

306 17.50% 17.30% 0.1328
352 20.00% 19.85% 0.3996
397 22.50% 21.70% 0.3884

Table 5.3: Prediction Summary for IoT Light and Temperature

67

Figure 5.4: IoT Light and Temperature Prediction @ 17.50% CPU

Figure 5.5: IoT Light and Temperature Prediction @ 20.00% CPU

In the first experiment we attempt to predict based on a target utilization of 17.50%,

with 306 IoT Temperature and Light devices required. As shown in figure 5.4 the

results were very consistent and we were able to reach an average target of 17.30%.

In the second experiment we attempt to predict based on a target utilization of 20%,

352 IoT Temperature and Light devices are required. As shown in figure 5.5 the results

68

Figure 5.6: IoT Light and Temperature Prediction @ 22.50% CPU

were mostly consistent compared to the other two experiments and we were able to

reach an average CPU utilization target of 19.85%. In the third experiment we attempt

to predict based on a target utilization of 22.50%, where 397 IoT Temperature and Light

devices are required. As shown in figure 5.6 the results were less consistent compared

to the first experiments but more consistent compared to the second experiment and we

were able to reach an average CPU utilization target of 21.70%. Generally the actual

average CPU was quite close but always below the intended CPU target. This suggests

maybe we need to always add an extra number of IoT Devices to reach our target.

5.4.2 IoT Camera

In the IoT Camera experiment our goal is to find the bottleneck when running only

devices that create heavy traffic. For this type of IoT device the traffic is emitted and

then sent directly to the storage application as shown in figure 5.7. There is no data

being transmitted between the IoT Device, Kafka or Spark so the connector arrows in

this figure are omitted to represent this concept. This in contrast to the IoT Temperature

69

Figure 5.7: Bottleneck Point - IoT Camera

and Light device which sends its data first through the gateways. Prior to running

these experiments we examined all three of these applications in the architecture and

found that the processing of image data at the gateway would be unreasonable give

the computing power at the gateways is rather low compared to a small sized cloud

server. Another reason to send the data directly to the database is so that it can be read

immediately by other services once the record is serialized to the table. This is why we

chose to examine only Cassandra when experimenting with this IoT device type.

IoT Camera Discussion: Exhaustive Search

After executing the experiment 10 times, the results of the IoT Camera type exper-

iment show that there is more variation compared to the IoT Temperature and Light

experiment when looking at the number of IoT devices required to hit the 30% CPU

utilization target. As shown in figure 5.8, for example the lowest number of IoT Cam-

era devices in the results is 110 and the highest number of devices required to hit the

target is 130. The average number of IoT Camera devices over the 10 runs is 122.

We can compute the standard deviation and it is within approximately 6.46% of the

70

Figure 5.8: Exhaustive Search Results IoT Camera

mean. This suggests that there is moderate variance in the data. Likely the reason for

the slightly higher variance is that Cassandra appears to have more background process

that are CPU intensive as compared to for example Kafka.

IoT Camera Discussion: Linear Regression

After executing the 10 runs from the exhaustive search we can derive the following

regression function (Equation 5.2) from the data in an effort to predict values beyond

the 30% CPU utilization target. We plot the data from the IoT Camera exhaustive

search experiments shown in Figure 5.9 and we can see that there is a positive linear

relationship between the IoT Camera device count and the CPU utilization. However

there is a significant number of data points that are far from the trend line. As compared

to the IoT Temperature and Light regression experiment, the line does not fit as well.

71

(Number o f Coresi) × (Utilizationi) = 0.8416 × (Device counti)+21.3387 (5.2)

Figure 5.9: Regression IoT Camera

Using the regression function we execute three experiments by setting the Utilizationi

to 32.5%, 35%, and 37.50% and solve for Device counti which is the number of IoT

Camera devices required to reach the chosen target utilization. We then ran each of the

experiments 5 times. We also calculated the standard deviation to determine how close

the results of our experiments were to the mean. The results are presented in table 5.4.

Predicted
number of
Devices

CPU Target Actual Average CPU Std Dev

129 32.50% 33.56% 1.2369
141 35.00% 34.70% 3.3461
152 37.50% 36.44% 3.0473

Table 5.4: Prediction Summary for IoT Camera

In the first experiment we attempt to predict based on a target utilization of 32.5%,

72

Figure 5.10: IoT Camera Prediction @ 32.5% CPU

Figure 5.11: IoT Camera Prediction @ 35% CPU

with 129 IoT Camera devices required. As shown in figure 5.10 the results were fairly

consistent with some minor variation in runs 3 and 4 and we were able to reach an

average target of 33.56%. Since this average target is over the amount required this

would be considered a service level violation. The adaption action to scale (i.e. add

more computing resources) in this case would have been executed too late. In the

73

Figure 5.12: IoT Camera Prediction @ 37.5% CPU

second experiment we attempt to predict based on a target utilization of 35%, 141

IoT Camera devices are required. As shown in figure 5.11 the results were the least

consistent compared to the first experiment and we were able to reach an average CPU

utilization target of 34.70%. While this average amount was below and close to the

required target(which is better than being over the target, there is a large amount of

variation in run 1 compared to run 5. For example in run 1 we only reached a CPU

utilization of 29.80% but in run 5 we overshot the target by hitting a utilization of

38.97%, this is a large discrepancy, resulting in a signification service level violation

because the system would wait too long to adapt. In the third experiment we attempt

to predict based on a target utilization of 37.50%, where 152 IoT Camera devices are

required. As shown in figure 5.12 the results were quite close to the target.

5.4.3 IoT Camera + Temperature and Light Device

For the IoT Camera + Temperature and Light Device experiment our goal is to find

the bottleneck when running a mix of devices that create both light traffic and heavy

74

Figure 5.13: Bottleneck Point - IoT Camera + Temperature and Light Device

traffic. Of the three experiment types we have done, this is the most important one

as it more closely models a real world scenarios since almost all IoT networks are

heterogeneous. In this experiment setup we create IoT devices using a 2:1 ratio where

we create two IoT Temperature and Light Devices for every one IoT camera. This

experiment also allows us to model bottlenecks that use different data paths. As shown

in figure 5.13 we have all data arriving at the Cassandra database but the data may

take a different path depending on device type. Since all data arrives at the Cassandra

database this is the only place where we can measure the affect of having both IoT

Device types. Another property of this experiment that is not present in the previous

experiments is the simultaneous modeling of a stream write and a batch write to the

Cassandra database. As previously mentioned, the IoT Cameras are designed to push a

constant stream of images where as the IoT Temperature and Light Devices have their

data collected in batches.

IoT Camera + Temperature and Light Discussion: Exhaustive Search

Based on executing the experiment 10 times, the results of the IoT Camera + Temper-

75

Figure 5.14: Exhaustive Search Results IoT Camera + Temperature and Light

ature and Light experiment show that there is a high amount of variation compared to

the previous experiments when looking at the number of IoT devices required to hit the

25% CPU utilization target. As shown in figure 5.14, for example the lowest number of

IoT Camera + IoT Temperature and Light devices in the results is 120 and the highest

number of devices required to hit the target is 201. The average number of IoT Devices

over the 10 runs is 163. We can compute the standard deviation and it is within approx-

imately 15.52% of the mean. This suggests that there is high amount variance in the

data. The reason for these large fluctuations it likely a combination of both background

processes and the stream processor that is only present in this experiment. The batch

pulls required bursts of CPU power to complete the task, making this type of scenario

hard to model.

IoT Camera + Temperature and Light Discussion: Linear Regression

76

After executing the 10 runs from the exhaustive search we can derive the following

regression function (Equation 5.3) from the data in an effort to predict values beyond

the 25% CPU utilization target. We plot the data from the IoT Camera + Temperature

and Light exhaustive search experiments shown in 5.15 and we can see that there is

a somewhat positive linear relationship between the IoT Device count and the CPU

utilization. However there is even more of a significant number of data points that are

far from the trend line as compared to the IoT Camera experiments.

(Number o f Coresi) × (Utilizationi) = 0.4513 × (Device counti)+8.2975 (5.3)

Figure 5.15: Regression IoT Camera + Temperature and Light

Using the regression function we execute three experiments by setting the Utilizationi

to 27.5%, 32.5%, and 35.0% and solve for Device counti which is the number of IoT

Camera + Temperature and Light devices required to reach the chosen target utiliza-

tion. We then ran each of the experiments 5 times. We also calculated the standard

deviation to determine how close the results of our experiments were to the mean. The

results are presented in table 5.5.

77

Figure 5.16: IoT Camera + Temperature and Light Prediction @ 27.5% CPU

Figure 5.17: IoT Camera + Temperature and Light Prediction @ 30% CPU

In the first experiment we attempt to predict based on a target utilization of 27.5%,

with 225 (150 IoT Temperature and Light + 75 IoT Camera) devices required. As

shown in figure 5.16 the results from runs 3 and 5 show significant divergence from the

mean. In this experiment we were able to reach an average target of 24.61% which is

well below the intended target. Only in one case did we trigger a service level violation

78

Figure 5.18: IoT Camera + Temperature and Light Prediction @ 32.5% CPU

Predicted
number of
Devices

CPU Target Actual Average CPU Std Dev

225 27.50% 24.61% 3.8055
247 30.00% 24.63% 2.6975
269 32.50% 25.62% 2.8492

Table 5.5: Prediction Summary for IoT Camera + Temperature and Light

in run 4. In the second experiment we attempt to predict based on a target utilization of

30%, with 247 (165 IoT Temperature and Light + 82 IoT Camera) devices are required.

As shown in figure 5.17 the results were similarly inconsistent compared to the first

experiment and we were able to reach an average CPU utilization target of 24.63%.

This CPU usage amount is substantially below the intended target and only an increase

of 0.02% above the CPU usage from the previous experiment. These results show that

there were unknown container processes that affected the results in the first experiment.

In the third experiment we observed similarly uneven results when we attempted to

predict based on a target utilization of 32.50%, with 269 (179 IoT Temperature and

Light + 90 IoT Camera) devices required. As shown in figure 5.18 the results were

79

all bellow the intended target which means we avoided a service violation, but would

have triggered a scaling adaptation to early. Given the results of these 3 experiments,

the combination of batch processing plus stream writing, and also using two different

types of IoT devices, makes linear regression a less optimal method of prediction.

Other possible prediction models that could be a better fit for this type of data would

be stochastic hill climbing. This was the final experiment with EMU-IoT. In the next

section we summarize our findings and attempt to draw some conclusions from the

results of our experiments.

80

5.5 Chapter Summary

In this chapter we described the experiments that we ran on EMU-IoT to be able to

show how we can arrive at a trigger point for an adaption on an IoT Network. We exe-

cuted two types of experiments. First, using exhaustive search we gathered the training

data. We then used a linear model to predict the CPU utilization for an unknown target.

After executing several experiments we have observed that when the IoT network is

homogeneous and the data values are small, the prediction models are more accurate.

Once we introduced IoT device types such as the IoT Camera where we have larger

data transmission volumes, the IoT applications began to exhibit more unpredictable

CPU utilization spikes. When the IoT network is heterogeneous in nature, this makes

our prediction method less precise as expected. In the next Chapter we conclude and

discuss future work to extend EMU-IoT.

81

Chapter 6

Conclusion

IoT networks are increasingly becoming more complex. A better understanding of the

behavior of applications and devices on these networks can lead to improved Quality

of Service levels. By providing an end to end solution to evaluate IoT networks, we can

more accurately measure the metrics that will allow us to determine if QoS goals are

being met. By using software defined versions of IoT devices, this allows us to simu-

late large scale IoT networks without the cost and complexity of deploying a physical

system. In this work, we implemented an adaptable network architecture, a platform

to emulate IoT devices, a smart testing framework to detect bottlenecks and predict

the demand for computing resources to maintain QoS targets. This solution can allow

others to evaluate their particular IoT network configuration using their hardware and

it provides a process to develop custom IoT devices.

For our first contribution, we demonstrated that we can build a customizable lab

that can be used to model, monitor and evaluate heterogeneous IoT networks. The

most challenging aspects of building EMU-IoT was making the architecture adaptable.

One of our design goals was to make the lab infinitely scalable. We successfully im-

82

plemented a node management system to allows us to execute experiments of any size.

This was important for the usefulness of extending this work in the future. Others

can now use our lab to execute experiments on larger systems with more computing

resources to emulate real world IoT networks.

For our second contribution, we developed a methodology for designing emulated

IoT devices. We introduced the concept of virtualized IoT and provided a definition for

such a device as having the properties of being connectible, configurable and deploy-

able. This allowed us to use a structured approach to making virtualized representa-

tions of a physical IoT device. We successfully created a software defined temperature

+ light sensor, and also a network enabled video camera.

For our third contribution, we designed a smart testing framework that evaluates

resource usage as a trigger for infrastructure adaptation (adding/removing computing

resources). We implemented a prediction engine that can predict resource utilization

using a linear regression model. The framework was also designed to be extendible

so that others can build new prediction models to detect bottlenecks in a more precise

manner.

Lastly for our final contribution, we evaluated the overall platform to show that we

can model the performance of IoT networks and execute experiments using a smart

testing framework to detect bottlenecks. We successfully executed experiments for

both homogeneous and heterogeneous IoT networks and we were able to measure the

results. Based on the results of three experiment types we were able to demonstrate

the ability to reach the trigger point so that an adaption in the architecture can occur to

maintain QoS goals.

83

6.1 Future Work

The variety of IoT devices in the future is expected to grow. Our platform was designed

to be extendible. To model these future scenarios, we hope to support new IoT device

types by using the generic framework we defined in EMU-IoT for creating new devices.

An example of such devices could be wearables that generate movement data. This type

of data can be emitted at high volumes but small size. Our architecture is currently

capable of processing this type of data. Another device type we hope to support are

IoT devices that are configurable at runtime. This would give us the ability to change

the behavior of the device according to an operation plan. An example of this type of

device would be a smart home thermostat.

Another one of our goals is to offer expanded support for more container platforms.

Currently our architecture only supports Docker as a container provider. There are

other container provider platforms such as LXC1 and Rkt 2. LXC is similar to Docker

but has fewer features. Rkt is a security focused container technology provider.

We also hope to improve the intelligence of our smart testing framework. We ex-

perimented with linear regression which showed good results with homogeneous IoT

network experiments using smaller data size. The experiments with heterogeneous IoT

networks yielded less precise predictions. Other algorithms such as logistic regression

may provide more accurate predictions of CPU utilization. Also, we hope to imple-

ment machine learning libraries that can continuously learn from past data to improve

prediction accuracy.

At the moment the application is script based requiring text-based configuration

parameters. Likely a graphic interface to model an IoT network, execute experiments

1https://linuxcontainers.org/
2https://coreos.com/rkt/

84

 https://linuxcontainers.org/
 https://coreos.com/rkt/

and visualized data would make the platform easier for others to use.

85

Bibliography

[1] A. Javed, K. Heljanko, A. Buda, and K. Främling, “Cefiot: A fault-tolerant iot
architecture for edge and cloud,” in 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), Feb 2018, pp. 813–818.

[2] H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters, and G. B. Wills, “Integration
of cloud computing with internet of things: Challenges and open issues,” in 2017
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (SmartData), June 2017, pp.
670–675.

[3] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “On the integration of cloud
computing and internet of things,” in 2014 International Conference on Future
Internet of Things and Cloud, Aug 2014, pp. 23–30.

[4] G. White, A. Palade, C. Cabrera, and S. Clarke, “Quantitative evaluation of qos
prediction in iot,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), June 2017, pp. 61–66.

[5] A. Bounceur, O. Marc, M. Lounis, J. Soler, L. Clavier, P. Combeau, R. Vauzelle,
L. Lagadec, R. Euler, M. Bezoui, and P. Manzoni, “Cupcarbon-lab: An iot emu-
lator,” in 2018 15th IEEE Annual Consumer Communications Networking Con-
ference (CCNC), Jan 2018, pp. 1–2.

[6] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. V. Luong, M. Brut, and P. Gatellier,
“Dpwsim: A simulation toolkit for iot applications using devices profile for web
services,” in 2014 IEEE World Forum on Internet of Things (WF-IoT), March
2014, pp. 544–547.

[7] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor
network simulation with cooja,” in Proceedings. 2006 31st IEEE Conference on
Local Computer Networks, Nov 2006, pp. 641–648.

[8] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and
R. Ranjan, “Iotsim,” J. Syst. Archit., vol. 72, no. C, pp. 93–107, Jan. 2017.
[Online]. Available: https://doi.org/10.1016/j.sysarc.2016.06.008

[9] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Modelling and
simulation challenges in internet of things,” IEEE Cloud Computing, vol. 4, no. 1,
pp. 62–69, Jan 2017.

86

https://doi.org/10.1016/j.sysarc.2016.06.008

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721672

[11] A. , M. , A. Fox, A. , G. , R. , J. , A. D, R. Katz, R. H, A. Konwinski, A. , G. Lee,
G. , P. , D. A, R. , A. , S. , and M. , “Above the clouds: A berkeley view of cloud
computing,” 01 2009.

[12] R. Buyya, S. K. Garg, and R. N. Calheiros, “Sla-oriented resource provisioning
for cloud computing: Challenges, architecture, and solutions,” in 2011 Interna-
tional Conference on Cloud and Service Computing, Dec 2011, pp. 1–10.

[13] J. Kang, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed: Control and man-
agement of converged virtual ict resources,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), May 2013, pp. 664–
667.

[14] D. S. Linthicum, “Connecting fog and cloud computing,” IEEE Cloud Comput-
ing, vol. 4, no. 2, pp. 18–20, March 2017.

[15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “In-
ternet of things: A survey on enabling technologies, protocols, and applica-
tions,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376,
Fourthquarter 2015.

[16] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, Nov 2014.

[17] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things
for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, Feb
2014.

[18] K. Rajaram and G. Susanth, “Emulation of iot gateway for connecting sensor
nodes in heterogenous networks,” in 2017 International Conference on Computer,
Communication and Signal Processing (ICCCSP), Jan 2017, pp. 1–5.

[19] W. Cui, Y. Kim, and T. S. Rosing, “Cross-platform machine learning characteri-
zation for task allocation in iot ecosystems,” in 2017 IEEE 7th Annual Computing
and Communication Workshop and Conference (CCWC), Jan 2017, pp. 1–7.

[20] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “Diane - dynamic iot
application deployment,” in 2015 IEEE International Conference on Mobile Ser-
vices, June 2015, pp. 298–305.

[21] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring con-
tainer virtualization in iot clouds,” in 2016 IEEE International Conference on
Smart Computing (SMARTCOMP), May 2016, pp. 1–6.

[22] Z. Nikdel, B. Gao, and S. W. Neville, “Dockersim: Full-stack simulation of
container-based software-as-a-service (saas) cloud deployments and environ-
ments,” in 2017 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), Aug 2017, pp. 1–6.

87

http://doi.acm.org/10.1145/1721654.1721672

[23] N. Naik, “Migrating from virtualization to dockerization in the cloud: Simulation
and evaluation of distributed systems,” in 2016 IEEE 10th International Sympo-
sium on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Environments (MESOCA), Oct 2016, pp. 1–8.

[24] F. J. Riggins and S. F. Wamba, “Research directions on the adoption, usage, and
impact of the internet of things through the use of big data analytics,” in 2015 48th
Hawaii International Conference on System Sciences, Jan 2015, pp. 1531–1540.

[25] S. Rajeswari, K. Suthendran, and K. Rajakumar, “A smart agricultural model by
integrating iot, mobile and cloud-based big data analytics,” in 2017 International
Conference on Intelligent Computing and Control (I2C2), June 2017, pp. 1–5.

[26] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and big data analytics
for smart and connected communities,” IEEE Access, vol. 4, pp. 766–773, 2016.

[27] H. Khojasteh and J. Mišić, “Task admission control policy in cloud
server pools based on task arrival dynamics,” Wireless Communications and
Mobile Computing, vol. 16, no. 11, pp. 1363–1376. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.2689

[28] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 155 – 162, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X11001129

[29] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things (iot): Re-
search, simulators, and testbeds,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1637–1647, June 2018.

[30] H. Gupta, A. VahidDastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques in
the internet of things, edge and fog computing environments,” Software:
Practice and Experience, vol. 47, no. 9, pp. 1275–1296. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

[31] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards simulat-
ing the internet of things,” in 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, May 2014, pp. 444–448.

[32] G. D’Angelo, S. Ferretti, and V. Ghini, “Simulation of the internet of things,”
in 2016 International Conference on High Performance Computing Simulation
(HPCS), July 2016, pp. 1–8.

88

https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.2689
http://www.sciencedirect.com/science/article/pii/S0167739X11001129
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

Appendices

89

Appendix A

User Guide

Setting up Docker

*after you create your VM’s you may need to manually add the server hostnames and

ips to each of the /etc/hosts file in each VM to make them discoverable if you don’t

have a DNS server in your network.

On All VMs

1. Install Docker

2. Enable the Docker remote API on each vm, you need to modify the docker con-

fig file to allow this(http://www.littlebigextra.com/how-to-enable-remote-rest-api-on-

docker-host/)

Cloning and building the docker images from Github

Gateway Setup:

This is the node-red image, that connects the gateway to the Kafka broker. You need to

change the IP address to point to the correct Kafka broker in the following file before

90

you build. https://github.com/brianr82/node-red-docker/blob/master/sensor flows.json

If you are using a Physical PI:(Figure) A.1

docker build --no-cache="true" -f "rpi/Dockerfile

https://github.com/brianr82/node-red-docker.git" -t

"brianr82/multinodered:latest"

Figure A.1: Docker Physical PI

If you are using SAVI,AWS, Google Cloud, etc:(Figure) A.2

docker build --no-cache="true" -f "latest/Dockerfile

https://github.com/brianr82/node-red-docker.git" -t

"brianr82/multinodered:latest"

Figure A.2: Virtual Cloud PI

Virtual Sensor Setup:(Figure) A.3

On the VM where you want to run the virtual sensors, execute the following command:

docker build --no-cache="true" -f "Dockerfile

https://github.com/brianr82/sensorsim.git" -t

"brianr82/sensorsim:latest"

Figure A.3: Virtual Sensor Temperature and Light

Setting up the Docker Containers and the Overlay Network

On the VM where you want to run Kafka:(Figure) A.4

docker run -d -p "2181:2181" -p "9092:9092" --name "kafka-001" --env

"ADVERTISED_HOST=142.150.208.238" --env "ADVERTISED_PORT=9092"

"spotify/kafka"

Figure A.4: Kafka Docker Setup

91

On the VM where you want to run Spark + Cassandra

Create the overlay network:(Figure) A.5

docker network create --attachable --driver overlay "briannet"

Figure A.5: Docker Overlay Network

Start the Cassandra Cluster:(Figure) A.6

docker run -d --name "cassandra-001" -h "cassandra-001" -e

"CASSANDRA_LISTEN_ADDRESS=cassandra-001" --net "briannet"

"cassandra"

Figure A.6: Docker Cassandra

Before we can store tuples in the database we need to create the schema. First use

Bash to get into the container to run the CQL statements to create the keyspace and

schema.(Figure) A.7

docker run -it --rm --net "briannet" "cassandra" "cqlsh" "cassandra-001"

Figure A.7: Docker Bash Cassandra

Create the Keyspace:(Figure) A.8

CREATE KEYSPACE "sensordata" WITH replication = {’class’:

’SimpleStrategy’, ’replication_factor’: 1 };

Figure A.8: Cassandra Keyspace

Then create the schema:(Figure) A.9

92

create table "sensordata.all_data" ("sensor_id" "text", "sensorType"

text, "timestamp" int, "daydate" date, "value" double, primary key

(("sensor_id", "daydate","sensorType"), "timestamp")) with

clustering order by ("timestamp" desc);

Figure A.9: Cassandra Schema

SPARK

Start the Spark Master: (Figure) A.10

docker run -d -t -p "8080:8080" --name "spark-master" --net "briannet"

--hostname "spark-master" "corba/spark" "/start-master.sh"

Figure A.10: Spark Master

Start the Spark Workers: (Figure) A.11

docker run -d -t -p "8081" -p "4040" --name "spark-worker-001" --net

"briannet" --hostname "spark-worker-001" -e

SPARK_MASTER="spark-master" corba/spark

docker run -d -t -p "8081" -p "4040" --name "spark-worker-002" --net

"briannet" --hostname "spark-worker-002" -e

SPARK_MASTER="spark-master" corba/spark

Figure A.11: Spark Workers

Building the Spark Job

From your local machine:

1. Clone the repo into an IntelliJ Java project (https://github.com/brianr82/SensorExperiment.git)

2. Change the ip address inside the script to the IP of the Kafka broker

3. Assemble the JAR:

a. In intelliJ open the terminal tab and type ‘sbt assembly’

b. Wait for it to finish creating the JAR

93

Starting the Spark Job

Copy the jar file to the Spark+Cassandra Docker VM: (Figure) A.12

scp -i "/home/brianr/key/brian-hb.key" "/home/brianr/IdeaProjects

/SensorExperiment/target/scala-2.11/SensorExperiment-assembly-1.0.jar"

"ubuntu@10.12.7.42:/home/ubuntu"

Figure A.12: Spark Job

Copy the jar from the Spark+Cassandra Docker VM into the SPARK master container:

(Figure) A.13

docker cp "SensorExperiment-assembly-1.0.jar

spark-master:/SensorExperiment-assembly-1.0.jar"

Figure A.13: Copy Streaming JAR to Container

From the virtual machine running the Spark master container, start the Spark Job to

pull the data from Kafka: (Figure) A.14

docker exec -d -it exec "spark-master /usr/local/spark/bin/spark-submit

\--class "KafkaSensorStream" --master spark://spark-master:7077[4]

SensorExperiment-assembly-1.0.jar"

Figure A.14: Start Job

End of infrastructure setup

The Spark job should now be running on a 5 second interval pulling the data from

Kafka and saving it to Cassandra. Next Step, clone the experiment execution tool, and

run some experiments. https://github.com/brianr82/Sensor-Manager.git

94

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Equations
	Introduction
	Motivation
	Research Objectives
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Background
	Cloud and Edge Computing
	Internet of Things (IoT)
	Microservices
	Big Data
	Prediction Algorithms

	Related Work
	Chapter Summary

	EMU-IoT System Design
	A Customizable Virtual Lab
	Device Properties
	Virtualized IoT
	Device
	Gateway

	Network Architecture
	Producer Host
	Gateway Host
	Application Host

	Smart Testing Framework
	State Machine
	Bottleneck Detection
	Test Case Definition
	Test Case Types
	Prediction Engine

	Chapter Summary

	Implementation
	Requirements
	Hardware Configuration
	IoT Temperature and Light Sensor
	IoT Camera
	Virtual Machines

	Software System Implementation
	Applications

	Key Modules
	IoT Device Service
	IoT Load Balancer
	IoT Monitor
	IoT Experiment

	Chapter Summary

	Performance Evaluation
	Evaluation Methodology
	System Testing and Validation
	Data
	Data Integrity
	Message Delivery

	Experimental Plan
	Testing Instruments
	Experiment Configuration

	Results
	IoT Temperature and Light Device
	IoT Camera
	IoT Camera + Temperature and Light Device

	Chapter Summary

	Conclusion
	Future Work

	Bibliography
	Appendices
	User Guide

