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ABSTRACT 
 
 
The prediction for the soil properties of texture, calcareous substrate reaction to acid, 

and ELC (Ecological Land Classification) moisture regime from environmental covariates 

derived from multi-source remotely sensed data was conducted for study areas located 

in the District of Cochrane in Ontario (49° – 50° N, 81° – 84° W).  Random forest (RF) and 

support vector machine (SVM) approaches were applied to model soil property 

classifications for 3 adjacent regions: Hearst, Gordon Cosens Forest (GCF) and Abitibi 

River Forest (ARF).  LiDAR (light detection and ranging) data was exploited to derive the 

detailed vegetation properties of canopy height model (CHM) and gap fraction, as well as 

a digital elevation model (DEM) for generating topographic covariates.  The results 

indicate that vegetation covariates, particularly LiDAR-derived vegetation properties, 

were important in the prediction of the soil properties of interest.  The most accurate 

models had accuracy scores greater than 0.7 and Cohen’s kappa greater than 0.5. 
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Chapter 1  
 
INTRODUCTION 
 

Digital soil mapping, also recognized as digital soil modeling or as pedometric mapping, 

is the process of fitting models with environmental covariates as predictors to infer soil 

properties (Nussbaum et al., 2018).  The process of digital soil mapping commonly results 

in the output of prediction maps, which can denote concentrations of soil properties, or 

the classification of categories relating to soil attributes.  A prediction map of soil 

properties can be applied as an input layer or predictor for subsequent geospatial analysis 

concerning environmental studies or land management.  Direct observation of soil 

properties may be impractical as vegetation canopies and debris materials can obscure 

the soil surface, and can even be difficult or impossible from direct observation of bare 

surfaces.  This results in the need of sample collection for even the topmost soil horizons, 

and subsequently the implementation of soil property modelling.  The application of 

digital soil mapping can be regarded as an improvement from interpolation methods such 

as kriging or area-averaging techniques, in the sense that digital soil mapping permits the 

generation of explicitly stated or quantitative models based on theory for soil survey that 

can be knowledge based (McBratney et al., 2003).  Digital soil mapping can pick up on 

detailed variations while depending upon fewer sampling locations that would not be 

practical with kriging techniques, since with digital soil mapping the variation within the 

soil map can be deduced from the environmental covariates.  Due to this dependence on 
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environmental covariates, digital soil mapping methods can result in better accuracy at a 

more local scale if soil properties vary considerably between what was sampled at 

neighboring locations, that would not be possible to detect with interpolation methods.  

 

The types of modeling processes utilized can be resolved based upon the observational 

nature of the soil properties, in regards to whether categorial attributes in terms of either 

nominal or ordinal values, or whether continuous (i.e. rational number) measurements 

were collected.  For categorical attributes, one would have classification problems, 

whereas continuous values would be modeled in terms of regression.  With soil 

classification problems, commonly modeled soil properties include soil texture 

classification (Akumu et al., 2015; Brungard et al., 2015; Heung et al., 2017, 2016), 

indicators for the existence of peat (Minasny et al., 2019; Poggio et al., 2013), or moisture 

regime ratings (Akumu et al., 2019).  For regression modelling of continuous attributes, 

this is generally applied to concentrations of soil nutrients.  Frequently regressed 

properties include soil carbon (Angelini et al., 2016; Mulder et al., 2016; Wang et al., 

2018), or even soil texture in terms of concentrations of clay, sand and silt (Adhikari et 

al., 2013).  Digital soil models can correspond to carbon concentrations and stock (Grimm 

et al., 2008) for environmental studies, or for agricultural purposes as soil texture 

(Walters et al., 1992; Yang et al., 2014), acidity (Fageria et al., 2014), and moisture (Misra 

and Tyler, 1999) can affect soil nutrient status. 
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Digital soil mapping critically relies on the linkage of environmental covariates to soil 

formation factors, from which environmental covariates are assumed to relate to aspects  

of fundamental categories that affect soil.  Jenny (1941) was one of the first researchers 

to systematically hypothesize that soil can be considered as a product of the interaction 

of soil formation factors, by reasoning with case studies where one soil formation factor 

was controlled and another varied.  The categories of soil formation factors contemplated 

by Jenny (1941) are abbreviated as CLORPT, which denote climate [CL], organisms [O], 

relief [R], parent material [P] and time [T].  Analogous acronyms and methodologies 

include SCORPAN as popularized by McBratney et al. (2003), which denote soil [S], 

climate [C], organisms [O], relief [R], parent material [P], age [A] and the geospatial 

component [N].  In general, only factors corresponding to the SCORP categories are 

considered, as the geospatial component is recorded in the collection of other attributes, 

and the age factor is outright ignored for point in time studies. 

 

Digital soil mapping has been employed in numerous studies during the past decade, but 

there is still a need of improvement with modelling accuracies.  Accuracies for digital soil 

mapping models for regression rarely exceed a coefficient of determination (R2) of 0.7 

and are generally reported between 0.3 to 0.6 (Nussbaum et al., 2018).  Classification 

models for digital soil mapping tend to yield only satisfactory accuracies as well; the 

fraction of soil samples properly classified tend to be less than 70% (Brungard et al., 2015; 

Heung et al., 2017, 2016).  Consequently, the improvement of modeling accuracies for 

digital soil mapping is an active area of interest.  This intention can be improved by either 



 4 

considering different modelling techniques, or by considering a more comprehensive set 

of environmental covariates that either better capture the underlying aspects of soil 

formation factors, or correspond to soil formation factors that are larger drivers of the 

area of interest.  Advances in digital soil mapping have also been attained in part by the 

implementation of machine learning approaches, many techniques which are flexible and 

applicable on predictors of different scales of measurement for either classification or 

regression type modelling.   

 

Recently there has been considerable interest in digital soil mapping applications for 

boreal regions, as environmental stresses compounded by climate change due to global 

warming have placed an urgency on better understanding of the state of soils in such 

regions.  Many of these boreal locales consist of peatlands which are susceptible to 

degradation via climate change through the release of stored soil carbon into the 

atmosphere (Minasny et al., 2019).  However, boreal forest study areas can pose 

additional challenges for digital soil mapping applications.  The remoteness and 

inaccessibility of these regions often results in a dearth of soil sample data being 

available.  Many boreal regions in Canada consist of relatively flat topography with 

homogenous climate for the geospatial scale of a study area, with uncertain or 

unavailable data attributes of a finer spatial scale corresponding to the parent bedrock 

material laying underneath the surface.  Therefore, it is hypothesized that vegetation 

would be the main soil formation factor for such boreal regions, so the utilization of 

environmental covariates corresponding to vegetation is a priority.  Advancements with 
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the availability of remote sensing data during the past few years, provides an opportunity 

for the generation of environmental covariates from this data as better predictors for 

digital soil mapping applications. 

 

The purpose of the research for this thesis was to address challenges of digital soil 

mapping, which in this case was employed for study areas in a boreal biome.  The output 

of this research, through models and prediction maps of soil properties had the intent of 

increasing knowledge of the state of such properties in a relatively remote region, which 

could be applied to land-use studies in the future.  By the means of employing multi-

source remotely sensed data to improve modelling accuracy for a boreal biome study 

area in the District of Cochrane in northern Ontario, this goal was accomplished through 

the following research objectives: 

 

1) Identify environmental covariates of higher variable importance for a boreal 

biome among an expanded set of predictors. 

 

Many contemporary digital soil mapping studies have considered study areas with 

assorted topography, and subsequently differing climatic zones.  This would lead to 

topographic and climatic predictors having high enough variable significance in order to 

differentiate soil properties based upon respective covariates correlated to those soil 

formation factors.  Previous digital soil mapping studies for boreal biomes have found 

topographic and climatic covariates to be the most significant when considering study 
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areas of coarse spatial resolutions over the zonal scale of the continent (Beguin et al., 

2017).  For relatively flat topographies and homogenous climatic zones as encountered 

in boreal biomes of less than a few thousand square kilometers, topographic or climatic 

covariates might not vary widely enough over a study area to provide relevant 

information to model soil properties.  Minasny et al. (2019) wrote that it is important to 

consider detailed vegetation covariates for peatland environments.  Even when 

considering vegetation covariates, many studies only utilized vegetation covariates that 

are restricted to optical imagery (Minasny et al., 2019; Mulder et al., 2011) for periods of 

peak vegetation.  Furthermore, many studies outright ignore covariates for parent 

material.  It is anticipated that exploiting a more comprehensive set of environmental 

covariates corresponding to other classes of soil formation factors will advance the 

identification of predictors of higher pertinence for soil modeling. 

 

The availability of recent LiDAR (light detection and ranging) data for the District of 

Cochrane for the study area of interest provided a novel research opportunity, as it 

allowed the generation of detailed vegetation covariates that have not been utilized in 

digital soil mapping literature before.  Previous studies for digital soil mapping have 

utilized finer scale digital elevation models (DEMs) computed from LiDAR data for the 

generation of detailed topographic covariates (Goldman et al., 2020).  LiDAR data has not 

been exploited to calculate vegetation covariates for pedometric modelling outside of 

small study areas, as LiDAR data has been limited to study areas of less than 400 km2 

(Minasny et al., 2019).  Vegetation is expected to be the main soil formation factor for 
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the study area, due in part to the consistency of climate and flatness (i.e. lack of 

topographical variation) for the study area (McBratney et al., 2003; Minasny et al., 2019).  

Detailed vegetation covariates can provide useful information pertaining to the 

vegetation canopy, that might not be captured by optical imagery or other sensor types.  

Canopy height model (CHM) and gap fraction are detailed environmental covariates 

corresponding to vegetation that can be derived from LiDAR data.  CHM characterizes the 

height of the canopy layer, whereas gap fraction relates to vegetation cover of the ground 

beneath the canopy layer.  From literature, CHM was found to be significant for 

regression modelling of soil moisture for a study area of 21 km2 near Timmins in 

northeastern Ontario (Southee et al., 2012).  To our knowledge, gap fraction has not been 

previously utilized in digital soil mapping research. 

 

Multi-source remotely sensed data can be applied to generate environmental covariates, 

as an aggregation of products derived from different remote sensing technologies can 

lead to better predictions (Minasny et al., 2019).  LiDAR data can be exploited to derive a 

detailed DEM that can be utilized for computing topographic covariates, as well as 

separately for the calculation of vegetation covariates relating to other features rather 

than surface reflectance or optical properties.  Optical imagery can be utilized to generate 

covariates corresponding to surface reflectance for multiple seasons throughout a year, 

or even over the span of years.  Synthetic aperture RADAR (SAR) can be utilized to 

generate covariates corresponding to understory moisture of a canopy.  Geophysical 
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attributes such as aeromagnetic surveys can be applied as covariates corresponding to 

parent material. 

 

2) Systematically investigate advanced modelling techniques to improve accuracies 

of models trained on predictors based upon multi-source remotely sensed data. 

 

Machine learning approaches have been popular recently for digital soil mapping, and 

demonstrated to have superior modelling performance in comparison with traditional 

modelling techniques such as multinomial regression or multilinear regression (Brungard 

et al., 2015; Heung et al., 2016; Were et al., 2015).  Improving classification accuracies for 

digital soil mapping is an active area of research, as accuracies for the best models rarely 

exceed 0.7 in correctness scores (Dornik et al., 2018; Heung et al., 2017, 2016).  It is 

expected that machine learning approaches such as random forest (RF) and support 

vector machine (SVM), combined with a more comprehensive set of environmental 

covariates for model predictors corresponding to further aspects of soil formation 

factors, will work to improve modelling accuracies.  

 

3) Assess the spatial relationship between soil properties and land forms for the 

boreal study areas. 

 

It is probable that there are interrelations between various soil properties.  Different 

biotypes or zones within the boreal forest biome could be discerned from prediction 
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maps of the soil properties.  Peatlands, second growth forest or agricultural regions can 

be correlated to specific soil properties.  Uncertainties with predictions maps, in terms of 

entropy or ignorance uncertainty (Heung et al., 2017) to identify zones with highest or 

lowest prediction uncertainties, are also of interest in order to attest confidences with 

predictions (Minasny et al., 2019).  The identification of localities associated with certain 

soil properties will support future environmental studies, although it is not the prime 

objective of this thesis. 

 

The outline of this thesis is structured into the subsequent sections.  Background 

literature concerning environmental covariates, modelling techniques, number of 

sampling points and study area sizes are considered in Chapter 2.  The targeted study 

areas for the research presented in this thesis, as well as the respective soil sampling data 

are discussed in Chapter 3.  Methodology for thesis research, including environmental 

covariates utilized and derived, are discussed in Chapter 4.  In Chapter 5 the modelling 

accuracies and soil prediction maps are presented and reviewed.  A discussion section 

follows in Chapter 6, with the conclusion and closing remarks presented in Chapter 7. 
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Chapter 2  

LITERATURE REVIEW 
 

Digital soil mapping has been popular in soil modelling research for the past couple of 

decades, with current interest spurred in part by the growing collection and access of 

data sources for environmental covariates as well as machine learning techniques.  The 

main assumption of digital soil mapping is that soil properties can be modelled based 

upon a combination of environmental covariates as predictors corresponding to soil 

formation factors.  From literature, recent studies concerning digital soil mapping were 

examined to determine insights.  These matters reviewed included the environmental 

covariates utilized as predictors for soil models, the soil depths of interest for sampling, 

targeted soil properties, study area sizes, covariate spatial resolutions, and the number 

of soil sampling points utilized.  Modelling techniques applied, as well as the metrics used 

for model evaluation were also studied.  The purpose of this literature review was to 

determine commonalities among the various considerations discussed, in order to better 

setup and conduct the analysis for the soil modelling research contained in this thesis. 

 

2.1  Environmental Covariates 
 

A SCORPAN methodology (Keskin and Grunwald, 2018; McBratney et al., 2003) or 

analogous are typically incorporated when applying digital soil mapping.  Other acronyms 

for similar methods include CLORPT (Behrens et al., 2018; Mulder et al., 2011) or 
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equivalent (McKenzie and Ryan, 1999; Nussbaum et al., 2018), where typically only 

predictors from just a few or less of these categories are applied.  The commonly utilized 

soil formation factors correspond to soil, climate, vegetation, topography, and parent 

material.  Other methods will incorporate a time factor and geospatial factor; the 

geospatial factor is typically included in the collection of environmental covariates for 

other soil formation factors, so it is usually not outright considered as its own factor.  The 

time factor is usually ignored for digital soil mapping studies, as it can take decades or 

longer before soil properties change due to a stressor (Jenny, 1941).  Properties for soil 

are often obtained from the site level, so oftentimes soil properties are not considered 

for predictors as soil properties are typically the target variables.  It makes little sense to 

utilize a soil input obtained from the same site level as a predictor for another soil 

property as that might defeat the efficacy of why to implement digital soil mapping; the 

goal of digital soil mapping is to build soil prediction maps that would need to be 

extrapolated over areas outside soil sampling locations.  Environmental covariates for the 

soil formation factors are obtained usually in the form of either rasterized imagery or 

vector files. 

 

A few studies did utilize soil properties as covariates for modelling.  Adhikari et al. (2013) 

applied digital soil types maps of 11 classes as an input for a model to predict soil textural 

components.  Mulder et al. (2011) wrote that certain soil properties, such as soil moisture 

or soil texture could be determined with medium to high feasibility from active Radar 

instruments.  Mulder et al. (2011) also wrote that optical spectroscopy can be utilized to 
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infer soil attributes relating to mineralogy, iron content, soil texture and salinity with 

medium to high feasibility.  However, sensors for the correct spectroscopy settings may 

not be available for most study areas, so these applications are not practical.  Some 

studies have considered legacy soil property maps as input (Camera et al., 2017; Ellili 

Bargaoui et al., 2019; Heung et al., 2017) for training.  Nonetheless, the accuracy of legacy 

soil property maps might be questionable, so thus be of limited usage for remote regions. 

 

Topographic covariates are usually generated from a digital elevation model (DEM) and 

correspond to landscape features.  Commonly used topographic covariates allude to local 

scale morphometry parameters (Adhikari et al., 2013; Dornik et al., 2018; Heung et al., 

2017, 2016).  Local scale morphometry covariates include elevation (often just denoted 

by DEM), slope, aspect, and plan or profile curvature (Heung et al., 2016; Ließ et al., 2012).  

There are other attributes of topography that covariates can represent, including 

landscape-scale morphometry, hydrologic characteristics and landscape exposure 

(Heung et al., 2017, 2016).  Topographic covariates pertaining to landscape-scale 

morphometry include slope height, normalized height, valley depth, mid-slope 

position, multi-resolution ridge top flatness (MRRTF) index, and multi-resolution valley-

bottom flatness (MRVBF) index.  Hydrologic attributes include topographic wetness 

indices, stream power index, hydrologic slope positions and distances to nearest bodies 

of water (lakes or streams) (Brungard et al., 2015; Heung et al., 2016).  Earlier papers 

(McBratney et al., 2003; McKenzie and Ryan, 1999) have applied compound topographic 
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index (CTI) which is based upon slope and upslope area.  Landscape exposure of the 

ground can be incorporated by a sky-view or terrain-view covariates (Heung et al., 2016). 

 

Climatic covariates can include temperature or precipitation, which can correspond to 

quarterly or annual values, such as mean annual precipitation (Heung et al., 2016) or 

maximum mean temperature (Mulder et al., 2016).  These measurements can be 

obtained from surface weather stations, and kriged to obtain values for an area, or 

derived weather product maps can be applied instead.  Land surface temperature (LST) 

averages obtained from winter and summer, or thermal band temperatures, can be 

utilized.  Satellite-derived products are often obtained from MODIS (Moderate Resolution 

Imaging Spectroradiometer) (Poggio et al., 2013) or Landsat imagery (Heung et al., 2016).  

 

Environmental covariates relating to vegetation are often derived from data obtained 

from optical satellite imagery.  These covariates can be incorporated as surface 

reflectance of the vegetation cover for various optical bands, ranging from ultraviolet 

through to visible and to shortwave infrared wavelengths.  Normalized difference indices 

computed from applicable optical imagery bands are popular in literature (Brungard et 

al., 2015; Dornik et al., 2018; Heung et al., 2017, 2016).  Normalized difference vegetation 

index (NDVI) and normalized difference water index (NDWI) are commonly utilized.  

Other examples of indices used as vegetation covariates include the soil adjusted 

vegetation index (SAVI) (Dornik et al., 2018), modified soil adjusted vegetation index 

(MSAVI) and the enhanced vegetation index (EVI) (Heung et al., 2017), which were each 
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based on combinations of the near-infrared and red optical bands.  Landsat, MODIS, and 

recently Sentinel-2 are common sources for multispectral satellite imagery (Minasny et 

al., 2019).  Land management land-use specifications for vegetation have also been 

utilized (Mulder et al., 2016). 

 

Attributes for parent material are commonly ignored in digital soil mapping research.  If 

anything is applied, it usually corresponds to the underlying bedrock geology or other 

lithology.  Mulder et al. (2011) wrote that fine spectral resolution imagery can be utilized 

to determine mineralogy properties from spectral signatures of rock outcrops, but this 

would only be feasible for exposed parent material at the surface.  Both the spectral and 

spatial resolutions of MODIS and Landsat imagery have been found to be too coarse for 

such mineralogy analysis (Mulder et al., 2011).  A gamma radiometer can be utilized to 

record the amount of radioactive isotopes in the soil, where its gamma intensity is directly 

related to the mineralogy and parent material (Minasny et al., 2019).  

 

Innovation with digital soil mapping research has led to integration of data obtained from 

different remote sensing technologies.  Such technologies of recent interest include SAR 

and LiDAR (Minasny et al., 2019).  SAR of lower frequencies (P-band, L-band, and C-band) 

can penetrate vegetation canopies to retrieve soil characteristics (Minasny et al., 2019).  

LiDAR data has been utilized to derive finer spatial resolution DEMs for digital soil 

mapping studies (Akumu et al., 2015; Anderson et al., 2006; Greve et al., 2012; Mohamed, 

2020; Mulder et al., 2011), for which detailed topographic covariates can be generated.  
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There has been a recent interest in generating DEMs and terrain models for wetland 

environments (O’Neil et al., 2019; Rapinel et al., 2019; Vernimmen et al., 2019).  A LiDAR-

derived vegetation covariate of CHM was utilized for regression modelling of soil 

moisture (Southee et al., 2012).  However, due to cost and data processing 

considerations, as LiDAR is often acquired via airborne survey campaigns (Minasny et al., 

2019), LiDAR covariates have generally been restricted to relatively small study areas of 

less than a couple hundred square kilometers. 

 

Topographic covariates have been used extensively in digital soil mapping studies.   In 

many studies, topographic covariates formed the majority of covariates utilized (Adhikari 

et al., 2013; Brungard et al., 2015; Dornik et al., 2018; Heung et al., 2016; Ließ et al., 2012; 

Wu et al., 2019).  Climatic covariates corresponding to precipitation and temperature for 

either quarters of the year or annually can be applied in digital soil mapping studies 

(Beguin et al., 2017; Heung et al., 2017, 2016) for where data or estimates exist.  

Vegetation covariates derived from multispectral imagery have become increasingly 

common (Minasny et al., 2019; Mulder et al., 2011).  In a review of digital soil mapping 

for peatlands, Minasny et al. (2019) wrote that approximately 25% of studies utilized only 

one source for covariates, and that most recent studies used only 2 or 3 sources.  Minasny 

et al. (2019) recommended an integrated approach of combining optical, SAR or other 

remote sensing data, that is, multi-source remotely sensed data, for digital soil mapping 

research as it can lead to better predictions. 
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2.2  Study Scales 
 

Commonly reported target variables include particulate concentrations, soil texture 

attributes, or soil profile depths (McBratney et al., 2003).  Soil samples are usually 

collected as point measurements retrieved during field campaigns, obtained from depths 

varying from the surface down to a maximum of 2 m deep.  Generally, the first 0-15 cm 

of the surface is the layer of interest for digital soil mapping applications.  Many studies 

just consider the first 10 cm depth of mineral soil (Mulder et al., 2016).  Nussbaum et 

al.(2018) wrote that soil models usually have higher accuracies when trained on data for 

topsoil layers when compared with model results for deeper subsoil layers.  Carbon stock 

and nitrogen values tend to be maximum at the surface (Gomez et al., 2008; Grimm et 

al., 2008), where either the 5-15 cm or 0-10 cm depth layer is what is analyzed.  Soil 

textural properties are also assessed at the surface layers, as these are the layers that 

interact and are directly affected by agriculture usage and vegetation.   

 

The number of soil sampling locations obtained per study varied generally according to 

scale of the targeted study areas.  These numbers ranged from between 50 to less than 

300 sites for study areas of a couple thousand square kilometers or less (Brungard et al., 

2015; Heung et al., 2016; Ließ et al., 2012; Were et al., 2015; Yang et al., 2016).  Larger 

study areas had 705 soil sample sites for 30,000 km2 in the Tibetan plateau of China 

(Wang et al., 2018), 955 sites for 78,000 km2 for Scotland (Poggio et al., 2013), and 1958 

sites for the whole of Denmark (Adhikari et al., 2013).  From reviewing literature, it should 
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be acceptable to utilize soil samples collected from a minimum of a couple hundred 

different sites for a targeted study area of a couple thousand square kilometers.  Minasny 

et al. (2019) wrote that low sampling densities can be expected for studies based on field 

survey due to accessibility issues in regards with field observations.   

 

The spatial resolution of analysis for digital soil mapping is often restricted by the spatial 

resolutions of the common covariates.  In general, this will be limited by the spatial 

resolution of the DEM.  The spatial resolution of the DEM (and corresponding topographic 

predictors) varied from 100 m for mountainous terrain (Heung et al., 2016) to 90 m for 

Scotland (Poggio et al., 2013) and 30,000 km2 of the Tibetan plateau (Yang et al., 2016), 

to 2 m resolution for areas less than a thousand square kilometers (Adhikari et al., 2013; 

Ließ et al., 2012; Nussbaum et al., 2018).  However, commonly utilized optical imagery 

such as Landsat-8 has spatial resolutions of 30 m, and MODIS is even coarser with spatial 

resolutions of 250 m to 500 m.  Thus, the spatial scale for the analysis of digital soil 

mapping will be the maximum of the DEM or optical imagery spatial resolution, which is 

usually a minimum of 30 m.  In general, better modelling accuracy can be obtained from 

utilizing finer spatial resolutions for covariates applied as model predictors (Garcia et al., 

2017). 

 

2.3  Modelling Techniques 
 

Machine learning techniques have been dominant lately for digital soil mapping 

(Brungard et al., 2015; Heung et al., 2016), in part as models can consist of large sets of 



 18 

predictors (Nussbaum et al., 2018).  The highest accuracies in digital soil mapping are 

generally attained by machine learning methods, which tend to also work better than 

linear regression for regression, or even logistic regression for classification problems 

(Minasny et al., 2019).  Common machine learning approaches for digital soil mapping 

include random forest (Brungard et al., 2015; Ließ et al., 2012; Nussbaum et al., 2018; 

Poggio et al., 2013; Were et al., 2015; Yang et al., 2016), as well as regression trees (Ließ 

et al., 2012; McKenzie and Ryan, 1999; Poggio et al., 2013), and boosted regression trees 

(Nussbaum et al., 2018; Wang et al., 2018; Yang et al., 2016).  Support vector machines, 

either linear or of radial basis functions, have also been popular (Heung et al., 2016; Wang 

et al., 2018).  Other machine learning methods that have been employed for digital soil 

mapping include deep-learning (i.e. unsupervised) approaches such as artificial neural 

networks (Heung et al., 2016; Were et al., 2015).  Machine learning approaches tend to 

be versatile, as they can be applied to predictors recorded at different levels of 

measurements (i.e. ordinal, categorial, or continuous), and many approaches can be 

fitted to target variables that are either categorical or continuous.  However, machine 

learning approaches can be more difficult to understand, and can require greater training 

time and processing requirements.  Minasny et al. (2019) wrote that supervised 

classification approaches work best where there is general site knowledge and available 

field observations, whereas unsupervised classification is generally utilized for regions 

with few field observations.  
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Regression models such as multivariate linear regression have been utilized for 

continuous target variables with concentrations or amounts (Adhikari et al., 2013; 

Gessler, P.E., Chadwirk, O. A., Chamran, F., Althouse, L., Holmes, 2000), and multinomial 

logistic regression has been applied for soil group classifications (Heung et al., 2016).  

Other approaches utilized for soil classifications include k-nearest neighbors (k-NN) 

(Brungard et al., 2015; Heung et al., 2016), and linear discriminant analysis (LDA) 

(Brungard et al., 2015).  However, in these studies the accuracies of multinomial logistic 

regression, k-NN and LDA models were usually lower than those obtained from machine 

learning approaches.   

 

In regards to specific approaches that obtain the highest accuracies, in general, random 

forest and support vector machines attained higher accuracies than other modelling 

approaches (Brungard et al., 2015; Heung et al., 2016).  The flexibility of the random 

forest approach to be applied to both classification and regression-type problems, as well 

as higher accuracy, render random forest as a first technique of choice for digital soil 

mapping.  SVMs can have comparable accuracies to RFs for classification problems 

(Heung et al., 2016).  Linear SVMs have been established to have competitive accuracies 

when evaluated against SVMs based on radial basis functions (Brungard et al., 2015).  For 

classification problems, SVMs are also a suitable choice to apply as an approach for digital 

soil mapping.   
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The metrics utilized for model evaluation depend on whether classification or regression-

type modelling is of interest.  For classification modelling, the correctness, also known as 

the percent correct classification (PCC) (also referred to as percent correctly classified), is 

the main metric for model assessment.  Some studies employing random forests or 

boosted regression trees have utilized the out-of-bag error (OOB) (Brungard et al., 2015; 

Camera et al., 2017; Ließ et al., 2012), which is a misclassification rate.  The OOB is 

calculated as the mean prediction error for each bootstrap sample of training 

observations, computed using predictions from decision trees that did not comprise 

those training observations in their corresponding bootstrap sample (Genuer et al., 2010; 

Ließ et al., 2012).  For measuring disagreement in regards to inter-rater reliability for 

categorical predictions, accounting for by-chance agreement, Cohen’s kappa statistic can 

be utilized (Brungard et al., 2015).  Regarding accuracy for soil group classifications, from 

recent literature the most accurate models had correctness scores between 0.5 to 0.8 

(Dornik et al., 2018; Heung et al., 2017, 2016).  For continuous target variables or 

regression-type modelling, commonly applied metrics for model evaluation include the 

coefficient of determination (R2) (Mulder et al., 2011) with either root mean square error 

(RMSE) (Adhikari et al., 2013; Mulder et al., 2016) or mean error (ME) (Adhikari et al., 

2013; Angelini et al., 2016) reported.   

 

For categorical target variables, confusion matrices are popular for determining what 

classes of the target variable are better modelled and predicted (Dornik et al., 2018; 

Heung et al., 2017).  Assessment for model predictions can be judged on the basis of 
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entropy maps (Heung et al., 2017, 2016; Minasny et al., 2019), which are graphical output 

depicting regions within a study area in regards to uncertainty with modelling predictions.  

Heung et al. (2017) applied entropy maps, here deemed as ignorance calculations, for 

determining areas of the map that had the higher modelling uncertainties.  These 

calculations were computed based upon the voting, or probabilities, of applying fitted 

models to the verification data for prediction and extrapolation.  Entropy maps provide a 

visual representation of modelling uncertainties among an area, whereas confusion 

matrices provide the uncertainty in table form for the specific predicted classes.  From 

entropy maps, in conjunction with soil property prediction maps, it can be ascertained 

what categories of properties have the lowest or highest uncertainties with modelling.  

This can contribute to deciphering patterns between soil properties and landforms in 

order to make interrelations more apparent.  

 

 

 

 

 

 

 

 

 

 



 22 

Chapter 3  
 
STUDY AREAS & SOIL DATA 
 

The soil sampling data and associated study areas for this research are presented in this 

chapter.  Details pertaining to the study areas are first discussed, followed by specifics 

about the soil sites and properties in the subsequent section. 

 

3.1  Study Areas 
 

The study area for this research existed in the District of Cochrane, with latitudes ranging 

from 49° N to 50° N and longitudes ranging from 81° W to 84° W.  This expanse extends 

from the communities of Hearst in the northwest to Smooth Rock Falls in the southeast, 

along the Highway 11 corridor in northern Ontario.  This region is colloquially referred to 

as the Great Clay Belt, due to the dominance of heavy clay at depths below 20 cm or so 

throughout the region.  The Great Clay Belt extends eastward into Quebec, but for 

research purposes only the portion residing in Ontario and accessible by roadways was 

considered.  For soil classification modelling, the study area consisted of three 

neighboring subregions of Hearst, Gordon Cosens Forest (GCF) and the Abitibi River 

Forest (ARF), as shown in Figure 1.  Note that the coordinate system of the grid for this 

figure, as well as for subsequent figures presented in this thesis, is the NAD 1983 Lambert 

Conformal Conic projection.  These study areas were selected to correspond to separately 

clustered and collected soil samples, confined within the bounds of where recently 

acquired LiDAR data was available.  The three study areas together are considered the 
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Great Clay Belt (GCB) study area, which is the whole region of all soil samples grouped 

together. 

 

This region is part of the boreal biome and is mostly forested, with some agricultural land, 

particularly concentrated around the community of Kapuskasing.  The indigenous tree 

species for this area are black spruce [Picea mariana], white spruce [Picea glauca], balsam 

fir [Abies balsamea], trembling aspen [Populus tremuloides], tamarack [Larix laricina], 

white birch [Betula papyrifera], balsam poplar [Populus balsamifera], jack pine [Pinus 

banksiana] and eastern cedar [Thuja occidentalis].  Black spruce is the most dominant 

tree species throughout the region, followed by balsam fir, white spruce and trembling 

aspen.  Balsam poplar and tamarack are common in open areas and pastures or sections 

that were previously cleared.  Jack pine and eastern cedar are not commonly 

encountered in this region.  Peatlands are prevalent in wetland areas throughout the 

region.   

 

The climate of this region is continental subarctic, with long cold winters and short warm 

summers.  Long-term climatic records are available for Kapuskasing, which is located in 

the center of the region in the GCF study area.  For Kapuskasing, annual temperature 

averages around 1° C, with mean January temperatures of -18° C and mean July 

temperatures of 17° C (Environment Canada).  The annual precipitation is 83 cm, with 

amounts that are fairly regular throughout the year with higher precipitation totals from 

May through November (Environment Canada).  Evaporation for this region is low, and in 
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part wetness is an issue.  For agricultural regions, the wetness is of such an issue that field 

tiling is performed to drain excess moisture from the soils (personal communication with 

farmers). 

 

 

Figure 1 - Study areas for the GCB in the District of Cochrane in northern Ontario.  Note that Hearst is outlined in 
magenta (left), GCF is outlined in blue (center) and ARF is outlined in orange (right).  Inset: Location of GCB within the 

Province of Ontario.  

 

The westernmost region is the Hearst study area (outlined in magenta in Figure 1), which 

comprises of 897 km2 centered around the community of Hearst.  Latitudes for this study 

area vary from 49.6° N to 49.8° N, with longitudes ranging from 83.3° W to 84.0° W, with 

elevations ranging from a minimum of 209 m in the north to a maximum of 283 m in the 

southwestern portion.  The Mattawishkwia River flows through the study area on a 

northeast direction.  The Hearst study area is mostly forested, with black spruce as the 

dominant tree species, but also with localities with balsam fir and trembling aspen.  

Compared with the other subregions, this study area averages slightly less annual 
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precipitation at around 77 cm, and average about a degree C colder than the other study 

areas (WorldClim version 1).   

 

In the center of the region is the Gordon Cosens Forest (GCF) (outlined in blue in Figure 

1) which is positioned around Kapuskasing, with an area of 2,577 km2.  The latitudes for 

this study area range from 49.0° N to 49.7° N, with longitudes ranging from 81.9° W to 

83.4° W.  Elevations vary from a minimum of 197 m to a maximum of 284 m.  In order 

from east to west, the Groundhog, Kapuskasing and Missinaibi rivers flowed through the 

study area, each from a predominantly southwest to northeast trajectory.  There are 

agricultural lands surrounding Kapuskasing, but most of the area is forested with black 

spruce as the dominant tree species.  Due to logging activity associated with the long-

term presence of a forestry mill in Kapuskasing (Town of Kapuskasing, 2020), there exists 

substantial areas of second-growth forest as much of this region has been previously 

cleared.  There is more variation with CHM for the vegetation in the GCF when compared 

to the vegetation for the Hearst and ARF regions.  

 

The easternmost region is the Abitibi River Forest (ARF) (here outlined in orange in Figure 

1) which consists of 611 km2 and is centered around the community of Smooth Rock Falls.  

Latitudes vary from 49.2° N to 49.4° N, with longitudes varying from 81.4° W to 81.9° W.  

Elevations vary slightly in this region, with a minimum of 212 m and a maximum of 291 

m.  The Mattagami river flows northward through the center of this study area.  Black 

spruce is the dominant tree species, but balsam fir is also dominant at a large minority of 
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sites.  This study area has the most annual precipitation of the study areas by a slight 

amount, which is 84 cm (WorldClim version 1). 

 

3.2  Soil Data 
 

Soil data for this study was obtained from the Forest Resource Inventory (FRI) within the 

Ontario Ministry of Natural Resources and Forestry (MNRF).  The data obtained by the 

FRI was categorical in nature.  The FRI data was collected and already separated into the 

neighboring subregions of Hearst, Gordon Cosens Forest (GCF) and Abitibi River Forest 

(ARF); this same cluster of soil sample collection was kept for this analysis of digital soil 

mapping for this study.  Soil sampling locations consisted of 157 sites for Hearst, 446 sites 

for GCF, and 305 sites for ARF, for a total of 908 sites for the GCB.  These soil samples 

were obtained primarily from August to October 2011 for Hearst, from July to November 

2011 and October 2012 for the GCF, and from September to November 2012 and August 

2013 for the ARF.  The soil sample data collected contained information pertaining to soil 

texture class, calcareous reaction to acid, and ELC (Ecological Land Classification) 

moisture regime.  All information pertaining to the soil data was obtained from a 

technical report written by  Paloniemi (2018).  These soil samples were collected primarily 

from the shallowest depth of mineral soil, which usually corresponded to the 5-15 cm 

depth layer.  The dominant tree species were also noted at these soil sampling locations.  

Summaries for these soil samples for each targeted study area are reported in Table 1. 
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Table 1 - Soil summaries for study areas. 

 

Soil texture was firstly classified into categories relating to concentrations of the textural 

components of sand, silt and clay.  Samples corresponding to peat were classified on a 

van Post (vP) system of decomposition (Malterer et al., 1992; Paloniemi, 2018).  Expert 

assessment in the field was performed to determine the soil texture classification, based 

upon graininess, dry feel, stickiness, moist cast, ribbon, taste and shine tests.  These tests 

were a combination of finger tests to help determine the soil texture group by following 

guidelines.  Following the texture triangle utilized for the soil texture classification 

(Paloniemi, 2018), fine loamy soil consisted of at least 25% to a maximum of 50% clay 

with at most 45% sand, had thin short ribbons of 2.5 to 5 cm for the ribbon test, and had 

a strong cast for the moist cast test.  Coarse loamy soil was composed of a maximum of 

30% clay, and had very short and thick ribbons for the ribbon test.  For clayey soil, it 

consisted of at least 35 to 40% clay, had long ribbons of at least 5 cm length for the ribbon 

test, and for the shine test had a shiny appearance.  The von Post scales of decomposition 

were utilized to categorize peat; here peat ranged from scales of vP1 for completely 

 

 
 

 
 
 
 
 

Area
[km2] [Peat] [Loamy] [Clayey] [n] [k]

Hearst 897 157 63 64 30 76 81
Gordon Cosens Forest (GCF) 2577 446 212 164 70 253 193
Abitibi River Forest (ARF) 611 305 139 122 44 153 152
All Regions (GCB) 4085 908 414 350 144 482 426

Number of 
Sites

Soil Texture Calcareous Substrate*
Region

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
Hearst 3 1 32 23 15 11 9 25 37 1
Gordon Cosens Forest (GCF) 3 8 80 53 27 39 24 94 113 5
Abitibi River Forest (ARF) 1 4 50 35 23 26 26 48 91 1
All Regions (GCB) 7 13 162 111 65 76 59 167 241 7

* Reaction to solution of 10% HCl; 'k' denotes fizzing reaction, 'n' denotes no fizzing reaction

Ecological Land Classification (ELC) Moisture Regime
Region
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undecomposed plant structure to vP10 for entirely decomposed plant material.  These 

soil textures were subsequently condensed to the soil texture family categories of peat, 

fine loamy, coarse loamy and clayey; for this analysis, the fine loamy and coarse loamy 

categories were combined into just the category of loamy.  The most common soil texture 

categorization for the study areas in general was peat, followed by loamy.  Looking at 

Table 1, for the soil texture frequencies among the samples corresponding to the sites, 

the 157 sites for Hearst had 63 that were peat, 64 that were loamy, and 30 were clayey.  

For the GCF, for its 446 sites there were 212 that were peat, 164 were loamy and 70 were 

clayey.  The 305 sites in the ARF corresponded to 139 for peat, 122 for loamy and 44 for 

clayey. 

 

Calcareous substrate testing was done in the field by exposing the substrate sample to 

hydrochloric acid (HCl).  When the soil substrate was exposed to a solution of 10% HCl, 

‘k’ was noted if a fizzing reaction with the soil substrate occurred, otherwise ‘n’ was 

recorded if no reaction was observed.  In the Hearst study area, for its 157 sites, 81 sites 

presented a fizzing reaction, whereas 76 sites did not.  For the ARF, the sites were almost 

evenly split, with 152 sites exhibiting a reaction and 153 sites did not.  Incidences for the 

GCF were skewed with 193 sites presenting a reaction versus 253 that showed no 

reaction. 

  

Testing for moisture regime was performed using field-derived soil attributes following 

guidelines from the Ontario Ecological Land Classification (ELC) program (Pokharel and 
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Dech, 2011).  ELC moisture regime is an ordinal classification with scales ranging from 0 

for dry, 1, 2 & 3 for fresh, 4 & 5 for moist, 6 for very moist, 7, 8 & 9 for wet, with a higher 

number or letter indicating wetter saturated soil.  A combination of soil texture category, 

depth to mottles for the mineral soil, and presence of gley for deeper soil depths were 

utilized to determine the ELC moisture regime classifications.  ELC moisture regime values 

for the subregions in general indicated moist or wet, due in part to the poor drainage, 

low annual evapotranspiration, and presence of peatlands in the GCB region. 

 

The soil properties of texture family, calcareous substrate reaction to 10% HCl and ELC 

moisture regime were the dependent variables utilized for this research.  It was 

anticipated that there would be similarities in patterns with prediction maps with these 

3 target variables, as calcareous substrate is related to soil group and the ELC moisture 

regime guidelines considered soil texture grouping for moisture regime classification.  

The methods for modelling are discussed in the following chapter, and results for the 

prediction maps are in Chapter 5. 

 

 

 

 

 

 

 



 30 

Chapter 4  
 

METHODS 

 

The execution of the digital soil mapping analysis for this thesis research is presented in 

this chapter.  Specifically, the treatment of the LiDAR data is discoursed.  The set of 

environmental covariates utilized as predictors, covariate extraction and layer 

integration, and modelling techniques for soil property classification are discussed.  Also 

discussed are the metrics for evaluating the models, and how prediction maps and 

uncertainty measurements were obtained.  Formulae for the vegetation covariates 

derived from LiDAR are presented, as well as the Cohen’s kappa for accuracy and entropy 

calculation utilized to compute the uncertainties in predictions.   

 

4.1  Derivation of Environmental Covariates 
 

A combination of multi-sourced remotely sensed data was considered when 

implementing the environmental covariates.  Environmental covariates were generated 

from multispectral satellite imagery, LiDAR data, L-band SAR imagery, and aeromagnetic 

survey data.  For the classification modeling with the FRI data, 76 predictors were utilized 

in the full set as shown in Table 2.  These predictors corresponded to a broad set of 

environmental covariates that relate to the climatic, vegetation, topographic relief and 

parent material classes of soil formation factors. 
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Table 2 - Environmental covariates utilized for digital soil mapping models. 

Predictor Spatial Resolution
DEM (derived from LiDAR)

Aspect 30 m
Convergence Index 30 m
Elevation 30 m
General Curvature 30 m
Hillshading 30 m
Mid-Slope Position 30 m
Multiresolution Ridge Top Flatness (MRRTF) 30 m
Multiresolution Valley Bottom Flatness (MRVBF) 30 m
Plan Curvature 30 m
Profile Curvature 30 m
SAGA Topographic Wetness Index (SAGA TWI) 30 m
Sky View Factor 30 m
Slope 30 m
Slope Height 30 m
Slope Length 30 m
Standardized Height 30 m
Stream Power Index 30 m
Terrain Ruggedness Index (TRI) 30 m
Terrain View Factor 30 m
Topographic Wetness Index (TWI) 30 m
Total Curvature 30 m
Valley Depth 30 m
Visible Sky 30 m

WorldClim V1Bioclim
Annual Mean Temperature 30 arcsec
Annual Precipitation 30 arcsec
Mean Temperature of Warmest Quarter 30 arcsec
Precipitation Seasonality 30 arcsec
Temperature Annual Range 30 arcsec

Predictor Spatial Spectral
Resolution Resolution

PALSAR
HH 2017 30 m HH Polarization
Distance to Water Bodies 30 m HH Polarization

LiDAR
Canopy Height Model (CHM) 10 m 1.064 µm
Gap Fraction 10 m 1.064 µm

Ontario FRI
Black Spruce Indicator Site
Balsam Fir Indicator Site

Landsat*
B1 (Winter, May, Summer, Autumn) 2017 30 m 0.435-0.451 µm
B2 (Winter, May, Summer, Autumn) 2017 30 m 0.452-0.512 µm
B3 (Winter, May, Summer, Autumn) 2017 30 m 0.533-0.590 µm
B4 (Winter, May, Summer, Autumn) 2017 30 m 0.636-0.673 µm
B5 (Winter, May, Summer, Autumn) 2017 30 m 0.851-0.879 µm
B6 (Winter, May, Summer, Autumn) 2017 30 m 1.566-1.651 µm
B7 (Winter, May, Summer, Autumn) 2017 30 m 2.107-2.294 µm
B10 Summer 2017 100 m 10.60-11.19 µm
B11 Summer 2017 100 m 11.50-12.51 µm
NDVI (Winter, May, Summer, Autumn) 2017 30 m 0.636-0.673 µm, 0.851-0.879 µm
NDWI (Winter, May, Summer, Autumn) 2017 30 m 0.851-0.879 µm, 1.566-1.651 µm

NRCan**
Gravity Anomaly 2 km
Magnetic Residual 200 m

** First vertical derivative of each attribute was also included

* Surface reflectance bands; season were Winter (January, February, March), May, Summer (June, July) & Autumn 
(Sep. 10 - Oct. 10).  For May & Autumn, median surface reflectance was obtained over same period over 5 year 
period (2015-2019).  Landsat-8 imagery was utilized
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The LiDAR data was obtained via Land Information Ontario (LIO) from the Ontario MNRF.  

LiDAR point-cloud data was obtained for the District of Cochrane, which was collected 

from airborne campaigns during autumn 2016 and spring 2017.  This LiDAR data for the 

GCB corresponded to 6085 km2, and was obtained at an average point density of 8 

retrievals per m2 (Airborne Imaging, 2018).  A LiDAR-derived digital elevation model 

(DEM) with pixels of 30 m resolution was generated.  For each pixel, The DEM was 

calculated from the bottommost LiDAR point-cloud data, and correspondingly a digital 

surface model was calculated from the topmost LiDAR point-cloud data. 

 

A provincial DEM of 30 m spatial resolution for 2013 (i.e. version 3.0) from the Ontario 

Ministry of Natural Resources and Forestry (MNRF) was originally utilized to derive 

topographic covariates.  The files for this provincial DEM were downloaded from Ontario 

GeoPortal, which is maintained by Infrastructure Ontario.  A combination of a RADAR-

based digital surface model, Ontario base mapping, and digital terrain model (DTM) 

points and contours (Ontario Ministry of Natural Resources, 2013) were utilized to 

generate this DEM.  The DEM files that the provincial DEM comprise of, corresponded to 

tiles for MNRF’s categorization of both northern and southern Ontario.  As the study areas 

straddled the boundary between the north and south files, tiles from both sections had 

to be stitched together to generate a DEM for the GCB by means of the Mosaic tool in 

ArcMap.  The comparison of the LiDAR-derived DEM versus the provincial DEM is shown 

in Figure 2.  From this figure, one can see that the LiDAR-derived DEM captures finer 
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details and allows better precision; the provincial DEM only had elevations to within a 

meter precision.  For reasons of higher accuracy and precision, it was decided to utilize 

the LiDAR-derived DEM, rather than the provincial DEM, for the generation of 

topographic covariates.   

 

 

Figure 2 - DEM derived from LiDAR (Top) versus provincial DEM (Bottom) for ARF region. 

 

System for Automated Geoscientific Analyses (SAGA) GIS version 7.6.3 software (SAGA 

Development Team, 2020) was utilized to generate topographic covariates from the 

LiDAR-derived DEM.  A variety of topographic covariates were computed using the 
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Terrain Analysis tools.  These included covariates corresponding to channels (valley 

depth), hydrology (topographic wetness index (TWI), SAGA TWI, slope length, stream 

power index), visibility (hillshading, view factors) and morphometry (convergence index, 

slope, aspect, curvatures, relative heights and slope positions, terrain ruggedness index 

(TRI), multiresolution indices of flatness).  In total, 23 separate topographic covariates 

were generated.  The full set of topographic covariates is listed in Table 2. 

 

Climatic data for temperature and precipitation were obtained from the WorldClim 

Climatology version 1 model generated by the University of California at Berkeley (Fick 

and Hijmans, 2017; Hijmans et al., 2005).  These corresponded to climatology values at a 

spatial scale of 30 arcsec (i.e. roughly 1 km).  Mean annual temperature, the mean 

temperature for the warmest quarter of the year (i.e. summer) and annual temperature 

range were the temperature attributes utilized.  For precipitation, annual precipitation 

and precipitation seasonality were used.  Brightness temperatures for shortwave thermal 

bands from Landsat-8 for summer of 2017 were also utilized as climatic covariates as 

these were measured in Kelvin; the B10 (10.60 – 11.19 um) and B11 (11.50 – 12.51 um) 

bands were utilized.  All these climatic covariates were downloaded as rasterized imagery 

in GeoTIFF format from Google Earth. 

 

Environmental covariates corresponding to vegetation cover were obtained from surface 

reflectance from Landsat optical imagery provided by USGS (United States Geological 

Survey, 2019) as downloaded from Google Earth.  Detailed vegetation covariates from 
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LiDAR data were also derived, but will be discussed in the subsequent section.  Median 

surface reflectance values were calculated from cloud-free scenes (i.e. determined as less 

than 1% cloud cover for total scene).  The median surface reflectance values were 

computed for 4 separate periods of the year: winter (January to March), spring (May), 

summer (June and July) for peak-vegetation, and then autumn (September 10th to 

October 10th).  In order to obtain sufficient cloud-free imagery for spring and autumn 

scenes, imagery for a 5 year period was utilized (i.e. 2015-2019).  Landsat-8 imagery was 

utilized for the most scenes (i.e. after 2012) and had a spatial resolution of 30 m.  The 

specific bands utilized, with corresponding spectral resolutions, are listed in Table 2.  The 

normalized difference vegetation index (NDVI) and normalized difference water index 

(NDWI) were calculated from the corresponding bands of the Landsat surface reflectance.  

For the NDVI, the calculation involved measurements of surface spectral reflectance (𝜌) 

for the near infrared (NIR) and red (R) visible light wavelengths, whereas for NDWI the 

near infrared and shortwave infrared (SWIR) wavelengths were applied.  These spectral 

bands for the Landsat-8 surface reflectance corresponded to B4 (0.636 – 0.673 um) for 

red, B5 (0.851 – 0.879 um) for near infrared, and B11 (1.566 – 1.651 um) for shortwave 

infrared wavelengths, respectively.  The NDVI was calculated as 

 𝑁𝐷𝑉𝐼 = 	()*+	,-.+*+)/01)/
()*+	,-.+*+)/21)/

= 	(,101
(,121

	= 3450346
3452346

 . Eq. 4-1 

 

Similarly, the NDWI was calculated as 

 𝑁𝐷𝑊𝐼 =	()*+	,-.+*+)/089:+;<*=)	,-.+*+)/
()*+	,-.+*+)/289:+;<*)	,-.+*+)/

= 	 (,108>,1
(,128>,1

= 	 345034?
345234?

	. Eq. 4-2 
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Tree species indicators for black spruce and balsam fir were also utilized as environmental 

covariates.  This information of where these tree species were each dominant was 

recorded at the site level in the FRI data.  There can be strong associations between tree 

species type and soil group and nutrients (Jenny, 1941), so such data can be of substantial 

relevance to vegetation soil formation factors.  Black spruce was the most dominant tree 

species for the sites throughout the GCB region, with balsam fir commonly as either a 

secondary tree species or even as the most dominant species.   

 

L-band SAR imagery obtained from the JAXA ALOS PALSAR (Shimada et al., 2014) was 

utilized as covariates for understory and surface moisture.  This imagery was obtained 

from Google Earth for the HH-polarization for the year 2017.  The L-band HH-polarization 

SAR 16-bit digital number (DN) imagery for the ARF region is shown in Figure 3.  Wetter 

regions show up as darker, where the darkest intensities correspond to water bodies.  

Topographic covariates for distances to bodies of water were also derived in part from 

the L-band SAR imagery, by means of the Euclidean Distance and Line Density tools of the 

Spatial Analyst Tools toolkit of Esri ArcMap software.   
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Figure 3 - L-band SAR HH-polarization imagery for ARF region for 2017. 

 

Geophysical data in the form of aeromagnetic surveys obtained from Natural Resources 

Canada via the Canadian Aeromagnetic Data Base were utilized as covariates for parent 

material.  These included airborne gravity anomaly at 2 km resolution for 2016, and 

aeromagnetic residual total field at 200 m resolution for the Earth’s magnetic field for 

November 2018.  Vertical derivatives for gravity anomaly and aeromagnetic residual total 

field were also obtained and utilized.  For parent material, a bedrock geology vector file 

was obtained from Natural Resources Canada, which was subsequently rasterized.  From 

this rasterized file, binary variables for the 5 bedrock categories (glaciofluvial ice-contact 

deposits, bedrock, till, glaciolacustrine deposits, and organic deposits) were applied as 

covariates. 

 

4.1.1  LiDAR Data Analysis for Covariates 
 

As mentioned earlier, the novelty for digital soil mapping for this research was the 

application of detailed LiDAR-derived vegetation attributes as LiDAR retrievals were 
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available for the study areas.  The bounds for the LiDAR data available roughly correspond 

to the bounds of the study areas in Figure 1.  A total of 6612 files of LiDAR point-cloud 

data were uncompressed from .LAZ to .LAS format using LASzip version 1.0.0.1 software, 

which when uncompressed corresponded to 1.7 TB of LiDAR data.  Each one of these 

LiDAR point-cloud data files corresponded to roughly 1 km2, specified using the NAD 1983 

UTM Zone 17N coordinates.  Scripts written in Python version 3.7.2 read in each file one 

at a time, which were processed in daily batches of a few hundred files on an Intel Core 

i7-7700 CPU 3.60 GHz processor with 8 GB RAM over the course of a few weeks.  SQL 

(structured query language) was implemented via the sqlite3 version 2.6.0 module to 

perform the queries for computing the LiDAR-derived covariates.  Pandas version 0.24.2 

in Python was utilized to stack the SQL query lists into matrices corresponding to values 

for easting (x) and northing (y) coordinates, which were then outputted as ASCII tables 

which were then inputted and mosaiced together in ArcMap version 10.6 software.  

These detailed vegetation covariates were first calculated for a cell size of 10 m, which 

were then later resampled to 30 m spatial resolution to match the resolution of the 

optical imagery.  Canopy height model (CHM) was calculated from the LiDAR data as the 

difference between digital surface model  and digital elevation model. 

 
For each area (originally 10 m by 10 m), gap fraction was calculated as 
 
 𝐺𝑎𝑝	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 	(JKL)+	:.	1);J+-M	<N;9	O-PQ	R	1);J+-

S:;*P	(JKL)+	:.	1);J+-M
 . Eq. 4-3 
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The covariate layer maps for CHM and gap fraction for the ARF region are shown in Figure 

4 as examples. 

 

Figure 4 - Canopy height model (CHM) and gap fraction for ARF region. 

 

From the CHM map, one can discern the peatland areas which have shallower tree 

heights (mostly restricted to stunted black spruce), as well as water bodies (i.e. minimal 

to no canopy height).  From the gap fraction map, one can see that the areas with highest 

gap fractions correspond to the regions of shallowest canopy height, that is the regions 

where the overwhelming majority (if not all) LiDAR retrievals had only one return.   
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4.2  Modelling 
 

For data preparation, different predictor layers of the covariates, as well as the target 

variable soil data layers, were each reprojected to the NAD 1983 Lambert Conformal 

Conic projection.  This projection specifies horizontal (x) and vertical (y) offsets in terms 

of false easting and false northing, respectively, so as to have x and y coordinates denoted 

in meters.  Once transformed, each layer was resampled to 30 m spatial resolutions for 

both x and y directions, with the cell sizes set to align at common bounds.  These 

resampled layers were then clipped to polygon vector files of the boundaries of the 

targeted study areas, so that pixels for each predictor layer aligned exactly with pixels in 

the other layers.  Each layer was then outputted as an ASCII table.  

 

Pixels for the soil sampling locations were also pinpointed, which were utilized for the 

target variable layers corresponding to the soil properties.  All of pixels for the soil 

property layers outside of the sampling locations were set as no-data, which allowed the 

identification of only pixels corresponding to the soil samples.  A script was written in 

Python to load each ASCII table for each predictor, and restack the corresponding 

matrices into long arrays.  An SQL query was implemented to intersect and merge all 

layers, those corresponding to the soil properties and environmental covariates based 

upon the northing and easting coordinates of the soil sampling.  This query was applied 

separately to each targeted study region, where the resulting table with all the predictor 

and target variable data for each soil sampling site was then exported as a CSV file.  The 



 41 

CSV files for each region were then combined, which was then the data table inputted 

into R for model fitting. 

 

Since RF and SVM models tend to yield the highest accuracy for both classification 

problems for soil groupings (Brungard et al., 2015; Heung et al., 2016), it was decided to 

apply RF and SVM approaches.  Both linear SVM and SVM with radial basis functions were 

employed, as linear SVM can have competitive accuracies to radial-basis SVMs (Brungard 

et al., 2015).  An overview of these modelling approaches is discussed in the subsequent 

paragraphs. 

 

The RF approach works by using an ensemble of decision trees that each consist of nodes 

and leaves, where usually at least a minimum of a few hundred to a thousand decision 

trees are utilized for the RF in order to obtain stability with results.  For each decision tree 

of a RF, each node corresponds to a randomized bootstrap sample of training data, where 

node-splitting decisions determined from a randomized subset of predictors aim to 

maximize within-node homogeneity and between-node heterogeneity (Heung et al., 

2016).  Decisions corresponding to the dependent variable are attained at the leaves, 

which are the terminal nodes of the decision trees.  The number of randomly selected 

predictors variables to be considered for each node must be specified, and is prompted 

by the need for each tree to be different so to make an ensemble of trees beneficial (Sage 

et al., 2020).  For classification, the RF ensembles the decision tree results and outputs 
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the class category that has the maximum votes (i.e. the mode) among the individual 

decision trees (Kulkarni et al., 2014).   

 

The SVM classifier works by optimally splitting the various classes of a feature space by 

means of hyperplanes (Wang et al., 2018).  A linear SVM uses a linear model to determine 

the class boundaries in the feature space by means of optimizing hyperplanes so that 

there are maximum gaps between classes.  Radial-basis SVM apply a kernel trick by 

utilizing radial basis expansions to transform feature space into a higher dimensional 

space, by which a linear model is applied to determine the class boundaries (Heung et al., 

2016).  To prevent the SVM from over-fitting on training data with a hard margin, a cost 

parameter is considered so as to control the complexity of the decision boundary (Kuhn, 

2008) and relax the SVM fitting and allow a soft margin in order to reduce variance.  

Radial-basis SVMs are fitted with a kernel corresponding to a Gaussian exponential 

function, and hence require an extra kernel width (sigma) parameter as a scale function 

to be specified (Kuhn, 2008). 

 

The caret package for classification and regression training (Kuhn, 2008) in R (R Core 

Team, 2012) was used for fitting the RF and SVM models.  It is worth mentioning that the 

randomForest package (Liaw and Wiener, 2002) and the e1071 package of miscellaneous 

statistical functions (Meyer et al., 2019) for SVM models in R were also employed as 

comparison.  Similar results were obtained between the caret package and the respective 

R packages for each modelling approach.  The results contained in this thesis were 
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obtained from the caret package.  RFs were fitted with the number of trees (ntree) 

specified set to 1000, with the number of randomly selected predictor variables at each 

node (mtry) set to 10.  The mtry was set to approximately the square root of the number 

of columns (predictors) in the training dataset as suggested in randomForest package 

documentation for classification modelling (Breiman et al., 2018).  Were et al. (2015) used 

a mtry set to 12, and Heung et al. (2016) used mtry set to either of 9 or 12.  The default 

setting for fitting a random forest is 500 trees in the caret package, but to ensure stability 

of results it is recommended to use 1000 trees for training (Were et al., 2015).  The radial-

basis SVMs were fitted with the penalty parameter (cost) ranging from 0.25, 0.5, 1, 2, 4, 

8, 16, 32, 64 and 128, with the kernel width parameter (sigma) ranging from 0.005 to 0.05 

as what was comparably done by Wang et al. (2018).  Linear SVMs were fitted with the 

tuning cost parameter fixed at the constant default value of 1 (Kuhn et al., 2020; Meyer 

et al., 2019). 

 

The soil data was split using stratified random sampling for each soil target variable into 

model training and validation sets using a 80:20 ratio respectively (Heung et al., 2016), 

where a 10-fold cross validation with 3 repeats was implemented for model training.  This 

implementation of cross validation is commonly utilized for the selection of model 

parameters for classification problems (Kuhn et al., 2020).  Separate models for each 

region were independently fitted.  A regional model for the GCB, comprising of all sites 

for Hearst, GCF and ARF, was also implemented.  It was anticipated that a model 

consisting of all 3 regions would be warranted, due to the homogeneity of landforms and 
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climate for the regions, and that the distance between corresponding sites did not exceed 

more than a couple hundred kilometers (see Figure 1). 

 

Variable importance was determined for each region in order to identify environmental 

covariates of greater significance for each target variable.  This form of feature selection 

was implemented since the environmental covariates may not contribute equally to the 

modelling of soil properties.  The variable importance was determined from the 

respective RF models.  For determining the variable importance of a RF using the caret 

package (Kuhn, 2008), first the prediction accuracy of the out-of-bag portion of data is 

calculated for each tree of the RF (Kuhn, 2007).  Afterwards, each predictor variable is 

permuted, and the same prediction accuracy calculation as done before is performed.  

The difference between these two prediction accuracies are then computed for each tree 

of the RF, and then are subsequently averaged and normalized by the standard error. 

Prediction accuracy can be based on the Gini index, which is a measure of node impurity 

for the nodes of trees for the RF (Sage et al., 2020).  Splits are performed on the nodes 

such as to decrease the node impurity, that is increase homogeneity among the leaves of 

trees.  The mean decrease in Gini is based on the total decrease in node impurity, where 

higher variable importance for a predictor variable is indicated by a corresponding higher 

mean decrease in Gini.   

 

Variable importance from the RF models was utilized to generate reduced sets of 

predictors, which were subsequently also applied to the SVM models, due to the lack of 
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a model-dependent method of determining variable importance for SVMs (Kuhn et al., 

2020).  A similar approach was applied by Brungard et al. (2015), which used a covariate 

selection determined by RF models to generate reduced sets of predictors which were 

applied to other machine learning approaches, including SVMs.  Models were initially 

fitted with a larger set (i.e. 76) of covariates relating to multiple classes of soil formation 

factors, and then models were generated from corresponding reduced sets comprising 

of the most important covariates.  The narrower selection of predictors was decided with 

the objective of reducing multi-collinearity among the predictors, as well as to improve 

model accuracy (Nussbaum et al., 2018).  In total, there were 12 separate reduced sets 

of predictors generated; one for each target variable (soil texture class, calcareous 

substrate testing to 10% HCl, ELC moisture regime) for each study area (Hearst, GCF, ARF, 

and GCB).   

 

The metrics for assessing the models utilized were the percent correct classification (PCC) 

as the accuracy score, and Cohen’s kappa statistic.  The PCC is the fraction of predictions 

that are correct, which varies from 0 to 1, with scores of 1 denoting perfect prediction 

and scores of 0 meaning complete disagreement.  Cohen’s kappa statistic, also known as 

just the kappa score, takes into account by-chance agreement; it considers the chance of 

misclassification with prediction (Cohen, 1960; Simon, 2006; Warrens, 2011).  The kappa 

score, here denoted as 𝜅, was calculated as 

 𝜅 = 	 UV0UW	
R0UW

	. Eq. 4-4 
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Here 𝑝:  is the observed probability agreement (which can be taken as PCC), and 𝑝X  is 

probability due to by-chance agreement.  The by-chance agreement probability (Simon, 

2006; Warrens, 2011) can be calculated as 

 𝑝X = 	∑
Z[,V
(

Z[,]
(

-
^_R 	. Eq. 4-5 

The number of classification categories is denoted by 𝑛 , and 𝑁  is the number of 

observations which in this case would correspond to the number of soil sampling 

locations for the verification data set.  The integer 𝑞^,: corresponds to the number of 

observations for category 𝑘 , and 𝑞^,U  corresponds to the number of predictions for 

category 𝑘.  Cohen’s kappa is bounded between 0 and 1, with values of 0 when obtained 

agreement equals by-chance agreement, and a maximum of 1 obtained when there are 

no disagreements (Cohen, 1960).  Brungard et al. (2015) wrote that kappa scores 

between 0.4 and 0.8 demonstrate moderate agreement, whereas scores less than 0.4 

would signify poor agreement. 

 

4.3  Prediction & Uncertainty Maps 
 

Minasny et al. (2019) wrote in a review for digital soil mapping of peatlands that there is 

a need for the uncertainty of estimates for corresponding digital soil maps and products.  

The purpose of the prediction maps was to determine patterns in regards to the predicted 

soil properties for the study areas.  Prediction maps were obtained in R by applying fitted 

models to the predictor layers corresponding to ASCII text files for the whole study area.  

These ASCII files were first inputted as matrices which were then subsequently restacked 
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into long arrays to work as input vectors for the corresponding predict function in R.  Once 

the fitted models were applied to the predictor arrays, the predictions were restacked 

from long arrays back into matrices, which were then exported as text files.   

 

To determine the uncertainty with the prediction maps, entropy scores were calculated 

to determine a measure of how much a model concentrates predictions to specific 

categories (Heung et al., 2017; Roulston and Smith, 2002; Zhu, 1997).  The entropy, 

denoted by 𝐻, was calculated for each pixel as 

 𝐻 =	 0R
cd(-)

∑ 𝑝^ ln(𝑝^)-
^_R  , Eq. 4-6 

where the probabilities 𝑝^  for categorial assignment (i.e. voting) for class 𝑘 out of total 

of 𝑛  different classes were determined from the models.  The probabilities 𝑝^  were 

generated when the models were fitted by specifying the appropriate probabilities 

argument flag, which resulted in the training function also returning a data frame with 

the probability columns for each class (Kuhn, 2008).  These probabilities were calculated 

for the RF models as the portion of the total number of trees that voted for the respective 

category (Sage et al., 2020).  For SVMs, a secondary Platt model was utilized to generate 

these probabilities (Kuhn, 2013), which corresponded to posterior probabilities 

approximated by a sigmoid function (Lin et al., 2007; Platt, 2000).  Note that for each pixel 

that the combined probabilities for all 𝑛 different classes will sum to 1, with the individual 

class probabilities 𝑝^  varying between 0 and 1.  The entropy, which has also been called 

ignorance uncertainty (Heung et al., 2017) is bounded between 0 and 1, where higher 

values indicate more uncertainty.  This can be seen from the entropy equation, where 
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equal probabilities among all category predictions would lead to an entropy of 1, which 

would mean the greatest modelling uncertainty since there is no discernment of 

prediction made.  At the other extreme of complete certainty, with a probability of one 

being assigned to one class (and consequently other classes having probabilities of zero) 

would result with an entropy of 0. 
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Chapter 5  
 
RESULTS 
 

5.1  Important Covariates 
 

Variable importance among the model covariates were resolved for the prediction of soil 

texture, calcareous substrate reaction to hydrochloric acid, and ELC moisture regime, 

respectively.  The variable importance were determined from the RF models fit on the 

full set of predictors (i.e. 76 predictors) by means of the caret package in R (Kuhn, 2007).  

Plots for variable importance in the prediction of the three soil parameters for the ARF 

region are shown in Figure 5.  Variable importance plots for other study areas (Hearst, 

GCF and GCB) are shown in Appendix A (see Figure 12).  Due to the similarities of results, 

it was decided to just discuss variable importance results for the ARF region.  The results 

for only the ARF are shown because this was the region that had the highest density of 

sampling locations to study area (see Table 1) which later were shown to have the highest 

modelling accuracies (which will be discoursed in the following section).  For all the 

regions, variable importance indicated vegetation covariates to have the highest variable 

importance.  In general, NDVI for the summertime, tree species indicator for black spruce, 

and CHM had among the highest variable importance.  Topographic covariates were also 

important for the Hearst study area.  
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Figure 5 - Variable importance for models for ARF region. 

 

Examining the results from Figure 5, there are many similarities in the set of important 

covariates between the three soil properties.  Consistently, one can see that 

environmental covariates corresponding to vegetation had the highest variable 

importance.  The NDVI for the summertime had the highest variable importance for all 

the soil property models for the ARF.  Indicator variables for black spruce and balsam fir 

also had high variable importance.  The detailed vegetation covariates derived from 

LiDAR had high variable importance.  One can see that CHM had among the 3rd to 4th 

highest variable importance, and gap fraction was in the top 10 important variables.  

Optical imagery for the summertime, specifically NDVI, and the channels B3, B4, B5 and 

B11 had high variable importance as well.  The TWI, SAGA TWI, TRI and total curvature 

had the highest variable importance among the topographic covariates.  The top 20 

predictors were sufficient for capturing the bulk of information necessary for modelling, 

as the variable importance tapered off after the first 10 or so most important variables.  
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5.2  Model Accuracies 
 
 
The accuracies for model evaluation of soil texture class for all study areas and 

approaches are reported in Table 3.  As can be seen, the accuracies are fairly consistent 

between models fitted on the full set and those on the reduced sets, with slight 

improvements with accuracies on the reduced sets for some models.  In general, RFs had 

the highest accuracies, whereas linear SVMs had the lowest accuracies, though the 

differences in accuracies between the approaches usually did not vary by more than 0.05 

with the few exceptions.  Lowest modelling accuracies were obtained for the Hearst 

region, with highest modelling accuracies obtained for the ARF.  The second most 

accurate models were for the GCB, which is all sites considered together.  Among the 

reduced set of predictors, both the ARF and GCB had modelling accuracies greater than 

0.7 and kappa scores greater than 0.4, which demonstrate good modelling accuracy for 

digital soil mapping (Nussbaum et al., 2018). 

 

 

Table 3 - Modelling accuracies for soil texture. 

Model Accuracies
From Full Set of Predictors

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) 0.53 0.23 0.61 0.31 0.78 0.61 0.67 0.42
Support Vector Machine Linear-basis (SVM Linear) 0.53 0.26 0.57 0.30 0.64 0.44 0.58 0.29
Support Vector Machine Radial-basis (SVM Radial) 0.37 0.04 0.57 0.24 0.76 0.58 0.67 0.42

Model Accuracies
From Reduced Sets of Predictors

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) 0.50 0.18 0.61 0.34 0.78 0.62 0.67 0.44
Support Vector Machine Linear-basis (SVM Linear) 0.57 0.31 0.58 0.28 0.76 0.58 0.67 0.42
Support Vector Machine Radial-basis (SVM Radial) 0.50 0.19 0.61 0.31 0.75 0.55 0.67 0.42

(GCF) (ARF) (GCB)

[Peat / Loamy / Clayey]
Hearst Gordon Cosens Forest Abitibi River Forest All Regions

(GCF) (ARF) (GCB)

Soil Texture Class

Soil Texture Class
[Peat / Loamy / Clayey]

Hearst Gordon Cosens Forest Abitibi River Forest All Regions
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The modelling accuracies for calcareous substrate reaction to 10% HCl for modelling 

approaches and study areas are reported in Table 4.  There were comparable accuracies 

between models fitted on the full set, versus the corresponding reduced sets of 

predictors.  In terms of modelling approaches, all three approaches had fairly consistent 

accuracies among them, and none appeared to dominate over the others for all regions.  

As with the results for soil texture models, the Hearst region had the lowest modelling 

accuracies, with the ARF having the highest accuracies.  The GCB (i.e. all sites considered 

together) had the second highest accuracies.  Both the ARF and GCB had models for all 

approaches which had kappa greater than 0.4, indicating moderate agreement, and 

accuracies greater than 0.7. 

 

 

Table 4 - Modelling accuracies for calcareous substrate reaction to 10% HCl.  Note that 'k' denotes a fizzing reaction, 
whereas 'n' denotes no fizzing reaction. 

 

Results for the ELC moisture regime models for the study areas and modelling approaches 

are summarized in Table 5.  There was a slight improvement with accuracies when 

considering the reduced sets of predictors, which can likely be attributed to a decrease 

Model Accuracies
From Full Set of Predictors

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) 0.48 0.02 0.64 0.22 0.82 0.63 0.73 0.46
Support Vector Machine Linear-basis (SVM Linear) 0.48 0.03 0.64 0.26 0.72 0.43 0.69 0.38
Support Vector Machine Radial-basis (SVM Radial) 0.48 0.01 0.67 0.30 0.82 0.63 0.70 0.39

Model Accuracies
From Reduced Sets of Predictors

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) 0.48 0.04 0.74 0.45 0.75 0.50 0.71 0.43
Support Vector Machine Linear-basis (SVM Linear) 0.55 0.10 0.72 0.40 0.85 0.70 0.73 0.46
Support Vector Machine Radial-basis (SVM Radial) 0.58 0.15 0.66 0.27 0.82 0.63 0.70 0.41

(GCF) (ARF) (GCB)

[n / k]
Hearst Gordon Cosens Forest Abitibi River Forest All Regions

(GCF) (ARF) (GCB)

Calcareous Substrate

[n / k]
Hearst Gordon Cosens Forest Abitibi River Forest All Regions

Calcareous Substrate
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of multi-collinearity and lack of noisy covariates that would impact accuracy (Nussbaum 

et al., 2018) for models formulated from the reduced predictor sets.  RF models tended 

to have the highest accuracies, followed by the radial-basis SVMs, with linear SVMs 

having the lowest accuracies.  The ARF region had the most accurate models, followed by 

the GCF, then Hearst and then the GCB on the whole.  For exact category matching, the 

modelling accuracies were not high, but when considered for within one ordinal category 

of precision (e.g. ELC moisture regime rating of 4 considered accurate if predicted as 

either 3, 4 or 5) then accuracies grossly improved.  Furthermore, slight improvements in 

accuracies were gained when considered for within 2 ordinal categories of precision (e.g. 

ELC moisture regime rating of 4 is considered accurate if predicted as either 2, 3, 4, 5, or 

6).  The ELC moisture regime ratings correspond to wetness factors, where 0 corresponds 

to dry and 9 wet within an ordinal ranging in between.  For within 1 ordinal category 

prediction, all models trained on the reduced sets of predictors had accuracies exceeding 

0.58 and kappa exceeding 0.48, which indicates moderate agreement.  
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Table 5 - Modeling accuracies for ELC moisture regime. 

 

 

5.3  Prediction Maps 
 
 
Prediction maps were generated for soil properties of each region.  It was decided not to 

present prediction maps for study areas other than the ARF in the main section of the 

thesis, as the ARF had the highest modelling accuracies.  Analogous structures and 

patterns can be ascertained from prediction maps of soil properties for the other regions, 

hence another reason for focusing on just the ARF region.  Predictions maps for other 

study areas (Hearst, GCF) are presented in Appendix B.   

Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) Hearst 0.32 0.14 0.68 0.60 0.79 0.73

Gordon Cosens Forest (GCF) 0.30 0.09 0.57 0.45 0.62 0.52
Abitibi River Forest (ARF) 0.43 0.28 0.71 0.64 0.81 0.77
All Regions (GCB) 0.31 0.12 0.61 0.51 0.70 0.62

Support Vector Machine Hearst 0.25 0.10 0.64 0.56 0.79 0.74
  Linear-basis (SVM Linear) Gordon Cosens Forest (GCF) 0.24 0.09 0.50 0.41 0.65 0.59

Abitibi River Forest (ARF) 0.38 0.25 0.66 0.58 0.76 0.70
All Regions (GCB) 0.26 0.13 0.54 0.46 0.65 0.58

Support Vector Machine Hearst 0.21 0.03 0.57 0.47 0.68 0.60
  Radial-basis (SVM Radial) Gordon Cosens Forest (GCF) 0.35 0.14 0.60 0.48 0.64 0.54

Abitibi River Forest (ARF) 0.45 0.29 0.71 0.63 0.78 0.72
All Regions (GCB) 0.37 0.20 0.59 0.48 0.70 0.63

Accuracy Kappa Accuracy Kappa Accuracy Kappa
Random Forest (RF) Hearst 0.46 0.33 0.82 0.78 0.86 0.82

Gordon Cosens Forest (GCF) 0.39 0.24 0.65 0.57 0.75 0.69
Abitibi River Forest (ARF) 0.45 0.30 0.74 0.68 0.81 0.77
All Regions (GCB) 0.35 0.18 0.61 0.52 0.70 0.63

Support Vector Machine Hearst 0.32 0.18 0.61 0.53 0.75 0.70
  Linear-basis (SVM Linear) Gordon Cosens Forest (GCF) 0.36 0.20 0.58 0.48 0.67 0.59

Abitibi River Forest (ARF) 0.48 0.35 0.78 0.73 0.90 0.87
All Regions (GCB) 0.37 0.21 0.62 0.53 0.71 0.65

Support Vector Machine Hearst 0.39 0.22 0.71 0.64 0.75 0.68
  Radial-basis (SVM Radial) Gordon Cosens Forest (GCF) 0.38 0.20 0.63 0.53 0.68 0.59

Abitibi River Forest (ARF) 0.52 0.39 0.76 0.70 0.88 0.85
All Regions (GCB) 0.37 0.19 0.62 0.52 0.70 0.63

From Reduced Sets of Predictors

Model Accuracies ELC Moisture Regime
[0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9]

Exact Category Match Out by at most 1 Category Out by at most 2 
Categories

Model Accuracies ELC Moisture Regime
[0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9]

Exact Category Match Out by at most 1 Category Out by at most 2 
Categories

From Full Set of Predictors
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The prediction results for soil texture classifications from the models for the ARF are 

shown in Figure 6.  On the left hand column are the predictions for soil texture 

classification based upon the regional ARF model, whereas on the right column are 

predictions for the ARF study area based upon the model trained for the entire GCB 

region.  Prediction results for the RF models are at the top, the linear SVMs are in the 

middle, and the radial-basis SVM predictions are at the bottom.  From these models, one 

can see that predictions for areas of peat are consistent among the different models.  

There are differences between predictions for areas with clayey and loamy soils, in 

particular, the linear SVM trained just for the ARF appears to overpredict clayey soils, 

whereas the radial-basis SVM trained for the whole GCB underpredicts clayey soil areas.  

The linear SVM approach had the poorest accuracies from Table 3 for soil texture 

classification for the ARF and GCB, so it likely here that the linear SVM did not perform 

adequately when compared to the SVM based upon radial basis functions or the RF 

approaches.  Areas of clayey soils should appear closer to Ontario Highway 11 corridor 

(center) and in settled regions.  Overall, the RF models give the most consistent prediction 

maps of soil textures, where it was ascertained that RF models had the highest accuracies 

for model evaluation (see Table 3). 

 

Predictions for areas with calcareous substrate reaction to 10% HCl are shown in Figure 

7.  As with the layout of the figure for the predictions of soil texture classification, the left 

hand column are predictions from the regional ARF model, whereas the right hand 

column are the predictions from the GCB model fitted on all regions.  Inspecting the 
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various maps, the areas predicted for the binary classification of where there are or are 

no reactions  of calcareous substrate to acid are similar among the different approaches.  

The most consistency is seen between the RF models.  One can note that the areas that 

are predicted having no reaction to 10% HCl for calcareous substrate testing are the same 

regions as predicted to have peat in Figure 6.  This result relates to peat typically being 

acidic in substance (Belova et al., 2006; Vitt et al., 2009), so applying the 10% HCl would 

not yield a fizzing reaction; whereas calcareous soils are basic (Jalali and Moradi, 2020; 

Rogovska and Blackmer, 2009) and hence demonstrate a fizzing reaction when exposed 

to hydrochloric acid. 

 

Results of predictions using the ELC moisture regime for the ARF are shown in Figure 8.  

The areas predicted for the various moisture regime ratings are fairly consistent.  The left 

column shows predictions based upon the regional ARF models, whereas the right 

column shows results based upon the GCB models.  For the ARF region, the linear SVMs 

had the best accuracies (though RF and radial-basis SVMs were comparable) as seen in 

Table 5.  The linear SVM prediction results were similar for both the ARF and GCB trained 

models, and appeared to use the most variation of moisture regime categories; which is, 

not as large of areas were just assigned to one rating.  Comparing the results of prediction 

maps of ELC moisture regime with those for soil texture in Figure 6, one can see that areas 

having the highest ELC moisture regime ratings (i.e. are wet) correspond to peat, which 

are the wetland areas.   
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Figure 6 - Prediction maps of soil texture class for the ARF region. 
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Figure 7 - Prediction maps for calcareous substrate reaction for the ARF region. 
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Figure 8 - Prediction maps for ELC moisture regime for the ARF region. 
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Entropy maps for the uncertainty of predictions for all modelling approaches were also 

calculated for the ARF region based upon the respective ARF models, as shown in Figure 

9.  Similar patterns can be recognized between the different target variables.  It can be 

seen that the lowest modelling uncertainties were in regions of peat (see Figure 6), which 

also had no reaction to 10% HCl reaction for the calcareous substrate (see Figure 7).  From 

Figure 6, it was noted that all approaches predicted essentially the same areas with peat, 

which corroborate the results in Figure 9.  

 

 

Figure 9 - Entropy maps for uncertainty of predictions for models for ARF region. 
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Figure 10 - True-color composite from Landsat-8 imagery for the summer of 2018 for the ARF region. 

 
 
A true-color composite of the ARF study area is shown in Figure 10.  This composite was 

generated from Landsat-8 imagery and is composed of median surface reflectance from 

cloud-free days from June and July of 2018.  For this true-color composite image, red 

corresponds to band 4 (0.636-0.673 μm), green corresponds to band 3 (0.533-0.590 μm) 

and blue corresponds to band 2 (0.452-0.512 μm).  Similar patterns can be seen in this 

image as predicted for Figures 6, 7, 8 & 9.  The peatlands correspond to the areas of less 

dense vegetation, which would typically have peat for soil texture.  Evidently, the 

peatland regions also have the wetter moisture regimes. 

 

All in all, the results from the prediction maps from the various soil properties appear 

consistent across the different modelling approaches, and similar prediction patterns in 

terms of areas for the properties are apparent.  These results are logical, as it would make 

sense for areas with peat to have shorter vegetation due to the stunted growth of black 

spruce trees (which are generally the only trees that can grow in wetlands for the GCB 
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region).  It is also rational that the areas with peat will have the highest ELC moisture 

regime ratings which correlate to wet soils, which is obvious for a wetland.  The areas 

with peat tested no reaction to hydrochloric acid to calcareous substrate, which is 

explainable as distinctive soil texture groups will be correlated differently to calcareous 

substrate.  All modeling approaches consistently had the lowest prediction uncertainties 

for the peatlands, which conveys a greater degree of confidence in prediction for those 

regions.  Correspondingly, areas with loamy soil exist outside the wetlands (and thus have 

drier ELC moisture regimes), and hence throughout the forested regions with taller 

canopies.  The regions predicted as clayey soils had the greatest modelling uncertainties, 

which explain the variation in predictions for clayey soil among the difference modelling 

approaches.  One possible reason for the larger modelling uncertainties for clayey soil is 

that clayey soil dominates the deeper soil horizons (below 20 to 25 cm) throughout the 

GCB region, so sites that were sampled as clayey could have had shallower or absent top 

soil horizons. 
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Chapter 6  
 
DISCUSSION 
 

6.1  Modelling 
 
 
Results from this research obtained higher accuracy scores than those reported in other 

recent studies.  RF and SVM approaches for the classification of soil type have either 

comparable or lower reported accuracies (Brungard et al., 2015; Dornik et al., 2018; 

Heung et al., 2017, 2016), or lower kappa scores (Brungard et al., 2015).  However, it 

might not be justified to directly compare studies against each other, as the context of 

comparison would depend on crucial factors.  Such considerations could include the 

distribution and concentration of sampling points, the allocation of target classes among 

a modelled soil property, or even the physical environment or biome for which the digital 

soil mapping was undertaken.  For peatland environments, Minasny et al. (2019) wrote 

that machine learning approaches can reveal spatial correlation among environmental 

covariates, where although correlation does not mean causation, nonetheless insights 

can be gained concerning the distribution and formation of different soil types.  The 

higher the accuracy attained by models for digital soil mapping applications, the better 

the understanding and knowledge about soils that can be achieved. 

 

Local versus regional models were investigated for the digital soil mapping classification 

analysis contained in this thesis, as can be seen from the results of local models (Hearst, 
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GCF, ARF) being compared to that for the GCB region which comprises of all 3 subregions, 

in Chapter 5.  From the results in Tables 3, 4 & 5, some regions had better modeling 

accuracy than others.  In general, the ARF locality had the highest modelling accuracies, 

followed by the GCB region on the whole.  The least accurate models were for Hearst.  

From the comparison of the results, and the homogeneity of climate and landcover of the 

subregions, it can be argued that a regional model for just the GCB would be sufficient.  

Brungard et al. (2015) considered digital soil mapping on 3 separate study areas 

separated from each by at least a few hundred kilometers, with the study areas existing 

in the states of New Mexico, Utah and Wyoming.  These study areas and sites were not 

combined into just one study area, as the variation and distance between the separate 

study areas were too great.  From Figure 1, it can be seen that the maximum distance 

between all FRI sites for the GCB are less than a couple hundred kilometers primarily 

along the same latitude.  Thus, the inclusion of all sites together into one targeted study 

area on the basis of similarity of climate and biome can be justified.  The separation of 

sites into the groupings used was present when the soil data was obtained from the FRI, 

and the ARF region did have a higher density of sites sampled per area, which likely 

supported the improved modelling accuracies for that region. 

 

From the prediction maps for the classifications, as shown in Figures 6, 7 & 8, similar 

patterns can be ascertained.  These patterns should be expected, as ELC moisture regime 

is based in part on soil texture classification (Paloniemi, 2018).  The ELC classifications 

correspond to different types of biotypes or habitats in northern Ontario (Pokharel and 
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Dech, 2011), which could be of interest to different habitats or regions of specific 

vegetation cover within the boreal biome.  The fact that the ELC moisture regime here 

had a scale of 10 categories, versus 3 for soil texture or the binary calcareous substrate 

reaction to acid, allowed for greater specificity.  For that reasoning, if only one of these 

soil properties were to be investigated, probably ELC moisture regime would be the best 

choice.  However, the ELC moisture regime classification would only be relevant to within 

Ontario, which would limit its comparability to moisture regime classifications for other 

jurisdictions. 

 

6.2  Feature Selection 
 
 
A model-independent approach for feature selection using receiver operating 

characteristic (ROC) curve analysis (Kuhn, 2007) was also performed.  For each class pair 

of multi-class outcomes, the class was determined from a series of cutoffs applied on 

each predictor.  The area under the ROC curve was calculated, where variable importance 

was determined from the maximum area under the curve among corresponding pairs.  

For each binary set of class pairs of the multi-class outcomes, cutoffs were applied to each 

predictor to determine class from the class pairs.  For each cutoff, both the proportions 

of true positives and true negative classifications, also denoted as sensitivity and 

specificity, were correctly predicted.  The ROC curve was then generated from these 

sensitivity and specificity values, from which the area under the ROC curve was computed 

for each class pair.  From among the pair-wise areas, variable importance was then 

determined from the ROC curve with the maximum area under the curve.  Compared 
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with the variable importance determined from the RF models, similar reduced sets of 

covariates were determined from the model-independent ROC curve analysis approach.  

As an example, these reduced sets are presented for soil texture for the ARF region in 

Table 6.  The application of the reduced sets determined from the RF models for the SVMs 

were deemed satisfactory, as the SVMs had comparable accuracies to the RF models as 

shown in Tables 3, 4 & 5. 

 
 

 

Table 6 - Top predictors listed by order for soil texture for ARF, as determined from RF model (left) and model-
independent ROC curve analysis approach (right). 

 
 
6.3  Environmental Covariates 
 
 
From the most significant covariates as determined by the variable importance in Figure 

5, it can be ascertained that vegetation was the biggest soil formation factor for these 

study areas for this region.  Poggio et al. (2013) found that covariates corresponding to 

RF Variable Importance Model-independent ROC Curve Analysis
NDVI Summer 2017 NDVI Summer 2017
Black Spruce Indicator Black Spruce Indicator
Balsam Fir Indicator CHM
CHM TWI
NDVI Winter 2017 SAGA TWI
B3 Summer 2017 NDVI Winter 2017
Gap Fraction B11 Summer 2017
B11 Summer 2017 TRI
B4 Summer 2017 Balsam Fir Indicator
NDWI Summer 2017 NDWI Summer 2017
B5 Summer 2017 B4 Summer 2017
Total Curvature B5 Summer 2017
SAGA TWI B3 Summer 2017
B10 Summer 2017 Sky View Factor
B3 Winter 2017 B5 Autumn
TRI Gap Fraction
TWI B3 Winter 2017
Slope Height B10 Summer 2017
Aspect B4 Winter 2017
B1 Winter 2017 MRRTF

Sets of Top Predictors for Soil Texture for ARF
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vegetation had the highest importance for predicting areas with peat, as corroborated by 

Minasny et al. (2019) in that optical imagery is of prime important for the prediction of 

peatlands in Canada.  The overwhelming importance of vegetation covariates, when 

compared with covariates corresponding to other soil formation factors, justifies the 

usage of multi-source remotely sensed data.  Remote sensing technologies can convey 

details about the vegetation cover on the surface, and a wider array of different sensor 

types can provide further information corresponding to vegetation. 

 

It was attempted to incorporate multispectral satellite imagery over a multi-year period, 

as so to involve a temporal component for soil formation.  Landsat imagery from 1984, 

1995, 2005 and 2017 were applied for environmental covariates; images separated by 

approximately 10 years each over a 30 year timeline.  Landsat-8 imagery was used for 

2017 (and for 2015-2019 for May and autumn scenes), whereas Landsat-5 was utilized 

for the earlier imagery obtained for 1984, 1995 and 2005.  Both Landsat-5 and Landsat-8 

imagery had spatial resolutions of 30 m.  The earliest available Landsat imagery of 30 m 

spatial resolution for the GCB that could be acquired from Google Earth corresponded to 

1984, hence the choice for including imagery for that year.  Surface reflectance was 

obtained from various years as an attempt to try modeling a temporal scale for the digital 

soil mapping analysis.  It was hypothesized that earlier scenes of optical imagery would 

have higher significance for present soil properties, as previous scenes could correspond 

to factors that would result in gradually changing soil properties at a later date.  This 

postulation was not able to be determined in this study.  It was recognized that if optical 
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imagery is obtained for either abnormally dry or wet years, the vegetation within the 

scenes would respond accordingly with either less vegetation or more vegetation due to 

such precipitation stresses.  When establishing variable importance for a model, this 

fluctuation of stressing could result in differing levels of significance among predictors, or 

potentially ascertain other soil formation factors; this issue should be contemplated 

when collecting environmental covariates for a digital soil mapping study.  Imagery from 

different seasons of the year were implemented, which was warranted as there were 

differences in predictor significance between times of peak vegetation and dormancy.  

The scenes corresponding to peak vegetation had the higher variable importance, but in 

some instances surface reflectance from winter scenes had among the highest variable 

importance.  This could possibly be due to a correlation between certain soil properties 

and evergreen conifers rather than deciduous trees, that would be more apparent when 

deciduous trees can be better differentiated from the evergreen conifers by the 

deciduous leaves losing green color, or even by the leaves being off the trees.  

 

Different gap fractions corresponding to the second and third returns of LiDAR retrievals, 

respectively, were also tried.  The calculations were obtained originally at pixel-scale 

(originally 10 m by 10 m) and calculated respectively as 

 𝐺𝑎𝑝	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	(𝑆𝑒𝑐𝑜𝑛𝑑	𝑅𝑒𝑡𝑢𝑟𝑛𝑠) = 	 (JKL)+	:.	8)X:-/	1);J+-M
S:;*P	(JKL)+	:.	1);+N)=*PM

 , Eq. 6-1 
 

 𝐺𝑎𝑝	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	(𝑇ℎ𝑖𝑟𝑑	𝑅𝑒𝑡𝑢𝑟𝑛𝑠) = 	 (JKL)+	:.	S9N+/	1);J+-M
S:;*P	(JKL)+	:.	1);+N)=*PM

 . Eq. 6-2 
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These gap fractions for the ARF region are shown in Figure 11.  Inspecting this figure, one 

can see that areas with a low portion of second returns correspond to areas where the 

canopy layer is shorter.  In general, these areas correspond to the wetlands.  One can see 

that there are similarities between the gap fractions in Figure 4 and Figure 11, except that 

now the pattern is for the second returns to be inverted.  For this LiDAR data, dense 

canopies will generally have more than one return per retrieval, whereas shallow 

canopies will usually have only one return (i.e. first return is only return).  Incidences with 

a third return are low (i.e. maximum portion of only 0.307), but areas with higher portions 

are more spread out, yet do occur in the wetland areas.  It is speculated that the taller 

structures that appeared in a wetland were more likely to have more than 2 returns per 

retrievals, whereas this would had been more difficult to occur for a denser canopy.   

These values would be contingent on the point density of the LiDAR, which should be 

considered when deriving environmental covariates from LiDAR data.  Different point 

densities could lead to dissimilar results for derived covariates, particularly for covariates 

defined based on counts or ratios of returns for LiDAR retrievals.  
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Figure 11 - Gap fractions for second and third returns, respectively, for the ARF region. 

 

MODIS-derived products for vegetation covariates such as leaf area index (LAI) and 

fraction of absorbed photosynthetically active radiation (FPAR) (Myneni et al., 2002) were 

considered as predictors.  However, these did not have high variable importance for the 

digital soil mapping models.  The spatial resolution of 500 m for these predictors could 

had been too coarse for the digital soil mapping analysis undertaken, which could likely 

explain their lack of variable importance. 
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The covariates derived from L-band SAR imagery did not have the higher variable 

importance that was expected.  It was anticipated that L-band SAR imagery would be able 

to capture the understory or surface moisture, which was expected to be strongly 

correlated to moisture regime or certain soil texture classes (such as peat which tends to 

be wetter than other soil types).  A possible reason why this was not the case was that 

the L-band SAR imagery utilized was compiled for a whole year (i.e. 2017) where a lot of 

the differences between digital number intensities would be more of interest for just the 

summer months.  Minasny et al. (2019) wrote that C-band SAR in HH-polarization is most 

sensitive for detecting soil moisture for peatlands.  SAR imagery does seem to be relevant 

to the GCB region, as it can be difficult to obtain cloud-free imagery there for many 

periods of the years; this would not be an issue for the all-weather penetrating capability 

of SAR imagery.  The implementation of SAR imagery could be useful for similar studies 

in the future. 

 

Tree species prediction maps from the National Forestry Inventory (NFI) were tried as 

predictors in the digital soil mapping models.  However, none of those attributes had high 

variable importance for any of the models, which was unexpected as site-level indicators 

for black spruce and balsam fir had high variable importance.  The tree species maps from 

NFI were created from k-nearest neighbor (kNN) models applied to MODIS imagery 

(Beaudoin et al., 2018, 2014), which had an output spatial resolution of 250 m.  When the 

tree species recorded from the site-level FRI data was compared with predictions from 

the NFI tree species maps, the incidence of black spruce was over-estimated by the NFI 
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prediction maps; over 90% of pixels for the sites indicated black spruce as dominant, 

whereas in reality just over half the FRI sites sampled were reported as black spruce 

dominant.  A likely explanation for this could be that on a larger scale of the spatial 

resolution of the NFI prediction maps (i.e. 250 m) black spruce is the most common tree 

species, whereas within those spacings sites could had been selected by the FRI to be 

more representative of different tree species types.  For digital soil mapping applications 

on a larger scale, such as for the boreal forest across Canada, Mansuy et al. (2014) did 

find NFI tree species maps to be of significance.  The spatial scale of analysis for digital 

soil mapping is an important factor to consider when utilizing tree species prediction 

maps. 
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Chapter 7  
 
CONCLUSION & CLOSING REMARKS 
 

The development and implementation of a framework for digital soil mapping analysis 

corresponding to classification modelling as discussed in Chapter 4 was conducted for the 

GCB region of Ontario.  In this analysis, the most important environmental covariates 

from an expanded set of predictors corresponding to various soil formation factors for 

modelling the classification of soil property classifications to soil texture, reaction of 

calcareous substrate to hydrochloric acid, and ELC moisture regime were identified.  It 

was able to be established in Section 5.1 that vegetation covariates had the highest 

variable importance, which suggests that vegetation was the main soil formation factor 

of this region.  The results demonstrate the importance of LiDAR data, as the derivation 

and computation of detailed covariates derived from that LiDAR data were able to 

improve model accuracy.  Prediction maps for the soil properties of soil texture family, 

calcareous reaction to hydrochloric acid and ELC moisture regime were generated in 

Section 5.3, with peatland environments being ascertained with a high degree of 

confidence.  The research conducted in this thesis will provide useful steps for identifying 

peatland environments for supplementary environmental studies in the future. 

 

The LiDAR-derived vegetation covariates of CHM and gap fraction were useful additions, 

as they had amongst the highest variable importance for all the soil property 

classifications, particularly for the ARF region.  Detailed topographic covariates were also 
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generated from a DEM derived from the LiDAR data, which reinforces the usefulness of 

utilizing LiDAR data for digital soil mapping purposes if it is available.  Including 

aeromagnetic survey data as a covariate corresponding to the underlying parent material 

was also a suitable addition, as this provided an environmental covariate for parent 

material which could be better ascertained than prespecified and inferenced vector files 

corresponding to underlying geology.  Surface reflectance from multispectral satellite 

imagery also had high variable importance, in particular the NDVI for the summertime 

which would correspond to the period of peak vegetation for the study area.  The 

implementation of multi-source remotely sensed data for environmental covariates was 

beneficial, as it allowed covariate representation for a variety of different soil formation 

factors.  The representation of finer scale environmental covariates corresponding to 

different attributes of the soil formation factors, in particular vegetation and topography, 

but also with representation from climatic and parent material, is a necessity for digital 

soil mapping research for a boreal biome. 

 

The machine learning approaches of RF and SVM provided modelling accuracies for the 

best models for each targeted soil property that exceeded 0.7 in correctness and 0.5 in 

Cohen’s kappa score, as seen in the tables of Section 5.2.  Model accuracies were able to 

be attained from RF and SVM approaches that matched or exceeded the accuracies of 

the best models in comparable studies (Brungard et al., 2015; Dornik et al., 2018; Heung 

et al., 2017, 2016).  From the results in this thesis, RF and SVM approaches had similar 

accuracies, but in general the RF models had slightly higher accuracies more times than 
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what the SVM models achieved.  The RF and SVM approaches were able to satisfactorily 

model the soil classification properties of texture, calcareous substrate reaction to 

hydrochloric acid and ELC moisture regime, and thus are great approaches to try for 

digital soil mapping classifications. 

 

Spatial patterns within the prediction maps and uncertainty maps of the soil properties 

were able to be resolved, as seen in Section 5.3.  The RF and SVM approaches generated 

similar spatial output for predictions of the soil properties of soil texture, calcareous 

substrate reaction to hydrochloric acid, and ELC moisture regime.  Areas consisting of 

peat had no fizzing reaction to hydrochloric acid for calcareous substrate acid testing, and 

had the highest ELC moisture regime scores denoting wet ground conditions.  The areas 

consisting of loamy soil tended to denote a fizzing reaction for calcareous substrate acid 

testing, and had drier ELC moisture regime ratings than that for peat.  Clayey soils were 

predicted for settled areas of agriculture land and roadways where one would expect soil 

compaction, which corresponded to the areas of the driest ELC moisture regime ratings.  

From the uncertainty maps, it was demonstrated that predictions for peatlands had the 

highest modelling certainties due to corresponding lower entropy scores, whereas 

modelling for areas with clayey soil at the surface with drier moisture regimes had the 

lowest modelling certainties.  These results will assist in distinguishing the wetland 

environments from areas more suitable for agricultural purposes, which could be 

beneficial for policymakers for land management concerning the GCB. 

 



 76 

For future work, it is advisable to note:  

 

- In this study the RF models were used to determine the feature selection of 

environmental covariates.  A model-independent feature selection approach 

based upon ROC curve analysis was investigated, which resulted in analogous sets 

of important covariates as what were resolved from the RF variable importance 

method.  However, it is recommended to implement a model-independent 

feature selection approach in order to determine the most important predictors, 

so as to have greater confidence in the variable importance of predictors.  This 

corresponding reduced set of predictors would be utilized as the predictors for 

the digital soil mapping models, with the same reduced set applied regardless of 

modelling approach.  

 

- Apply C-band SAR with HH-polarization for environmental covariates, as L-band 

SAR was not as important of a predictor as what was anticipated.  It might be 

worthwhile to obtain C-band and L-band SAR imagery specifically associated with 

certain times of the year, such as midsummer, that could possibly be better 

spatially correlated with soil properties relating to moisture regime.   

 

- Utilize finer spatial resolution tree species predictor maps, or other covariates 

relating to vegetation canopy (specifically if spatial resolutions for those products 

are less than 250 m).  Tree species predictors maps obtained from the NFI were 
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not able to have significance for the soil property models as their spatial 

resolutions were too coarse (i.e. 250 m or greater). 

 
- Multispectral imagery from earlier years could be useful, particularly if acquired 

from drier years versus wetter years (to capture the response of the resulting 

stress or forcing on vegetation).  This could elucidate the synergetic relationship 

between vegetation and soil, to determine how vegetation drives soil formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

REFERENCES 
 

Adhikari, K., Kheir, R.B., Greve, M.B., Bøcher, P.K., Malone, B.P., Minasny, B., 
McBratney, A.B., Greve, M.H., 2013. High-Resolution 3-D Mapping of Soil Texture 
in Denmark. Soil Sci. Soc. Am. J. 77, 860–876. 
https://doi.org/10.2136/sssaj2012.0275 

 
Airborne Imaging, 2018. Final Report For Project Cochrane LiDAR. Calgary, Alberta. 
 
Akumu, C.E., Johnson, J.A., Etheridge, D., Uhlig, P., Woods, M., Pitt, D.G., McMurray, S., 

2015. GIS-fuzzy logic based approach in modeling soil texture: Using parts of the 
Clay Belt and Hornepayne region in Ontario Canada as a case study. Geoderma 
239–240, 13–24. https://doi.org/10.1016/j.geoderma.2014.09.021 

 
Anderson, E.S., Thompson, J.A., Crouse, D.A., Austin, R.E., 2006. Horizontal resolution 

and data density effects on remotely sensed LIDAR-based DEM. Geoderma 132, 
406–415. https://doi.org/10.1016/j.geoderma.2005.06.004 

 
Angelini, M.E., Heuvelink, G.B.M., Kempen, B., Morrás, H.J.M., 2016. Mapping the soils 

of an Argentine Pampas region using structural equation modelling. Geoderma 
281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031 

 
Beguin, J., Fuglstad, G.A., Mansuy, N., Paré, D., 2017. Predicting soil properties in the 

Canadian boreal forest with limited data: Comparison of spatial and non-spatial 
statistical approaches. Geoderma 306, 195–205. 
https://doi.org/10.1016/j.geoderma.2017.06.016 

 
Behrens, T., Schmidt, K., MacMillan, R.A., Viscarra Rossel, R.A., 2018. Multiscale 

contextual spatial modelling with the Gaussian scale space. Geoderma 310, 128–
137. https://doi.org/10.1016/j.geoderma.2017.09.015 

 
Belova, S.E., Pankratov, T.A., Dedysh, S.N., 2006. Bacteria of the genus Burkholderia as a 

typical component of the microbial community of Sphagnum peat bogs. 
Microbiology 75, 90–96. https://doi.org/10.1134/S0026261706010164 

 
Breiman, L., Cutler, A., Liaw, A., Wiener, M., 2018. Package “randomForest”: Breiman 

and Cutler’s Random Forest for Classification and Regression. 
 
Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., 2015. 

Machine learning for predicting soil classes in three semi-arid landscapes. 
Geoderma 239, 68–83. https://doi.org/10.1016/j.geoderma.2014.09.019 

 



 79 

Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C., Bruggeman, A., 
2017. A high resolution map of soil types and physical properties for Cyprus: A 
digital soil mapping optimization. Geoderma 285, 35–49. 
https://doi.org/10.1016/j.geoderma.2016.09.019 

 
Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 

XX, 37–46. 
 
Dornik, A., Dragut, L., Urdea, P., 2018. Classification of Soil Types Using Geographic 

Object-Based Image Analysis and Random Forests. Pedosphere 28, 913–925. 
https://doi.org/10.1016/S1002-0160(17)60377-1 

 
Ellili Bargaoui, Y., Walter, C., Michot, D., Saby, N.P.A., Vincent, S., Lemercier, B., 2019. 

Validation of digital maps derived from spatial disaggregation of legacy soil maps. 
Geoderma 356, 113907. https://doi.org/10.1016/j.geoderma.2019.113907 

 
Environment Canada, 2020. Canadian Climate Normals 1981-2010 Station Data: 

KAPUSKASING A [WWW Document]. URL 
ttps://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchT
ype=stnName&txtStationName=Kapuskasing&searchMethod=contains&txtCentral
LatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=
4157&dispBack=0 (accessed 7.2.20). 

 
Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces 

for global land areas. Int. J. Climatol. 37, 4302–4315. 
https://doi.org/10.1002/joc.5086 

 
Garcia, M., Saatchi, S., Ferraz, A., Silva, C.A., Ustin, S., Koltunov, A., Balzter, H., 2017. 

Impact of data model and point density on aboveground forest biomass estimation 
from airborne LiDAR. Carbon Balance Manag. 12, 1–18. 
https://doi.org/10.1186/s13021-017-0073-1 

 
Genuer, R., Poggi, J.M., Tuleau-Malot, C., 2010. Variable selection using random forests. 

Pattern Recognit. Lett. 31, 2225–2236. 
https://doi.org/10.1016/j.patrec.2010.03.014 

 
Gessler, P.E., Chadwirk, O. A., Chamran, F., Althouse, L., Holmes, K., 2000. Modeling 

Soil-Landscape and Ecosystem Properties using Terrain Attributes. Soil Sci. Soc. Am. 
J. 

 
Goldman, M.A., Needelman, B.A., Rabenhorst, M.C., Lang, M.W., McCarty, G.W., King, 

P., 2020. Digital soil mapping in a low-relief landscape to support wetland 
restoration decisions. Geoderma 373, 114420. 
https://doi.org/10.1016/j.geoderma.2020.114420 



 80 

Gomez, C., Viscarra Rossel, R.A., McBratney, A.B., 2008. Soil organic carbon prediction 
by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case 
study. Geoderma 146, 403–411. https://doi.org/10.1016/j.geoderma.2008.06.011 

 
Greve, M.H., Kheir, R.B., Greve, M.B., Bøcher, P.K., 2012. Quantifying the ability of 

environmental parameters to predict soil texture fractions using regression-tree 
model with GIS and LIDAR data: The case study of Denmark. Ecol. Indic. 18, 1–10. 
https://doi.org/10.1016/j.ecolind.2011.10.006 

 
Grimm, R., Behrens, T., Märker, M., Elsenbeer, H., 2008. Soil organic carbon 

concentrations and stocks on Barro Colorado Island - Digital soil mapping using 
Random Forests analysis. Geoderma 146, 102–113. 
https://doi.org/10.1016/j.geoderma.2008.05.008 

 
Heung, B., Ho, H.C., Zhang, J., Knudby, A., Bulmer, C.E., Schmidt, M.G., 2016. An 

overview and comparison of machine-learning techniques for classification 
purposes in digital soil mapping. Geoderma 265, 62–77. 
https://doi.org/10.1016/j.geoderma.2015.11.014 

 
Heung, B., Hodúl, M., Schmidt, M.G., 2017. Comparing the use of training data derived 

from legacy soil pits and soil survey polygons for mapping soil classes. Geoderma 
290, 51–68. https://doi.org/10.1016/j.geoderma.2016.12.001 

 
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very High 

Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 25 
1965-1978. 

 
Jalali, M., Moradi, A., 2020. Measuring and simulating pH buffer capacity of calcareous 

soils using empirical and mechanistic models. Arch. Agron. Soil Sci. 66, 559–571. 
https://doi.org/10.1080/03650340.2019.1628344 

 
Jenny, H., 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw-

Hill Book Company Inc., New York. 
 
Keskin, H., Grunwald, S., 2018. Regression kriging as a workhorse in the digital soil 

mapper’s toolbox. Geoderma 326, 22–41. 
https://doi.org/10.1016/j.geoderma.2018.04.004 

 
Kuhn, M., 2013. Inconsistent results between caret+kernlab versions [WWW 

Document]. R-help. URL https://r.789695.n4.nabble.com/Inconsistent-results-
between-caret-kernlab-versions-td4680500.html (accessed 9.10.20). 

 
Kuhn, M., 2008. Building Predictive Models in R using the caret Package. J. Stat. Softw. 

28. https://doi.org/10.18637/jss.v028.i05 



 81 

Kuhn, M., 2007. Variable Importance Using The caret Package. 
 
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., 

Mayer, Z., Ziem, A., Scrucca, L., Hunt, T., 2020. Package ’caret ’: Classification and 
Regression Training. 

 
Kulkarni, V.Y., Petare, M., Sinha, P.K., 2014. Analyzing Random Forest Classifier with 

Different Split Measures, in: Babu, B., Nagar, A., Deep, K., Pant, M., Chand Bansal, 
J., Ray, K., Gupta, U. (Eds.), Proceedings of the Second International Conference on 
Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012. 
Springer, New Delhi, pp. 691–699. https://doi.org/https://doi-
org.ezproxy.library.yorku.ca/10.1007/978-81-322-1602-5_74 

 
Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2, 

18–22. 
 
Ließ, M., Glaser, B., Huwe, B., 2012. Uncertainty in the spatial prediction of soil texture. 

Comparison of regression tree and Random Forest models. Geoderma 170, 70–79. 
https://doi.org/10.1016/j.geoderma.2011.10.010 

 
Lin, H.T., Lin, C.J., Weng, R.C., 2007. A note on Platt’s probabilistic outputs for support 

vector machines. Mach. Learn. 68, 267–276. https://doi.org/10.1007/s10994-007-
5018-6 

 
Malterer, T.J., Verry, E.S., Erjavec, J., 1992. Fiber Content and Degree of Decomposition 

in Peats: Review of National Methods. Soil Sci. Soc. Am. J. 56, 1200–1211. 
 
Mansuy, N., Thiffault, E., Paré, D., Bernier, P., Guindon, L., Villemaire, P., Poirier, V., 

Beaudoin, A., 2014. Digital mapping of soil properties in Canadian managed forests 
at 250m of resolution using the k-nearest neighbor method. Geoderma 235–236, 
59–73. https://doi.org/10.1016/j.geoderma.2014.06.032 

 
McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping, 

Geoderma. https://doi.org/10.1016/S0016-7061(03)00223-4 
 
McKenzie, N.J., Ryan, P.J., 1999. Spatial prediction of soil properties using 

environmental correlation. Geoderma 89, 67–94. https://doi.org/10.1016/S0016-
7061(98)00137-2 

 
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2019. Package ‘e1071.’ 
 
 
 
 



 82 

Minasny, B., Berglund, Ö., Connolly, J., Hedley, C., de Vries, F., Gimona, A., Kempen, B., 
Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P., O’Rourke, S., Rudiyanto, 
Padarian, J., Poggio, L., ten Caten, A., Thompson, D., Tuve, C., Widyatmanti, W., 
2019. Digital mapping of peatlands – A critical review. Earth-Science Rev. 196, 
102870. https://doi.org/10.1016/j.earscirev.2019.05.014 

 
Mohamed, M.A., 2020. Classification of landforms for digital soil mapping in urban areas 

using LiDAR data derived terrain attributes: A case study from Berlin, Germany. 
Land 9. https://doi.org/10.3390/LAND9090319 

 
Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R., 2011. The use of remote sensing 

in soil and terrain mapping - A review. Geoderma 162, 1–19. 
https://doi.org/10.1016/j.geoderma.2010.12.018 

 
Mulder, V.L., Lacoste, M., Richer-de-Forges, A.C., Martin, M.P., Arrouays, D., 2016. 

National versus global modelling the 3D distribution of soil organic carbon in 
mainland France. Geoderma 263, 16–34. 
https://doi.org/10.1016/j.geoderma.2015.08.035 

 
Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., 

Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., 
Nemani, R.R., Running, S.W., 2002. Global products of vegetation leaf area and 
fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 
214–231. https://doi.org/10.1016/S0034-4257(02)00074-3 

 
Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, 

M.E., Papritz, A., 2018. Evaluation of digital soil mapping approaches with large 
sets of environmental covariates. Soil 4, 1–22. https://doi.org/10.5194/soil-4-1-
2018 

 
O’Neil, G.L., Saby, L., Band, L.E., Goodall, J.L., 2019. Effects of LiDAR DEM Smoothing and 

Conditioning Techniques on a Topography-Based Wetland Identification Model. 
Water Resour. Res. 55, 4343–4363. https://doi.org/10.1029/2019WR024784 

 
Ontario Ministry of Natural Resources, 2013. Provincial Digital Elevation Model 

Technical Specifications, v3.0. Peterborough, Ontario. 
 
Paloniemi, J., 2018. FRI Field Guide. Forest Resources Inventory, Ontario Ministry of 

Natural Resources and Forestry, Ontario. 
 
Platt, J., 2000. Probabilistic outputs for support vector machines and comparison to 

regularized likelihood methods, in: Smola A., P., B., B., S., D., S. (Eds.), Advances in 
Large Margin Classifiers. MIT Press, Cambridge. 

 



 83 

Poggio, L., Gimona, A., Brewer, M.J., 2013. Regional scale mapping of soil properties and 
their uncertainty with a large number of satellite-derived covariates. Geoderma 
209–210, 1–14. https://doi.org/10.1016/j.geoderma.2013.05.029 

 
Pokharel, B., Dech, J.P., 2011. An Ecological Land Classification approach to modeling 

the production of forest biomass. For. Chron. 87, 23–32. 
https://doi.org/10.5558/tfc87023-1 

 
R Core Team, 2012. R: A Language and Environment for Statistical Computing. 
 
Rapinel, S., Fabre, E., Dufour, S., Arvor, D., Mony, C., Hubert-Moy, L., 2019. Mapping 

potential, existing and efficient wetlands using free remote sensing data. J. 
Environ. Manage. 247, 829–839. https://doi.org/10.1016/j.jenvman.2019.06.098 

 
Rogovska, N., Blackmer, A.M., 2009. Remote sensing of soybean canopy as a tool to 

map high pH, calcareous soils at field scale. Precis. Agric. 10, 175–187. 
https://doi.org/10.1007/s11119-008-9087-8 

 
Roulston, M.S., Smith, L.A., 2002. Evaluating probabilistic forecasts using information 

theory. Mon. Weather Rev. 130, 1653–1660. https://doi.org/10.1175/1520-
0493(2002)130<1653:EPFUIT>2.0.CO;2 

 
SAGA Development Team, 2020. System for Automated Geoscientific Analysis (SAGA). 
 
Sage, A.J., Genschel, U., Nettleton, D., 2020. Tree aggregation for random forest class 

probability estimation. Stat. Anal. Data Min. 13, 134–150. 
https://doi.org/10.1002/sam.11446 

 
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R., 

2014. New global forest/non-forest maps from ALOS PALSAR data (2007-2010). 
Remote Sens. Environ. 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 

 
Simon, P., 2006. Including omission mistakes in the calculation of Cohen’s Kappa and an 

analysis of the coefficient’s paradox features. Educ. Psychol. Meas. 66, 765–777. 
https://doi.org/10.1177/0013164405285548 

 
Southee, F.M., Treitz, P.M., Scott, N.A., 2012. Application of lidar terrain surfaces for soil 

moisture modeling. Photogramm. Eng. Remote Sensing 78, 1241–1251. 
https://doi.org/10.14358/PERS.78.11.1241 

 
Town of Kapuskasing, 2020. Forestry [WWW Document]. URL 

http://www.kapuskasing.ca/en/growing/Forestry.aspx (accessed 10.26.20). 
 
 



 84 

United States Geological Survey, 2019. Landsat Surface Reflectance Data, U.S. 
Geological Survey Fact Sheet 2015-3034. 
https://doi.org/https://doi.org/10.3133/fs20153034 

 
Vernimmen, R., Hooijer, A., Yuherdha, A.T., Visser, M., Pronk, M., Eilander, D., Akmalia, 

R., Fitranatanegara, N., Mulyadi, D., Andreas, H., Ouellette, J., Hadley, W., 2019. 
Creating a lowland and peatland landscape digital terrain model (DTM) from 
interpolated partial coverage LiDAR data for Central Kalimantan and East Sumatra, 
Indonesia. Remote Sens. 11. https://doi.org/10.3390/rs11101152 

 
Vitt, D.H., Wieder, R.K., Scott, K.D., Faller, S., 2009. Decomposition and peat 

accumulation in rich fens of boreal Alberta, Canada. Ecosystems 12, 360–373. 
https://doi.org/10.1007/s10021-009-9228-6 

 
Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A., Liu, D.L., 2018. High 

resolution mapping of soil organic carbon stocks using remote sensing variables in 
the semi-arid rangelands of eastern Australia. Sci. Total Environ. 630, 367–378. 
https://doi.org/10.1016/j.scitotenv.2018.02.204 

 
Warrens, M.J., 2011. Weighted kappa is higher than Cohen’s kappa for tridiagonal 

agreement tables. Stat. Methodol. 8, 268–272. 
https://doi.org/10.1016/j.stamet.2010.09.004 

 
Were, K., Bui, D.T., Dick, Ø.B., Singh, B.R., 2015. A comparative assessment of support 

vector regression, artificial neural networks, and random forests for predicting and 
mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 
52, 394–403. https://doi.org/10.1016/j.ecolind.2014.12.028 

 
Wu, W., Yang, Q., Lv, J., Li, A., Liu, H., 2019. Investigation of Remote Sensing Imageries 

for Identifying Soil Texture Classes Using Classification Methods. IEEE Trans. 
Geosci. Remote Sens. 57, 1653–1663. https://doi.org/10.1109/TGRS.2018.2868141 

 
Yang, R.M., Zhang, G.L., Liu, F., Lu, Y.Y., Yang, Fan, Yang, Fei, Yang, M., Zhao, Y.G., Li, 

D.C., 2016. Comparison of boosted regression tree and random forest models for 
mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 
60, 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036 

 
Zhu, A.X., 1997. Measuring uncertainty in class assignment for natural resource maps 

under fuzzy logic. Photogramm. Eng. Remote Sensing 63, 1195–1202. 
 
 
 
 



 85 

Appendix A 
 
 
 
 

 
 

Figure 12 - Variable importance for models for Hearst, GCF and GCB regions. 
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Appendix B 
 
 
 
The bounds for the ASCII tables corresponded to the NAD 1983 Lambert Conformal Conic 

projection.  This coordinate system was applied for all ASCII tables for each targeted study 

area.  The Hearst region corresponded to the extent of 12,576,550 for top, 12,551,740 

for bottom, 1,001,800 for left and 1,055,350 for right.  The layers for this region 

correspond to matrices with 1785 columns by 827 rows.  For the GCF region, the extents 

were 12,566,620 for the top, 12,493,630 for the bottom, 1,047,970 for the left and 

1,155,790 for the right; this resulted in layers of matrices with 3594 columns by 2433 

rows.  The ARF region had extents for 12,537,340 for top, 12,511,930 for bottom, 

1,152,070 for left and 1,191,400 for right, which corresponded to layers with matrices of 

1311 columns by 847 rows.  Only pixels within the boundary polygon confines contained 

relevant information; pixels outside the boundaries were specified as no-data.  
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Figure 13 - Prediction maps for soil texture for the Hearst region. 
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Figure 14 - Prediction maps for calcareous substrate reaction for the Hearst region. 

 
 
 
 
 

Hearst Model GCB Model

R
F

SV
M

 R
ad

ia
l

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00

SV
M

 L
in

ea
r

HCl 10% Reaction
n k

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00

1010000

1010000

1020000

1020000

1030000

1030000

1040000

1040000

1050000

1050000

12
55
00
00

12
55
00
00

12
56
00
00

12
56
00
00

12
57
00
00

12
57
00
00

12
58
00
00

12
58
00
00



 89 

 
 
 
 

 
 

 
 

Figure 15 - Prediction maps for ELC moisture regime for the Hearst region. 
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Figure 16 - Prediction maps of soil texture for RF models for the GCF region. 
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Figure 17 - Prediction maps of calcareous substrate reaction for RF models for the GCF region. 
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Figure 18 - Predictions maps of ELC moisture regime for RF models for the GCF region. 
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Figure 19 - Entropy maps for uncertainty of predictions for RF models for the Hearst region. 
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Figure 20 - Entropy maps for uncertainty of predictions for RF models for the GCF region. 
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Figure 21 - True-color composite from Landsat-8 imagery for the summer of 2018 for the Hearst region. 

 
 

 
 
 

 
 

Figure 22 - True-color composite from Landsat-8 imagery for the summer of 2018 for the GCF region. 
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