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Abstract 

This dissertation describes three contributions in characterization of vegetation using 

remote sensing data, with a focus on hyperspectral and very high spatial resolution imagery. 

The new and innovative methods developed are: 1) integration of contribution theory into 

a model inversion approach to obtain high accuracy in canopy biophysical parameter 

estimation; 2) exploration and adoption of tree crown longitudinal profiles to achieve high 

accuracy in tree species classification; and 3) evaluation of canopy health state for Emerald 

Ash Borer (EAB) infestation assessment by intelligent combination of multi-sourced data. 

Specifically, the contribution index (CI), which is a simple effective measure of 

correlations between observations and targeted parameters, has been derived and 

implemented into remote sensing model inversion for parameter retrieval processing. CI 

can obtain quantitative and normalized “sensitivity” values for each band using a 

vegetation canopy model. When including CI as a weight function, the inversion 

processing would focus more on high contribution bands. As a result, it can significantly 

improve the accuracy of estimation of the parameters retrieved. 

Given the rapid advancement in spatial resolution of remotely sensed aerial imagery 

during the last decade, interest rises in the potential of very high spatial resolution 

multispectral imagery in improving the tree species classification. For the first time, the 

pioneering works on the longitudinal profile of individual tree crowns are revisited and 

explored in depth with currently available high spatial resolution imagery. It has been 

revealed that the tree crown longitudinal profile can be used to achieve high accuracy tree 
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species classification. In addition, it is also shown that using vegetation index combination 

approach can recover shaded trees from aerial imagery, which is essential for urban canopy 

studies. 

In order to demonstrate the effectiveness of remote sensing for estimation of canopy 

health state evaluation applications, a case study is conducted. Advanced remote sensing 

techniques and methodologies are employed to detect the ash Emerald Ash Borer (EAB) 

infestation at the early stage. The contribution of this study is the innovative development 

of a data integration methodology; the handling and analysing of the multi-sourced data in 

order to achieve optimized classification or estimation results. A new generalized 

workflow is proposed for future similar applications: 1) individual tree segmentation; 2) 

biophysical parameter retrieval using model inversion and vegetation indices; 3) parameter 

normalization and conversion; and 4) final evaluation function and result estimation. 
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1 Introduction

This chapter underlines the importance of quantitatively characterizing vegetation

canopies. The challenges in such studies are presented, and the research motivation is

introduced. It is followed by the research goal and objectives, which aim at developing

innovative methodologies to obtain ground vegetation object characteristics precisely

and effectively. The contributions of this dissertation are presented next. Finally, the

chapter concludes with a summary of the dissertation organization.

1.1 Quantitative characterization of the Earth’s vegetation

using remote sensing techniques

Vegetation covers approximately 70% of the Earth’s land surface and is considered as

one of the most fundamental land coverage types (Darvishzadeh, 2008). Reliable and

quantitative information of vegetation properties is required to understand, monitor

and manage the global environmental changes (e.g., climatic, ecosystem) (Matzler,

2008; Peddle et al., 2007). However, due to the Earth’s wide variety of vegetation

types and environments (e.g., Arctic tundra, tropical forest, savannah, desert scrub.),

it is difficult to characterize its vegetation. Figure 1.1 shows a vegetation example

taken from one of testing sites near Thessalon, Ontario, Canada. The left image shows

the complex canopy composition (e.g., different species and large variation of heights),
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while the right image shows the structure of the canopy’ layers. To understand these

types of surface objects using traditional in-situ survey techniques is very difficult,

expensive and labour intensive. This is particularly true in countries like Canada,

which combine large areas of vegetation landscapes in extreme winter environments.

Therefore, there is an urgent need to develop effective methodologies to monitor their

natural resources.

Figure 1.1: The typical canopy of one of testing sites near Thessalon, Ontario, Canada.

Left: side view shows the complex canopy composition; Right: upper view from ground

shows the canopy’s structural variation at different heights.

As defined by Lillesand et al. (2008), “Remote sensing is the science and art of

obtaining information about an object, area, or phenomenon through the analysis of

data acquired by a device that is not in contact with the object, area, or phenomenon

under investigation”. Remote sensing is being widely recognized as the science that

uses a variety of sensors to acquire information and subsequently that can characterize

different vegetation types, at various scales, particular at regional, continental and

global scales (Atzberger, 2013; Kuenzer et al., 2011). This is due to its global coverage,

repeatability, non-destructiveness, high flexibility and relative low cost (Ahamed et al.,

2011; Rosenqvist et al., 2003). At large spatial scales, spaceborne remote sensing
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sensors scan the entire Earth’s surface in a relatively short period of time, normally in

days, even hours. Figure 1.2 shows a biomass distribution map from the spaceborne

Advanced Very High Resolution Radiometer (AVHRR). The AVHRR is a radiation-

detection imager that can be used for remotely observing surface and atmospheric

properties, which are critical for environmental monitoring, economic assessment and

resource management1. To obtain a similar map using traditional ground methods

would be a very time consuming and expensive project. For small scale and emergency

response tasks, where budgets and time are critical, airborne remote sensing techniques

can offer rapid and flexible deployment at a low operational cost (Jensen, 2007).

Figure 1.2: A vegetation biomass distribution map from AVHRR (1 km spatial res-

olution). Green shows higher biomass, while yellow indicates lower biomass. Cour-

tesy of Canada Centre for Remote Sensing (CCRS) and Natural Resource Canada.

http://geogratis.cgdi.gc.ca/clf/en?action=noaa. Last access: June 25, 2014. Used under

non-commercial purpose permission.

1Satellite Products Services Division. Advanced Very High Resolution Radiometer - AVHRR.
http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html. Last accessed: August 25, 2014.
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From the point of information retrieval, visual interpretation is currently employed

by the Canadian forestry sector, which typically provides qualitative evaluation (e.g.,

vegetation or non-vegetation) and moderate accuracy in species inventory maps (the

composition of vegetation species with an area are estimated at typical 60–70 % accura-

cy). Using very high spatial resolution aerial imagery (Figure 1.3), image analysis spe-

cialists would interpret this aerial image by outlining the boundaries of, and assigning

the areas’ primary tree species. The quality of the boundary lines and measurements

from this approach heavily depends on the interpreters’ experiences.

Advanced remote sensing methodologies aim to improve quantitative characteri-

zation of vegetation properties that can be adopted, for example, for forest inventory

updates (Coggins et al., 2013). Significant efforts have been made to develop models

and algorithms to extract important vegetation spectral characteristics (e.g., “green

peak”, “red edge”), angular reflectance distribution (reflectance variability observed at

different angles), and temporal variations (e.g., growth, seasonal changes) from remote

sensing data (Ozdogan et al., 2010; Weiers et al., 2004).

1.2 Research motivation

Despite the importance of the quantitative characterization of vegetation canopies,

extraction of their properties from remote sensing data accurately and efficiently is

still challenging. This is due to the complex nature of vegetation canopies (e.g., the

same vegetation species may have different spectral signatures and different vegeta-

tion species may share some spectral similarity), compounded by the constraints in

the physical configurations of sensors and associated observation noise. The recent

advances in remote sensing technologies provide data with unprecedented resolution
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Figure 1.3: A very high spatial resolution aerial imagery over Rover Creek site near Castle-

gar, British Columbia, Canada. The forest sector uses such images for inventory maintenance

by visual interpretation techniques.

in both, spatial and spectral (very high spatial resolution, and hyperspectral sensor,

respectively) thus, they provide a good opportunity to improve vegetation charac-

terization. With detailed spectral and spatial information provided by hyperspectral

and very high spatial resolution data, subtle difference in the spectral and spatial

properties among vegetation canopies can be detected and used. To fully realize the

potential of these data sources, advanced methods for data interpretation and analysis

are required.

This research focuses on developing innovative state-of-art data analysis and in-

formation retrieval methodologies that can be used to accurately and effectively char-

acterize the properties of various vegetation canopies. To improve the accuracy of
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vegetation characterization from remote sensing data, one must specify the format of

the “interesting information”. Only when the information is determined, can existing

methods be reviewed, their limitations be revealed, and improvements be proposed.

In this study, the focus is on biophysical/biochemical parameter retrieval, vegetation

species classification, and tree health state estimation. In most of current existing

methods, empirical relationships between vegetation properties and remote sensing

observations are established, and validated for specific study areas and with specific

data. Strictly speaking, these methods are normally valid on the cases they are de-

veloped. Other scenarios require a suitability determination prior to applying them.

If it is found not applicable, these methods simply cannot be used. This seriously

constrains the effectiveness and usefulness of such methods towards extracting reliable

information. Developing data analysis methodologies that are less dependent on the

characteristics of a sensor and its observations would significantly improve the effective-

ness of remote sensing techniques. Therefore, the ideal method for data processing is

the one that evaluates the correlation with the physical model, and can be very flexible

on the observation characteristics. In this research, an innovative integration of con-

tribution theory (Hoaglin and Welsch, 1978) into physical model inversion parameter

retrieval processing, is developed to derive the contribution index that is: an indicator

that evaluates the correlations between observations and parameters of interest solely

from physical models, applicable to any data specifications and independently from

associated noise. The details are discussed in Chapter 3 of this dissertation.

It is generally accepted that instrumentation development and observation method-

ology improvements have advanced more rapidly than data processing methodologies

and modelling in remote sensing (Atzberger, 2013; Ozdogan et al., 2010). The ad-
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vancement in instrumentation development, such as higher computation power and

new satellite sensors, provides a large volume of high quality observations which have

not yet been fully exploited. For example, increasing spectral and spatial resolution

of the observations can capture more spectral and spatial details of ground features.

In certain studies, one needs to downscale the data by resampling to reduce their s-

patial resolution to a lower value to fit the model applicable scale. This leads to the

re-evaluation and improvement of existing methodologies and mathematical models

that were limited in the past by data quality. One of the major improvements in

remote sensing data quality is in spatial resolution. The spatial resolution of the space

borne sensor systems has been improved from the kilometre to the centimetre level,

which inspired me to derive critical information from high spatial resolution imagery

for use in vegetation characterization. The longitudinal profile of the tree crown has

been remodelled for new very high spatial resolution imagery and can deliver critical

spatial pattern information for tree species classification. Precise species classification

information is the most critical foundation for all vegetation associated studies.

After 40 years of development, a very large volume of remote sensing data has been

accumulated. However, these data have been collected by a wide range of sensors under

various specifications, and processed and corrected by different methodologies. In most

studies, information obtained from remote sensing data is validated by data from other

sources, remotely sensed or not (e.g., paper records, maps). While remote sensing has

benefited from rich data originating from various of remote sensing platforms, it is

a challenge to employ them intelligently, effectively and appropriately. Non-remote

sensing data are currently used as ground truthing for final accuracy validation purpose

only. It is recognized that they also have potential for including them directly for
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processing analysis and interpretation. This inspired my commitment to use multiple

sourced data, whether remotely sensed or not, to improve vegetation characterization.

1.3 Research goal, objectives and contribution of this disser-

tation

The goal of this research is to improve existing and develop new innovative remote

sensing data analysis methodologies to fully realize the potential of current high vol-

ume, superior quality and multi–sourced remote sensing data to improve the accuracy

and precision of vegetation characterization. Simply stated, this dissertation develops

state–of–art data processing methodologies to accurately extract vegetation properties

using quantitative biophysical parameters, such as tree species, tree heights, and leaf

chlorophyll content from high spectral and spatial remotely sensed data.

Accurate retrieval of biophysical parameters is the key to the success of quantitative

remote sensing. For example, the retrieval of leaf area index (LAI), tree heights, tree

crown sizes and canopy distribution can provide an accurate and detailed description

of the targeted canopy. My first focus is to develop an effective, simple and robust

methodology that can accurately retrieve biophysical parameters from the observa-

tions, which means higher retrieval accuracy than current approaches without extra

computation cost. It is also less dependent on observation characteristics, which means

the methodologies can be adopted by different retrieval approaches and be applicable

on different data. In this study, a contribution index (CI) is designed to quantify

the impact of each observation on the retrieval of model parameters. It accounts for

the sensitivity of the given observation to the model parameters to be retrieved and

the observation uncertainty (e.g., systemic and random errors from the sensors and
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measurements).

Tree species classification is critical in forestry studies. The first step of most

forestry studies requires tree species information. For example, to investigate whether

there are possible infestations of insects or bugs, tree species must be identified first.

This is due to the fact that most infestations are species specific. My second focus is

to explore and identify new features for species classification improvement that leads

to my second significant contribution.

Last, I develop effective integrated data analysis to address the urgent need of

intelligently employing large remote sensing data sets. For the same research field,

data from non-remotely sensed sources are also collected (e.g., ground survey records,

historical documentations). All these data can potentially be used to obtain useful

information on the ground target. Multi-sourced data can be processed separately

or integrated together. Information derived from different data may or may not be

consistent due to differences in information interpretation methodologies and ground

object properties. Traditional processing approaches and algorithms are not sufficient

to handle multi-sourced data.

The research objectives in this study are:

1) Intelligent integration of a CI towards the improvement of the accuracy of

the retrieval of the biophysical parameters of vegetation canopies from hyperspectral

remote sensing data.

2) Adoption of innovative spatial features (longitudinal profile of individual

tree crowns) derived from very high spatial resolution imagery in order to improve

classification accuracy. This is an important but neglected feature that could not be

captured in the past due to limitations in image spatial resolution.
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3) Development of a data integration and intelligent analysis methodology

that requires an innovative approach to integrate multi-sourced data in order to achieve

optimized classification or estimation results.

The achievement of the above objectives have generated three peer-reviewed articles

published in international journals: the Canadian Journal of Remote Sensing, the

Remote Sensing, and the Journal of Applied Remote Sensing, respectively. In addition,

the research results have been presented at international conferences, such as the

“Canadian Symposium of Remote Sensing” (CSRS) and the “International Geoscience

and Remote Sensing Symposium” (IGARSS). Chapters 3 to 5 of this dissertation are

the based on the published (or accepted) papers.

1.4 Dissertation outline

This is a publication based dissertation, and is organized around published papers.

Chapter 1 provides an introduction to this research, including my research motivation,

goals, objectives and contributions. Chapter 2 presents the supportive material for a

more detailed background related to the three published papers. For all three papers

(Chapter 3–5) I am the primary contributor, first and corresponding author. My

contributions and roles in these scholarly articles include but are not limited to initial

objective development, overall literature reviewing, methodologies development, data

processing (including new software development and use of commercial tools), result

validations, and manuscript preparation and revisions.

Chapter 3 is the first published paper (Zhang et al., 2011). It constitutes further

development of my conference paper, Zhang et al. (2009). It describes a new method I

proposed to improve the biophysical parameter retrieval accuracy from hyperspectral
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imagery. In this chapter, I introduce the new CI based on contribution theory, which

was originally developed for geodetic surveys (Hoaglin and Welsch, 1978) to the stan-

dard of Look–Up–Table (LUT) model inversion approach. I evaluate the correlations

between observations and targeted parameters prior to the inversion process and take

the individual observation noise into consideration. The inversion is performed on the

highly correlated and low noise spectral bands. As a result, the inversion accuracy is

expected to be higher.

Chapter 4 is the second published paper (Zhang and Hu, 2012). I explore a spatial

feature called the “longitudinal profile”, which is an intensity section of the individual

tree crown tops from very high spatial resolution imagery. I derive spatial information

from it, and use it to improve tree species classification accuracy. The approach

for extracting longitudinal profiles is developed in this chapter based on the pioneer

work of Fourier et al. (1995). The significant improvement of the spatial resolution of

the multispectral imagery enables tree crown spatial pattern identification for species

classification improvement.
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Chapter 5 is the third published paper (Zhang et al., 2014). It is the in-depth

development of my conference paper, Zhang et al. (2012). It reports a case study

that integrates multi–sourced data to evaluate the health state of ash trees in the

town of Oakville, Ontario, Canada. Current remote sensing data provide a lot of

information, but from different sensors, in different formats (e.g., spectral and spatial),

and of different quality (with or without multiple corrections and calibrations). In this

case study, I include non–remote sensing data, such as paper community maps and

documents. Existing classification approaches were not found sufficient handle all the

data assimilation intelligently. The data are constrained to fit into standard models,

which cause information loss. I conclude the research contributions with a case study

in early detection of Emerald Ash Borer (EAB) infestation of ash trees in southern

Ontario. My case study demonstrates an approach that can intelligently integrate all

information retrieved from multi-sourced data, and apply it to increase the possibility

of detecting EAB infestation in its early stages.

Chapter 6 concludes the research work, highlights the contribution and points out

limitations and possible areas for future investigations.
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2 General background

This chapter provides details of supportive material of the conducted research. It

is organized in three major sections: 1) it begins by introducing remote sensing in

general; 2) it is then followed by detailed descriptions of major sources and types

of remote sensing data; 3) the topics on the current remote sensing data processing,

analysis and interpretation are presented. Part 1 provides a general understanding and

an overall big picture of remote sensing. Since a few types of remote sensing data are

used in my studies, it is important to have a compensative review of different remote

sensing sensors and their data, which is why part 2 is presented. The model inversion

approach and information retrieval is one of the main focus, therefore, it is necessary

to include a review for different models and information retrieval methodologies, which

is part 3.

In the introduction section, the history of the development of remote sensing is

reviewed; the primary characteristics of remote sensing are identified; and the general

workflow of remote sensing data acquisition, transmission and analysis are presented.

Then, the two main components of remote sensing, namely instrument development

and data analysis are discussed, leading to the next two major sections of this chapter

namely, different data sources and data analysis and interpretation (data mining).

In the data source section, the focus is on the data used in this research, namely

multi/hyperspectral, multi-angular data, and high/very high spatial resolution im-
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agery. Multi/hyperspectral data are very similar, differing mainly in the number of

the bands, which is defined as “the specific wavelength intervals in the electromagnetic

spectrum of remote sensing instrument” (Jensen, 2007).

The information retrieval procedure is normally divided into two steps: the feature

extraction and the information extraction. A spectral feature in multi/hyperspectral

data can be the reflectance in an individual bands or individual band or result of

transforming the reflectance values associated with multiple bands. In the context of

high spatial resolution imagery, spatial features, such as texture, can be extracted to

describe the spatial patterns of vegetation canopies. “Information”, is understood as

“facts derived from observations that can be provided or learned about someone or

something”. For example, the hyperspectral data requires remote sensing expertise

to understand and process; however, the tree heights as information derived from hy-

perspectral data can be easily understood by everyone. The information extraction

process is briefly introduced with forward modelling and radiative transfer models,

and in the retrieval of biophysical parameters, which includes the vegetation index,

model inversion approaches, and species classification. The forward modelling of ra-

diative transfer models is using mathematical equations to simulate the observations

via a designed set of parameters, while the model inversion (or inverse modelling) are

refereed to the procedure that determines the optimal parameter set that produces

the most similar spectra comparing with the observed one. The contribution analysis

is a very important methodology and it is adopted throughout this research.
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2.1 Introduction to remote sensing

Remote sensing science has its roots in photography (Jensen, 2000). However, remote

sensing was not considered a branch of science, rather it was regarded only as a tool or

a method in data collection (Matzler, 2008). The term “Remote Sensing” was coined

by the geographers at the US Office of Naval Research in the 1960s at about the time

when the “spy satellites” were beginning to move out of the military sphere and into

the civilian milieu (Cracknell and Hayes, 2007). Any definition of remote sensing, e.g.,

by Lillesand et al. (2008), includes two important characteristics: remotely acquired

data and dedicated data analysis methodologies. Remote sensing data acquisition is

conducted by instruments not physically in contact with the target of study. This

unique attribute has allowed remote sensing to gain wide recognition and adoption

in a variety of fields, particularly in Earth surface vegetation studies (e.g., forest and

agriculture). It is unobtrusive, which means it does not disturb the object or area of in-

terest and can have very high flexibility in terms of access ability (Ahamed et al., 2011;

Pu and Gong, 2000). In this study, the focus of remote sensing is on the Earth surface

objects, which primarily involves interactions of incident radiation on the targets of

interest. It is different from the another important remote sensing branch namely,

atmospheric remote sensing, which is of interest mainly in the atmospheric energy and

aerosol interaction. However, the overall remote sensing data acquisition and analysis

is a lengthy and complicated process, and it is shown in Figure 2.1. In Figure 2.1, step

A is energy source or illumination, B is radiation and the atmosphere, C is interaction

with the target, D is recording of energy by the sensor, E is transmission, reception,

and processing, F is interpretation and analysis and G is applications (Canada Centre

for Remote Sensing (CCRS)).
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Figure 2.1: From step A to G, the overall data acquisition, processing and analysis proce-

dures of remote sensing provided by CCRS. [Courtesy of CCRS. Used under non-commercial

purpose permission. http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-

air-photos/satellite-imagery-products/educational-resources/14621. Last access: August 25,

2014]

This chapter is organized in two main components: instrumentation and data pro-

cessing and analysis (Matzler, 2008). The instrumentation component addresses the

question: How is the reflected or emitted electromagnetic energy from ground targets

recorded by a device or sensor, such as camera, multispectral scanner, hyperspectral

scanner, RADAR (RAdio Detection And Ranging), and LiDAR (Light Detection And

Ranging). The data analysis component aims to answer the following question: How

can we extract biophysical parameters of surface objects from remotely sensed data to

solve important problems? (Jensen, 2007).
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2.2 Different remote sensing data sources

Remote sensing of the Earth’s surface, whether land or ocean is carried out using

a variety of different instruments. These instruments work in a range of different

wavelengths (e.g., visible (420 - 680 nm), near inferred (800 - 1000 nm)) bands of

the electromagnetic radiation spectrum and employ various recording techniques or

systems, such as cameras, multispectral scanners, sonar, radar, and LiDAR (Cracknell

and Hayes, 2007). As a result, there are many different types and forms of remote sens-

ing data available. They are divided into different classes by their wavelengths, such

as visible and thermal instruments. They can also be categorized by their platforms,

which are ground based, airborne and spaceborne (satellite based). In most cases,

they are characterized by their attributes, such as spectral and spatial resolutions.

Let us start with a general comparison between multi/hyperspectral remote sens-

ing. They are arguably the most popular data in remote sensing and have been used

throughout this research. They are normally mentioned together due to their sim-

ilarity. They both target on the spectral signature of ground targets, which means

that they measure the reflected radiance at different wavelengths. Radiance is the

measure of radiation flux that passes through or is emitted from a surface and falls

within a given solid angle in a specified direction. The unit of radiance is normally

Wsr−1m−2. Irradiance is the power of electromagnetic radiation per unit area incident

on a surface, which has a unit of W/m2. Reflectance is the ability of a surface to reflect

electromagnetic radiation, and is measured by the ratio of the reflected flux to the in-

cident flux, thus it is a fraction of 0 to 1 or a percentage (Jensen, 2007). The primary

differences between multi/hyperspectral data are the number of spectral bands (e.g.,

ETM+ 6 bands vs. CASI 63 bands), discrete vs. continuous, and bandwidth (broad
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(> 10 nm) vs. narrow (< 5 nm)) as shown in Figure 2.2. For vegetation studies,

multi/hyperspectral data capture the spectral characteristics of vegetation canopies,

which are primarily affected by the internal and external structure and biophysical

and biochemical parameters of the plants, such as leaf pigments, leaf water content,

and leaf dry matter (Gates et al., 1965; Goel and Grier, 1988; Jacquemoud et al.,

1995). Compared with multispectral remote sensing data, hyperspectral data cover

more spectral details due to the additional bands. For most vegetation studies, some

bands, such as green, blue, red and NIR, are much more important than others. Using

hyperspectral data, there is no need to identify the band during the data acquisition

phase, which means more potential for future data analysis, but at a trade-off of data

acquisition cost and complexity.

Figure 2.2: Visual differences between discrete and continuous spectra of the same target

(typical alive green vegetation) in ETM+ (6) multispectral and CASI (62) hyperspectral

bands.
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2.2.1 Multispectral remote sensing data

A multispectral image is a collection of several monochrome images of the same scene,

each of which is taken at discrete and broad bands of bandwidth greater than 10 nm

(Jensen, 2000). Normally, multispectral images have only a few bands (e.g., ETM+

six spectral, one thermal and one panchromatic bands) and broad bandwidth as shown

in Figure 2.2.

The first satellite-based multispectral sensor was the Multispectral Scanner Sensor

(MSS) on board Landsat 1. Landsat 1 was the first Earth-observing satellite launched

by NASA on July 23, 1972, to study and monitor our planet’s landmasses. The MSS

recorded data in four spectral bands: green (500 - 600 nm), red (600 - 700 nm), and

two infrared bands (700 - 800 and 800 - 1100 nm) at spatial resolution of 79 metres

(green, red and near-infrared) and 240 metres for thermal. As stated on NASA website:

“[MSS] To help understand the data and to explore the potential applications of this

new (multispectral) technology ...” Later, improved versions of sensors were launched

on newer Landsat missions, from MSS, to Thematic Mapping (TM) and Enhanced

Thermal Mapping Plus (ETM+) sensors (Jensen, 2000; Lillesand et al., 2008). The

Landsat program provides in the longest global Earth observation data series, which

are essential for climate change studies and other environmental concerns (Gray and

Song, 2013). The latest Landsat 8 was launched on February 11, 2013 through the

Landsat Data Continuity Mission (LDCM) with the new multispectral sensor called

Operational Land Imager (OLI) on payload.

Other satellite based multispectral sensors include, but not limited to Moderate

Resolution Imaging Spectroradiometer (MODIS), Geostationary Operational Envi-

ronmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR),
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Systeme Pour l’Observation de la Terre (SPOT) (Jensen, 2007; Lillesand et al., 2008).

2.2.2 Hyperspectral remote sensing data

Hyperspectral remote sensors collect dozens or hundreds of narrow, adjacent, contigu-

ous spectral bands simultaneously. A typical hyperspectral spectrum of live green

vegetation and soil is shown in Figure 2.3. In Figure 2.3, the hyperspectral spec-

trum captures the very fine detail curves of the different ground targets, which in this

case, are live green vegetation and soil. These two curves show very obvious differ-

ences through out the entire wavelength range, which allows for a good recognition

and separability of these two types of ground targets. Generally speaking, the broad

concept of hyperspectral remote sensing combines conventional imaging, spectroscopy,

and radiometry to produce images together with spectral signatures associated with

any spatial resolution elements (pixel) (Thenkabail et al., 2012). These sensors can

discriminate between ground surface features that have absorption and reflection char-

acteristics and can be easily diagnosed over narrow wavelength internals, and the

conventional multispectral scanners where such characteristics are “lost” within the

relatively coarse bandwidths of the various bands (Lillesand et al., 2008).

Most hyperspectral sensors are airborne, such as the Airborne Visible-Infrared

Imaging Spectraometer (AVIRIS) (224 bands, 400< λ < 2450 nm at approximately 9.6

nm interval), the Compacted Airborne Spectrographic Imager (CASI) (288 bands/62

bands, two modes, 400 < λ < 1050 nm at 1.9 nm / 5 nm interval) (O’Neill et al., 1997),

and PROBE-1 (128 bands, 400 < λ < 2500 nm at 11 – 18 nm interval) (Lillesand

et al., 2008). Some well known satellite-borne hyperspectral sensors are the Hyperion

(220 bands, 400 < λ < 2500 nm at approximately 1 nm interval) (Jensen, 2007),

20



Figure 2.3: The hyperspectral spectra of typical live green vegetation and soil. Notice the

obvious spectral curve differences through the entire range, which can be used to distinguish

these two types of ground objects.

and the Compact High Resolution Imaging Spectrometer (CHRIS) (Two modes: 19

bands/ 18 meters resolution or 63 bands/36 meters resolution 415 < λ < 1050 nm at

different bandwidths) (Cutter, 2000; Smith et al., 2005).

Hyperspectral data are used in various classification studies, such as mineralogy,

soil, vegetation and atmosphere (Pu and Gong, 2000; Thenkabail, 2001). However,

these studies focus on different spectral regions (e.g., mineral spectra interests 400–

2400 nm region; vegetation spectra targets more at 400–1000 nm). Since hyperspectral

data come in large data volumes and dimensions, they have unique characteristics to

understand, process and analyze, such as very detailed spectral features of the ground

21



target, very high data redundancy and complicated correlations between bands. In

this study, a new methodology is developed to evaluate the correlations between the

spectral bands and the target parameters in order to adopt the model inversion on these

most “important” and “sensitive” observations. As a result, using this methodology

improvement of the overall parameter retrieval accuracy from the hyperspectral data

can be guaranteed. In this research I am using hyperspectral data from CASI and

CHRIS to demonstrate the effectiveness of this new methodology.

2.2.3 High and very high spatial resolution imagery

High (sub-metre to metre level) and very high (sub-metre to centimetre level) spatial

resolution imagery mainly focuses on the spatial details of the ground targets (Rich

et al., 2010; Wulder et al., 2004). It retrieves and interprets information from imagery

using spatial pattern recognition, which detects similar patterns to “known” features.

Therefore, it was initially recognized more as a computer science question rather than

a remote sensing analysis and interpretation one, e.g., how to identify if the shapes

are the same; how to extract the shape (Klassen et al., 2004; Kulikova, 2009; Larsen

and Rudemo, 1998, 2004; St-Louis et al., 1998). However, spatial information, such

as the side and top shape, texture, profiles (vertical sections), and patterns of tree

crown, which can all be determined by remote sensing image processing techniques,

have been considered as key visual criteria when extracting information from imagery

for vegetation and forestry applications (Franklin et al., 2001; Tso and Mather, 2009).

Historically, fine spatial resolution satellite imagery (at the level of tens of metres)

had been reportedly used in land cover mapping at the regional and global scale, but

not at the scale of individual crowns (Aplin et al., 1999). The limited spatial resolution
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was the primary issue at that time. As a result, the focus was on improving the spatial

resolution of the sensors. In 1999, the first IKONOS commercial high spatial resolu-

tion satellite (0.82 m at panchromatic (450–900 nm) band) was launched. In 2001,

Quickbird provided 0.61 metre spatial resolution satellite images to the public. Later,

WorldView-1 (2007) and -2 (2009) offered 0.46 metre spatial resolution imagery2. In

2008, GeoEye-1 (0.46 metre) was put in use3. In 2011, AIRBUS Defence and Space

Pleiades-1A satellite sensor (0.5 metre spatial resolution) was successfully launched4.

Recently (2014), GeoEye-2 was announced to be renamed as WorldView-4 and will

be launched in 20165. At the same time, due to rapid development, airborne imagery

can provide much higher spatial resolution than the satellite based sensors, at a much

lower cost and higher flexibility. Airborne sensors can presently achieve a spatial res-

olution at centimetre level with a budget of a few thousand dollars (2012 Canadian

dollars). High and very high spatial resolution imagery provides new possibilities for

remote sensing imagery data analysis.

Technically, high and very high spatial resolution imagery can be considered as

multispectral imagery as well. In most cases, the high spatial resolution imagery has

at least three spectral bands (e.g., the natural colours: Red (600 – 700 nm), Green

(500 – 600 nm), and Blue (400 – 500 nm)). Recent high spatial resolution imagery

also includes NIR (800 – 1000 nm). The spatial details of the high spatial resolution

imagery naturally can be used as additional evidence to support the spectral features

in surface object classification, such as tree species classification. However, it is rarely

2http://www.satimagingcorp.com/satellite-sensors/worldview-2/

3http://www.satimagingcorp.com/satellite-sensors/geoeye-1/

4http://www.satimagingcorp.com/satellite-sensors/pleiades-1/

5http://www.satimagingcorp.com/satellite-sensors/geoeye-2/
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used in synergy with multispectral data in imagery classification. This was due to

the fact that majority of botanist’s tree shape recognition literature is based on tree

side-views rather than crown top views.

In most remote sensing data, only a portion of the tree crown (top view) is visible

in imagery, which made the reproduction of the tree shape difficult. The spatial infor-

mation that can be used in imagery classification is the 2D top view. Therefore, the

classification mainly depended on the experience of the imagery interpreters. Another

challenge of using tree top shape is the within class variation, which means the trees of

the same species are generally similar, but there are noticeable differences between in-

dividuals. It is difficult to identify a consistent feature, and its measurement, that can

represent the unique characteristic of a tree species. Tree shape comparison should be

considered as a fuzzy process, which requires a high flexibility around a known feature.

Simply stated, in order to successfully employ high/very high spatial resolution data,

I need to answer the following two questions: 1) what feature is to be measured? and

2) how to quantify this feature in a consistent, effective and accurate matter?

In this study, I employed an object oriented approach to improve the tree species

classification. The object oriented approach has two main advantages comparing to the

traditional pixel based methods: 1) it combines the spectral and spatial information

together instead of using solely conventional statistical results (Matinfar et al., 2007);

2) it eliminates the surrounding background interference. Figure 2.4 illustrates these

two advantages. From Figure 2.4.b, it is obvious that pixel based methods considering

each individual pixel as isolated elements. The statical results are based on entire

image or a subset of it. No spatial correlations were taken into account. While Figure

2.4.c shows the object oriented approach takes the entire tree crown as basic elements,
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which enable the calculation of the spatial correlation with these tree crowns. The

non-object enclosed area of the rest of the image can be completely filtered out, which

provides minimum background interference.

Figure 2.4: A graphic demonstration of the advantages of using object oriented approach

comparing to traditional pixel based methods. a) original true color image; b) pixel based

brightness value; 3) after segmentation tree objects with background filtered out.

2.2.4 Multi-angular remote sensing data

Early research has demonstrated that vegetated surfaces are not true lambertian sur-

faces, which are defined as an ideal “matte” or diffusely reflecting surface (Kimes,

1983). The fundamental physical property governing the reflectance behaviours a sur-

face object is it bidirectional reflectance distribution function (BRDF) (Asrar, 1989).

Simply speaking, the reflectance value of the same surface target at different illumi-

nation and view angles are different. Despite the well defined concept of BRDF, it is

impossible to be truely directly measured due to the fact that infinitesimal elements

of solid angle do not include measurable amounts of radiant flux (Nicodemus et al.,

1977). Instead, bidirectional reflectance factor (BRF) is commonly used (Bruegge

et al., 2001). BRF is defined as the ratio of the radiant flux actually reflected by a
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sample surface to that which would be reflected into the same reflected beam geometry

by an ideal perfectly diffuse standard surface irradiated in exactly the same ways as

sample (Nicodemus et al., 1977). It is an integration of radiant flux over finite solid

angles of incidence and exitance yields the “reflectance factor” (Asrar, 1989), that is

used to estimate the BRDF at specific angle and over a period of time. It is consid-

ered as the standard field measurement, which estimates the BRDF at specific angles

(Leblanc and Chen, 2000; Walter-Shen and Biehl, 1990).

Multi-angular sensors and their data are designed for obtaining adequate sampling

needed to analyse the BRDF of the surface objects, which is shown in Figure 2.5

(Kimes, 1983; Suits, 1972). The main differences between them and non-multi-angular

sensors is the multi-angular sensors are capable of taking data at different angles

simultaneously since multi-sensors are mounted and operated at the same time, while

other sensors need to reposition themselves at different view angles to collect “multiple

angled” data.

Many multiangular sensors have been developed, such as satellite based Multi-angle

Imaging Spectro Radiometer (MISR) (Wu et al., 2011)), Portable Apparatus for Rapid

Acquisition of Bidirectional Observation of the Land and Atmosphere (PARABOLA)

(Bruegge et al. (2000); Chen and Leblanc (2001)), Compact High Resolution Imaging

Spectrometer (CHRIS) (Cutter, 2000; Smith et al., 2005) and airborne ones e.g., Polar-

ization and Directionality of the Earth’s Reflectances (POLDER) (Chen and Leblanc,

2001; Lallart et al., 2008), Frequent Image Frames Enhanced Digital Ortho-rectified

Mapping (FIFEDOM) (Hu et al., 2007). CHRIS data is originally designed to take

advantage of both high spectral resolution and multiangular views when observing the

Earth’s surface (Barnsley et al., 2004; Hu et al., 2009; Smith et al., 2005).
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Figure 2.5: The basic concept of multi-angular remote sensing. The same ground target

(e.g., a tree), will be captured multiple times at different observation angles.

2.2.5 Data fusion

It is worth mentioning a very important and popular topic called data fusion. Data

fusion in remote sensing normally referring to combination of image data from more

than one types of sensors (Lillesand et al., 2008). The main objective of data fusion

is to produce a fused result that provides the most detailed and reliable information

possible. Therefore, it normally involves improvement in spatial resolution of the

multispectral/hyperspectral images. There are three different levels of data fusion 1)

pixel level; 2) feature level; 3) information level. Classic remote sensing data fusion

methods focus on pixel level, e.g., Brovey method, High pass filter, IHS (Intensity-

Hue-Saturation) and PCA (Principal Component Analysis) basis (Jensen, 2007). In

2012, Jing and Cheng (2012) summarized and reviewed all existing pixel based ap-

proaches, and provided detailed discussion and comparison validations. The feature
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and information level data fusion are more popular in social and economic studies. In

this study, I explored the potential of integrating remotely sensed and non-remotely

sensed data at feature/information level to deliver accurate environmental assessment.

2.3 Information retrieval from remote sensing data

Humans are adept at interpreting objects, from visual contact, photo or spectral inter-

pretation. At the early stage, image analysis was mainly done by visual interpretation.

In modern remote sensing, “observation” is defined as the processed measurements

from remote sensing sensors after essential corrections, such as atmospheric, geomet-

ric and radiometric, normally in the form of reflectance or radiance and stored digitally.

Therefore, data analysis component of remote sensing will answer the question about

how to extract information from remotely sensed observations.

However, atmospheric effect, the interaction of direct solar radiation and of the ra-

diation reflected from the target with the atmospheric constituents interfere with this

process of remote sensing (Asrar, 1989), should be considered and corrected first. The

atmospheric gases and aerosols as well as clouds, scatter and absorb solar radiation,

which results in the modification of the reflected radiation from the ground targets,

particulary critical for visible and near infrared bands. First, it affects the spectral and

spatial distribution of the radiation incident on the surface. Second, radiance being

reflected is attenuated. Third, atmospheric scattered radiance, called path radiance,

is added to the transmitted radiance. Therefore, properly atmospheric correction can

improve the quality of remote sensing data. It is normally conducted by two steps: 1)

estimate of the atmospheric characteristics, e.g., optical depth; 2) apply inversion to

correct image from measured radiance (Kaufman1978, 1978). In particular, there are
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three different approaches to correct the atmospheric effects, 1) single/multiple scat-

tering atmospheric correction, which is an approach that uses mathematical algorithm

to model the radiance scattering and absorption of all parties along the path, e.g., 5S

model (Simulation of the Satellite Signal in the Solar Spectrum). 2) dark-target atmo-

spheric correction, which is most suitable to the clear sky when Rayleigh atmosphere

dominates since Rayleigh scattering dominates. Therefore, the clear-deep water has

a very low spectral reflectance in the short wavelength region, which can be used as

control for corrections. 3) direct digital number to reflectance transformation, which

is used when control ground references are available and empirical corrections can be

calculated (Gong et al., 2008).

There are two major steps in remote sensing data analysis procedures: the fea-

ture selection and the information extraction. Since including all available bands

from remote sensing data, such as hyperspectral data which are highly redundant and

complicated can make the data analysis process extremely slow, very computational

expensive and in some cases, less accurate. Therefore, feature selection is an essential

step for remote sensing data analysis.

Data analysis can be parametric or non-parametric. The parametric methods are

much more explicit and accurate compared to the non-parametric ones. There are two

groups of parametric information extraction methods: The first group includes deter-

ministic radiative transfer models. These are process based models that utilize my

knowledge about the optical interaction of target material to inference on characteris-

tics I am interested in. Typically, a model is trained with known data (a.k.a. training

data) on the optical property of interest (Meroni et al., 2004; Verhoef and Back, 2003).

The second group is based on statistical methods. These methods typically utilize a
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subset of features to develop a quantitative model or classification protocol. In this

group, if the target characteristic can be presented numerical and the output is quan-

titative, the common approach is a decision support system using a mathematical

relationship (Atzberger, 2013), e.g., estimation of variables, such as leaf area index

(LAI), which is the total one-sided area of leaf tissue per unit ground surface area.

(Chen et al., 1997; Watson, 1947). In the studies which require LAI of whole stands,

a surcharge for understory and litter has to be added to the LAI of trees to obtain

the integrated total LAI of a given forest stand, which is also known as canopy LAI.

Detailed review of different methods for LAI definitions and measurements can be

found Breda (2003). The assessments of biophysical parameters of different vegetation

surfaces, such as crops (Atzberger, 2013; Haboudane et al., 2004; Jacquemoud et al.,

1995), and forest (Cosmopoulos and King, 2004; Morsdorf et al., 2009; Omari et al.,

2013), are essential for estimating productivity, provision of critical information for

local agencies, and delivery of timely updates for environmental monitoring. Other-

wise, if the target is characteristic is categorical, it is normally using a classification

approach (Thenkabail et al., 2012). The relationships within the remote sensing data

analysis procedures can be graphically represented as in Figure 2.6 in simplified form.

Both feature and information extractions can be supervised or unsupervised. Su-

pervised means prior knowledge or training data are used to identify a group of best

features and to train a classier on target characteristics, including divergence mea-

surement, and correlation between features and ground. While unsupervised methods

are based on one or more feature characteristics, such as variance, entropy and other

natural grouping within the data (Mitra et al., 2002).
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Figure 2.6: The major steps of remote sensing data mining procedures and associated

methods covered in this chapter.

2.3.1 Introduction to physical vegetation models

Many physical models have been developed in the past few decades for forestry and

agriculture applications (Liang, 2008). These models describe the radiative transfer

processing from a light source, such as the Sun, through the canopy and back to

the sensor. This effort is normally referred to as the forward or the direct mode of

the model (White, 1999). The model reproduces and simulates the ground object

property, such as reflectance by parameterising the interaction between solar radiance

and the ground target into a function of a set of designed variables (Datcu and Schwarz,

1998; Matzler, 2008; Wang, 2012). Since most of vegetation models (except Monte

Carlo simulation model) always produce the same output from a given set of initial

parameters, they can be considered as deterministic systems, which are defined as no

randomness is involved.

Due to their complexity, these models have assumptions that can not reliably

describe the environmental conditions and the canopy characteristics. Therefore, they

are normally dedicated to a specific targeted object and have an applicable range.
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Goel and Grier (1988) and most recently White (1999) gave a detailed descriptions

of different types of model development, which includes assumptions, strengths and

weaknesses.

In general, vegetation models can be divided into two categories by their scales,

namely canopy and leaf level. In canopy level models, the canopy can be classified

by shape assumptions, turbid medium models, geometric models, hybrid models and

Monte Carlo simulation models (Moorthy et al., 2008; White, 1999). The evolution

of the vegetation canopy modelling over the past 40 years is shown in Figure 2.7

illustrating that models have become more and more sophisticated and complicated,

and can represent more details, e.g., at the early stage the surface object were assumed

to be represented by a flat infinite slab, while the most recent models can distinguish

individual trees with different sizes and shapes.

Figure 2.7: The evolution of the vegetation canopy modelling, from simple to more com-

plicated and realistic models. [Moorthy et al. (2008). Courtesy of Dr. Inian Moorthy. Used

under author’s permission.]

The turbid medium models assume that the canopy is horizontally uniform, which

has plane-parallel layers. The vegetation elements within the layers are treated as

small, randomly distributed particles. Radiative transfer occurs only between layer-
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s, which depends on the depth of the vegetation. Therefore, they are also referred

as volume scattering models. LAI is a critical variable in these models. The LAI

explicitly represents the depth of the vegetation, which shows an almost exponential

change of reflectance value with increasing saturation (Chen et al., 1997). Leaf angle

distribution (LAD) is also an important parameter of these models, which determines

leaf inclination and orientation. Although, LAD is normally fixed to a commonly

used value for model simplicity, the angular behaviour of the model depends on it.

Two well-known models in this class are the Suits (Suits, 1972) and SAIL (Scattering

by Arbitrarily Inclined Leaves) models (Verhoef, 1984). The Suits model idealized

the canopy as a homogeneous mixture of horizontal and vertical diffusely (Lamber-

tian) reflecting and transmitting panels, which can be described by six parameters,

ρ(reflectance), τ(transmittance), LAI, ρ(s) (soil reflectance), SKYL (Sky lighting), and

ALA (average leaf angle). SAIL model extended Suits model, which considered LAD.

However, SAIL model used a 13 distinct inclination angles intervals to approximate

the LAD. SAIL is a low computation cost, effective model, generally success in homo-

geneous agricultural crops, e.g., corn, wheat, and soy bean (Haboudane et al., 2004;

Jacquemoud et al., 2009; Pena-Barragan et al., 2011) and the densest forest canopy,

e.g., mature deciduous forest (Li and Strahler, 1986; Peddle et al., 2007; Zarco-Tejada

et al., 2001).

Geometric models were initially introduced by Terjund and Louie (1974). The

architecture of forest canopies is described by four major components: the sunlit crown,

sunlit understory (an assumed isotropic vegetative bottom layer), shaded crown and

shaded understory (Nicodemus, 1982). Each component has an average reflectance

factor representing the whole canopy. Therefore, canopy reflectance is a weighted sum
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of the four component reflectances. Taking the simplest geometric optical model, with

no transmission occurring through the crown and no multiple scattering within the

canopy, the shaded components do not contribute to the total reflectance, except for

the effect of the diffused sky viewed by them (White et al., 2002). An example of this

type of models is GO (Geometric Optical) model (Li and Strahler, 1986, 1992). The

common assumptions are the components are all Lambertian surface in nature, which

do not have angular dependencies (Toutin, 2004).

The hybird model is a combination of the turbid medium and geometric optical

models. The turbid medium models have an generalized description of multiple s-

catting between layers, which is referred as optical, but lack element geometry. The

pure geometric optical model focuses on the canopy’s discontinuous structure, but

ignores energy loss. By combining them together, multiple scattering within crowns

and between leaves are well modelled. Therefore, this combination leads to a bet-

ter simulation result and more potential applications. It can cover homogeneous and

inhomogeneous areas, and also can represent sparse or dense forest canopy. An ex-

ample of this type of models is GORT (Geometric Optical Radiative Transfer) model

(Li et al., 1995). These models are more general when comparing them with pure

turbid medium or GO models. However, they are normally much more complicated

and computationally intensive. More importantly, they require more variables, which

require detailed knowledge of the canopy. These variables are not easily obtainable

from ground measurements or from remotely sensed data. Since hybird models deal

with turbid vertical distribution and the horizontal discontinuities of the leaf medium,

they are also called 2-scale models in literature (Li et al., 1995; White, 1999).

The Monte Carlo simulation model was developed from the turbid medium mod-
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el, which was based on the integral equation describing the turbid medium surface

(Antyufeev and Marshak, 1990a,b). It is the most complex and most computationally

expensive model type. Instead of mathematically simplifying the canopy using various

assumptions, the model implements a realistic canopy using a ray tracing algorithm

, which means each photon is traced along its complete interaction course with the

atmosphere and ground objects, until it is finally absorbed elsewhere or detected by

the sensor (Henderson et al., 2003). The concept of this approach has been discussed

for a long period of time. However, the implementation of such a model is not trivial.

Two widely used Monte Carlo simulation models are the DART (Discrete Anisotropic

Radiative Transfer) (Barbezat and Jacot, 1998; Gastellu-Etchegorry et al., 1996) and

FLIGHT (Forest LIGHT Interaction) models (North, 1996). It is the most realistic

simulation one can have, but at the cost of computation power. The accuracy of the

models is directly related to the number of simulations performed (Goel and Grier,

1988).

Many models have been improved and modified from their original forms. A good

example is SAILH (Kuusk, 1985). It is a SAIL model with additional hot spot con-

sideration. Hotspot is the surface reflection phenomenon happening around the Sun’s

illumination direction (Chen and Cihlar, 1997). Simply put, the hotspot peak (local

maximum) is in the backscattering direction and minimum in the forward scatter-

ing direction due to the BRF anisotropic behaviour (Kimes, 1983). Also, the new

GORT model, added inter-crown multiple scattering into the classical GORT model

(Ni et al., 1999). Another example is Chen and LeBlanc’s 4-scale bidirectional re-

flection model, which was used to simulate the Canadian Boreal forest canopy (Chen

and Leblanc, 1997; Chen et al., 1997). The 4 Scale model added two more scales
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(dimensions and variables), which were two considerations in GORT models, namely

the tree and leaf distributions. The main differences from GORT are: assumption of

random distribution, the multiple mutual shadowing effect, and the effect of the sunlit

background being modelled using a canopy gap size distribution function (Chen and

Leblanc, 1997).

The inter-comparison between models has been used to validate new models, such

as the Radiation Model Inter-comparison (RAMI) initiative (Pinty et al., 2001, 2004;

Widlowski et al., 2011, 2007). This effort has demonstrated that model selection should

consider the given study area, data set and the canopy parameters being evaluated.

In the case of homogeneous areas, the turbid medium SAIL model provides the best

result at minimum cost. In the case of coarse-resolution data, canopy parameters are

limited. The model with less parameters would be expected to have faster performance

than a more complex model.

In the category of leaf level models, the two more commonly accepted models are

PROSPECT (Jacquemoud and Baret, 1990) for deciduous and LIBERTY (Dawson

et al., 1998) for conifers. PROSPECT was developed based on Allen’s generalized

“plate model” radiative transfer model (Allen and Richardson, 1968). It describes two

types of interactions, scattering and absorption, employing a total of five parameters

to simulate the 400 nm to 2500 nm vegetation photosynthetic range. The scattering

was described by using leaf mesophyll structure parameter (N) and spectral refractive

index (n). The absorption was modelled by using equivalent water content (Cw), leaf

chlorophyll content (Cab), and dry matter (Cm). It is arguably the most successful

and most validated leaf level model to-date e.g., Jacquemoud et al. (2000, 1995, 2009);

le Maire et al. (2004); Moorthy et al. (2008).
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LIBERTY stands for Leaf Incorporating Biochemistry Exhibiting Reflectance and

Transmittance Yield. It has been also developed based on the radiative transfer model

to determine leaf level optical properties, including reflectance and transmittance. The

fundamental difference between LIBERTY and PROSPECT is that LIBERTY does

not assume the leaf is a flat plate with distinct layers. It considers the shape and size

of the leaves, such as pine needles. In my studies, PROSPECT is preferred, which is

used in Chapter 3 and 5. The main reason is the canopy and leaf type found in my

study areas are more suitable and better validated by PROSPECT.

It is quite popular to have canopy and leaf model coupled together for model inver-

sion biophysical parameters retrieval. The coupling of two different levels of models

can add further leaf level detail characteristics to the canopy studies. The 5-scale

model was introduced, in which the LIBERTY model was added to the 4 scale model

to enhance the leaf reflectance detail by merging it with leaf model incorporating bio-

chemistry exhibiting reflectance and transmittance yields (Chen and Leblanc, 2001;

Dawson et al., 1998; Leblanc and Chen, 2000; Peddle et al., 2007). The PROSAIL

(PROSPECT + SAIL) model was employed in many studies, which have been suc-

cessful in retrieving leaf level biophysical parameters in close canopy (Jacquemoud

et al., 1995, 2009; le Maire et al., 2004). Due to this reason, PROSAIL is also used

in my study (Chapter 3) and is found very successful. Recently, Omari et al. (2013)

used proFLAIR (PROSPECT + FLAIR) to retrieve canopy LAI, Cab and canopy

integrated chlorophyll content (LAI × Cab).
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2.3.2 Parameter retrieval using vegetation model: model inversion

Since remotely sensed parameters are typically non-direct measurements, data pro-

cessing involves solving inversion problems (Jacquemoud et al., 2000; Liang, 2008).

“Physically based models of vegetation reflectance serve as a basis for extracting vege-

tation variables using directional and spectral data from modern sensors” (Kimes et al.,

2000). In most cases, it is not possible to establish a complete inversion physical model

(Goel and Strebel, 1983; Goel and Thompson, 1984; Liang, 2008; Wang, 2012). The

inverse function of the forward model is almost impossible due to multiple integration

functions and assumptions involved in the model. When it is difficult to obtain a direct

empirical relationship between the features, e.g., hyperspectral bands and the targeted

parameters, the forward model is then used in the inversion processing (Datcu and

Schwarz, 1998; Matzler, 2008; Peddle et al., 2007). The solution is then proposed as:

the observed spectrum is compared with a series of simulated model spectra to esti-

mate the best parameter composition which can minimize the cost of a merit function

(Liang, 2008). Inversion methods based on physical models are generally effective, as

physical models are generally designed to provide rigorous and reasonably accurate

mathematical descriptions of the major processes of solar radiation passing through

vegetation canopies (Kimes et al., 2000).

The comparison process of modelled and observed spectrum is an optimization

procedure. The classic approaches are iteration and Look–Up–Table (LUT). The iter-

ation method repeats model runs, predicts parameter changes and updates the initial

parameters to reduce the cost of the merit function. It is computationally effective

and typically fast. However, it requires a parameter change prediction calculation

and also requires a good initial value estimation. This method may have convergence
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problems (Mueller et al., 2009). LUT are less computationally effective when applying

to a detailed search. However, LUT is much more stable and robust (Rivera et al.,

2013). It can provide a global search result without any convergence issues.

As mentioned earlier, vegetation models are normally non-linear and contain a

number of variables. The models also pose limitations and implicit restrictions to their

inversion. Different combinations of parameters may provide similar spectra output,

a case known as “ill-posed” model inversion. It is stated that “the inverse solution

is not always unique as various combinations of canopy parameters may yield almost

similar spectrum” (Darvishzadeh, 2008). A parameter combo would be identified as

the “solution”, which may not necessarily be the most accurate; in some cases, it can

be completely false. e.g., the iteration approach has “local minimum” convergence

problem. Therefore, the question is not finding the differences, rather, “what is the

cause of the differences”.

Due to the fact that the model inversion requires minimizing a merit function,

different wavelengths respond independently to specific parameters. Therefore, the

optimization process plays a very important role, but is often overlooked (Wang, 1987).

The current most popular optimization method is the least squares approach, which

minimize the following merit function:

Φ =
∑

Pi(xi − li)2, (2.1)

where Pi, xi and li are the weight, the modelled and the observed of the ith observation

throughout this chapter, respectively.

In the past few decades, many merit functions have been proposed, such as Equa-

tion 2.2 and 2.3 (Cracknell and Hayes, 2007; Liang, 2008). These merit functions are

generally successful in their respective applications only. Least square or partial least

39



squares approaches are much more accurate, scalable and robust (Gong et al., 2008,

1995).

Φ =
∑

(
xi − li
xi + li

)2 (2.2)

Φ =
∑

absPi(xi − li) (2.3)

2.3.3 Vegetation index

Using vegetation index (VI) to estimate the biophysical parameters is an important

and popular approach for remote sensing data analysis. It identifies the empirical

relationships between the spectral reflectance with targeted parameters using certain

mathematical models (Baret and Guyot, 1991; Brown et al., 2000; Haboudane et al.,

2004, 2002). Classic vegetation indices, like Green Red Index (GRI) (Tucker, 1979) and

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973), have been used

for decades and they are effectively validated indices and represent certain characteris-

tics of surface vegetation. However, these indices were developed from the broad band

multispectral data, which may provide inadequate or limited information (Thenkabail

et al., 2012). More indices have been developed for hyperspectral data, such as Modi-

fied Triangle Vegetation Index (MTVI2) for quantitative vegetation estimation (Broge

and Leblanc, 2000; Haboudane et al., 2004), photochemical reflectance index (PRI) for

indicating vegetation general stress (Gamon and Bond, 2013; Merzlyak et al., 1999)

and multi-angular vegetation indices for capturing the vegetation structural angular

differences, such as Hotspot-DarkSpot index (HDS)(Chen et al., 2003, 2005). The

biophysical parameters then can be presented as a simple expression of the associated
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index, such as LAI can be presented by MTVI2 (Haboudane et al., 2004). The ground

vegetation can be roughly classified using NDVI. Typically, if NDVI over 0.5 means

clear evidence of green alive vegetation within the scene, while less than 0.2 indicates

very unlikely vegetation existence.

GRI =
RGreen −RRed

RGreen +RRed

(2.4)

NDV I =
RNIR −RRed

RNIR +RRed

(2.5)

MTV I2 =
1.5[1.2(R800 −R550)− 2.5(R670 −R550)]√

(2R800 + 1)2 − (6R800 − 5
√
R670)− 0.5

(2.6)

PRI =
R531 −R570

R531 +R570

(2.7)

HDS =
ρ

HS
− ρ

DS

ρ
DS

(2.8)

LAI = 0.2227exp(3.6566MTV I2), (2.9)

where R indicates reflectance or radiance measurement and the subscripts indicates

central bandwidth in names or value, e.g., NIR represents Near Infra-red range bands,

typically around 800 nm; 570 means the actual central wavelength. ρHS and ρDS are

the reflectance at hotspot and darkspot, typically are along the solar plane, in the

backscatter and forescatter direction respectively.

The advantages of using VI are simple, effective, repeatable and low cost in pro-

cessing time and power. VI’s depend on appropriately selecting bands such that at

41



least one is sensitive and highly variable to range of the parameter, and the other

that represents a baseline or region not sensitive to changes in the parameter. A ratio

of such bands provides an index sensitive to the parameter of interest. There have

been significantly efforts that focused on how to effectively and accurately select the

most sensitive bands for vegetation indices, such as theoretical/prior knowledge and

sensitivity studies. The theoretical/prior knowledge based approach uses the under-

standing of chemical constitution of the object, such as chlorophyll content, nitrogen

and carotenoid, to select, combine and construct the VI (Thenkabail et al., 2012).

The sensitivity study intends to identify the bands showing a high variation respond-

ing to a small initial change (Bowyer and Danson, 2004). Both approaches have been

developed for years and have been well demonstrated in the literature.

However, using VI to retrieve biophysical parameters has some limitations, which

are typically dependent on sites and data and intend to get saturated. VI are known

to be impacted (or influenced) by a variety of conditions, such as by atmospheric con-

tributions, by background contributions to the spectral BRF, by view/illumination

geometry, and by a lack of dynamic range at extremes of the parameter. Training and

coefficient reassessment of VI is a must in most of these cases. The VI are very sen-

sitive to observation uncertainties, particularly observation noises, errors and outliers

(Hoberg et al., 2007). They are also limited to their designed scale and other implicit

and explicitly assumptions.

In this study, VI are adopted in a few innovative ways throughout this research. In

Chapter 4, GRI (Equation 2.4) is used with NDVI (Equation 2.5) to recover shadow

covered urban trees to improve the segmentation result. In Chapter 5, three indices are

selected from a list of candidates to provide the simple, effective and robust information

42



representing leaf chlorophyll content variation of individual trees.

2.3.4 Image classification

Image classification is another important branch of information retrieval. The im-

age pixels are categorized into information classes by certain analysis approaches. In

classification studies, information is presented in a set of classes which characterizes

the surface from the remotely sensed images. Classes can be defined from available

spectral libraries or from training (Veganzones et al., 2008). Image classification in-

volves statistical calculations, but obtaining quantitative information e.g., numerical

estimations is not the objective of classification. Rather, the final assignment of in-

formation or specific themes into clusters (statistically similar pixel groups) is the

goal. The simplest method uses a threshold approach to assign the information classes

based on some features e.g., using NDVI to separate vegetated and non vegetated sur-

faces. Therefore, image classification can be closely related to inversion and parameter

retrieval if the biophysical parameters are used as features.

Both supervised and unsupervised techniques are developed for classification (Jensen,

2000). The classical supervised approaches are “minimum distance”, “parallelepiped”,

“maximum likelihood”, “decision tree” and Artificial Neural Network (ANN) (Hayes

et al., 1988; Lillesand et al., 2008; Quinlan, 1993). The supervised classification uses a

training set of ground classes to generate known identities and all unknown pixels are

classified into them. On the other hand, the unsupervised classification automatically

generates clusters (statistically similar groups) and assigns them into information class-

es. The traditional unsupervised approaches are “K-mean” and “ISODATA” (Jensen,

2007). The basic difference between these two techniques is the information assigning
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stage. The supervised approach determines the information classes before compar-

ing them with unknown pixels, while unsupervised approaches generate statistically

separated clusters for information class assignment in post-processing.

Since classification methods must be applied on some features, the selection of fea-

tures plays a critical role in the classification result. However, traditional remote sens-

ing classification focuses almost only on spectral (multi/hyperspectral) information,

and little on other information. With higher spectral, spatial and temporal resolution

remote sensing data becoming available, it is important to explore the possibility of

developing new features to improve classification. Obviously, it would be best to in-

tegrate them all together to maximize the data potential in classification. However,

the challenge is the existing classification methods offer very limited multi-sourced

data handling. The classical methods developed based on the single information type

cases, e.g., multispectral, thermal and LiDAR. The traditional methods normally al-

so requires dimension reduction when handling high dimensional data, e.g., Principal

Component Analysis (PCA), mathematically transforms the high dimensional and

correlated bands into a few non-correlated information bands.

In this dissertation, I improve the classification in two main aspects, namely new

feature exploration and data assimilation. Instead of mining deeper into the well

established spectral features, I explore the spatial information and use one innovative

feature called “longitudinal profile” to demonstrate that the classification accuracy can

be significantly improved by introducing new dimension of information, e.g., spatial

information. I also explore the potential of multi-source remote sensing data in the

tree health state classification. I independently develop a four step schema to extract

different information from multiple data sources with a wide range of characteristics,
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and assemble them into a final evaluation function to deliver classification results.

2.3.5 Contribution analysis and contribution index

The contribution analysis in geodetic survey, determining the coordinates using dis-

tances and angular observations, is based on the correlation between parameters and

observation and the measurement accuracy of the observations. It calculates a con-

tribution index (CI) to quantify the “contribution” of each observation (e.g., angle or

distance measurements) and to the estimated targeted parameters. The CI of each

observation is derived based on the prediction matrix, which is initially defined in

linear model analysis (Chatterjee and Hadi, 1988; Hoaglin and Welsch, 1978; Wang,

1987). If a generalized model is presented as follows:

L = F(x)+ V, (2.10)

where F is the general function of the model with the parameters x ; L is the n-

dimensional observation vector; x is the m-dimensional parameter vector; and V is

the n-dimensional residual vector, which describes the difference between the modelled

and observed canopy reflectance. Based on the least squares principle, parameter

correction vector x can be estimated through an iterative process. At each iteration

the vector can be estimated by

δ̂x = (JTPJ)−1JTP (L− F (x0)), (2.11)

where J is an n × m dimensional Jacobian matrix whose elements are the partial

derivatives of the model with respect to the parameters at their initial values for this

iteration (x0). P is the weight matrix of the observations and is proportional to the
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inverse of the covariance matrix of the observations. The prediction matrix (H) is

defined as follows (Chatterjee and Hadi, 1988; Hoaglin and Welsch, 1978):

H = J(JTPJ)−1JTP (2.12)

The H matrix is idempotent and its diagonal elements (hii) have values from 0 to

1 and with a sum equal to the degrees of freedom of the system of equations. If the ith

observation is totally redundant (hii = 0), it does not contribute to the determination

of the model variables. On the other hand, if the ith observation is necessary hii = 1,

the ith observation is high leverage and has a significant impact on the determination

of the model parameters (Chatterjee and Hadi, 1988; Wang, 1987). As a result, if

this observation is excluded, either the inversion would fail or the result would not be

reliable. The CI of each observation to the model inversion is defined as the normalized

diagonal elements of H shown as:

CIi =
hii

n∑
j=1

hjj

(2.13)

Let us look at a simple sample (Figure 2.8), which was originally published in Wang

(1987) and used in Zhang et al. (2009). In this simple triangular survey, there are A,

B, C and D four stations. A and B stations form the baseline. The number 0 to 8

indicates the angular measurements. The task is to estimate the coordinates (x and

y position) of station D. In other words, xD and yD are the two targeted parameters.

Station C is added to improve the observation accuracy. Obviously, it is easy to sense

that this design is problematic. Station C is not in an ideal position. However, how

to accurately quantify this problem? The proposed solution is CI (Equation 2.13).
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Table 2.1: The CI results from the simple sample. All results were originally published in

Wang (1987).[Wang (1987). Courtesy of Dr. Jian-guo Wang. Used under author’s permis-

sion.]

Angle number CI

0 0.075

1 0.195

2 0.436

3 0.609

4 0.603

5 0.443

6 0.601

7 0.588

8 0.441
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Figure 2.8: A simple example of triangular network survey, which visually demonstrates the

practical value of the contribution index. A, B, C and D are the station points, and numbers

0 to 8 represent angular measurements. The objective is to determine the coordinates of

station D, xD and yD. [Wang (1987). Courtesy of Dr. Jian-guo Wang. Used under author’s

permission.]

If I calculate all CI as shown in Equation(2.13), the results are given in Table 2.1.

From Table 2.1, one can easily identify the problematic measurements, which are 0

and 1. It is determined due to two reasons: 1) the absolute CI value of measurement

0 and 1 is low, any value less than 0.25 should be concerned; 2) these two have much

lower value to the average of the rest, which are about 1/7 and 2/5, respectively.

If one measurement cannot score a high absolute CI value, it at least needs to be

comparable to the other observations (e.g., = /− 50% of the average). Clearly, these

two measurements are affected by poor geometric positioning of station C. In triangle

ABC, angular measurement 2 is dominating. Even assuming the measurement errors
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are the same, the contribution of angular measurement 2 is much more significant than

0 an 1. In practice, the position of C makes angular measurements of 0 and 1 very small,

which is difficult to be accurately measured. Since the measurements 4 and 5 have

good CI values (around 0.5 absolute value and above average relatively), one potential

solution is shifting the station C toward D. This makes sense due to the fact that

this would result in increasing angle 0 and 1, which potentially improves the angular

observation quality. Another solution is reducing or excluding the measurements 0

and 1 from the final D coordinate calculation, since they are not “significant” and of

low accuracy.

In my study, I adopt CI in the model inversion using hyperspectral data to retrieve

biophysical parameters. The CIs are calculated to determine the “contribution” of

each band to the targeted parameters, such as LAI. The CI is used as weighting to

justify the focus of the “cost” comparison in inversion to “important” and accurate

bands. As a result, the accuracy of retrieved parameters is improved. Some other

sensitivity studies may also propose similar weights. However, the CI is found much

more stable comparing to general local sensitivities approaches (e.g., monitoring the

responses changes with a small initial input differences) and much more flexible and

low computation cost comparing to global sensitivities methods (e.g., considering a

compensative analysis with significant requirements in parameters and conditions).
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3 Improving the retrieval of the biophysical

parameters of vegetation canopies by using the

contribution index

This chapter is based on the published journal paper:

Zhang, K., Hu, B., Wang, J., Pattey, E., and Smith, A. M. (2011) “Improving the

Retrieval of the Biophysical Parameters of Vegetation Canopies by using the Contri-

bution Index”. Canadian Journal of Remote Sensing, 37(6): 643-652.

It is a further development of the conference paper:

Zhang, K., Hu, B., Wang, J., and Smith, A., (2009) “Improving the canopy model

inversion using a weighting function”, proceedings of the 30th Canadian Symposium

of Remote Sensing (CSRS), Lethbridge, AB.

Republication permission granted by Editor in Chief of Canadian Journal of Remote

Sensing on July 31, 2013.
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3.1 Introduction

Biophysical parameters of vegetation canopies, such as leaf area index (LAI) and leaf

chlorophyll content, are routinely required for environmental monitoring and sustain-

able resources management. The retrieval of these parameters from remote sensing

data has been an active research topic for decades and has led to many techniques e.g.,

Jacquemoud et al. (2009). One approach is to establish the relationships between in

situ measurements and vegetation indices e.g., Baret and Guyot (1991); Brown et al.

(2000); Haboudane et al. (2004, 2002). The relationships are typically dependant on

sites and data. As a contrast, the methods based on physical model inversion are more

general and effective, as a physical model provides rigorous and reasonable accurate

mathematical descriptions of the major processes of solar radiation passing through

vegetation canopies (Kimes et al., 2000). However, such a model is normally complex

and nonlinear and contains a number of variables (Liang, 2008). To accurately and ro-

bustly invert the physical models to retrieve the biophysical parameters of vegetation

canopies from remote sensing data, a robust inversion strategy is required.

One of the key issues in the physical model inversion is the determination of a reli-

able merit function that usually quantifies the misfit between the observed reflectance

and the simulated reflectance calculated by a canopy model, which requires estimation

or prior-knowledge of related biophysical parameters. Traditionally, the merit func-

tion is defined in Equation (3.1)(Goel and Strebel, 1983; Goel and Thompson, 1984;

Jacquemoud et al., 2000; Kimes et al., 2000).

C =

nb∑
i=1

ωi(li,obs − li,mod)
2, (3.1)

where nb represents the number of observations; li,obs and li,mod are the ith observed
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and modelled canopy reflectance, respectively; and ωi is a weight, which is normally

related to the uncertainty of the ith observation.

Because a canopy model is nonlinear and observed data are not noise free, the

traditional merit function may have multiple local minima and (or) a wide flat global

minimum, which is sometimes also referred to as “valley”(Kimes et al., 2000). To

obtain a robust and stable solution, a priori knowledge is usually used to regularize

the inversion process. The most commonly used a priori knowledge is the estimated

mean values and standard deviations of the model variables e.g., Li et al. (1998);

Makowski et al. (2006). The merit function with such a priori knowledge presented

can be described as follows (Privette et al., 1996):

C =

nb∑
i=1

ωi(li,obs − li,mod)
2 +

m∑
j=1

(
xj − x0j
σj

)2 (3.2)

In Equation (3.2), m is the number of parameters targeted; xj and x0j are the

retrieved and expected parameter values, respectively; ωi is the weight of the obser-

vation i; and σj is the estimated standard deviation of the parameter j. The other

a priori knowledge that has been exploited is the sensitivity of a given observation

to the model parameters (Kimes et al., 2000). For example, Privette et al. (1996)

weighted each observation in the merit function based on the first derivative of this

observation with respect to a particular model parameter. The weighted merit func-

tion had steep gradients than the traditional merit function and thus generated rapid

and accurate model inversion. However, this method was able to successfully retrieve

only one parameter at a time (Privette et al., 1996).

In this study, a contribution index (CI) was designed to quantify the impact of each

observation on the retrieval of model parameters. It accounted for the sensitivity of the

given observation to the model parameters to be retrieved and their uncertainty. The

52



CI was used in the merit function to weight each observation. The Look–Up–Table

(LUT) method was used in this study because of its robustness and stability, although

it was not the fastest algorithm. To validate the proposed CI based merit function, the

LUT inversion method was implemented to invert the coupled PROSPECT (Jacque-

moud and Baret, 1990) and SAIL (Verhoef, 1984) models using both the simulated and

real data from the Compact Airborne Spectrographic Imager (CASI) and the Compact

High Resolution Imaging Spectrometer (CHRIS).

3.2 Study areas and data used

Two study areas were selected for this study. The first one ( 45◦18′N , 75◦45′W ) is

located at the former Greenbelt Farm of Agriculture and Agri-Food Canada, Ottawa,

Canada. Over three successive years, from 1999 to 2001, different field crops such

as corn, wheat, and soybean, were grown on approximately 30 ha till-drained fields.

During the 2001 growing season, the CASI images were acquired during three different

deployments on 13 June, 26 June, and 19 July (Haboudane et al., 2004). These images

covered from 408 to 947 nm with a spatial resolution of 2 m by 2 m.

The processing of CASI imagery included the following steps: raw data to ra-

diance transformation, atmospheric corrections and reflectance retrieval, removal of

aircraft motion effects and geo-referencing, and flat field adjustments of surface re-

flectance spectra. The hyperspectral digital images collected by CASI were inverted

to at-sensor radiance using calibration coefficients determined in the laboratory. The

CAM5S atmospheric correction model (O’Neill et al., 1997) was then used to trans-

form the at-sensor radiance to at-ground reflectance. To perform this operation, an

estimate of aerosol optical depth at 550 nm was derived from ground sun-photometer
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measurements.

Reflectance spectra of asphalt and concrete within CASI imagery were used to

calculate coefficients that adequately compensated for residual effects of atmospheric

water and oxygen absorption, and therefore were used to perform the flat field cali-

bration. Data regarding geographic position, illumination and viewing geometry, as

well as ground and sensor altitudes were derived both from aircraft navigation data

recordings and ground measurements using a differential global positioning system.

Simultaneous to CASI data acquisition, LAI was measured using both a destructive

method using LI-3100 leaf area meter (LI-COR, Lincoln, USA) and an indirect method

using a LAI-2000 leaf area meter (LI-COR); the leaf chlorophyll contents were quan-

tified analytically. Details of this data acquisition and processing were presented in

Pattey et al. (2001) and Strachan et al. (2002).

The second study area is located near Lethbridge, Alberta, Canada ( 49◦43′N ,

112◦8′W ). The CHRIS data were acquired over this study area in June and July, 2004

with a spatial resolution of 36 m and 62 spectral bands covering from 410 nm to 1002

nm. The test site was planted with spring wheat in April. Simultaneous with the

CHRIS data acquisition, LAI values were measured using LAI-2000 area meter. The

at-sensor radiance data provided by the European Space Agency (ESA) were inverted

to at surface reflectance using the CAM5S atmospheric correction model (O’Neill et al.,

1997). The drop-out and strips in the data were removed using the Geomatica software

v10.0 (PCI Geomatics, Canada). Details on the data acquisition and processing were

presented in Smith et al. (2005).
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3.3 The CI and the CI-based merit function

As mentioned previously, because the canopy reflectance observed at different wave-

lengths and angles is not equally sensitive to the model parameters for the retrieval of

the model parameters and because the observations have different uncertainties, it is

important to weight each observation differently in the merit function depending on

its contribution to the retrieval of the model parameters.

In this study, the CI of each observation was derived based on the prediction

matrix, which was initially defined in linear model analysis (Chatterjee and Hadi,

1988; Hoaglin and Welsch, 1978; Wang, 1987). The prediction matrix is described

in the context of a canopy model inversion. A canopy model can be generalized as

shown in Equation 2.10. Based on the least squares principle, parameter correction

vector x can be solved through an iterative process. At each iteration the vector can

be estimated as Equation 2.11. The prediction matrix (H) is defined as Equation 2.12

(Chatterjee and Hadi, 1988; Hoaglin and Welsch, 1978). However, in this study, it

should be referred as contribution prediction matrix, which is the base for deriving CI.

The H matrix is idempotent and its diagonal elements (hii) have values from 0

to 1 and with a sum equal to the degree of freedom of the system of concern. If

the ith observation is totally redundant hii = 0. In such a case, this observation

does not contribute to the determination of the model variables. On the other hand,

if the ith observation is necessary hii = 1. In this case, the ith observation is high

leverage (Chatterjee and Hadi, 1988; Wang, 1987) and has a significant impact on

the determination of the model variables. As a result, if this observation is excluded,

either the inversion would fail or the result would not be reliable.

The CI of each observation to the model inversion is defined as the normalized
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diagonal elements of the prediction matrix shown in Equation 2.13. Therefore, the

CI-based merit function is expressed as follows:

CCI =

nb∑
i=1

CIi(li,obs − li,mod)
2 (3.3)

Clearly, we used CI to replace the standard weighting function and this ”new” cost

function would be the cost function used in this study. As shown in Equations 2.12

and 2.13, the CI of each observation accounts for its uncertainty via the matrix P and

its sensitivity to the parameters to be retrieved via the matrix J. The CI based merit

function is expected to have sharp gradients and generates stable inversion results.

To demonstrate this, the data simulated by the coupled PROSPECT and SAIL model

were used. Both PROSPECT and SAIL models were well validated and are widely used

for homogeneous vegetation canopies, such as crops (Jacquemoud et al., 1995, 2009).

The input parameters together with their values for the simulations are summarized

in Tables 3.1 and 3.2. These intervals are set to maximize the retrieval accuracy while

considering the computation time.

Based on the simulation data, the CI of each band in the spectral region from 400

nm to 1000 nm and with a bandwidth 10 nm was calculated in terms of the retrieval

of LAI, leaf chlorophyll content, and dry matter content.

The following points can be summarized from the results (Figure 3.1):

(i) The CI value of each band was mainly determined by leaf chlorophyll content

and LAI.

(ii) The leaf dry matter content, illustrated by the solid (0.03 µgcm−2) and dashed

lines (0.003 µgcm−2) had almost no impact on CI for a wide range of Cab and LAI

values, except for certain bands, such as 550 nm and 800 nm etc.

(iii) For similar LAI value, the increase of leaf chlorophyll content affected different-
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Figure 3.1: The CI of canopy reflectance in the visible and near-infrared region for a series of LAI and leaf chlorophyll content values at dry

matter content at 0.001 µgcm−2 and 0.01 µgcm−2 for a canopy with spherical leaf angle distribution.
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Table 3.1: The input parameters of the PROSPECT model (Haboudane et al., 2004)

Parameters Values

Leaf structure parameter (N) 1.4∗

Leaf chlorophyll content (Cab;µgcm
−2) 5 - 80 at interval of 1

Equivalent water thickness (Cw; cm) 0.0015

Leaf dry matter per area (Cm;µgcm−2)) 0.001-0.005 at interval of 0.0005

∗ is recommended value by Moorthy et al. (2008).

Table 3.2: The input parameters of the SAIL model

Parameters Values

LAI [] 0.1 - 8 at interval of 0.1

Solar Zenith angle (◦) 35 and 45

View Zenith angle (◦) 0

Soil reflectance from measurement, with 5% tolerance

Leaf angle distribution (Cm;µgcm−2)) horizontal (soybean) /

spherical (wheat, corn)
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ly CI in the visible region (450-670 nm) and the red edge region (680-780 nm). When

the leaf chlorophyll content was low, the CI curve was relatively low and flat. For

leaf chlorophyll content ≥ 15 µgcm−2, two CI peaks formed, one in the visible band

and another one in the red edge region. The magnitudes of the peaks were directly

proportional to the value of leaf chlorophyll content until the leaf chlorophyll content

reached about 50 µgcm−2 where it plateaued. For the CI peak in the red edge region,

the position of the peak moved toward higher wavelengths when leaf chlorophyll con-

tent increased. The position of the CI peak in the red edge region changed from 718

nm (with Cab 25 µgcm−2), 724 nm (Cab 45 µgcm−2), to 730 nm (Cab 75 µgcm−2)

for LAI = 1.5. These observations were consistent with the reported effects of leaf

chlorophyll content on the canopy reflectance in the literature e.g., Cho and Skidmore

(2006); Clevers et al. (2002); Dawson and Curran (1998).

(iv) For a given leaf chlorophyll content, the CI values in the visible wavebands

were inversely proportional to LAI. In the red edge region, the magnitudes of CI peaks

increased with an increase in both leaf chlorophyll content and LAI. Increasing LAI is

equivalent to stacking more leaves, which usually tends to also increase leaf chlorophyll

signal.

(v) It is interesting to look at the cases with the leaf chlorophyll content values

at 15 µgcm−2. The general shapes of the CIs with different LAIs were very similar.

They all had double peaks. The values of the two peaks were almost the same, which

is very unique compared with the cases with larger leaf chlorophyll content values.

For the cases where leaf chlorophyll content was greater than 15 µgcm−2, the peaks in

the red edge were always higher than those in the green region and the greater LAI,

the greater the differences. This implies that canopy reflectance in the green region
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is equally important as that in the red edge to characterize crops which are either

young (low LAI, low leaf chlorophyll content) or mature but stressed (high LAI, low

leaf chlorophyll content).

By adding the CI of each band to the merit function, a strong dependence of the

model inversion on the canopy reflectance emerged in the spectral band sensitive to

the model parameters. Therefore, the CI based merit function is expected to improve

the inversion accuracy by reducing the size of the valley. To illustrate this effect,

the contour plots of the traditional (Equation 3.1 and with ωi = 1) and CI based

merit functions (Equation 2.13 and with P = I) for LAI 2.5 and leaf chlorophyll

content 45 µgcm−2 at two different dry matter content values are presented in Figure

3.2. The valley, which caused ambiguity in the retrieval of LAI and leaf chlorophyll

content, is clearly shown in both the traditional and CI-based merit function. However,

the CI-based merit functions have a much smaller valley area, which is expected to

generate more reliable and accurate model inversion results. It is due to the fact that

LAI and Cab only responses to certain spectral bands significantly. By including all

available observations equally, a lot of “non-important” bands do not contribute much

information in the final retrieval of these two parameters, but introducing measurement

random errors regardlessly. The CI justify the focus of the inversion by weighting the

bands accordingly, which basically reducing the unnecessary noise. It can also be

observed from Figure 3.2 that the semi-major axis of the contours coincides with the

axis representing the leaf chlorophyll content. As a result, the uncertainty in the

retrieved leaf chlorophyll content is expected to be larger than for LAI.

60



Figure 3.2: Contour plots of traditional merit function, (a) and (c), and CI based merit function with the CI, (b) and (d), with respect to LAI

and leaf chlorophyll content at different dry matter level, 0.001 µgcm−2 for (a) and (b) and 0.01 µgcm−2, for (c) and (d). The true value of LAI

is 2.5 and leaf chlorophyll content is 45 µgcm−2.
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3.4 Retrieval of vegetation parameters using the CI based

merit function

3.4.1 Retrieved of LAI and leaf chlorophyll content from simulated data

A comprehensive simulation study was conducted to further investigate how the CI-

based merit function improved the retrieval of model parameters. Different LAI (0.5-8

at a step of 0.1) and leaf chlorophyll content (5-80 µgcm−2 at a step of 1 µgcm−2) at

different dry matter contents were paired up to generate simulated canopy reflectance

using the PROSPECT and SAIL model. The inversions were conducted using the LUT

method and the traditional merit function in Equation 3.1 and with ωi = 1 (referred

to as LUT) and CI-based merit functions with P = I (referred to as CLUT). The

uncertainty in the observed data were not considered in the LUT and CLUT methods

at this stage. Examples of retrieved LAI and leaf chlorophyll content for increasing

Cab and varying LAI are presented in Table 3.3. Because the dry matter content can

be retrieved accurately using both the LUT and CLUT methods, its results are not

listed in Table 3.3. The CLUT method significantly outperformed the LUT one for

LAI ranging from 2.5 to 4.5 and leaf chlorophyll content from 25 to 45 µgcm−2 (i.e.,

cases 7, 8 and 9). These are the value intervals showing large variations of the CI

among the bands (Figure 3.1). As expected, the CLUT generated better inversion

results than the LUT method by giving more weight to the spectral bands important

in the model inversion.

The CLUT did not improve the retrieval of LAI and leaf chlorophyll when both

were small (i.e., cases 1 and 2). This is because the CI of each band is similar (Figure

3.1), which leads to similar merit functions for LUT and CLUT.
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Table 3.3: Retrieved LAI and chlorophyll content values using Look–Up–Table inversion

based on traditional merit function (LUT) and contribution index merit function (CLUT)

for increasing chlorophyll content and varying LAI. Uncertainties of the observations were

neglected at this stage.

Case No. True LAI True Cab LUT LAI LUT Cab CLUT LAI CLUT Cab

1 0.5 5 0.5 12 0.5 12

2 1.5 5 1.8 15 1.7 10

3 2.5 5 2.8 7 2.6 5

4 2.5 15 2.8 18 2.6 18

5 0.5 25 0.6 31 0.5 29

6 6.5 25 7.0 35 6.8 24

7 2.5 45 2.8 40 2.6 44

8 3.5 45 3.9 40 3.7 44

9 4.5 55 5.2 40 4.7 52

10 5.5 75 6.1 55 5.7 72
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3.4.2 Retrieval of LAI and leaf chlorophyll content using CASI imagery

The CLUT method was also applied to the CASI images to retrieve LAI, leaf chloro-

phyll content, and dry matter content using the coupled PROSPECT and SAIL model

in this study. Based on (Haboudane et al., 2004), we kept the model variable N = 1.4

and Cw = 0.009 cm. The ranges of other parameters were the same as those listed

in Tables 3.1 and 3.2. Because the in situ leaf dry matter content was not measured,

only retrieved LAI and leaf chlorophyll content were validated against the field mea-

surements. The comparisons were carried out on the basis of the growth stage and

crop type, and the results are shown in Figures 3.3 - 3.5.

From Figures 3.3 and 3.4, it is clear that for all of the cases analyzed, the CLUT

method performed better than the LUT in terms of the root mean square error (RMSE)

and R2 between the retrieved and measured LAI. The best performance of the CLUT

was obtained for the CASI image acquired early in the growing season on 13 June

(Figure 3.3). The R2 increased by 14% from 0.81 (LUT) to 0.92 (CLUT) while RMSE

was reduced by 20% from 0.55 to 0.44. The improvements were more limited for the

CASI images acquired on 26 June (R2 increased by 33% from 0.39 to 0.52) and on 19

July (R2 increased by 2% from 0.84 to 0.86). The RMSE was reduced by 10% for both

cases. For wheat (Figure 3.4), the improved CLUT performance increased R2 by 14%

from 0.56 to 0.64, and reduced the RMSE by 8%. For soybean, the R2 values were

very high around 0.98 for both the LUT and CLUT methods, but a smaller RMSE

was obtained with the CLUT method. Similar results were observed for corn.

Although the overall performance of both inversion methods was marginal for re-

trieving the leaf chlorophyll content (Figure 3.5), the CLUT also outperformed the

LUT method. Due to limited ground sample measures, a detailed analysis for individ-
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Figure 3.3: Relationship between the measured LAI and LAI retrieved from the 2001 CASI

data. From top to bottom: overall,13 June, 26 June, and 19 July, using the CLUT and LUT

methods. 1:1 line is added to have a visual comparison.
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Figure 3.4: Relationship between the measured LAI and LAI retrieved from the 2001 CASI

data for different crops. From top to bottom: overall, wheat, soybean, and corn using the

CLUT and LUT methods. 1:1 line is added to have a visual comparison.
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Figure 3.5: Relationship between the measured leaf chlorophyll content and leaf chlorophyll

content retrieved from the CASI data. 1:1 line is added to have a visual comparison.

ual growth stages and crops could not be carried out. For all of the data available, the

R2 between the predicted and ground measured leaf chlorophyll content was 0.28 for

CLUT and 0.19 for LUT, while the RMSE was 19.05 and 29.11 µgcm−2 , respectively.

The lower performance result for leaf chlorophyll content (Figure 3.5) compared

with the LAI (Figures 3.3 and 3.4) could be explained by the smaller range of leaf

chlorophyll content values while LAI values covered a much wider range. In addition,

as implied by the direction of the semi-major of the merit function contours in Figure

3.2, the ambiguity in the retrieval of the leaf chlorophyll content is expected to be

much greater than in the retrieval of LAI.

3.4.3 Retrieval of LAI from CHRIS imagery

In this study, the CLUT method was further tested with the CHRIS imagery. Com-

pared with the CASI imagery, the signal-to-noise of the CHRIS imagery was relatively

low (around 300:1). As a result, the effect of considering the uncertainties in the
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observed data on the retrieval of LAI was investigated. The standard deviation of

the reflectance values of a homogeneous soil area in the images was calculated for

each spectral band and taken as a measure of the observation uncertainty at the

corresponding band. For clarification, we denoted the LUT method using the merit

function defined in Equation 3.1 and ωi with as the inverse of the uncertainty of the

observation as NLUT (Noise considered), and the CNLUT method with the CI of

each observation accounting for both its uncertainty characterized by P taken as the

inverse of the uncertainty of the observation and sensitivity to the parameters.The

LUT, CLUT, NLUT, and CNLUT methods were first used to retrieve LAI using the

only nadir observations in this study. Due to the lack of laboratory measured data of

leaf chlorophyll content and dry matter content, only the retrieved LAI values were

validated and the results are shown in Figure 3.6.

Significant improvements on the retrieval of LAI were obtained using both CLUT

and CNLUT methods at nadir (Figure 3.6) compared with the LUT and NLUT meth-

ods. It demonstrated that weighting an observation in the merit function based on

its sensitivity to the retrieved parameters could significantly improve the retrieval ac-

curacy. Indeed, the CLUT method improved the R2 from 85% to 91% and reduced

the RMSE from 1.60 to 1.34. Considering the uncertainty in each observation in the

model inversion had a limited impact for improving the inversion accuracy, compared

with accounting for the sensitivity of each observation on model parameters. The in-

crease of R2 between the retrieved and measured LAI was marginal between CLUT

and CNLUT methods (i.e., from 0.91 to 0.92), but the RMSE reduction from 1.34 to

0.92 was more significant. The NLUT method failed to improve the RMSE between

the retrieved and measured LAI compared to LUT.
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Figure 3.6: Relationship between the measured LAI and that retrieved from the 2004

CHRIS data using nadir only data. 1:1 line is added to have a visual comparison.
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The LUT, CLUT, CNLUT, and NLUT were used with nadir and off-nadir obser-

vations together to investigate how off-nadir observations affect the model inversion.

Due to the imagery co-registration issue obtained at the large fly-by zenith angles

(FZA) (± 55◦) images, the data acquired at the FZA (± 36◦) were kept in the inver-

sion. The results are shown in Figure 3.7. It is clear from Figure 3.7 that CNLUT

had the best performance among all four approaches in terms of both R2 and RMSE;

and the approaches with the CI based merit functions performed better than others

without considering the sensitivity of observations to model parameters (CNLUT vs.

NLUT and CLUT vs. LUT). Compared with the retrieval results based on only nadir

observations (Figure 3.6), the results in Figure 3.7 also show that the off-nadir obser-

vations (Figure 3.7) improved the retrieval accuracy by reducing the RMSE from 0.95

(nadir only) to 0.58. The multiple angular acquisitions reduced the tendency to over-

predict the LAI. However, despite the popularity, using PROSAIL model may not be

the optimal approach due to its relative simple assumption of ground structure. Other

model, e.g., proFLAIR (Omari et al., 2013), would possibly serve the same even better

role. In this study, we just want to have a simple, effective and clear demonstration

of the significance of CI in model inversion.

3.5 Summary and conclusions

The impact of the CI of each observation on the retrieval of parameters of interest

in a physical canopy model was studied. The CI quantifies the sensitivity of each

observation to the targeted parameters. The experiment, based on the simulated

data, showed that the changes of CI values with the spectral band in terms of the

retrieval of LAI and leaf chlorophyll content were consistent with the reported effects
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Figure 3.7: Relationship between the measured LAI and LAI retrieved from the 2004

CHRIS data using three angular observations. 1:1 line is added to have a visual comparison.
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of LAI and leaf chlorophyll content on the canopy reflectance in the literature. The

CI also takes into consideration of the uncertainty (noise) in each observation. A high

noise level in an observation would lower its weight in the inversion process. As a

result, by adding the CI of each observation in the merit function, the inversion was

concentrated on important and reliable observations, which led to an improvement in

retrieval results. Based on the simulated data, it was demonstrated that adding CI

to the merit function could reduce its valley area, which is expected to reduce the

uncertainty in the retrieved parameters.

After implementing the CI-based merit function into the LUT method, the CLUT

method was tested using both simulated data and CASI and CHRIS data. The results

showed that weighting observations in the merit function based on their sensitivi-

ty to the model parameters was effective, and the CLUT method outperformed the

traditional LUT method in terms of the RMSE and R2 between the retrieved and mea-

sured LAI and leaf chlorophyll content. The CI-based merit function was validated

with the LUT inversion method, but it could be used with other optimization inver-

sion techniques, such as the iteration approach. The LUT method was used in this

study because of its robustness and stability, although it was not the fastest algorithm.

The LUT method guaranteed a simple and fair comparison. Other optimization tech-

niques, such as iteration approaches, could also adopt the CI-based merit function,

but preliminary work is required to take into account the initial values influence and

convergence issues. The CI-based merit function can also be implemented with other

coupled canopy-leaf models. This study demonstrated the CI potential in inversion

improvement and the coupled PROSPECT and SAIL model was selected because of

its popularity, stability, and robustness. The CI merit function itself is derived from
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prediction matrix, which was totally independent from the models used. However, the

CI values were calculated based on given models, which means the contributions of

the observations to parameters have to follow the assumptions of the selected models

and vary depending on the model performances. In future work, the CI-based model

inversion method will be further tested based on different models and for different

environments.
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4 Individual urban tree species classification

using very high spatial resolution airborne

multi-spectral imagery using longitudinal profiles

This chapter is based on the published journal paper:

Zhang, K., and Hu, B. (2012) “Individual urban tree species classification using very

high spatial resolution airborne multi-spectral imagery using longitudinal profiles”.

Remote Sensing, 4, 1741-1757

Remote Sensing is a MDPI open access journal which permits reproduction for non-

commercial purposes.
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4.1 Introduction

In recent years, researchers have become more aware of the importance of detailed

land characteristics in urban systems (Tooke et al., 2009). Trees comprise a critical

component of urban ecosystems and directly impact human habitations. Individual

trees each exert significant influence over their environment; a tree’s roots may affect

underground utility systems; branches may affect surrounding power lines, and certain

species of flowering trees when in bloom may cause serious allergies in local inhabitants.

In addition, depending on species, a tree may serve as home for a variety of animals

and insects which in turn exert significant ecological influence and may represent a

source of potential hazard for residents. Accurate tree species classification is therefore

an essential component to urban studies, city forest inventories, ecology management,

and other urban planning applications.

Traditionally, identification of tree species is conducted through photo interpreta-

tion assessment of aerial photographs by an interpreter. This technique relies heavily

on the breadth of the interpreter’s experience in applying spatial discrimination criteri-

a (Fourier et al., 1995; Waser et al., 2011) and is therefore more likely to be qualitative

in nature. The classification is then used to identify tree species. Classification uses

the features of the objects, sometimes also known as criteria (Franklin et al., 2001) or

descriptor (Brandtberg, 2002). The ideal features should present the highest separabil-

ity of the targeted objects, which means they have the highest within-class similarity

and minimum overlap inter-class. The commonly used features are spectral signa-

tures, texture, vegetation indices (VI) and shape information etc. It can be generally

divided into two approaches: the pixel-based and the object-based. The former uses

pixel-based features to determine the similarity, while the latter requires segmentation

75



first and uses the grouped pixels to generate features.

The spectral signature is the most commonly used feature. A compilation of articles

of commonly used procedures, issues and applications for spectral signature compari-

son can be found in Hill and Leckie (1998). Leckie et al. (2003) extended the spectral

signature algorithm to eight and ten band CASI imagery to facilitate classification of

old growth conifer sites along the west coast of Canada. Erikson (2004) used empiri-

cally radiometric and morphologic developed parameters to classify the four common

species in Sweden. Larsen (2007) obtained an individual 3-dimensional tree map us-

ing image geometry and contrast to identify each tree through comparison to a set of

known species. However, the accuracy of spectral signature classification remains rela-

tively low, normally less than 50% due to the high variation within-class and the high

similarity inter-class. VI can be considered as an extension of spectral signature. The

difference is the VI is normally dedicated to special parameters through its “formu-

la”. VI usually serves as a filter before or as additional information in classification.

In Pena-Barragan et al. (2011), the VI and spectral features were put together for

inversion and NDVI was reported contributing around 50% to the model.

Texture is considered as key visual criteria when extracting information from im-

agery for vegetation and forestry applications (Franklin et al., 2001). In Coburn and

Roberts (2004), four main texture approaches were identified: statistical, geometrical,

model-based and signal processing. According to Gebreslasie et al. (2011), the most

popular texture approach is the statistical approach, which considers local spatial or

spectral variability. However, different criteria have been used for variety of studies.

In Haralick (2011); St-Louis et al. (1998), grey-level occurrence matrix (GLOM) and

grey-level co-occurrence matrix (GLCM) were introduced to recognize patterns. In
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Dawson and Parsons (1994), the standard deviation, entropy, run lengths and “frac-

tal” (a scale-invariant object) roughness were investigated for their separability for

urban derelict lands. In Franklin et al. (2001), the first and second order variance

and homogeneity were found to be effective in distinguishing the forest age class from

IKONOS imagery. In Rich et al. (2010), texture metrics mean Euclidean distance,

variance and mean were used to capture the disturbance severity across a windstorm

damaged vegetation structure from IKONOS imagery. In Klassen et al. (2004), GLCM

homogeneity, dissimilarity and entropy were cooperated within an object with other

object-based information to identify the crops from ASTER imagery. In Coburn and

Roberts (2004), a total of 12 features, mean, variance, entropy, correlation, contrast

and second moment of GLOM and GLCM were used to extract the structural at-

tribute of Eucalyptus plantation forest from IKONOS imagery. Texture features are

rarely used by themselves. They are more commonly used as additional information

combined with the spectral signature. It normally provides an extra dimension of

measurements and improves the classification by 5%–15% compared to spectral only

cases.

Despite that the shape of a tree has long been recognised as significant in identifying

tree species, shape information is rarely used information in multi-spectral imagery

classification (Fourier et al., 1995). This is due to the fact that most botanist’s shape

reorganizations are based on the side view of a tree. In most of the Remote Sensing

forest study, only a portion of the tree tops are visible in the imagery, which makes

the reproduce of the tree shape difficult. The shape information that can be used in

imagery classification is 2D top view shape. The classification mainly depends on the

experiences of the imagery interpreters. On the other hand, when shape information
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is relatively easy to obtain, such as in LiDAR data, shape has been recognized as the

primary classification parameters. Brandtberg (2002) used the convex and concave

contour to describe the shady side curvatures. Based on the development of the Planar

shape recognizing (Klassen et al., 2004), the “shape space” had been reported as a

potential of the classification improvement in Kulikova (2009), which the planar shape

represented by the angle function was explored. Shape information is proved to be

useful in term of improving classification result on top of conventional spectral and

texture information.

Segmentation of individual trees has been an ongoing research field for years (Erik-

son, 2004). A variety of approaches exist with an objective towards auto-locating of

trees and individual crown boundary. It is commonly achieved from the analysis of

high resolution spatial imagery (Leckie et al., 2004). The popular methods are, but

not limited to, the template matching approaches (Larsen, 1997; Larsen and Rude-

mo, 1998, 2004), the valley following approach (Gougeon, 1995; Gougeon and Leckie,

2003), the local-maxima (Wulder et al., 2004), texture grouping (Warner et al., 1998),

the use of morphological operators (Barbezat and Jacot, 1998), and joining of convex

edges (Brandtberg and Walter, 1998). Since the segmentation is not the focus of this

study, an automatic processing was tested using the watershed approach proposed by

Jing et al. (2011) for a potential of large size image processing. Even the overall seg-

mentation accuracy was over 80%, the main errors occurred when a few trees group

together. For these grouped trees, a manual detailed segmentation of collected ground

validation data is necessary to enhance the accuracy. This type of manual delineation

accounts for less than 10% of trees validated.

This study proposes a new classification feature derived from directional profiles
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for surmounting challenges associated with applying tree species classification schemes

in urban settings. It was inspired by the unique growing conditions of urban trees;

(1) A main error resulting from using forest classification schemes as a proxy to

urban individual tree classification is the miscounting of the number of trees covered

by the shadows of neighbouring buildings. In a forest setting, man-made structures are

rarely present and shadows of neighbouring trees normally do not cover the entirety

of surrounding trees. In this study, in order to accurately identify urban tree species

on an individual basis, a scheme is made prior to segmentation to recover undetected

tree masked by building shadows;

(2) Urban trees are much more isolated than forest trees, making it easier to define

their boundaries. Urban trees typically experience less competition for resources than

their forest counterparts. Consequently, urban trees are not as constrained and are

more likely to grow to the capacity of their genetically determined shape and size. In

contrast to forest scenarios, high resolution spatial imagery within the urban setting

is capable of capturing entire single trees instead of just tree tops or canopies. Shape

information for urban trees is therefore very specific and useful in the identification of

individual tree species. In this study, new vegetation parameters based on longitudinal

profiles of tree crowns, which derived from shape information of trees, were developed

and supplied to construct a new decision tree to uniquely distinguish species.

Trees growing on Keele campus of York University (Toronto, ON) can be considered

as typical, temporal climate urban trees and are used as test cases for this study.
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4.2 High spatial resolution imagery and ground data collec-

tion

4.2.1 Airborne high resolution spatial imagery

The main Image used for this analysis is 6 cm by 6 cm high spatial resolution multi-

spectral airborne imagery taken by Air Sensing Inc. on 1 August 2007 in sunny, clear

conditions. The data was supplied by the York University Map Library in its raw

format. The image comprises four spectral bands: Blue (460 nm), Green (570 nm),

Red (670 nm) and NIR (800 nm). The image was captured at the flight height of

390 metres (1282 feet). The image covers York University (Ontario, Canada) Keele

campus, which is shown in Figure 4.1.

4.2.2 Ground data collections

A total of 213 trees on campus were documented using camera and measuring tape.

The physical parameters, such as tree heights and crown sizes were measured or in-

terpreted from images. They were identified using tree guide books (Farrar, 1995;

Kershaw, 2001; Sibley, 2009) or by consulting with field experts. There are a wide

variety of tree species available on the York Campus. The six popular and important

species selected are Maple, Ash, Birch, Oak, Spruce and Pine shown in Figure 4.2. The

documented trees were 32 Maples (Acer rubrum, Acer platanoides), 30 Ash (Fraxinus

pennsylvanica), 14 Birch (Betula lenta), 26 Oak (Quercus rubra), 15 Spruce (Picea

abies) and 25 Pine (Pinus banksiana, Pinus resinosa and Pinus sylvestris). The rest

were the trees belonging to other species, which were not classified.
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Figure 4.1: True colour high spatial resolution image of York University, Toronto, Ontario,

Canada.
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Figure 4.2: Top left to right: Maple, Ash, and Birch; bottom left to right: Oak, Spruce,

and Pine.

82



4.3 Methodology

4.3.1 Shadow tree recovery

The main cause of missing out trees covered by shadows casted from nearby buildings

from the imagery was the conventional usage of the Normalized Differential Vegetation

Index (NDVI), which is shown in Equation (4.1). Most segmentation and classifica-

tion approaches use NDVI to separate vegetation and non-vegetation surface as the

pre-processing mask. For forest trees with dense canopy, this shows positive results.

Forest trees are normally not fully covered by other trees’ shadow. In fact, only a

portion of tree top is captured by imagery. However, as discussed in Section 4.1, the

isolated trees in urban environment can cause a complete failure due to the shadow

of nearby buildings. Since the shadow blocks the direct illumination, the light sources

for the shadowed area are the nearby surrounding scattering. The NIR band is most

significantly affected, which leads to a much lower value of NDVI. Any segmentation

or classification methods using NDVI to classify the vegetation and non-vegetation

surfaces would therefore give a false result.

NDV I =
NIR−R
NIR +R

(4.1)

where NIR and R represents the Near-infrared and Red reflectance, respectively.

The threshold value for NDVI was determined experimentally. In this study, NDVI

< 0.2 is used to classify the non-vegetation surface. The NDVI of 0.2 was selected as

a trade-off between separating the trees from the background non-vegetation surface

and preserving as much shaded trees as possible. However, all trees within a building

shadow suffered some level of crown loss in this step. In urban cases, whole or partial
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trees are missed due to this inappropriate classification, as shown in Figure 4.3(b).

Figure 4.3 is a subset of the campus image, which within the ellipse circled area had

over 15 ash trees. The NDVI mask had missed half of the ash trees due to the shadow

of the nearby Ross Building. Keep in mind that in forest applications, the shadow

from nearby objects other than trees rarely exists.

To solve this issue, a ratio version of the green radiance index is used: Greenness

Index (GI) (Tucker, 1979), which can be expressed as:

GI =
G

G+B +R
(4.2)

where B, G and R represents the Blue, Green and Red reflectance, respectively.

Figure 4.3(c) shows the performance of the GI for the same area. It was clear that

for the NDVI missed trees, GI had recovered.

Using ratio to create vegetation index is a simple but effective approach that Gi-

telson and Merzlyak used to successfully retrieve leaf chlorophyll content (Gitelson

and Merzlyak, 1996). GI is the green percentage of the pixel, which represents the

greenness of the objects. If the object is green, then the GI is at least greater than

0.33. Since shadow covered trees are still more visually greenish, it can be detected

by GI. As a result, for the trees that NDVI missed due to the shadows, GI gives a

chance to recover them. Also due to the fact the living vegetation has a relatively low

reflectance value in the visible ranges, it is much lower and less sensitive to GI than

arbitrary green objects. Therefore, GI should be kept as low as possible.

However, GI also has its limitations. First of all, it may also detect the artificial

green objects, such as green roof, pipes, etc. Second, it would miss the non-green

leaf trees, such as Red Maple. Figure 4.3(c) is also a good sample to illustrate these
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weaknesses. For the green squared area, the green pipes on top of the roof were picked

up, while the NDVI result did not have this error. For the red squared area, the GI

missed the red maple due to leaf colour, while the NDVI result easily picked them up.

Therefore, a few filtering and smoothing approaches were used in separating the

green artificial objects from the tree pixels and merged with the NDVI output. Figure

4.3(d) is the final processed segmentation image. This process can be summarized as

three steps: (1) Filtering small segments less than 20 pixels (0.72 m2) on both NDVI

and GI images. This step removed any detected small objects not likely to be a tree due

to the size, which significantly filtered out the background grass and other small non-

tree vegetation objects; (2) Merge NDVI and GI images; (3) Smooth the merged image,

mainly the edge and filling the gaps within the segments. This output segmentation

image is used as filter in the next step, shape signature collection. Therefore, it is very

important to keep the tree crown completeness.

4.3.2 Classification

Since urban trees have a much more complete tree top view, whole tree shape informa-

tion is available and can be potentially important. In this study, longitudinal profiles

(further referred to as profile) of the tree crown tops were also investigated. These

profiles were obtained from the following procedures. As shown in Figure 4.4, a red

maple tree was used to demonstrate the procedure step by step. Step A: obtain the

intensity profile of the crown by recording all the values along the direction of the Sun

Azimuth angle from a segmented tree. Step B: cut off the edges (drop all zero value

pixels) and convert the end to end section to tree perimeter using image scale and

spatial resolution. The first a few pixels may have been impacted by the nearby tree
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Figure 4.3: From left to right (a) the true color original image with location indication; (b) the NDVI filtering image; (c) the GI filtering image;

(d) the NDVI+GI merged image with smoothing and shape filtering.
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Figure 4.4: The illustrated procedure of obtaining longitudinal profile of a tree crown.

shadows. A first derivation of the raw curve was calculated and the first high peak

was eliminated. This step was later proved to significantly improve the robustness of

the algorithm. This study was inspired by some pioneer work done by (Fourier et al.,

1995), which was mainly limited by the low spatial resolution of the image at that time

and coined the term ”longitudinal profile” for potential tree species classification. The

longitudinal profiles of the different tree species in NIR band are summarized and

shown in Figure 4.5.

The outlines of these plots are determined by the geometry of the illumination and

viewing condition, and the tree shape. Therefore, it is essential to determine the effect
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of geometry of the illumination condition, especially Solar Zenith Angle (SZA) (Putto-

nen et al., 2010). In this study, the SZA were determined by two different approaches,

direct retrieval from the dataset and calculated from the field measurements, such as

street-lamp height and its shadow distance. It was 50◦ ± 3◦. From Figure 4.5, there is

one common feature through out all species. There is always, some more obvious than

others, a turning point to separate the profile into two portions. The first portion is

generally higher than the second in value, which represents the sunlit and shadowed

tree crown surfaces of the same tree. From simple geometry calculation, it is easy to

find that SZA directly impacts on the location of this turning point, which in theory,

an approximation of the tangent line of the incoming ray of the tree crown surface. It

can be approximated by the Equation (4.3) (Jensen, 2005):

da = dm× 1− sin(SZA)

2
(4.3)

where da is the distance away from the beginning of the profile, dm is the diameter of

the tree.

This estimation has a pretty good agreement with the observations, which provided

a possibility of correcting all the images obtained from different SZA to a normalized

value range. However, this is not the focus of this study. Within one image, the SZA

is assumed to be the same for the entire image and any variations caused by the SZA

are ignored.

Back to Figure 4.5, these profiles represent a few key features of the trees at a

fixed SZA, such as the general outlines of the tree shape, the smoothness of the leaves

surface etc. To quantify profiles geometrics, linear best fit, second order polynomial

and modified free-form curve approximation were calculated from the profiles in this
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Figure 4.5: The longitudinal profiles of the six different species.
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study. Characterizing free-form curves, such as Bezier curves, B-spline curves are

classic problem in geometric design. Numerous methods have been proposed in the

past decades (Chen et al., 2010; Chuang and Kao, 1999; Shih, 2008; Yuksel et al.,

2011). One of the popular approaches is to sample the given curve as a sequence of

points and approximate the distance between the points. An important goal for this

approach is to reduce the number of the control points that are used. In this study,

since the curves are much simpler and known and predictable regulations, a modified

approach adapting the concept of forming triangles in the Vectorization (Zhang et al.,

1998) was used. Instead of assigning multi-nodes, only one inter-curve node was used,

and minimizing the linear fit of the both sides of the triangle, which is illustrated in

Figure 4.6. Two parameters were calculated the normal distance (d) from the node to

the baseline, which is the link of the two end points and the position (p) given as the

ratio of the two segments of a and b, which can be expressed as:

p =
a

b
(4.4)

If the curve is flat, close to a linear fit, the d value is fairly low and p value is

negative. If the curve is irregular, the d value is dramatic increased and the p is close

to 1. If the curve is left skewed, the p value is less than 1 while the right skewed curve

will result a greater than 1 value.

In this study, a knowledge-based decision tree was constructed. Decision tree

classification is considered a fairly robust and reliable approach (Heumann, 2012).

All available parameters, including spectral information, texture information, tree size

and height, and geometry of profiles were taken into consideration. However, only the

most effective ones were used in the end. The selection of the tree nodes were based
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on the following criteria: (1) try to pick minimum one feature from each category; (2)

try to use the ones have clearly distinguished features than others; (3) try to minimize

the number of the decision tree nodes used.

All spectral bands were included as candidates. Due to the atmospheric absorption,

the visible bands suffered significant signal strength loss. Only the NIR band was

selected. Figure 4.7 shows the mean, upper and lower values of each species. The

NIR at value of 160 and 150 was used to separate the conifer and deciduous with Oak

exception. Any value between 150 and 160 are subject to further evaluation. The

GRI (Equation (4.5)) (Tucker, 1979) had shown the most effective in separate Conifer

and deciduous trees amount the vegetation indices, mainly competing with NDVI.

The NIR and GRI combination can identify the strong featured conifer and deciduous

trees. The spectral and VI information was used as the first level of screening.

GRI =
G−R
G+R

(4.5)

It is not too difficult to separate deciduous from the conifers. However, it could

be quite challenge to distinguish the Pine and Spruce. A combination conditions of

“left skewed” (0 < p < 1/3) and “high d value” (d > 100) was used in this study. An

interesting left skewed peak was noticed from the Spruce but not in Pine.

To separate the four deciduous tree species, the “left skewed” criteria was first used

(0 < p < 1/2). The “left skewed” mainly separates the Maple/Birch and Ash/Oak

groups. In this study, the Ash are mainly young trees, as such they share a high-

ly complex crown structure with the Oaks. The next criteria examined was “if the

curve is flat” (d < 25). The Maple has low d value due to their big leaves and

mature. The Ash have a low d due to their young age and relative smaller size.
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Figure 4.6: (Top): the linear and second order polynomial fit; (Bottom): the single node

triangles in the Vectorization of the profiles.
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This separation is confirmed also by looking at the linear regression R2. The Maple

broad leaf generates a much smoother surface than the Ash; therefore, its R2 is over

0.8. Ash would hardly exceed 0.7. All four species can be separated at this stage,

however, the result can be ensured by further examining the second order polyno-

mial fit regression coefficient. The final “knowledge-based” decision tree is shown in

Figure 4.8. There is an external terminator (iteration counter) to settle the rare cas-

es, which the same node has been visited twice. This only can happen for “highly

spectrally mixed” cases, which is most likely caused by the Oak inter-class variety.

Therefore, these special cases were signed to Oak to keep no “undecided” cases.

The decision tree can also be constructed base on statistical analysis of the dataset.

One of the approaches was based on the “gain criterion”, which originated from Hunts

information theory (Hunt, 1966). This mathematical decision tree construction was

also conducted in this study as comparison. The results were obtained using the

commercial software C5.0 (a commercial decision tree classification software) (Hayes

et al., 1988; Quinlan, 1993) under the license of York University Earth Observation

Laboratory.

4.4 Results and discussion

Out of the overall 200 trees observed on the ground, 142 trees belonged to the 6 se-

lected species. It was first to generate a “knowledge-based” decision tree by randomly

picking 50% of the data (70 trees total were picked due to the round up in numbers in

different species).This random picking had been repeated a few times, and no signifi-

cant variation was found. All 142 trees were then analysed by this “knowledge-based”

decision tree to generate classification result, which is shown in Table 4.1. The overall
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Table 4.1: Classification result using knowledge-based tree.

Species Maple Ash Spruce P ine Oak Birch

Maple 29 1 0 0 0 2

Ash 3 25 0 0 1 1

Spruce 0 0 10 3 0 2

Pine 0 0 4 20 1 0

Oak 1 0 0 0 24 1

Birch 0 0 2 0 0 12

OA = 84.5%

accuracy (OA) was 84.5% and the Cohen’s Kappa Coefficient is 80.6%. An indication

map is shown in Figure 4.9.

To compare the result, commercial decision tree software C5.0 was used to generate

its trees and classification results. Since C5.0 requires training data, the 142 trees used

in the “knowledge-based” tree classification were then divided approximately equally

into two groups. One group (70 trees) was used as training while the other (72 trees)

was used as validation. To better demonstrate the differences contributions of different

information. Different information compounds were used and different results were

generated.

First of all, only the 4 bands spectral signature approach was used for classification,

which is referred as 4 bands signature approach. Results are shown in Table 4.2. The

features used were Blue band (100%), NIR band (100%), Green band (50%) and Red

Band (32%). Percentage indicated which level and how many times this feature was

used. 100% means it was used in first level, all the candidates go through this node.

The overall accuracy (OA) was 48.6 % and the Cohen’s Kappa Coefficient is 35.7%.

Next, the vegetation indices and texture information was added to the band signa-
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Table 4.2: The C5.0 decision classification results with 4-band spectral information only.

Species Maple Ash Spruce P ine Oak Birch

Maple 10 3 0 0 0 3

Ash 1 11 0 0 3 0

Spruce 3 3 2 0 0 0

Pine 0 2 0 10 1 0

Oak 6 5 0 0 1 1

Birch 3 0 2 0 1 1

OA = 48.6%

tures approach. Results are shown in Table 4.3. The feature used were NDVI (100%),

Blue band texture (60%), size (57%) and GRI (37%). The overall accuracy (OA) was

75.0% and the Cohen’s Kappa Coefficient is 68.7%.

Last, the profile derived indices were added to the data, which makes it a com-

bination of profile, vegetation indices, textures and band signatures. The results are

shown in Table 4.4. The features used were d (100%), p (100%), NDVI (88%), GRI

(55%) and linear R2 (27%). The overall accuracy (OA) was 86.1% and the Cohen’s

Kappa Coefficient is 82.6%.

The normal distance (d), position ratio (p) and linear R2 are mainly derived from

the profile information. NDVI and GRI are also important and selected in Table 4.4

as expected. It was surprising that the texture was completely ignored in the C5.0

decision tree. The benefits of introducing profile-based information are obvious. The

classification result improved on every species comparing to Table 4.3, which includes

all information except profiles. Table 4.3 delivers a decent 75% total accuracy. It

shows the similar trend of classification selected as the “knowledge-based” tree, which

tries to keep away from directly using spectral bands. The features were vegetation
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Table 4.3: The C5.0 decision tree classification result with spectral, VI and Texture infor-

mation.

Species Maple Ash Spruce P ine Oak Birch

Maple 13 2 0 0 0 1

Ash 0 12 0 0 3 0

Spruce 1 1 6 0 0 0

Pine 0 1 1 10 1 0

Oak 1 1 0 0 9 2

Birch 1 0 1 0 1 4

OA = 75.0%

Table 4.4: The C5.0 decision tree classification results with all information (Spectral,

texture, profiles etc.) together.

Species Maple Ash Spruce P ine Oak Birch

Maple 14 1 0 0 0 1

Ash 0 14 0 0 1 0

Spruce 0 1 7 0 0 0

Pine 0 1 0 12 0 0

Oak 0 1 0 0 11 1

Birch 1 0 2 0 0 4

OA = 86.1%
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index (NDVI and GRI), the physical parameter (size) and spatial information (tex-

ture). This strongly agrees with the initial motivation and inspiration of this study.

For uncalibrated imagery with nearby building shadow issues, spectral information is

the least reliable. The information that are independent of spectral information will

minimize the negative impact and will be expected to improve classification.

4.5 Summery and conclusions

As the results shown in Section 4.4, the longitudinal profiles have been proved to be

valuable additional information to improve the individual tree species classification

when using very high spatial resolution airborne imagery. For both designed and C5.0

generated decision trees, the accuracy of overall classification results involving profiles

were at 84.5% and 86.1%, which are much better than trees generated from non-profile

included cases (75% or less). The longitudinal profiles approach is typically suitable for

high spatial resolution imagery in the urban environment. It was clear that the shapes

of trees are strong signatures of tree species recognition. In urban environment, trees

tend to grow into their natural shape due to low competition. Trees are more isolated

and have clear boundaries. The end to end longitudinal profiles are not as difficult to

obtain as in forestry cases. The profile information can directly represent tree shape,

which is a more favourable side view. It is not affected by the nearby building shadow,

which brings more robustness to the spectral signature issues. It also can quickly

estimate the level of the tree crown variation, which is highly correlated with texture

and leaf size and shapes without spectral variation problems. These features are very

important for non-calibrated high spatial resolution imagery without calibrations.

In this study, one important improvement is the separation of Pine and Spruce,
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which directly results from including profile information in the classification. The Pine

and Spruce have similar spectra and both have needle leaves, which can be a challenge

for spectral classification, but the high spatial resolution profile can capture the needle

orientation and branch differences to improve the classification. For other species,

Maple was the most stable specie that can be estimated at a reasonable accuracy

(62.5% or higher), followed by Ash. In this study, most Maple and Ash trees on

the ground are in the similar growth stage. Most Maple were mature and healthy,

therefore, it was expected to have a reasonable retrieval accuracy. On the other hand,

Ash were young, healthy but suffer significantly from the shadow issue. Once the GI

was implemented to reduce the segmentation error, profile information can strongly

compensate the spectral differences caused by the shadow.

In forestry cases, trees are subjected to high competition with neighbour trees.

Airborne imagery normally can only see the top of crowns, which is the focus of the

current shape recognition studies. The competitive growing condition dramatically

changes the outline of the trees, increasing the difficulty of effectively using the shape

information in classification.

Due to the volume of the ground data, limited validations were conducted. The

profile can not get away from the biggest challenge in species classification using remote

sensing data, the variability in the properties derived from remote sensing data between

trees with the same species caused by various factors (within class variability), and

the inter-class similarity. It should be applied with the other information together

to maximize the classification accuracy. Coefficients reassessment and “knowledge-

based” tree modification may be needed if applying this method to a new study area.

The results were more of a demonstration of the potential of using longitudinal profiles
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in classification. More validation work is needed in the future studies. The end to end

profiles are specifically designed for urban tree cases in this study. However, it is still

potentially possible to apply it in forestry study, which would use top portion only. It

means partial profile to reconstruct the side view tree shape is valuable in the future

investigation.
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Figure 4.7: The NIR (Left) and GRI (Right) mean and maximum/minimum boundaries for six tree species.
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Figure 4.8: The knowledge-based decision tree constructed.
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Figure 4.9: The indication map of knowledge based decision tree classification results (zoom

into the central area for better view)
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5 Early detection of Emerald Ash Borer (EAB)

infestation using multi-sourced data

This chapter is based on the published journal paper:

Zhang, K., Hu, B., and Robinson, J., (2014), “Early detection of Emerald Ash Bor-

er (EAB) infestation using multi-sourced data: a case study in the town of Oakville,

Ontario, Canada”, Journal of Applied Remote Sensing, 8(1), accepted on June 3, pub-

lished on July 7, 2014.

It is a further development of the conference paper:

Zhang, K., Hu, B., Hanou, I. S., and Jin, L. (2012), “Early detection of ash Emerald

Ash Borer (EAB) infestation using hyperspectral imagery”, proceedings of the 2012

International Geoscience and Remote Sensing Symposium (IGARSS), 6360 - 6363,

Munich, Germany.
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5.1 Introduction

The Emerald Ash Borer (Agrilus planipennis, EAB) is one of the most destructive

insects to affect ash species of the genus Fraxinus (Maloney et al., 2006; Sydnor et al.,

2007). Ash is one of the most popular landscape trees in North America, replacing

elm trees in new residential and commercial developments due to its high tolerance to

environmental stresses and its resistance to pests(Gould et al., 2013). The invasion of

EAB was first reported in 2002, in Michigan, USA. Despite substantial research and

control efforts, the beetle has continued to spread to new areas, and today it is found

in 14 states and has crossed the border to Southern Ontario, Canada (Kovacs et al.,

2010).

The beetle has caused the death of millions of ash trees and billions of dollars in

economic losses (Rose, 2010). The ash trees attacked by EABs often show serious

decline within two years of initial infestation, and typically die within three to five

years (Anulewicz et al., 2007). As such, early detection is especially valued, due to the

aggressive nature of the EAB infestation.

Infestations are normally identified by tree owners and are confirmed by on-site tree

branch sampling (Gould et al., 2013). Recent EAB studies have focused on biochem-

ical and biological symptoms and treatments, such as tree leaf decline, woodpecker

presence, chemical injection treatments, and tree removal (Gould et al., 2013; Ryall

et al., 2011). However, each of these techniques is inherently concerned with late stage

occurrences of the infestation. In order to improve in this multiple government agen-

cies and environmental groups are exploring the use of remote sensing techniques for

infestation detection over large areas, including city and provincial scales. Analysis of

such data could offer workable results with improved cost and detectability efficiencies.

104



During EAB infestation, the larvae destroy the cambium layer under the bark

responsible for transporting nutrients and water throughout the tree, therefore result-

ing in general stress (Ryall et al., 2011). Trees under general stress often experience

changes in leaf pigment composition, particularly in leaf chlorophyll content. Thus,

from a detection point of view, trees exhibiting general stress symptoms are much more

likely to be infested (McCullough and Katovich, 2004). As a result, spectral features

that are sensitive to leaf chlorophyll content can be potentially used for detecting EAB

infestations with remote sensing technologies (Pontius et al., 2008). Current remote

sensing approaches are focusing on such spectral features, but their success thus far

has been limited, as described below.

In Pontius et al. (2008) a 6-parameter function was proposed, and a 97% correlation

was reported between selected vegetation indices and tree decline caused by EAB

infestations. However, this correlation can only be confirmed in the dieback stages, and

the spectral-based variation is not sufficiently significant during the early infestation

stage to allow unique identification.

Souci et al. (2009) presented an EAB detection project based in Milwaukee, Wis-

consin, using high spatial resolution hyperspectral images and a pixel based vegetation

index approach to map out the invasive species. They also used LiDAR (Light Detec-

tion And Ranging) to create a digital elevation model and applied GIS (Geographic

Information System) buffer zone tools to highlight potential infested areas. However,

no significant validation result was obtained, and this study is considered a pioneer

work in multi-source data combination.

Hanou (2010) used a vegetation index to represent the correlation between infes-

tation and tree crown pixels to map out ash infestation in Oakville, Ontario. It can

105



be expressed as:

V I =
(RSWIR +RGreen)2

(RSWIR −RGreen)
, (5.1)

where RSWIR is the short wavelength infrared and RGreen is the green band. How-

ever, this pixel-based vegetation index approach can result in the misclassification of

different tree species as ash, and struggles to identify tree canopy over different back-

grounds, as well as being prone to spectral variations within individual trees. As a

result, it was not able to successfully map infested ash trees using this method.

Our goal in this study is to make this difficult task of early stage EAB infesta-

tion identification possible, providing a methodology that can deliver a reasonable

detectability for EAB infestation over large spatial scales. After background searches

and literature reviews, we have determined that the clues associated with EAB infesta-

tion are widely varied and may be deeply buried in different data sources, and not just

spectral data from hyperspectral imagery. As such, spectral and pixel-based analysis

alone is not sufficient for early detection of EAB, as it is susceptible to considerable

in-class spectral variation. It is necessary for us to broaden our range of information

sources, which requires the precise identification of information correlated with EAB

infestation, and their effective retrieval from different data sources. This additional

information from varied sources can reduce the ambiguity and uncertainties caused

by in-class spectral variation, and ultimately improve the accuracy of information

retrieval.

First, we investigated spatial features as a potential information source. As sug-

gested by (Smitley et al., 2008) there are a number of visual symptoms that can help to

detect early stage infestation, such as the dieback of twigs, thinning of the crown, and
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growth of new branches on the lower trunk. These symptoms can often be reflected

in structural changes of the tree crowns (Cosmopoulos and King, 2004; Omari et al.,

2013). For a mature and healthy ash tree, an oval shaped crown can be assumed. In

the presence of EABs, an ash tree loses its leaves, starting from the top central branch-

es, which leads to “holes” or “gaps” in the crown. In a high spatial resolution image, a

healthy mature ash tree exhibits a smooth texture with “salt and pepper” patterning,

which represents the gaps between leaves and branches. In contrast, certain patterns

that derive from the presence of larger “holes” in the crown are expected in an EAB

infested tree. Since spectral features do not typically consider the spatial patterning

changes before and after infestation, this predictive information on tree morphology

may help to determine the EAB infestation level.

We also recognize the natural spreading capacity of EAB. The mature beetle can

migrate from one tree to its neighbors, within a 25 km radius (BenDor et al., 2006;

Herms et al., 2009). Therefore, the known infested trees that have been previously

documented are important contributors to the potential continuation of the infestation,

which is a consideration that has been long neglected.

Further, following a comprehensive literature search and preliminary studies and

testing of various data sources, we identify the leaf chlorophyll content as a potential

indicator of infestation. Specifically, a significant drop compared to the surroundings,

in addition to the tree crown degradation and distance from known infested trees may

be considered key factors that can potentially lead to accurate estimation of the extent

of infestation.

Despite recognition of these key factors, it remains a challenge to effectively as-

semble the diverse information, derived from multi-sourced data, in order to reach a
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meaningful, consistent, and accurate conclusion. As a solution to this, we propose an

object-oriented approach rooted in these key factors, and devise a weighted linear pre-

diction score function. With proper calibration, this new infestation scoring approach

can be applied to the detection of early to medium stage EAB infestations. Therefore,

the overall outline of this study is as follows, also shown in detail in Table 5.1.

1) Comprehensive background search and literature review. 2) Extensive data

collection and processing. 3) Prior-processing studies and testing. 4) Identification of

the key factors for EAB infestation, which must be strongly correlated with infestation

and must be extractable from our data. 5) Establish an operational workflow, which

can effectively and robustly retrieve information from different sources and intelligently

combine them to deliver a precise prediction. 6) Map out the health of individual ash

trees within test areas using the proposed methodology.

5.2 Data specifications and pre-processing

5.2.1 Study area

The study area was the town of Oakville, Ontario (Figure 5.1). All ash trees within

the township boundary were part of the study. However, due to data limitations,

particularly related to ground data acquisition, we focused mainly on six sites within

Oakville, which are indicated in the final infestation map. Oakville is the first town in

Canada to use aerial-based imagery to compile and inventory public and private ash

tree damage (Hanou, 2010). Oakville is located in the EAB infestation zone, and has

multiple confirmed cases of EAB infestation. Therefore, this region has great interest

in research into early detection of EAB for both environmental and economical reasons.
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Table 5.1: Overall structure of this study

Spectralfeatures Spatialfeatures Prior − knowledge

Background and literature review Hanou (2010); Pontius et al. (2008); Souci et al. (2009) Smitley et al. (2008); Zhang and Hu (2012) BenDor et al. (2006); Herms et al. (2009),

Data sources Hyperspectral data: High spatial resolution data: Community maps and paper documents

1) Ground ASD measurements; 1) YUL Oakville imagery;

2) Airborne imagery 2) Google Earth imagery

Prior-knowledge studies and testing 1) Ground ASD spectral signature separability study; Spatial pattern visual interpretation EAB natural spread capability

2) Contribution analysis for vegetation indices band selection

Key factors identified Leaf chlorophyll content Tree crown degradation Distance from nearby known infested trees

Operational workflow 1) Three vegetation indices; Longitudinal profiles Distance constant

2) Leaf chlorophyll content retrieved from model inversion Longitudinal profiles Distance constant
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Figure 5.1: Location of the town of Oakville, Ontario, Canada and the ground survey results

of individual tree distribution. Numbers in the inset are the IDs of trees with confirmed

infestations.
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5.2.2 Airborne and ground hyperspectral Data

Two sets of commercial hyperspectral remote sensing data were used:

1) Airborne hyperspectral imagery with a spatial resolution of 1 m was collected

using a ProSpectTIR-VS2 in July 2010. In total, 360 spectral bands were recorded,

ranging from 390 to 2400 nm with a band spacing of 5 nm. The raw imagery was

converted into radiance by removing dark current, and was then corrected for atmo-

spheric disturbances using ATCOR4 software. Precise geo-referencing and geometric

correction was carried out using information provided by the on-board Internal Navi-

gation System (INS) and Global Positioning System (GPS) (Hanou, 2010).

2) Ground-level hyperspectral data were also collected. The leaves from ash trees

at different stages of infestation were measured using an Analytical Spectral Device

(ASD) (ASD Inc., Boulder, CO, USA). Leaves were recorded as healthy, low, medium,

and highly infested. This is a fundamental prior-processing study, used for separability

assessment, which must be conducted before any further meaningful further research

can be begun. If no significant differences are observed between ground level spectra

of trees at different stages of infestation, then the likelihood of canopy-level spectra

exhibiting sufficient differences for classification is very low.

5.2.3 High spatial resolution aerial imagery

High spatial resolution aerial imagery was provided by York University library. The

data were collected during the winter of 2008, having 1 m resolution, and is orthorec-

tified with Blue, Red and Green in three spectral bands. However, the absence of

leaves at the time of image acquisition limited the use of these data in this study. We
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therefore only use the images to validate the locations of trees and to confirm tree

species identification.

5.2.4 Google Earth aerial imagery

The employment of Google Earth (GE) aerial imagery in scientific studies poses a

dilemma. GE imagery is not quality assured with any known or documented geometric

or radiometric corrections. However, the data are free and easy to access, and are

potentially very powerful, containing, for example, multiple years of data from the

same location. In the Oakville area, GE imagery has an average spatial resolution of

13-15 cm over our test sites. Before making use of the GE imagery, we made precise

calculations of scale using known objects, such as rooftops. We also validated the

geometric locations of trees, and the differences in the locations of our sampled trees.

From this, we found that the GE imagery and the orthorectified images were within

0.5 m of the tree centers. We did not validate or calibrate the radiometric values of

the GE imagery, as we were only concerned with the relative changes in the pixels.

5.2.5 Ground truthing

We used two sources of ground-based information to determine the likelihood of infes-

tation from nearby infested or healthy trees, and to support ground validation. Firstly,

most infestations were confirmed using a previously documented branch sampling ap-

proach (Ryall et al., 2011). Two branches, approximately 50 cm long and no less than

6 cm in diameter, of each targeted ash tree were obtained, and their bark was peeled

off and the underlying cambium inspected for evidence of EAB infestation, such as

serpentine galleries, larvae, and young beetles (Figure 5.2).
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Figure 5.2: The branch sampling approach for EAB detection. A larva is found in this

sample. Copyrighted at AMEC Inc, used with permission.

Secondly, nine community maps showing street and park tree layouts were supplied

by the town of Oakville. In these maps, the infestation states of individual trees were

recorded as “healthy”, “low”, “medium”, and “high” infestation states, as indicated

by ground-based survey. We manually transferred these locations and condition infor-

mation into our imagery data.

Nine community maps with street and park tree layouts were supplied by the town

of Oakville. In these maps, infestations of each individual tree were labelled with

healthy, low, medium and high four infestation states. This was our second source of
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ground truthing.

5.3 Operational workflow and detail procedures

We have identified three key factors that can potentially guide an estimation of the

health of ash trees, supported by previous work and preliminary studies. These are

the leaf chlorophyll content, tree crown degradation, and distance from nearby trees of

known health state. An operational workflow must be established, with the objectives

of: 1) effectively retrieving the targeted information from its associated data source;

and 2) intelligently assembling all information to provide a final estimation.

Despite the convenience of pixel-based methods, we proposed an object-oriented

approach, which ultimately forms a score-based prediction function. In this study,

individual tree crowns were considered as the basic objects, instead of isolated pixels,

and their spectral and spatial properties were analyzed. Using an object-oriented

approach in this way is essential for the retrieval of distance and crown degradation

information, while also improving the computing efficiency in the model inversion.

Our approach comprises four major steps: segmentation and identification of in-

dividual ash trees; information retrieval; information conversion; and final evaluation

through score calculation. This operational workflow is graphically depicted in Figure

5.3. As shown in this figure, the airborne hyperspectral and the GE aerial imagery

data underwent segmentation to outline tree boundaries. Then, the vegetation in-

dices, leaf chlorophyll content derived from model inversion, and distance constants,

originally from maps but transferred to imagery tree locations, were derived from the

hyperspectral data, while the spatial patterns of crown degradation were obtained

from the GE imagery. All “information” from this step was converted into normalized
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numerical values between 0 and 5, and assembled into a score function, which provides

a prediction score that can be used to determine the health state of individual trees.

5.3.1 Segmentation and identification of individual ash trees

To ensure the accuracy of the locations and boundaries of individual ash tree crown-

s, multi-scale automatic segmentation results from both the hyperspectral and high

spatial resolution images were manually checked and corrected. In the hyperspectral

image, the pixels within each tree crown were identified and classified into the same

crown. Using ground surveys and the community maps provided by Oakville, all ash

trees used in the following training and validation studies were checked and confirmed.

5.3.2 Information retrieval

5.3.2.1 Overview

As shown in Figure 5.3, four types of information, making up six indices or parameters,

need to be retrieved from the varied data sources: three vegetation indices; the leaf

chlorophyll content; the distance constant; and the longitudinal profile. The following

sections will detail the individual methods used to extract each of these parameters.

5.3.2.2 Calculation of the selected vegetation indices (VIs) related to the

health state of tree crowns from spectral features

Attempts have previously been made by many researchers to identify the health state

of tree crowns from airborne and satellite images, through the design of a vegetation

index (VI) sensitive to biochemical properties of leaves (e.g., (le Maire et al., 2004;

Pontius et al., 2008; Thenkabail et al., 2012)). In these studies, four major categories
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Figure 5.3: Graphical depiction of the operational workflow for this study, showing four major steps retrieving four types of information and six

different parameters from three different data sources to derive the final health estimation.
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of biochemical parameters have been considered: leaf chlorophyll content,(le Maire

et al., 2004; Pontius et al., 2008; Zhang et al., 2008) carotenoids,(Sims and Gamon,

2002; Thenkabail et al., 2012) water content,(Barnes et al., 1992) and anthocyanins

(Sims and Gamon, 2002). After a comprehensive review of these properties and their

associated vegetation indices, a suite of indices were selected (Table 5.2) as candidates

for detailed comparison and future selection. The existing indices were typically de-

signed for specific sites and sensors, (Carter, 1994; le Maire et al., 2004; Pontius et al.,

2008; Sims and Gamon, 2002) and it was found that using the same formula with a

small change in the wavelength used in the index could result in a noticeable difference

in the correlations between a vegetation index and its respective vegetation parameter

(le Maire et al., 2004).

We applied a model-based site-independent band selection analysis called contri-

bution analysis, theoretically equivalent to a sensitive study, to optimize the selection

of vegetation indices. The contribution analysis calculates the CI, which provides de-

tailed, quantitative measurements of the correlations between each observation band

and the target parameters, solely based on the model that we use (Zhang et al., 2011).

For this study, we calculated the CI for each spectral band based on the PROSPECT

leaf model (Jacquemoud and Baret, 1990) due to the prevailing deciduous leaf type.

PROSPECT is well validated and is known for successfully simulating deciduous trees

situations. The model simulates leaf reflectance and transmittance at 400-2500 nm

and takes four key input parameters: the leaf chlorophyll content, the water content,

dry matter, and a parameter describing the internal structure of the leaf, denoted as

N. We calculated CI using PROSPECT, which covers all the spectral bands for VIs

listed in Table 5.2. CI is the most important criterion for VI band selection, and the
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Table 5.2: Vegetation indices selected for investigation in this study.

Chlorophyll and Stress Vegetation Index Formula Parameter Sensitive To References

Csc R605/R760 Chlorophyll a Carter and Miller (1994)

GI R554/R677 LAI and total chlorophyll content Smith et al. (2005)

V ogb FD715/FD705 Total chlorophyll content Vogelmann et al. (1993)

NPQI (R415−R435)/(R415 +R435) Chlorophyll degradation Barnes et al. (1992)

GMb R750/R700 Total chlorophyll content Gitelson and Merzlyak (1994)

SR680 R800/R680 Total chlorophyll content Sims and Gamon (2002)

TCARI/OSAV I TCARI = 3(R700−R670)− 0.2(R700−R550)(R700/R670)) Total chlorophyll content Haboudane et al. (2002); Zhang et al. (2008)

OSAVI = 1.16(R800−R670)/(R800 +R670 + 0.16)

AMEC (RSWIR −RG)2/(RSWIR +RG) Direct infestation detection Hanou (2010)

Cartenoids

PRI (R531−R570)/(R531 +R570) Cartenoids Merzlyak et al. (1999)

Water Content

WBI R970/R900 Canopy water content Carter (1994)

Anthocyanins

Red/Green
699∑

i=600

Ri/
599∑

i=500

Ri Anthocyanins Sims and Gamon (2002)
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bands that have higher CIs are preferred over the lower scoring ones. In addition to

this, we also conducted an actual performance evaluation. We used half of the known

infested trees as a training data set, described in detail in the training section below,

and the remainders were used as validators to evaluate the performance of the various

VIs. From these analyses, the three top performing indices were chosen for the final

infestation evaluation based on the following criteria: 1) Higher CI in those bands

involved in the VI; 2) Higher separability in different health states; and 3) Lower in-

class variation, which is quantified by the coefficient of variation (CV). CV measures

the dispersion of the measurement, which is the extent of variability in relation to the

mean of a population. For VI selection, this means that VI should have minimum

class variation (e.g., low standard deviation) in each state. Essentially, the greater the

separation shown between different stages, particularly the early and median stage,

the better the candidate.

After determining the final three optimum VIs (PRI, CSc, and NPQI; the selection

criteria are described in detail in later sections), we used them to calculate VI values

from the hyperspectral spectra extracted from the airborne hyperspectral imagery. We

used the average spectra of the sunlit portion of the tree crown only, but included any

dark spots within that area.

5.3.2.3 Retrieving leaf chlorophyll content based on physical model inver-

sion from spectral features

Physical model inversion is a sophisticated approach that can obtain accurate biophys-

ical parameter estimations (Zhang et al., 2011). The observed and model-simulated

spectra are compared using a pre-defined merit function to determine the best-estimated
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model parameters.

In this study, the coupled PROSPECT and SAIL (Verhoef, 1984) models, known as

the PROSAIL model, were used. Three variables were tested for, while the remaining

parameters were fixed at typical values adapted from our earlier study.31 Since we

used a Look-Up-Table (LUT) approach, the first variable, leaf chlorophyll content, was

fixed within a range of 25-105 µgcm−2, the parameter N, which is the leaf structural

parameter from PROSPECT, was set at 0.5-4 (unitless), and LAI, the ratio of half

total leaf size projected onto the area was set at 1-5 (unitless). The merit function was

calculated based on a least square function implementing CI as a weighting. CI was

used for band selection, in which we attempted to select those bands sharing a higher

sensitivity to the targeted parameters. For a similar reason, we used CI here again as

a weighting in the inversion to focus on the more highly sensitive bands.

After obtaining the leaf chlorophyll content values, they are classified into three

potential risk levels of infestation, using threshold values derived from the model train-

ing. Those highly likely to be infested have a threshold of 2, a medium likelihood is

assigned a value of 1, and the remainder has a value of 0, including uncertain or

unknown cases.

5.3.2.4 Spatial pattern feature: longitudinal profile for tree crown delin-

eation

Spatial information within a tree crown is useful in evaluating early leaf loss and shape

change of the crown. The textural or structural anomalies in an infested crown during

the early infestation stage are difficult to detect using traditional statistical textural

analysis. Instead, in this study, a longitudinal profile along the solar principal plane,
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end to end on the tree crown passing through the tree center, as developed by Zhang

et al. (2011), was adopted. A sample longitudinal profile is given in Figure 5.4. In this

figure, the tree crown boundary has already been segmented out, and the longitudinal

profile is the line made up of digital values (e.g., reflectance) along the solar panel. To

further reduce potential spectral variation and to minimize uncertainties in the GE

image, the normalized relative differential values were used, wherein the differences in

neighboring pixel values were divided by the average of all spectra within the crown.

The numbers of significant drops in these longitudinal profiles were used to determine

the possible infestation stage.

In this study, we used the following criteria to determine the infestation stage:

crossing from the center of the tree, if there was at least one major drop in values on

both sides, it was considered a low infestation state, with a score of 0.5; if there were

at least four drops on both sides combined, it was classified as medium infestation,

with a score of 1.5; and any case with more than six such drops was considered highly

infested with a score of 2.5. The necessary size and significance of these drops was

determined by a threshold value derived from training.

5.3.3 Distance from nearby known state trees from prior knowledge

As stated in BenDor et al. (2006) and Herms et al. (2009) the potential radius of

infestation spread is 10-15 miles, or 16-24 km. Hence, in this study, the infestation

likelihood was evaluated by considering the distance of the target tree from the known

infested trees within a radius of 24 km. For calculating the distance constants, two

different cases were considered in this study, street trees and natural park trees. Street

trees were normally planted at linear and fixed intervals. Therefore, linear functions
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Figure 5.4: A sample longitudinal profile. The tree crown is segmented out and the profile

is a line made up of digital values (e.g., reflectance) along the Sun illumination direction,

end to end through the tree center.
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were formed and each street may be considered as a linear line, which starts and ends

with known infested or uninfested trees. All trees of unknown status in between then

could be assigned scores of infestation likelihood. If a tree is covered by multiple such

functions and receives conflicting information from different linear functions, then an

average is calculated and used. The average is used instead of maximum likelihood

due to the fact the actual distances are not considered. For naturally occurring and

park trees, a normal distribution function was formed at the location of the trees of

known status, and the standard deviation was set to 20 m. This value was considered

as a constant in the final evaluation function.

5.3.4 Information conversion and final evaluation

5.3.4.1 Training and conversion of indices and parameters

We randomly selected half of the infested trees to obtain average values for thresholds

and to generate regression functions. We used third order polynomial functions for

the VIs, and a threshold values approach for the other parameters. The procedure

was repeated multiple times to ensure consistency. Each parameter was then assigned

a numerical score between 0 and 5, where 0 is healthy and uninfested and 5 represents

a highly infested state.

5.3.4.2 Final evaluation

After conversion, all information was assembled into the prediction function for calcu-

lating the final score, which, as above, also ranged from 0 to 5, with 0 being healthy

and 5 being highly infested. The infestation score was calculated as a weighted sum

of all the parameter scores related to EAB infestation. The weight for each parameter
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was determined based on its associated uncertainties. The final score can thus be

expressed as follows:

Score =

∑
ωiPi

N
∑
ωi

+ C, (5.2)

where ωi is the weight of ith parameter, Pi is the score of the ith parameter, N is the

dimension of the information layers, or number of parameters used, and C is prior

knowledge constants, which in this case is mainly dedicated to distance information

derived from prior knowledge (Cd), such as the distance from trees with known infes-

tation states.

5.4 Results and discussion

The results of this study are diverse and wide-ranging, and are reported in the fol-

lowing sections with their associated discussions alongside. Section 5.4.1 presents the

prior-processing studies in ground level hyperspectral signature separability assessment

and contribution sensitivity analysis. Section 5.4.2 details the performance evaluation

for the selection of the final three vegetation indices, the final vegetation indices, and

their score conversion functions. Section 5.4.3 outlines the leaf chlorophyll content re-

trieval results from the PROSAIL model inversion and its score settings. Section 5.4.4

presents the longitudinal profile tree crown degradation study and its score settings.

Section 5.4.5 illustrates a sample tree calculation throughout the entire procedural

workflow, as an example. Finally, section 5.4.6 presents the final ground validation

result and the color-coded map of estimated ash tree health.
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5.4.1 Prior-processing Studies

5.4.1.1 Ground level hyperspectral signature separability assessment

The ground level hyperspectral signature separability assessment is critical in spectral-

based studies. As mentioned earlier, if no significant differences are observed between

high detail (e.g., ground level) spectra of trees at different stages of infestation, then

the likelihood of low detail (e.g., canopy level) spectra exhibiting sufficient differences

for classification is very low. A set of sample reflectances for ash leaves from trees at

different stages of infestation are shown in Figure 5.5. The figure shows that there

are clear differences in leaf-level hyperspectral measurements throughout the spectral

range. Therefore, it may be expected that information retrieved from spectral data,

particularly entire spectra, will be informative.

5.4.1.2 Contribution sensitivity analysis and performance evaluation for

selection of vegetation indices

To determine bands that are potentially more successful in the VI study, the leaf-

level contribution sensitivity analysis was calculated based on the PROSPECT model,

which was used to evaluate the performance of various vegetation indices. The con-

tribution analysis calculates a contribution index that provides quantitative measure-

ments of the “contribution” of each observation to the final retrieval of the targeted

parameter. Therefore, a higher CI represents a higher correlation. As a result, those

bands with high CI should be preferred during vegetation index band selection. We

calculated a series of CI values for different leaf chlorophyll contents from the simu-

lation studies of PROSPECT, which are shown in Figure 5.6. The outcomes of these
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Figure 5.5: Average ASD measurements of leaves (each from 19-21 samples) from ash trees

that are healthy, and which have low, medium, and highly infested states. There are clear

differences between the different health states throughout the entire spectral range. However,

we also note that the differences in different bands are not equal and some signals may be

caused by noise.
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CIs show strong agreement with the findings in Sims and Gamon (2002) and Pontius

et al. (2008). Figure 5.6 illustrates the following: 1) there are two regions, 500-600

nm and 700-750 nm, showing significant increase with the increase in chlorophyll con-

tent; 2) at wavelengths of less than 500 nm, the CI only changes for cases with low

chlorophyll content, typically less than 35 µgcm−2; and 3) the region from 600-700

nm has moderate effect on the CI and decreases with increasing chlorophyll content.

From this, it may be expected that vegetation indices within the ranges of 500-600 nm

and 700-800 nm will perform better than indices spanning other ranges, such as PRI,

SR680 (Table 5.2).

5.4.2 Vegetation indices and their infestation level scores

Besides the CI preference, the final selection of vegetation indices considered the in-

dex performance in each infestation state. We used information from trees of known

infestation state to compare the performances of the various vegetation indices, as

presented in Figure 5.7. In this figure, all vegetation index values were normalized by

their averages. Greater variation between different infestation stages was considered

representative of a good indicator. As such, PRI and CSc were clearly the two highest

ranking, while NPQI, SR680, and TCARI/OSAVI all showed a similar level of per-

formance. TCARI/OSAVI incorporated prefixed coefficients, which may need to be

calibrated for different data sets, which is a relatively complex process. NPQI was less

preferred by the CI measurements, but the bands of this index are in a different region

of the spectra. The use of NPQI would thus increase the stability of this study, and

hence it was chosen, but is given half the weight of CSc and PRI in the final function.

After examining each of the final selected vegetation indices, we found they are in
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Figure 5.6: Calculated contribution index based on a PROSPECT simulation at different

leaf chlorophyll contents. Leaf chlorophyll content varies from 15-75 [gcm−2]. The other

parameters used by PROSPECT were fixed, with at leaf structure parameter (N [ ] = 1.4),

equivalent water thickness (Cw[cm] = 0.025), and leaf dry matter per area (Cm[gcm−2] =

0.005).
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Figure 5.7: Performance of selected vegetation indices. T/O indicates the TCARI/OSAVI

index and AMEC is the index proposed by AMEC. For the infestation stages, 1 is healthy,

2 represents low infestation, 3 is medium infestation, and 4 represents high infestation.
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good agreement with previous reports in the literature: 1) CSc, originally from Carter

and Miller (1994) was derived from eight different stress agents across six different

plant species in laboratory studies. It was the best performing vegetation index in

our study, which agreed with the results of (Pontius et al., 2008). 2) PRI, which was

originally derived by Gamon et al. (1992) to estimate rapid changes in the relative

levels of xanthophyll cycle pigments, thus serving as an estimation of photosynthetic

light use efficiency (Sims and Gamon, 2002) which also performed well in this study,

as expected. 3) The stress index NPQI (Barnes et al., 1992) which showed a positive

correlation between EAB infestation and tree stress in le Maire et al. (2004), but was

reported as less effective in Pontius et al. (2008) presented moderate performance in

our analyses. However, it had relatively fewer data uncertainties than other indices,

excepting CSc and PRI. We used it in the final estimation, but half weighted compared

to other indices.

All results from the vegetation indices were converted into normalized scores rang-

ing from 0-5. Their functions were derived from correlations with the data of known

state trees using 3rd order polynomial or step linear functions. The CSc, PRI and

NQPI conversion functions can be respectively given as:

P = −0.058CSc3 + 3.503CSc2 − 5.923CSc+ 2.964 (5.3)

P = −1.835PRI3 + 12.543PRI2 − 25.590PRI + 5.906 (5.4)

P =


−6.739NPQI − 4.448 (NPQI >= 0.5)

−4.099NPQI − 1.578 (NPQI <= 0.5)

(5.5)

Vegetation indices have provided a convenient and robust methodology for EAB

detection. However, calibrations are still required for each data set. Some indices,
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such as NQPI, suffer from relatively low separation performance, and thus should be

utilized with reduced weighting. We also compared pixel-based spectra against the

tree crown average and found the shadow effect to cause major spectral variations

in NIR band-related indices. This also corroborates the fact that the spectral based

approach alone cannot sufficiently confirm the degree of EAB infestation.

5.4.3 Retrieved leaf chlorophyll content and its infestation state score

The absolute leaf chlorophyll content values were obtained by PROSAIL model inver-

sion with a CI implemented LUT approach. Simply put, the hyperspectral spectra

derived from the hyperspectral imagery was compared to the PROSAIL simulated

spectra with CI as a weighting in the LUT inversion approach. In this study, we found

that the leaf structure parameter N, ranging 1.7-2, and LAI, returning values of 3 and

above, were slightly higher than reported elsewhere in the literature (e.g., Haboudane

et al. (2004); Jacquemoud et al. (2009); Zarco-Tejada et al. (2001)). However, they

are still considered to be within a reasonable range, as most of the ash trees in our

study sites were mature. We found that leaf chlorophyll content retrieved from physi-

cal models has a much higher variation than the vegetation indices. However, relative

decreases in leaf chlorophyll content compared with neighboring healthy trees were

found in both approaches. As a result, we did not use a regression function as in the

case of the vegetation indices, and instead employed a more general classification. We

used two threshold values to separate the results into three classes. The threshold

values used in this study were 65 and 37 [µgcm−2], meaning that if the leaf chloro-

phyll content is greater than 65 [µgcm−2], then a score of 0 is assigned, if the value is

between 37 and 64 [µgcm−2], it receives a score of 1, and if it is less than 36 [µgcm−2],
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then the score is 2.

Physical model inversion is a very time consuming process, and is prone to observa-

tion noise, thus it has not been adopted in other ash EAB infestation studies. In this

study, however, since it is an object-oriented approach, average tree spectra were used

instead of individual pixels, significantly reducing computation time and increasing

the signal-to-noise ratio. More importantly, the model inversion approach evaluates

the overall spectra, taking into consideration the quality of observations, including

uncertainties, and providing the absolute values of target parameters. Although the

parameter we calculated in this way is leaf chlorophyll content, it still can be con-

sidered a different approach and a fresh perspective compared to vegetation indices

method, which focuses on only a few bands. We implemented CI as a weighting in

the merit function to improve the retrieval accuracy. Hence, retrieving leaf chloro-

phyll content through physical model inversion can provide important information to

be used in the final evaluation. Ideally, we seek consistent results with regard to leaf

chlorophyll changes from both methods. We did confirm that the infested trees have

lower leaf chlorophyll content than nearby healthy ones; however, the model inversion

approach suffers from high saturation rates, which means it is fairly easy for results

to converge on to the minimum or maximum values of the pre-set range.

5.4.4 Spatial patterns and their infestation state scores

We used a normalized differential value of 0.2 as the threshold value to determine

major declines in the tree crown. We found that the normalized differential longitu-

dinal profiles show better performance with regard to resistance to uncertainties, and

partially to background and shadow effects. This method simply involves counting
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Figure 5.8: Normalized differential longitudinal profiles for different representative trees.

Any declines that cross the two threshold lines are considered significant. The number of

significant drops is used to form the infestation estimation.

the number of significant drops across the tree top crown profile. In Figure 5.8, all

trees are resampled to 30 pixels in length to illustrate them together as a normalized

size. This conversion ensures low levels of infestation can be detected, while highly in-

fested interpretations should require further supportive evidence. We confirmed that

the spatial patterning within the tree crown is a strong indicator of infestation, as

previously reported (Rose, 2010; Smitley et al., 2008).

Figure 5.8 illustrates some typical examples for trees of different infestation stages.

The healthy, or likely healthy, trees have a much smoother crown curve due to the

healthy growing conditions, whereas the infested tree shows a clear alternating gap
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Figure 5.9: A typical hyperspectral profile from the sunlit portion of the tree crown.

pattern. This pattern is due to the leaf decline within the crown, which has been

reported in Pontius et al. (2008). Spatial pattern can normally only be detected when

the infestation is in the dieback stage, however. It is necessary to determine the

optimal spectral band or vegetation index for this pattern to be obtained from, as it

is also prone to variations in solar illumination conditions.

5.4.5 Complete sample calculation using the operational workflow

Let us perform a simple but complete calculation to illustrate the operational workflow

introduced in this study, step by step. After segmenting each individual tree, regardless

of whether this is done automatically or manually, then a spectral profile, like that

shown in Figure 5.9, can be obtained. These spectra can be significantly altered if

unnecessary pixels are included, and care must be taken to include all pixels in the

sunlit portion of the tree crown, even the dark pixels.
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Figure 5.10: Normalized differential longitudinal profile for the same tree crown as in Fig

5.9. The threshold value in this study is 0.2, which means any declines that have an absolute

value greater than 0.2, either positive or negative is considered major and significant.

By calculating the selected VI from the spectrum in Figure 5.9 and applying the

expression functions listed in Equation 5.3, we find that Csc = 0.129, giving a score

of 2.25, PRI =-0.241, which gives a core of 0.48; and NPQI is -0.201, with a score of

2.398. If this spectrum is input into the PROSAIL model, with three variables and

the remaining parameters set to the values mentioned in the method section, then

the inversion result, giving leaf chlorophyll content, is 65. Therefore, according to our

threshold values, the score from model inversion is 0.

From Figure 5.10, it can be seen that there is only one major decline that crosses

our threshold value. Therefore, the assigned score from the spatial pattern longitudinal
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Figure 5.11: A sample street scenario for distance constant calculation. M is a medium

infested tree, H is a known healthy tree, and X is the targeted tree. The numbers indicate

the order of trees involved in this calculation.

profile is 0.5.

With regard to the distance from trees of known infestation state, this tree has a

known medium infested tree nearby along the same street, and is spaced four trees away

from it, while the nearest known healthy tree is across the street. These relationships

are illustrated in Figure 5.11, in which M, H and X indicate the trees known to be

medium infested, healthy, and the target tree, respectively. The target tree X is the

fifth tree from the infested tree, and there is no tree between X and H, therefore, H is

considered to be the sixth tree.

The final score for this individual tree marked is given as the solution from a linear
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function y = ax + b, with the two known points (1,2.5) and (6,0) at x = 5, which

equates to 0.5. Finally, the final estimation score of this individual tree, considering

the score values and weightings, is given as:

score =
1 ∗ 2.250 + 1 ∗ 0.480 + 0.5 ∗ 2.398 + 1 ∗ 0.500

3 ∗ 3.5
+ 0.500 = 0.969 (5.6)

Since the score is less than 1, this tree is graded as currently healthy. Considering

the typical green spectral signature attributes of a healthy living tree, the green peak,

made by the green band being higher than both the blue and the red bands, and

the red edge, from the NIR band being much higher than the red band, resulting a

high NDVI value, are both clearly presented. In addition, the nearby neighbouring

tree is currently known to be healthy. Thus, from raw observations, this tree is most

likely currently healthy, which supports our calculation result. However, since there is

an infested tree within the spread radius, this tree is potentially in high risk of future

infestation. This is not in conflict with our score findings, since all of southern Ontario

has been marked as a high risk zone. The score simply reflects the health state of the

tree at the time of data acquisition.

5.4.6 Map of estimated ash tree health

Using this workflow to calculate infestation scores for all trees within our study area,

the final results are collected and illustrated with ENVI (Exelis, Visual information

solution, Boulder, CO, USA). The map of final results is shown in Figure 5.12, where

different colors indicate different estimated levels of infestation. A comparison of 40

infested trees and 40 healthy trees for assessment of estimation accuracy is shown in

Table 5.3. Columns show the predicted result (Pd), and the rows list data from ground
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Table 5.3: Accuracy assessment of for estimated and ground observed tree health states

for 80 sample trees

Predicted/Ground High Medium Low Healthy

High 10 0 0 0

Medium 2 8 1 5

Low 3 2 7 4

Healthy 1 1 5 31

truthing (GT). The overall accuracy, including healthy trees, is 70%, and 62.5% when

healthy trees are excluded. The healthy tree omission error is 22.5%, and commission

error is 18.5%.

5.5 Conclusions and future work

This study proposed an object-oriented approach to detecting early infestation of EAB

from multi–sourced data, such as hyperspectral and high spatial resolution imagery.

We derived different types of information from these data, which can be used together

to detect EAB infestation. All information derived in this way is utilized in a weighted

prediction function, in which all data are normalized into scores of 0-5.

The hypothesis of correlation between general stress and EAB infestation is con-

firmed. EAB infested trees show variation in leaf chlorophyll content, predominantly

a reduction to, for example, less than 37 µgcm−2, as a symptom of stress. From an

observational point of view, stressed ash trees are more likely to be infested by EAB,
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and therefore stress-associated variations in leaf chlorophyll content, normally to val-

ues lower than found in nearby trees of the same species, are considered the primary

indicator in detecting early infestations in ash trees. However, despite drops in leaf

chlorophyll content having over 85% correlation with EAB infestation, the technique

suffers from high omission errors. Thus, while the infested trees most likely have re-

duced leaf chlorophyll content, low leaf chlorophyll content does not always confirm

an infestation.

We found that vegetation indices, leaf chlorophyll content, longitudinal profiles

and paper documentation all have the potential to detect EAB infestation. While

vegetation indices are the most convenient and robust, leaf chlorophyll content and

longitudinal profiles may provide more precise results, but at the cost of computation

time and the risk of considerable variation. Paper documents are considered as prior

knowledge in this study, and represent the most reliable information. The synergy of

web GIS and remote sensing techniques would be an interesting direction for future

investigation.

Despite the weaknesses and limitations of Google Earth imagery, it is easy to access,

free of charge, offering multiple years of availability, and in some cases provides better

spatial resolution. These benefits make it a viable option for resource management

and planning by governments and other agencies. Most importantly, GE imagery

and the relative profile approach can easily be adopted and effectively employed by

non-specialists.

In this study, all segmentations underwent manual corrections, which ensured that

the initial tree boundary and location information were accurate. The manual correc-

140



tions included but not limited to merge and split tree objects, smooth and connect

boundary lines and remove small objects. The manual segmentation and validation is

very labour intensive and time consuming, and for this scheme to be applied over a

larger area, automatic segmentation would be essential, which implicitly suggests that

errors from segmentation could propagate and directly affect the accuracy of the final

evaluation.

The PROSAIL model was chosen due to its simplicity, reliability, robustness, and

effectiveness. In this study, PROSAIL served as a demonstration, which had been

validated and reported with successful collaboration with CI-based optimization in

(Zhang et al., 2011). This does not exclude other models from being adopted in this

approach, and a comparison of the effectiveness and accuracy of different models would

be an interesting future investigation.

The final accuracy validation is also limited by the data sources available, particu-

larly in the number of confirmed infested trees. This and future studies could therefore

be improved with further investigations and explorations.
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This study presents a demonstration of a proof of concept and a prototype work-

flow. The vegetation indices chosen and the models used in parameter retrieval pro-

cessing are not fixed, and may require future investigation for possible improvements.

Other spatial information, such as texture, may also be considered for potential inte-

gration and expansion of the calculation.
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6 Conclusions and recommendation for future

work

This chapter summarises the achievements of the research described in Chapters 3,

4 and 5. My goal was to improve vegetation characterization from remote sensing

data. More specifically, these studies focused on the retrieval or estimation of: 1) the

biophysical parameters of vegetation canopies (Chapter 3), b) the species of individual

trees (Chapter 4), and c) tree health state (Chapter 5). The results of these studies

were published in three peer-reviewed journals. This chapter concludes by exploring

new areas with potential for further development and breakthroughs.

6.1 Achievements of this research

First, in this study, a contribution index (CI) was derived to quantify the effect of a

given observation on the retrieval of the model parameters of interest that accounted

for both, the uncertainty of this observation and its sensitivity to the model parame-

ters. Biophysical parameters, such as LAI and leaf chlorophyll content, appear to play

crucial role in precision agriculture management, forest ecology monitoring, and glob-

al climate change studies. The CI shifts the focus of the retrieval of parameters onto

most important and sensitive observations, e.g., bands in hyperspectral data, instead

of taking all available ones equally.
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One of the commonly used methods of biophysical parameter retrieval is based on

the inversion of a physical canopy model. However, it is often an “ill-posed” problem,

mainly due to the model complexity and observation uncertainties. In this study, the

CI was used in the merit function to weight appropriately each observation to improve

the stability of the inversion of the physical model. The CI, I adopted and introduced

into remote sensing is a simple, effective and “universal” index that guarantees im-

provement to any parameter retrieval approaches at a very low computation cost. To

evaluate the CI based merit function, the LUT model inversion was conducted using

the coupled PROSPECT and SAIL model to retrieve LAI and leaf chlorophyll content.

The results using both, simulated and real hyperspectral data showed that employing

CI in the formulation of the merit function significantly improved the retrieval accu-

racy by reducing the prediction errors by at least 10% compared with the traditional

and current state-of-the art LUT method. In another words, the more complex cor-

relations between bands, and the more uncertainties in the observations, the more CI

contributes to the final retrieval accuracy improvement.

Second, this study presents an new and innovative approach to improve the clas-

sification of individual tree species via longitudinal profiles from very high spatial

resolution airborne imagery. Individual tree species identification is important for

urban forest inventory and ecology management. Recent advances in remote sensing

technologies facilitate more detailed estimation of individual urban tree characteristics.

The longitudinal profiles represent the side view tree shape, which play a very impor-

tant role in individual tree species on-site identification. Decision tree classification

was employed to conduct the final classification result. Using this profile approach,

six major species (Maple, Ash, Birch, Oak, Spruce, Pine) of trees on the York U-
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niversity (Ontario, Canada) campus were successfully identified. Two decision trees

were constructed, one knowledge-based and one derived from gain ratio criteria. The

classification accuracy achieved was 84% and 86%, respectively. Compared to up to

65% classification accuracy reported in most recent literature, this is a very significant

improvement. More importantly, this research extended the features used in multi-

spectral image classification from traditional spectral based to spatial based ones. For

the first time, the longitudinal profiles were successfully parameterized and adopted

in multispectral image classification to achieve higher accuracy.

Third, in Chapter 5, I presented a new methodology using multi-sourced and het-

erogeneous data to predict potential infestations of EAB in the town of Oakville, ON,

Canada. The Emerald Ash Borer (EAB) poses a significant economic and environ-

mental threat to ash trees in Southern Ontario, Canada and the northern states of the

USA. It is critical that effective technologies urgently be developed to detect, monitor

and control the spread of EAB. The information effectively assimilated in this research

included remotely sensed data, such as high spatial resolution aerial imagery, commer-

cial ground and airborne hyperspectral data, and Google Earth imagery, in addition

to non-remotely sensed data, such as archived paper maps and documents. A predic-

tion function was developed to estimate the EAB infestation states of individual ash

trees, using three major attributes: leaf chlorophyll content, tree crown spatial pattern,

and prior knowledge. Comparison between these predicted values and a ground-based

survey demonstrated an overall accuracy of 62.5%, with 22.5% omission and 18.5%

commission errors. This is the first time that such a successful early detection of EAB

has been reported. More importantly, it is a great general solution, which has great

potential for other similar applications, as stated by the reviewer of my manuscript:
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“it is a complete [step by step with numerical calculation samples] and comprehensive

[used different types of data] remote sensing tree health state estimation workflow that

have been clearly reported.” and “I can see readers adopting individual parts of your

workflow for similar applications.”

6.2 What does the future hold?

Remote sensing has, and will continue to, serve as an important measurement and

information acquisition method for a variety of applications, particularly in agriculture

and forestry studies. The future work recommended in the sequel will ensure the

accuracy of the object detection and segmentation.

In my studies, the manual corrections on the automatic segmentation results were

still required (e.g., touch up tree boundaries, splitting close trees). This step had guar-

anteed the accuracy, but at the cost of labour and time. Obviously, the segmentation

accuracy has a significant impact on the final classification or information retrieval

accuracy. Without accurate segmentation inputs, it is impossible to obtain accurate

classification results. The advantages of object oriented classification are quite signifi-

cant compared to pixel based approaches; therefore, automatic segmentation research

should be the next pressing matter. In fact, automatic segmentation is a current active

research area showing promising future, e.g., Jing et al. (2012, 2011).

Spatial measurements and information are currently underused in tree species clas-

sification. The spatial pattern feature I explored, developed and demonstrated in this

study, namely the longitudinal profiles, is just one of the spatial features that can be

developed based on new data sets. Future work should investigate on other species

related parameters, such as tree side shape, tree crown layer pattern, and tree diameter
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at breast height (DBH). These parameters can directly be used for agricultural and

forestry studies and can also be further developed for biomass and tree age estima-

tion. All this information can be intelligently adapted into new classification schemes

to obtain better species classification or individual tree characteristics.

The longitudinal profile of the tree crown simplifies the development of the tree

crown into a 2D vector function, which can effectively present the significant top

crown variations of different species. However, the parameterized variables are still

too specific, and prone to in-class variations, which limit the number of applications.

The next step is to develop algorithms that can adopt fuzzy similarity comparison,

which means that the model parameters can allow high in-class variation and still

be “similar”. Also, in the longitudinal profile study, the analysis and results were

validated only under a very high spatial resolution case. It is a noteworthy approach

to investigate the minimum spatial resolution requirement for applying the longitudinal

profile method. In other words, the next question to be answered is: “what would be

the minimum spatial scale required by the longitudinal profile method to yield key

information?”

Finally, current studies normally focus on a limited number of data sets that cap-

ture only the characteristics of the Earth’s surface at the time of acquisition. It is

critical to automatically detect anomalies in temporarily extensive data (Gray and

Song, 2013). Since remote sensing data have been accumulated over decades, there

needs to be studies dedicated to examining them under the same time series, e.g., for

40 years of Landsat data, a time series based study would be possible and valuable.

However, data collection periods, sensors and analyses method have undergone sig-

nificant improvements, such as bandwidths, signal processing methods, and different
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data acquisition illumination and atmospheric conditions. I want to employ as much

data as possible for maximum information. However, data fusion or intelligent infor-

mation synergy will become another crucial matter in the future. Some issues can

be resolved by developing new and improved instrumentation (Hakala et al., 2012;

Morsdorf et al., 2009). More importantly, it should be resolved by improving data

analysing, processing methodology as I demonstrated in this research.
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A The flowchart of contribution index

implementation in model inversion approach

Figure A.1: The flowchart of contribution index implementation in model inversion ap-

proach. Only two parameters, LAI and Cab are considered variables in this study. All other

PROSAIL parameters are fixed. Contribution index is derived solely based on model and

is used as weighting to the cost function. Look-Up-Table method is used, which means an

comprehensive search is conducted and the parameters combo that delivers the minimum

cost is concluded as the retrieved result.
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Figure A.2: PROSAIL model black box. Both PROSPECT and SAIL are provided by

their original authors. PROSPECT is written in Matlab, while SAIL is in FORTRAN. The

overall solution is in C++.
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