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Abstract

In this thesis we used self-avoiding walks as a model of linear polymers to study
some of the most fundamental questions about polymers- namely the quantification of
polymer entropy. We introduced scaling formulas for the number of walks and other
polymer properties such as radius of gyration and end-to-end distance. Then, we cal-
culated these quantities using a Monte Carlo simulation and estimated the critical
exponents in the scaling formulas.

There is a pressure field in the vicinity of a polymer and a particle placed close to
the polymer will accelerate away from it due to the pressure gradient. The scaling of
the pressure as a function of distance from the polymer and length of the polymer is
determined and tested numerically. Also, we modeled the relationship between velocity
and the position of the particle in the 2-dimensional lattice and estimated the limiting
speed.
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Chapter 1

Introduction

Random walks have been used to model different phenomena such as polymers, DNA
structure and stock market returns. A random walk model of a polymer does not
account for self-avoidance, but the introduction of self-avoiding walks (see, for example,
reference [22]) improved the model. Self-avoiding walks (abbreviated as SAW) have
been studied since the 1940s as the most basic model of a linear polymer [10, 22]. The
field has advanced in major ways over the last 50 years, but the most basic question
- the determination of the number of walks of given length, denoted by cn - remains
unresolved.

Another advantage of using self-avoiding model for polymers is that we can use it
to formulate some polymer properties such as end-to-end distance and square radius of
gyration. Also, the polymer entropy is related to the number of states, which in this
model can be substituted by cn.

There are different approaches to the numerical study of self-avoiding walks. Ex-
act enumeration using series analysis techniques gives high quality estimates of critical
exponents [44, 45]. Conformal field theory and Coulomb Gas methods have also been
used to determine exact exponents in two dimensions [41,49,50]. Monte Carlo simula-
tions which use numerical and statistical techniques are useful in the testing of scaling
relations for walks for approximation of the number of walks (see for example [36]).

In this thesis, we choose Monte Carlo method to generate samples of walks. The
Monte Carlo algorithm used to generate walks is the Rosenbluth algorithm in two and
three dimensions. This algorithm works by recursively choosing the next vertex from
the set of nearest neighbors that are not occupied by the walk. Using the Rosenbluth
algorithm we estimated the number of walks of length n (〈Wn〉), mean square end-to-end
distance (〈R2

e〉) and mean square radius of gyration (〈R2
g〉).

Since the Monte Carlo method for calculation of the number of walks, radius of
gyration and other properties for longer walks are computationally difficult, there are
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scaling formulas suggested to predict these quantities for any given length. All these
quantities scale as a power law with the length of the walk. In this thesis, we estimated
the metric exponents in scaling relations by fitting our numerical results of the Monte
Carlo simulation to the scaling formulas.

Determining the metric exponents is one of the most basic reasons for developing
numerical algorithms for walks. In addition to Monte Carlo a variety of different meth-
ods have been used to estimate the numerical value of metric exponents in the square
and cubic lattices. Exact enumeration and series analysis of walks have verified many
of these exact values to excellent accuracy and recent advances have extended series
for walks to remarkable lengths in the square lattice [44], [45], [46] and [47] and in the
cubic lattice [48].

Another problem examined in this thesis is a model for a particle near a polymer. The
presence of the particle causes a change in pressure and therefore an acceleration of the
particle from higher-pressure regions close to the polymer to lower pressure. In chapter
3 we study the relation between velocity and the position of the point in 2-dimensional
lattice and also determine the terminal velocity of the particle. Our numerical results
show that the terminal velocity is independent of the size of the polymer.

In chapter 4 we examine a model of entropic pressure in the vicinity of a polymer. In
particular, we developed a scaling relation for the pressure. The scaling relation is tested
by Monte Carlo simulation. The sampling is done by implementing the Rosenbluth
algorithm for lattice polymers in 2-dimensional space. The estimated pressure shows
scaling consistent with the derived scaling relation. For example, the numerical data
show that the rescaled pressure is independent of the length of the polymer. Moreover,
the pressure is found to be isotropic, decaying at the same rate in any direction with
distance from the origin.

2



Chapter 2

The self-avoiding walk

A polymer is a molecule consisting of many monomers which are connected together
by chemical bonds. A linear polymer is a polymer for which each of the monomers are
joined to only two other monomers. Polymers can be very long molecules, some linear
polymers have as many as 105 monomers.

Assume a linear polymer has n monomers numbered 0, 1, 2..., n, starting from one
endpoint. Let vi ∈ R3 be the location of ith monomer. The ith monomer bond can be
represented by the line segment between ~vi and ~vi+1.

Given the assumptions above, one can see that a possible model for a linear polymer
is a random walk. In general a random walk is a collection of vertices and edges and
therefore can be put on a grid. The basic structure that satisfy this assumption is
the d-dimensional hypercubic lattice Ld. For example, a walk of length n in the two
dimensional lattice Z2 is obtained by first setting the starting point at origin and then
at each step, the next vertex is chosen from the nearest neighbor lattice sites (in 2-
dimensions the choices are up, down, left and right). Continue to grow the walk in this
fashion until a walk of length of n is obtained. See figure 2.1 for an example of a walk
of length 117. In the construction of random walks of length n, each new edge can be
chosen from 2d possible directions. Thus the number of random walks of length n is
(2d)n.

2.1 Self-avoiding walks

Since two segments of one molecule cannot occupy the same place in the space, the
self-avoiding walk (abbreviated as SAW) seems more appropriate than random walks
for modeling linear polymers. A self-avoiding walk is a random walk that cannot cross
itself. A self-avoiding walk is defined by a sequence of vertices {~υ0, ~υ1, ..., ~υn} in a lattice
together with a set of edges of the form (υi−1, υi), where υi 6= υj if i 6= j and the vertices
of each edge are nearest neighbors in the lattice.
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Figure 2.1: Picture of a self-avoiding walk that got trapped at length 117 [16]

In d-dimensions the Cartesian coordinates of a vertex ~υi is denoted by a d-tuples
(X(~υi), Y (~υi), ..., Z(~υi)). We will consider walks from the origin in the d-dimensional
hypercubic lattice Zd. In this thesis, we loosely refer to walks in d-dimensional lattice
Ld as walks in d-dimensions.

It is convention to put the zeroth vertex ~υ0 of the walk at the origin. The first and
last vertices of a walk are its end-vertices. The walks are oriented; they have a direction
from the first vertex at the origin to the last vertex at its endpoint. The length of a
walk is the number of its edges.

The SAW model is a good model for a polymer in dilute solution (where polymers
are far apart, so that there is not any considerable interactions between them) and in
a good solvent (which minimizes attractive forces between monomers). For the rest of
this thesis we assume that we have a dilute polymer solution in a good solvent.

The number of self-avoiding walks of length n starting at the origin is denoted by cn.
This number is known for n ≤ 71 [46] in Z2 and for n ≤ 30 in Z3 [48]. In a SAW of
length n, there are 2d choices for the first step of the walk, and at most 2d− 1 choices
for the rest of the n− 1 steps, so

cn ≤ 2d(2d− 1)n−1. (2.1)
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The table below shows the values of cn for different n in the square and cubic lattices
L2 and L3.

n cn in Z2 cn inZ3

1 4 6

2 12 30

3 36 150

4 100 726

5 284 3534

6 780 16926

7 2172 81390

8 5916 387966

9 16268 1853886

10 44100 8809878

Table 2.1: Table of number of SAWs, cn, for 1 ≤ n ≤ 10 in 2D [46] and 3D [48]

2.2 Polymer entropy

Self-avoiding walks can be used to quantify the entropy of a polymer. The physical
definition is that entropy is (k=Boltzmann’s constant)

S = k log (density of states) (2.2)

For a discrete model the density of states is just the number of states (or number of
conformations). A polymer has many conformations, and these must be counted in
order to compute the entropy. One way to do this is to use a model where there are
a finite number of conformations, and then to count them. The self-avoiding walk is a
good model for this – it is self-avoiding and linear like a polymer, and by counting its
conformations, we have a function cn which is the number of conformations.

For example, the entropy of all walks starting at origin and ending at lattice point R
is related to the number of walks of length n and given by

S(R) = k log(cendn (R)) (2.3)

where cendn (R) is the number of self-avoiding walks from the origin to R. We choose the
units in a way that k=1 in the above.
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2.2.1 Approximation of polymer free energy by random walks

Consider first a random walk approximation in one dimension for polymer entropy.

Let cn(x) be the number of the random walks of length n from 0 to x in1-dimension.
Let n+ represent the number of steps in the +x direction and n− number of steps in
the -x direction. Then n+ + n− = n and n+ − n− = x, or n+ = n+x

2
. Therefore, cn(x)

can be calculated using Stirlings formula.

cn(x) =

(
n
n+x

2

)
∼
√

2

πn

(
1− x2

n2

)−n/2−1/2
(

1− x
n

1 + x
n

)x/2

Assuming < x2 >∼ n

cn(x) ∼
√

2

πn
ex

2/2n2

e−x
2/2n

Since ex
2/2n2 → 1 as n→∞, the probability that a random walk ends at the point

x in 1-dimension is proportional to

n−
1
2 e( −x2

2<x2>
) (2.4)

Assume R = (x, y, z) in three dimensions,then the distributing function of R is

p(R) ∼ cn(R)∑
R cn(R)

∼ constant n−
1
2 e( −x2

2<x2>
) n−

1
2 e

( −y2

2<y2>
)
n−

1
2 e( −z2

2<z2>
)

∼ n−
3
2 e( −3R2

2<R2>
) (2.5)

Hence, the entropy of a chain of fixed length (n) ending at the point R is approximately
given by

S(R) ∼ log p(R) ∼ S(0)− 3R2

2 < R2 >
(2.6)

This formula relates entropy to the size of a chain, as length increases, the entropy
decreases. If we substitute 2.6 in the free energy formula F (R) = U−TS and considering
that internal energy of a walk is zero, we get to a predicted fundamental formula

F (R) ∼ F (0) +
3TR2

2 < R2 >
(2.7)

for the free energy of a polymer at temperature T .

6



2.3 Asymptotic properties of self-avoiding walks

Denote the numer of self-avoiding walks from the origin of length n by cn. By equation
2.1, cn grows exponentially fast with increasing length and soon it becomes difficult to
determine it. Some values of cn for small are listed in table 2.1.

In this section we study some properties of cn. First a theorem:

Theorem 2.3.1 (Fekete’s lemma). The basic subadditive theorem [9]: Suppose that
Z ⊆ N is closed under addition and suppose the sequence an satisfies the subadditivity
condition. That is,

an+m ≤ an + am ∀n,m ∈ Z (2.8)

Then
lim
n→∞

an
n

= inf
1≤n

an
n

= ν (2.9)

Proof. Assume n ∈ Z and k ∈ Z is fixed. Set

Ak = max{al| l ≤ k and l ∈ Z}. (2.10)

Let j =
⌊
n
k

⌋
, then n = jk + r where 0 ≤ r ≤ k ( and so ar ≤ Ak and r ∈ Z), since Z is

closed under addition. Now by using the subadditivity property repeatedly we get

an = ajk+r ≤ ajk + ar ≤ jak + Ak (2.11)

Therefore,
an
n
≤ jak
jk + r

+
Ak

jk + r
(2.12)

Take the limit superior on the left hand side as n→∞ in Z for fixed k. Then j →∞
in N and so

lim sup
n→∞

an
n
≤ ak

k
∀k ∈ N (2.13)

Taking the inf on the right hand side gives the result. Since an is finite-valued, then
inf an

n
is either finite or −∞.

2.3.1 The growth constant

Place a walk of length n in Ln with its first vertex at the origin. Place a second walk
in Ln such that its first vertex is on the last vertex of the first walk. If the two walks
do not intersect, then the result is a self-avoiding walk of length n + m. There are cn
choices for the first walk and cm for the second, so

cn+m ≤ cncm. (2.14)
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Figure 2.2: A walk of length n concatenated by a walk of length m crossing each other

Since each walk of length n + m can be obtained this way, cn is a submultiplicative
function on N and therefore log cn is a subadditive function on N. Together with theorem
2.3.1 and equation 2.1, this implies that a connective constant κd = log µd exists such
that

κd = lim
n→∞

1

n
log cn = inf

n>0

1

n
log cn (2.15)

where µd is called the growth constant. From the argument above we can conclude that
the limit

lim
n→∞

[cn]
1
n = µ (2.16)

exists but its not known that the limn→∞[ cn+1

cn
] exists. Also, Kesten’s pattern theorem

[18] shows that the limit

lim
n→∞

cn+2

cn
= µ2 (2.17)

exists.

2.3.2 Numerical estimates of µ

Determining the growth constant µ is one of the most basic reasons for develop-
ing numerical algorithms for walks. The numerical value of µ has been estimated in
the square and cubic and other lattices using a variety of different methods. Exact
enumeration and series analysis of walks as well as Monte Carlo simulations [40] have
traditionally been used to estimate µ.

Series analysis for polygons [21] gives µ in two dimensions to very high precision:

µ = 2.63815853034± 0.00000000010. (2.18)
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Monte Carlo estimates for µ have been made using grand canonical Monte Carlo
algorithms which sample self-avoiding walks from a distribution over their lengths. A
well-known algorithm is the Beretti-Sokal algorithm [19]. This algorithm was used to
estimate

µ = 2.638164± 0.000014, (2.19)

The error bar is a combined 95% statistical confidence interval and an estimated sys-
tematic error due to uncertainties in the model.

Less precise estimates for µ are available in three dimensions. Clisby et al [48] esti-
mated that

µ = 4.684043± 0.000012, (2.20)

by collecting series data on the cubic lattice self-avoiding walk using the lace expansion.

2.4 Scaling of the self-avoiding walk

Scaling arguments can be used to show that cn and other mean observables of self-
avoiding walks satisfy scaling laws. The parameters in the scaling formulas are called
critical exponents. The relation 2.15 shows that cn = µ

n+o(n)
d . This suggests a scaling

assumption for the number of n step SAWs, namely

cn = Aµndn
γ−1 (2.21)

where γ is the entropic exponent of the self-avoiding walk. By theorem 2.3.1 above,
cn ≥ µn, and so γ ≥ 1. In fact, conformal field theory gives the exact value γ = 43

32

in two dimensions [7]. Numerical estimates give the approximation γ = 1.1573 [31] in
three dimensions.

The mean field value γ = 1 is the exact value in four and higher dimensions. Also, in
four dimensions, which is the upper critical dimension for self-avoiding walks, we have
a logarithmic modification, so that cn = Aµn(log n)1/4.

Assume that υ = {υ0, υ1, ..., υn} is a self-avoiding walk in the lattice Ld and let
the Cartesian coordinates of a vertex υi in d-dimension be denoted by the d-tuples
(X(υi), Y (υi), ..., Z(υi)). Metric quantities of a self-avoiding walk are observables which
have units (length).

The mean-square end-to-end distance of SAWs of length n is a metric quantity defined
by

Re = ‖ υ0 − υn ‖2 (2.22)
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where ‖ υ ‖ is the Euclidean norm of the vector υ defined by ‖ υ ‖2
2= [X(υ)]2+[Y (υ)]2+

...+ [Z(υ)]2. The mean-square radius of gyration is a metric quantity defined by

R2
g =

1

n

n∑
k=1

(‖ υk − υmean ‖2
2) (2.23)

where υmean is the center of mass of the vertices. The span of υ in the ~e1 direction is
given by

S1(υ) = max
0≤n

{ ∣∣∣∣υi(1)−min
0≤n

υi(1)

∣∣∣∣ } (2.24)

The span Sk(υ) in other directions ~ek are similarly defined. The total span is

ST (υ) =
d∑
i=1

Si(υ) (2.25)

and average span of υ is defined by

Sa(υ) =
1

d
ST (υ) (2.26)

Finally, the maximal span is
Sm(υ) = max

k
Sk(υ) (2.27)

The means of observables are obtained by taking the average over all walks of length
n and denoted by 〈.〉n . That is, if v is a walk of length n and O is a property of this
walk, then we have

〈O〉n =
1

cn

∑
|v|=n

O(v) (2.28)

The mean square end-to-end distance 〈R2
e〉n , mean square radius of gyration 〈R2

g〉n
and mean total span 〈ST 〉n can be calculated using 2.28 . Since n1/d ≤ 〈ST 〉n ≤ n and
n2/d ≤ 〈R2

g〉n ≤ n2 these properties scale as power laws with n:

〈Re〉n = B0n
ν , (2.29)

〈R2
e〉n = Bn2ν , (2.30)

〈R2
g〉n = Cn2ν , (2.31)

〈ST 〉n = Dnν . (2.32)

ν is the metric exponent. In the above cases it is easily seen that ν ≤ 1. The lower
bound 1

d
≤ ν is obvious for the mean square radius of gyration and the spans. However,

it’s not known for the mean end-to-end distance that 1
d
≤ ν. The best lower bound

2
3d
≤ ν is due to an unpublished work by Neal Madras. These scaling assumptions are

valid in all dimensions d 6= 4. In 4 ≤ d, ν takes its mean field value ν = 1
2
.
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In four dimensions, the scaling formula is modified by a logarithmic term; for example,
in d = 4 it is expected that,

〈R2
g〉n = Cn(log n)1/4, (2.33)

cn = Aµn(log n)1/4. (2.34)

There are corrections to the scaling in cn and in metric quantities; it is expected that

cn = Aµnnγ−1(1 +
a1

n
+ ...+

b1

n∆1
+

b2

n∆1+1
+ ...), (2.35)

R2
e = Bn2ν(1 +

c1

n
+ ...+

d1

n∆1
+

d2

n∆1+1
+ ...), (2.36)

R2
g = Cn2ν(1 +

e1

n
+ ...+

f1

n∆1
+

f2

n∆1+1
+ ...). (2.37)

The corrections of the form ai
ni

are called analytic corrections and bi
n∆1+i are called

confluent corrections [7]. The confluent correction exponent ∆1 above is the first in
series of confluent correction exponents ∆1 ≤ ∆2 ≤ .... Least square fitting of R2

g and
cn to data to determine the exponents ν and γ may in some cases require regressions
which include analytic and confluent corrections to scaling.

We can define other metric quantities, such as the volume of the smallest box con-
taining the walk, the area of the image of the walk projected to lower dimensions and
so on. All these quantities have dimensions length raised to an integer power, and they
scale with the length of the walk as a power law with exponent ν. Another metric
quantity of interest is the mean square distance between a vertex in a self-avoiding
walk of length n, and the endpoints of the walk, denoted by 〈R2

m〉n . That is, if υ is a
walk from the origin and υi is a vertex in υ, then 〈R2

m〉n is the mean square distance of
υi from origin, averaged over all choices of {υi}ni=1 .

Several dimensionless ratios can be formed using the metric quantities and each
approaches a constant as n→∞

lim
n→∞

〈R2
g〉n

〈R2
e〉n

=
R2
g

R2
e

(2.38)

lim
n→∞

〈R2
m〉n

〈R2
e〉n

=
R2
m

R2
e

(2.39)
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The limiting ratios are universal quantities (independent of the lattice). Conformal
field theory predicts that (Cardy and Saleur [23] ) these limiting ratios relate with each
other in two dimensions as follows:

123

91

R2
g

R2
e

− R2
m

R2
e

+
1

4
= 0. (2.40)

In two dimensions we have [36],

R2
g

R2
e

= 0.140264, (2.41)

while for d=3 [36],
R2
g

R2
e

= 0.1599. (2.42)

2.5 Numerical testing of scaling

The calculation of critical exponents such as the entropic exponent (γ) and the growth
constant (µ), and testing of scaling relations, are important motivations for inventing of
Monte Carlo algorithms for numerical simulation of walks. These algorithms generate
the walks for the purpose of enumeration and calculating properties such as radius of
gyration and end-to-end distance. Fitting the simulated data to the scaling formulas
mentioned in section 2.4 (such as 2.21, 2.30 and 2.31) may give estimates for the critical
exponents and growth constant.

The scaling formulas for cn (equation 2.21) and 〈R2
g〉 (equation 2.31) are modified

by adding analytic and confluent terms in equations 2.35 and 2.37. These corrections
should be considered when data analysis is done in order to extract the values of expo-
nents, and all the scaling laws in the simulations are subject to such corrections.

In addition to Monte Carlo simulation, there are other methods available for extract-
ing the critical exponents in the literature. The generation of exact series for lattice
walks has produced remarkably accurate results for critical exponents and connective
constants [42] and [43]. This approach has proven to be a superior method for ob-
taining numerical data on walks, and recent advances have extended series for walks
to remarkable lengths in the square lattice [44], [45], [46] and [47] and in the cubic
lattice [48] with the result that Monte Carlo simulations have lagged considerably in
accuracy when used to verify series results.

The results of series analysis should be considered against the backdrop that exact
(but non-rigorous) numerical values for certain scaling exponents of the self-avoiding
walk have been obtained in the square lattice by Coulomb gas [49] and conformal
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field theory [50] methods. The series data have verified many of these exact values to
remarkable accuracy and perhaps even to a degree that cannot be obtained by Monte
Carlo simulations as a matter of principle. This may be so even in the cubic lattice,
where series analysis (using a lace expansion technique) has been used to provide good
to excellent estimates for three-dimensional self-avoiding walk exponents and the cubic
lattice connective constant [48].

d = 2 d = 3 Mean field

γ 43/32 [7] 1.1608 [12] 1

ν 3/4 [11] 0.5877 [31] 1/2

µ 2.638 [21] 4.684 [48] –

∆1 3/2 [49] 0.47± 0.025 [38] –

Table 2.2: Table of self-avoiding walks exponents in 2D and 3D

In table 2.2, some exact values of critical exponents calculated by conformal field
theory and Coulomb gas techniques are given in two dimensions. The estimates in
three dimensions were computed by Monte Carlo simulations for γ and ν.

In the square lattice the entropic exponent γ was estimated using exact enumeration
of walks [33]

γ = 1.343745± 0.000015 (2.43)

Monte Carlo simulations are not as accurate, [32]

γ = 1.345± 0.004. (2.44)

In three dimensions, the entropic exponent was estimated using field theory and is given
in table 2.2. Monte Carlo method gave an accurate estimate

γ = 1.1573± 0.0002 (2.45)

using the PERM algorithm on the Domb-Joyce model [31].

The metric exponent ν has also been estimated in two dimensions by Monte Carlo
simulation [36]:

ν = 0.74963± 0.00008 (2.46)

In three dimensions many more Monte Carlo studies have been done to measure ν. For
example, Hsu [31] used the PERM algorithm on the DombJoyce model to obtain the
high accuracy estimate

ν = 0.58765± 0.00020 (2.47)
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Series enumeration in three dimensions [44] gave the approximation

ν = 0.592± 0.003. (2.48)

The confluent correction ∆1 in scaling formula 2.35 was predicted to have values
either ∆1 = 3/2 by Coulomb gas methods [49] or ∆1 = 11/16 by conformal invariance
methods [37]. Exact enumeration studies as well as Monte Carlo simulations strongly
supports that ∆1 = 3/2 [46]. In three dimensions only effective values of ∆1 have been
used in Monte Carlo simulations to estimate other exponents. Numerical estimates for
∆1 can be found in [36]: ∆1 = 0.56± 0.03,

2.6 The Flory argument for metric scaling

Flory introduced a scaling argument [22] and [10] for estimating the metric exponent
ν. Suppose a polymer or self-avoiding walk of length N monomers occupies a spherical
volume of space of mean diameter R. Since the molar concentration of mixture, c
is defined as the amount of each constituent n divided by the volume, the monomer
concentration in d dimensions is

c ∼ N

Rd
(2.49)

Assume the volume of a single monomer is denoted by v(T ) i.e it’s a function of tem-
perature. The total number of pairs of interacting monomers has concentration 1

2
c2. So

the total energy due to monomer-monomer interaction is

frep = 1
2
T v(T ) c2. (2.50)

Replacing c and then integrating over a volume Rd gives an approximation of the total
energy of the polymer

Frep|tot = 1
2
T v(T )

N2

R2d
×Rd = 1

2
T v(T )

N2

Rd
. (2.51)

For large distortion we have small entropy, so Flory added an entropic elastic energy

Fel = BT
R2

N
(2.52)

which is obtained as follows: Assuming that the end-to-end distribution of the walk has
a Gaussian distribution given by equation 2.4, the entropy of the walk is approximated
by equation 2.6:

S(R) = A+B
R2

N
(2.53)

for some constants A and B. The second term is an elastic energy giving Fel above.
Adding equations 2.51 and 2.52 we get the free energy of the walk

F = Fel + Frep|tot = BT
R2

N
+ 1

2
T v(T )

N2

Rd
(2.54)
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The statistics of the walk is dominated by conformations of minimum free energy, so
minimizing the above gives an expected value RF for the radius of the volume occupied
by the walk by

RF ' C0N
3/(d+2). (2.55)

Comparison to equation 2.30 gives

ν =
3

d+ 2
(2.56)

So for d = 1 we get the exact value. The estimation for d = 2 is exact [11] and d = 3
is almost accurate compared to recent high accuracy estimates (see for example [31]).
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Chapter 3

Monte Carlo methods for
self-avoiding walks

There are two general approaches to enumerate self-avoiding random walks. One is
exact enumeration using series analysis. The other is Monte Carlo simulations which
use numerical and statistical techniques for approximate enumeration of walks.

Monte Carlo sampling of walks generates a sample of states from a distribution over
state space to calculate the expected values of observables. In the case of walks, the state
space S can be defined in several ways, depending on the type and the implementation
of the Monte Carlo algorithm. In this thesis, S is the state space of all different
conformations of walks rooted at the origin.

The distribution over S gives the probability that a given state is sampled from S.
This distribution may not be uniform. For example, if the state space is infinite, then
the probability of a given walk will be dependent on variables such as length. One
way of categorizing Monte Carlo algorithms for walks is based on the distribution of
ensemble. If the distribution is uniform for walks of fixed size then the algorithm is
called a canonical Monte Carlo algorithm. If the sampling algorithm creates walks of
arbitrary length (size) from a distribution that depends on the size, then the algorithm
is a grand canonical Monte Carlo algorithm.

Finally, Monte Carlo methods are divided into dynamic and static methods; depend-
ing on whether the sampling is done directly from the state space S along a Markov
chain in S. There are several algorithms in the literature for each of these two classes.

3.1 Static vs dynamic Monte Carlo algorithms

In a static Monte Carlo algorithm states are sampled independently from a distribu-
tion over S. We can find the weighted average of the samples and take it as an approx-
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imation of an observable over S. Static Monte Carlo algorithms including Rosenbluth,
GARM and GAS algorithms are called approximate enumeration algorithms (see [27]
and [28]).

Dynamic Monte Carlo algorithms involve the implementation of dynamic rules for
sampling along a Markov chain. In each step, the next state is obtained by applying
an elementary move to the current state. The next state is then accepted by using
a probabilistic rule. The Metropolis algorithm as well as its implementation using
Umbrella sampling or multiple Markov Chain sampling are examples of dynamic Monte
Carlo algorithms [26].

3.2 Rosenbluth sampling

The Rosenbluth algorithm is a static algorithm which is implemented as follows:

Set the origin as the starting vertex, and recursively choose the next vertex from
the set of nearest neighbors that are not occupied by the walk. If there are no nearest
neighbors available, then the walk is rejected and a new walk is initiated at the origin.

3.2.1 Rosenbluth algorithm

The steps in the algorithm are

1. Set W = 1 and let υ0 be the origin. Determine υ1 by choosing one of the nearest
neighbors of υ0.

2. Recursively determine υi by choosing one of the unoccupied neighbor vertices of
υi−1. Assume the number of these vertices is σi−1, then the probability of choosing
υi is 1/σi−1.

3. If σi−1 = 0 then the walk is rejected. Start a new walk from step (1).

4. Update the weight W → Wσi−1.

5. If i < n, then add a new vertex by going to step (2). If i = n then a walk of
length n and weight W has been generated. Start a new walk at step (1) until N
walks are generated.

The Rosenbluth weight of a walk s of length n is

W (s) =
n∏
i=1

σi(s) (3.1)

The probability P (s) that a walk s is generated is 1/W (s). Note that walks with σi = 0
for some i are also included in sampled walks, but with zero weights.
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Consider the average weight for walks of length n

〈Wn〉 =
∑
|s|=n

P (s)W (s) (3.2)

Since the sum is over all walks of length |s| = n and P (s) = 1/W (s), it follows that
〈Wn〉 =

∑
|s|=n 1 = cn, where cn is the number of walks of length n from origin.

Consider a sample of N self-avoiding walks of length n, say (s1, s2, ..., sN) with asso-
ciated weights (W (si)) and observables (Oi) obtained by Rosenbluth sampling. Then
〈Wn〉 is estimated by

〈Wn〉N =
1

N

N∑
i=1

W (si) (3.3)

As N → ∞, 〈Wn〉N → cn where cn is the number of walks of length n. Therefore, the
Rosenbluth algorithm is a method for approximate enumeration of self-avoiding walks.

3.2.2 Data analysis of numerical results

Suppose we divide a sample of N walks obtained by Rosenbluth sampling into M
blocks. For each block, we compute the mean values of observables using weighted
averages:

〈Oi〉blockn =

∑ N
M
i=1O(si)W (si)∑ N

M
i=1W (si)

(3.4)

then we estimate the ordinary average of the blocks by:

〈O〉n =
1

M

M∑
i=1

〈Oi〉blockn (3.5)

and the standard error of the sample is calculated by:

std.err. =

√
〈O2

i 〉n − 〈Oi〉2n
M − 1

(3.6)

We generate SAWs of maximum length 70 using the Rosenbluth algorithm with 108

samples which is divided into 20 blocks. For each walk of length n in the sample we
associate a weight using formula 3.1 and calculate Re(s) and Rg(s) from formulas 2.22
and 2.23.

The number of walks of length n, mean square end-to-end distance and mean square
radius of gyration; denoted by 〈Wn〉, 〈Re〉 and 〈R2

g〉; are obtained by taking the block
averages of W (s), Re(s) and R2

g(s) over all walks in that block and then taking the
ordinary average of block averages.
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The table below shows the estimates for 〈Wn〉,〈Re〉 and 〈R2
g〉 and their correspond-

ing standard error. Tables 3.2 and 3.4 show these approximations for 3-dimension and
2-dimension respectively.
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n 〈Wn〉 std.err. 〈Re〉 std.err. 〈R2
g〉 std.err.

1 6 0 1 0 0.25 0

2 30 0 1.5313 2e− 005 0.488861 6e− 006

3 150 0 1.90743 5e− 005 0.72995 1e− 005

4 725.9995 0.002037636 2.27586 7e− 005 0.98977 2e− 005

5 3534 0.012576563 2.5777 7e− 005 1.25519 3e− 005

6 16926.06111 0.093633582 2.8849 0.0001 1.53771 6e− 005

7 81390.38889 0.439911525 3.1497 0.0001 1.82453 7e− 005

8 387966.1667 2.105470621 3.418 0.0001 2.12458 7e− 005

9 1853882.222 11.47761549 3.657 9e− 005 2.42802 8e− 005

10 8809842.778 64.24425182 3.8997 0.0001 2.74255 9e− 005

11 41933666.67 365.3273221 4.1205 0.0002 3.0599 0.0001

12 198840111.1 2561.516209 4.3444 0.0002 3.3868 0.0001

13 943956166.7 11942.4683 4.5511 0.0002 3.7161 0.0001

14 4468815000 63648.59614 4.7603 0.0002 4.0537 0.0002

15 21174705556 308747.4402 4.9555 0.0002 4.3934 0.0002

16 1.0012E + 11 1260612.179 5.1528 0.0002 4.7405 0.0002

17 4.73717E + 11 5701816.526 5.3387 0.0002 5.0894 0.0002

18 2.23765E + 12 29823068.18 5.5264 0.0002 5.4453 0.0002

19 1.05757E + 13 150989233.8 5.7036 0.0002 5.8025 0.0002

20 4.99156E + 13 781035428.1 5.8824 0.0002 6.166 0.0002

21 2.35701E + 14 3852584981 6.0529 0.0002 6.5308 0.0002

22 1.11174E + 15 18580723412 6.2246 0.0002 6.9013 0.0002

23 5.24579E + 15 93109753995 6.3887 0.0002 7.2729 0.0002

24 2.47292E + 16 4.76202E + 11 6.5545 0.0002 7.6501 0.0002

25 1.16614E + 17 2.61344E + 12 6.7134 0.0003 8.0284 0.0003

26 5.49473E + 17 1.34595E + 13 6.8736 0.0003 8.4118 0.0003

27 2.58977E + 18 6.91426E + 13 7.0277 0.0003 8.7962 0.0004

28 1.21977E + 19 3.4869E + 14 7.183 0.0004 9.1853 0.0004

29 5.74653E + 19 1.77326E + 15 7.3327 0.0004 9.5753 0.0005

30 2.70564E + 20 8.29057E + 15 7.4833 0.0004 9.9698 0.0006

31 1.27417E + 21 4.10344E + 16 7.629 0.0004 10.3651 0.0006

32 5.99731E + 21 2.03168E + 17 7.7754 0.0004 10.7643 0.0006

33 2.82336E + 22 9.15679E + 17 7.9173 0.0004 11.1643 0.0007

34 1.32854E + 23 4.31202E + 18 8.0602 0.0004 11.5687 0.0006

35 6.25243E + 23 2.06892E + 19 8.1987 0.0004 11.9736 0.0007

Table 3.1: Table of estimates of cn, Re and R2
g and corresponding standard error for

1 ≤ length ≤ 70 in 3D
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n 〈Wn〉 std.err. 〈Re〉 std.err. 〈R2
g〉 std.err.

36 2.94134E + 24 9.65025E + 19 8.3383 0.0004 12.3826 0.0007

37 1.38391E + 25 4.34764E + 20 8.4739 0.0005 12.7924 0.0007

38 6.50892E + 25 2.18673E + 21 8.6099 0.0004 13.2053 0.0008

39 3.06176E + 26 1.02842E + 22 8.7423 0.0004 13.6191 0.0008

40 1.43976E + 27 4.83258E + 22 8.8752 0.0004 14.0361 0.0008

41 6.77109E + 27 2.2942E + 23 9.0049 0.0004 14.4539 0.0009

42 3.18341E + 28 1.13434E + 24 9.1351 0.0004 14.8749 0.0009

43 1.49685E + 29 5.3851E + 24 9.2623 0.0004 15.2967 0.0009

44 7.03628E + 29 2.48608E + 25 9.3899 0.0005 15.721 0.001

45 3.30791E + 30 1.15714E + 26 9.5147 0.0005 16.147 0.001

46 1.55473E + 31 5.61627E + 26 9.6403 0.0006 16.575 0.001

47 7.30794E + 31 2.71255E + 27 9.7629 0.0007 17.004 0.001

48 3.43424E + 32 1.43816E + 28 9.8861 0.0007 17.435 0.001

49 1.61401E + 33 7.05082E + 28 10.0066 0.0008 17.867 0.001

50 7.58382E + 33 3.38112E + 29 10.1278 0.0008 18.302 0.002

51 3.56375E + 34 1.65545E + 30 10.2462 0.0008 18.737 0.002

52 1.67431E + 35 7.18241E + 30 10.3655 0.0009 19.176 0.002

53 7.8668E + 35 3.59204E + 31 10.4823 0.0009 19.615 0.002

54 3.69556E + 36 1.69658E + 32 10.6 0.001 20.056 0.002

55 1.73618E + 37 8.1369E + 32 10.714 0.001 20.499 0.002

56 8.15512E + 37 3.72405E + 33 10.83 0.001 20.944 0.002

57 3.83091E + 38 1.71852E + 34 10.943 0.001 21.389 0.002

58 1.79924E + 39 7.8658E + 34 11.057 0.001 21.837 0.003

59 8.45105E + 39 3.86917E + 35 11.169 0.001 22.285 0.003

60 3.96889E + 40 1.76586E + 36 11.281 0.001 22.736 0.003

61 1.86405E + 41 8.61747E + 36 11.391 0.001 23.187 0.003

62 8.75344E + 41 4.22837E + 37 11.502 0.001 23.641 0.003

63 4.11077E + 42 2.05964E + 38 11.611 0.001 24.094 0.004

64 1.93024E + 43 9.70462E + 38 11.72 0.001 24.551 0.004

65 9.06399E + 43 4.72366E + 39 11.828 0.001 25.007 0.003

66 4.25579E + 44 2.16969E + 40 11.936 0.001 25.467 0.004

67 1.99827E + 45 1.05913E + 41 12.042 0.002 25.926 0.004

68 9.3817E + 45 5.1811E + 41 12.149 0.002 26.388 0.004

69 4.40475E + 46 2.56772E + 42 12.253 0.002 26.85 0.004

70 2.06785E + 47 1.23524E + 43 12.359 0.001 27.315 0.004

Table 3.2: Table of estimates of cn, Re and R2
g and corresponding standard error for

1 ≤ length ≤ 70 in 3D
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n 〈Wn〉 std.err. 〈Re〉 std.err. 〈R2
g〉 std.err.

1 4 0 1 0 0.25 0

2 12 0 1.60952 0 0.518533 0

3 36 0 2.04623 0 0.805545 0

4 99.99947778 0.000599758 2.55692 0 1.15516 0

5 283.9967222 0.002101673 2.95105 0 1.52067 0

6 779.9897222 0.007938821 3.39049 0 1.93699 0

7 2171.991111 0.032001725 3.74767 0 2.36425 0

8 5916.001667 0.104294236 4.14988 0.0001 2.83976 0

9 16267.95 0.34463678 4.48719 0.0001 3.32354 0.0001

10 44100.05556 1.122998502 4.86116 0.0001 3.85066 0.0001

11 120291.5 3.058524998 5.18447 0.0001 4.38581 0.0001

12 324939.2778 9.333615386 5.53734 0.0001 4.9602 0.0001

13 881522.8333 24.25103596 5.84925 0.0001 5.54226 0.0001

14 2374493.333 64.11284985 6.18574 0.0001 6.16049 0.0001

15 6416728.889 166.7350622 6.48786 0.0001 6.78575 0.0001

16 17246011.11 440.5054204 6.81131 0.0001 7.44504 0.0001

17 46468272.22 1164.165542 7.10508 0.0002 8.11082 0.0002

18 124662000 3131.121455 7.41745 0.0002 8.80872 0.0002

19 335132833.3 11934.25618 7.70375 0.0003 9.51244 0.0003

20 8.977E + 08 32930.02473 8.00668 0.0003 10.2465 0.0004

21 2408947778 101016.2595 8.28651 0.0003 10.9861 0.0004

22 6444998889 292580.2375 8.58141 0.0003 11.7545 0.0004

23 17267666667 826718.8472 8.8554 0.0003 12.5278 0.0004

24 46149977778 2620651.463 9.14313 0.0003 13.329 0.0005

25 1.23491E + 11 7848742.55 9.41201 0.0003 14.135 0.0005

26 3.29739E + 11 21644667.9 9.69366 0.0003 14.9684 0.0006

27 8.81382E + 11 54432753.51 9.95831 0.0003 15.8071 0.0006

28 2.35155E + 12 155138153.8 10.2348 0.0003 16.6728 0.0007

29 6.27979E + 12 379595588 10.4954 0.0002 17.5437 0.0006

30 1.67435E + 13 1107524440 10.767 0.0002 18.4409 0.0007

31 4.46793E + 13 3201811908 11.024 0.0002 19.3433 0.0008

32 1.19048E + 14 8853985805 11.2913 0.0003 20.2716 0.0008

33 3.17438E + 14 25834004489 11.545 0.0003 21.2048 0.0007

34 8.45396E + 14 67366610179 11.8078 0.0002 22.1624 0.0007

35 2.25286E + 15 2.11541E + 11 12.0583 0.0002 23.1252 0.0007

Table 3.3: Table of estimates of cn, Re and R2
g and corresponding standard error for

1 ≤ length ≤ 70 in 2D
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n 〈Wn〉 std.err. 〈Re〉 std.err. 〈R2
g〉 std.err.

36 5.99652E + 15 6.02516E + 11 12.3176 0.0002 24.1122 0.0005

37 1.59705E + 16 1.78787E + 12 12.5649 0.0002 25.1037 0.0006

38 4.24922E + 16 4.74971E + 12 12.8206 0.0002 26.1191 0.0006

39 1.13118E + 17 1.32742E + 13 13.0654 0.0002 27.139 0.0008

40 3.00844E + 17 3.81861E + 13 13.3183 0.0001 28.1819 0.0011

41 8.00508E + 17 1.11373E + 14 13.5609 0.0001 29.2299 0.0011

42 2.12822E + 18 3.19491E + 14 13.8113 0.0003 30.3008 0.0012

43 5.66065E + 18 8.75149E + 14 14.052 0.0005 31.3765 0.0013

44 1.50453E + 19 2.61542E + 15 14.3003 0.0005 32.4748 0.0013

45 4.00008E + 19 6.91281E + 15 14.5399 0.0006 33.5784 0.0017

46 1.06281E + 20 2.05048E + 16 14.787 0.0005 34.7055 0.0017

47 2.82499E + 20 5.55165E + 16 15.0261 0.0005 35.8391 0.0018

48 7.50399E + 20 1.44605E + 17 15.2728 0.0006 36.996 0.0018

49 1.99379E + 21 3.91206E + 17 15.5115 0.0006 38.1584 0.0023

50 5.29446E + 21 1.02995E + 18 15.7572 0.0008 39.3448 0.0023

51 1.40643E + 22 2.88629E + 18 15.9946 0.0007 40.5352 0.0023

52 3.73376E + 22 8.18574E + 18 16.2394 0.0007 41.7506 0.0024

53 9.91609E + 22 2.21437E + 19 16.4764 0.0011 42.9731 0.0036

54 2.63196E + 23 6.2062E + 19 16.7192 0.001 44.2182 0.0031

55 6.98757E + 23 1.62541E + 20 16.9543 0.0009 45.4684 0.0028

56 1.85421E + 24 4.26605E + 20 17.1957 0.0009 46.7415 0.0037

57 4.9221E + 24 1.11493E + 21 17.4303 0.0012 48.022 0.0049

58 1.30589E + 25 2.92148E + 21 17.6698 0.0013 49.323 0.0053

59 3.46544E + 25 7.41619E + 21 17.9023 0.0013 50.6308 0.0053

60 9.1919E + 25 1.93138E + 22 18.1404 0.0011 51.9605 0.0052

61 2.43878E + 26 4.8987E + 22 18.3719 0.0013 53.2956 0.0049

62 6.4673E + 26 1.20052E + 23 18.609 0.0007 54.6548 0.0024

63 1.71578E + 27 3.16853E + 23 18.84 0.0011 56.019 0.0037

64 4.54989E + 27 8.56803E + 23 19.0765 0.0015 57.4058 0.0037

65 1.20688E + 28 2.3231E + 24 19.3057 0.001 58.7968 0.0046

66 3.2004E + 28 6.03022E + 24 19.5394 0.0014 60.2076 0.0061

67 8.48887E + 28 1.59758E + 25 19.7679 0.0019 61.6241 0.0063

68 2.25035E + 29 4.60035E + 25 20.0003 0.0021 63.0608 0.0065

69 5.9676E + 29 1.38038E + 26 20.2266 0.0026 64.5005 0.007

70 1.58173E + 30 4.21616E + 26 20.4572 0.0032 65.9633 0.0078

Table 3.4: Table of estimates of cn, Re and R2
g and corresponding standard error for

1 ≤ length ≤ 70 in 2D
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3.3 Estimating the metric exponents

Monte Carlo methods for enumeration and calculating properties such as radius of gy-
ration and end-to-end distance are computationally intense. There are scaling formulas
suggested to estimate these quantities for any given length (for example see equations
2.21, 2.30 and 2.31 in section 2.4.) In this section we fit our calculated data of the
previous section to the scaling relations to estimate the critical exponents and growth
constant.

Data obtained by approximate enumeration may be evaluated using series analysis
techniques, provided that the data are accurate enough to dampen out random noise
and sampling biases. As mentioned in (2.30), end-to-end distance is approximated
byRe = Bnν . In approximate enumeration Re is replaced by approximated values of
the simulated 2-dimensional data from table (3.4). We can use the Flory value of ν
in 2D and calculate < Re > /nν to find an estimation for B in the equation (2.30).
This is done in figure (3.1) (the right plot), where < Re > /nν is computed from
approximations to Re and then plotted against 1/n.

Figure 3.1: The plots for < Re > /nν against n (left) and 1/n (right) in 2D
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Figure 3.2: The plots for < Re > /nν against n (left) and 1/n (right) in 3D

As it can be seen from the plot 3.1 as n increases < Re > /nν converges to 0.84 which
we take as an estimate for B in 2D. In a similar fashion, by using Flory value of ν in
3D and data from table (3.2) , we can plots < Re > /nν vs n and 1/n (see figure 3.2).
By extrapolating the ratio to the intercept with the Y-axis, we obtain an estimation
B = 0.97 in 3D from figure (3.2).

We can also find an estimate for ν by using equation (2.30). This is done by plotting
log(Re)/ log(n) vs 1/n, where we ignore the walks of small length (n starts from nmin =5
or 6.) As shown in figure (3.3), the sequence {(log(Re)/ log(n)}70

n=nmin
approaches ν =

0.72 in 2D and ν = 0.592 in 3-dimension.

A more accurate way to estimate ν would be to use a least square method. Take
logarithm of both sides of equation (2.30) to get:

log(Re) = logB + ν log n (3.7)

In order to take into account the error in the data, a weighted least square error is used.
Minimize the error:

ENmin(B, ν) =
70∑

i=Nmin

(log(Re)i − (logB + ν log i))2

(σ(Re)i/(Re)i)2
(3.8)
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Figure 3.3: The plots for log < Re > /log(n) against 1/n in 2D (left) and 3D (right)

Nmin is a cut-off nmin ≤ Nmin ≤ nmax where nmin = 4 and nmax = 35 (The
results for longer walks are convergent, so walks of length 35 ≤ Nmin ≤ 70 are always
counted in the calculations. On the other hand, walks of length n ≤ 4 are less significant
and discarded). The dataset for the walks of different length, i.e. {(R2

e)i}
70
i=Nmin and

{(σ(R2
e)i}

70
i=Nmin, is taken from Table (3.2) for 3D and Table (3.4) for 2D. If we take

derivatives of 3.8 with respect to the parameters ν and B and equate them to zero and
solve for B and ν, an estimate for ν is obtained. Tables 3.5 and 3.6 show the results
for 3D and 2D respectively.

The estimates of ν is a function of Nmin, denoted by νn, n = Nmin. In figure 3.4
the values of {νn}nmaxn=nmin

is plotted against 1/n, as it can be seen that this sequence
approaches a limiting value. To obtain the best estimation of ν, we use a least square
analysis, this time on the sequence {νi}nmaxi=nmin

. Since the scatter plot suggests that there
is a relationship between νn and 1/n, we minimize:

nmax∑
n=nmin

[νn − (νbest + A/n+B/n2)]
2

(3.9)

to obtain estimates of νbest for nmin = 4 and nmax = 35. The results are νbest = 0.596
in 3D and νbest = 0.764 in 2D. These results are acceptable if compared to the values
given in the literature (for example see table 2.2.)
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Figure 3.4: The plots for {νn}35
n=4 against n (left) and 1/n (right) in 3D

The growth constant can be similarly estimated. Use equation 2.21 to get

log(cn)

n
=

logA

n
+ log(µ) + (γ − 1)

log(n)

n
(3.10)

Since log(n)/n→ 0 as n increases and logA/n is a small number,

log(cn)/n ∼ log(µ) (3.11)

Plot log(cn)/n against 1/n where cn is replaced by the estimates from Table (3.2). As
it can be seen from Figure 3.5 the sequence log(cn)/n is convergent to approximately
1.54. Therefore, we have the approximation µ = e1.54 = 4.66 in 3D.

The exponents γ and µ can be simultaneously estimated using least square in a
similar way as finding ν earlier. Take logarithm of both sides of scaling formula 2.21 to
get:

log(cn) = logA+ n log(µ) + (γ − 1) log(n) (3.12)

Change variables B = logA, C = log(µ) and D = γ − 1. We obtain the summation

70∑
n=Nmin

[log(cn)− (B + Cn+D log(n))]2

(σ(cn)/cn)2
(3.13)
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Figure 3.5: Plots for log(cn)/n against n (left) and 1/n (right) in 3D

Nmin is between 4 and 35 and {(cn)}70
n=Nmin and {(σ(cn)}70

n=Nmin are taken from
Table (3.2). We minimize 3.13 using Maple to estimate γ and µ. The results are shown
in Tables 3.5 and 3.6 for 3D and 2D respectively.

As Nmin ranges from nmin = 4 to nmax = 35, different estimations of µ and γ are
obtained. Figures 3.6 and 3.7 plot 3-dimensional values of {µi}nmaxi=nmin

and {γi}nmaxi=nmin
respectively. Similar to 3.9 we use a least square method to find a best estimate
µbest = 4.683 and γbest = 1.160 in 3D. The corresponding values in 2D are µbest = 2.650
and γbest = 1.184.
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Figure 3.6: The plots for {µn}35
n=4 against n (left) and 1/n (right) in 3D

Figure 3.7: The plots for {γn}35
n=4 against n (left) and 1/n (right) in 3D
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n ν γ µ

4 0.582436 1.15082 4.68503

5 0.585515 1.14672 4.6859

6 0.58766 1.15232 4.68483

7 0.589182 1.1508 4.6851

8 0.590134 1.15372 4.68462

9 0.59099 1.15289 4.68475

10 0.591681 1.15466 4.68448

11 0.592272 1.15401 4.68457

12 0.59268 1.15522 4.68441

13 0.593043 1.15472 4.68448

14 0.593318 1.15559 4.68436

15 0.593584 1.15519 4.68441

16 0.59379 1.15597 4.68432

17 0.593992 1.15576 4.68434

18 0.594147 1.15653 4.68426

19 0.594299 1.1563 4.68428

20 0.59441 1.1569 4.68421

21 0.594519 1.15662 4.68424

22 0.594602 1.15712 4.68419

23 0.594696 1.157 4.6842

24 0.594759 1.15748 4.68415

25 0.594831 1.15722 4.68418

26 0.594878 1.15779 4.68412

27 0.594933 1.15772 4.68413

28 0.594966 1.15813 4.68409

29 0.59501 1.15832 4.68407

30 0.595038 1.15811 4.68409

31 0.595077 1.15766 4.68414

32 0.595103 1.15788 4.68412

33 0.595136 1.15757 4.68414

34 0.595152 1.15787 4.68411

35 0.595177 1.15591 4.68429

35 0.595177 1.15591 4.68429

Table 3.5: Table of estimates of ν, γ and µ and corresponding standard errors in 3D30



n ν γ µ

4 0.7197126 1.2813708 2.6435642

5 0.7237568 1.2740622 2.64458

6 0.7244214 1.2896708 2.6426308

7 0.7276006 1.2824724 2.643455

8 0.728237 1.2913426 2.6425224

9 0.7303984 1.2841568 2.6432228

10 0.7309282 1.286987 2.6429614

11 0.7325878 1.2799462 2.6435772

12 0.7331892 1.2788122 2.643672

13 0.7345222 1.2701352 2.6443738

14 0.7350864 1.2656734 2.6447234

15 0.7364496 1.2600402 2.6451518

16 0.7371164 1.2548722 2.6455346

17 0.7385154 1.2515298 2.6457752

18 0.739299 1.2475132 2.646058

19 0.7405318 1.2460748 2.6461564

20 0.741333 1.2418578 2.64644

21 0.7425714 1.2362876 2.6468098

22 0.7434106 1.2364132 2.6468004

23 0.7446762 1.2301836 2.6471992

24 0.7455492 1.2418296 2.6464666

25 0.7468438 1.242826 2.6464034

26 0.7477474 1.2340808 2.6469274

27 0.749018 1.2273518 2.6473228

28 0.7499608 1.2260838 2.6473936

29 0.7512418 1.2282216 2.6472714

30 0.7522542 1.2304314 2.647147

31 0.7535404 1.2213018 2.647647

32 0.7545624 1.2173052 2.6478628

33 0.75593 1.2164586 2.6479102

34 0.7571098 1.2094716 2.6482792

35 0.7585594 1.2081368 2.648347

Table 3.6: Table of estimates of ν, γ and µ and corresponding standard errors in 2D
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Chapter 4

A mathematical model for a
particle near a polymer

A polymer confined by a hard wall or some other geometrical obstacle loses entropy.
This loss of entropy causes a net force on the wall or obstacle. These forces have
been observed experimentally [39] and modelled numerically by using self-avoiding walk
models of polygons [34] and [35]

The problem we consider in this chapter is the situation where a test particle is
placed near a linear polymer. The presence of the particle causes the polymer to lose
conformational entropy and therefore results in a change in entropic pressure in the
polymeric system. The gradient of the pressure induces a repulsive entropic force on
the particle. The particle near a polymer will be expelled from its vicinity by these
induced forces. (Since the polymer is much heavier compared to the particle the polymer
will not be displaced.)

If we assume the particle can move freely without any friction and dissipation of
energy and also assume that the polymer is kept at constant temperature, then the
particle will accelerate from the higher-pressure region to the lower pressure. We suggest
a model for this problem and simulate the model numerically to see the relation between
velocity and the position of the particle on 2-dimensional lattice.

4.1 Entropic pressure near a walk

The canonical ensemble of a system S with states denoted by s ∈ S is usually of
fixed size, and at fixed temperature T and volume. The canonical partition function is
given by

Z(T ) =
∑
s∈S

eβ Es . (4.1)
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Here β = 1
kT

and k is the Boltzmann constant. Es is the total energy of the system
when it is in state s. If there are cn(m) states of size n and energy m, then the above
partition function is given by

Zn(T ) =
∑
m

cn(m) eβm. (4.2)

The exponent in the formula 4.1 is dimensionless; this makes β and Es thermodynamical
conjugate variables. In the models in this chapter the states will be walks, each of energy
zero. That is, Es = 0 so that the model may be considered to be at infinite temperature.
In this case the partition function in equation 4.2 reduces to

Zn(T ) =
∑
walks

eβ Ewalk =
∑
walks

1 = cn (4.3)

where cn is the number of walks of length (size) n.

If a system is at equilibrium, then the (extensive) free energy is given by fn(T ) =
k logZn(T ). Normally units are selected such that k = 1. That is, in the case of walks
of zero energy the free energy is given by

fn = logZn(T ) = log cn. (4.4)

This is the extensive free energy, since as cn grows bigger, fn increases in proportion to
n (note that cn grows exponentially with n). Furthermore, the free energy per step is
called the intensive free energy and is denoted by Fn. Thus

Fn =
1

n
logZn(T ) =

1

n
log cn. (4.5)

If the limit F = limn→∞ Fn exists, then the F is the limiting free energy, and the limit
is also called the thermodynamic limit of the model. By equation 2.15 this limit exists
and equals log µd.

In a system with energy Es = 0, the total internal energy is also equal to zero, that
is, U = 0. Since the free energy is given by F = U−TS, where U is the internal energy,
T is temperature and S is the entropy of the system, comparison to equation 4.4 shows
that the entropy is given by

TS = − log cn. (4.6)

That is, since fn = −TS and assuming T = 1, the model has free energy purely
determined by its entropy.
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Figure 4.1: The pressure Pn(x, 0) along the X-axis at the points (x, 0) for x = 1; 2;
3;...; 70, and for walks of lengths n=10; 30; 50; 70.

Suppose that Fn is the free energy of a walk, and let ∆V (~r) be a volume element
centered at ~r. Let Fn(~r) be the free energy of the walk if it avoids the volume element
∆V (~r). The change in free energy is ∆Fn = Fn − Fn(~r). In the lattice this will be the
change in the free energy of the walk if the lattice site at ~r is excluded. This quantifies
entropic pressure of the walk at ~r, which is defined as

Pn(~r) =
∆Fn

∆V (~r)
= −T ∆S(~r)

∆V (~r)
, (4.7)

where ∆S(~r) is the change in entropy of walks avoiding the site ~r.

In terms of cn the entropic pressure of walks is given as follows. Assume cn(~r) is the
number of SAWs of length n passing through the lattice site (~r), where 1 ≤ k < n. Let
cn(~r) be the number of walks of length n excluding (avoiding) the lattice site ~r. That
is, cn − cn(~r) = cn(~r). Then using formula 4.6, the pressure at lattice point ~r is given
by

Pn(~r) = − log
cn − cn(~r)

cn
= − log

(
1− cn(~r)

cn

)
. (4.8)

In figure 4.1 the pressure due to a particle near a walk for walks of lengths n=10; 30;
50; 70 is plotted against the position of the particle along the x-axis (i.e for the points
~r = (x, 0) where 1 ≤ x ≤ 70 .) As we can see the pressure is high close to the origin and
drops sharply with increasing distance. The pressure will be discussed in more details
in chapter 4. Here, we consider the entropic force on a particle at a lattice point ~r.
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4.2 The entropic force and velocity of a test particle

In terms of equation 4.7 the pressure is a derivative of the free energy to unit volume:
The total change in free energy is proportional to the volume of excluded sites, so that

∆Fn(~r) = (log cn − log cn(~r))∆V (~r)

= log cn − log(cn − cn(~r))∆V (~r) (4.9)

= − log(1− cn(~r)

cn
)∆V (~r).

The pressure gradient between lattice sites ~r and ~r + ~e (where ~e = (±1, 0) or ~e =

(0,±1) causes a net force denoted by ~fn(~r, ~r + ~e). The direction of this force is on
average along the steepest descent in the pressure field. The force also has components
along lattice edges, and these may be computed by taking (discrete) derivatives of the
pressure between adjacent lattice sites. For example, if ~r is a given lattice site, then

~fn(~r, ~r + ~e) =
(
− P (~r + ~e) + P (~r)

)
~e (4.10)

is the component of the force directed from ~r to ~r + ~e. By equation 4.8, this gives

|~fn(~r, ~r + ~e)| = log
cn − cn(~r + ~e)

cn
− log

cn − cn(~r)

cn
= log(cn − cn(~r + ~e))− log(cn − cn(~r))

= log cn(~r + ~e)− log cn(~r)

= −Sn(~r + ~e) + Sn(~r)

where Sn(~r) is the entropy of walks if the site ~r is excluded by equation 4.6 (and where
T = 1). That is, the force field is given by a change in entropy between excluding
adjacent lattice sites, and so is also called an entropic force.

The entropic force is directed from the point of high entropic pressure to the point of
low pressure. Putting test particle at a point ~r shows that it will experience an entropic
force to points of lower pressure, and if it has mass, then it will accelerate. This occurs
only if the walk is in contact with a large heat bath, and the total system is kept in
equilibrium. This assumption is important because in this case the particle will take
the energy from the polymer which in the absence of heat bath, will cool down.

The acceleration of a test particle due to the entropic pressure gradient give velocity
~v(~r) to the particle at each point ~r along its path. In the lattice this may be quantified
by noting that a change in velocity from point ~r to point ~r + ~e is the acceleration
~a = (~v(~r + ~e)− ~v(~r))/∆t where ∆t is the time interval that it takes for the particle to
go from ~r+~e to ~r. Assume that the speed v(~r) = |~v(~r)| is the magnitude of the velocity
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and ∆v(~r) = v(~r + ~e)− v(~r), therefore we can apply formula 4.10 to Newton’s second
law for a particle with unit mass to get

∆v(~r)

∆t
= fn(~r, ~r + ~e) = −P (~r + ~e) + P (~r) = −∆P (~r) (4.11)

Notice that

∆v(~r)

∆t
=

∆v(~r)

∆x

∆x

∆t
∼ v(~r)

∆v(~r)

∆x
(4.12)

The pressure gradient between lattice points ~r + ~e and ~r is defined by ∆P (~r) = P (~r +
~e) − P (~r) and it is the pressure drop from point ~r + ~e to ~r. Choose ∆x = 1, then
equation 4.11 becomes

v(~r) ∆v(~r) ∼ −∆P (~r) (4.13)

Suppose that the particle is moving on x-axis, then ~r = (x, 0). Now, equation 4.13 can
be approximated as a differential equation in x.

v(x, 0) dv(x, 0) = −dP (x, 0) (4.14)

Then we integrate 4.14 from y to x to obtain:

1

2

(
v2(x, 0)− v2(y, 0)

)
= P (y, 0)− P (x, 0) (4.15)

Assuming that y = 1 we have

v(x, 0) =
√
v2(1, 0) + 2

(
P (1, 0)− P (x, 0)

)
(4.16)

So if we release at particle at (1,0) with zero velocity, then velocity at every point (x,0)
where 1 ≤ x can be calculated by

v(x, 0) =
√

2
(
P (1, 0)− P (x, 0)

)
(4.17)

For large x, P(x,0) = 0. Therefore the terminal velocity of particle at points far from
the polymer can be determined by

vter(x, 0) =
√

2P (1, 0) (4.18)

for a particle released at (1,0) at rest.
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4.3 Numerical results

The speed of unit mass test particles released at ~r = (1, 0) at rest and accelerating at
constant temperature along the x-axis can be calculated using equation 4.17. Further-
more, equation 4.18 gives the terminal velocity of such point. In figure 4.2 the velocity
of the particle against its position on x-axis is plotted for two dimensional walks of
lengths 10 ≤ n ≤ 70.

Figure 4.2: Plot of velocity of a point moving along the x-axis against its position in the
square lattice. The particles were released at (1, 0) and accelerated along the x-axis.
The speed reaches a maximum of 0.59 independent of the length of walks. The walks
were of lengths 10 ≤ n ≤ 70

As we can see, the velocity increases as the point is going farther from the origin on
the x-axis, until it reaches a maximum speed. Notice that the speed seems to reach a
maximum independent of the length of walks considered, and for each case the terminal
speed is about 0.59. For longer walks the rate at which the maximum speed is attained
is smaller.

The velocity curve can be rescaled by multiplying distance by a factor of n−ν . In
figure 4.3 we rescaled the data of figure 4.2. With increasing n, the data start to
accumulate on the rescaled velocity curve. Since we chose to release the particle at
(1,0), we can rescale the starting point as well. This is done in figure 4.4 by choosing
the origin at x=2. As we can see the data for rescaled distance n−ν(x− 2) fit better for
small values of x; since the data cluster more tightly for walks of different lengths.

37



Figure 4.3: Plot of velocity of a point moving on the line x=0 against its rescaled
position n−0.75(x) for x = 1; 2; 3;...; 70, in 2D. The walks were of lengths 10 ≤ n ≤ 70

Figure 4.4: Plot of velocity of a point moving on the line x=0 against its rescaled
position n−0.75(x−2) for x = 1; 2; 3;...; 70 in 2D. The walks were of lengths 10 ≤ n ≤ 70

4.3.1 Velocity in other directions

The velocity of the particle along the diagonal line against its position (~r = (x, x))
is plotted in figure 4.5 for walks of lengths 10 ≤ n ≤ 70. The curves follow a similar
pattern as the speed along the x-axis in Figure 4.2, the difference is that the test
particles gain less speed. The curves in figure 4.5 become better defined (accumulate
more tightly) in figure 4.6 by rescaling the length by

√
2 n−ν(x− 2). Terminal velocity

converges to about 0.5 independent of length.
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Figure 4.5: Plot of velocity of a point moving on diagonal line y=x against its position
in the square lattice. The particles were released at (1, 0) and accelerated along the
diagonal line y = x. The speed reaches a maximum of 0.5 independent of the length of
walks. The walks were of lengths 10 ≤ n ≤ 70

Figure 4.6: Plot of velocity of a point moving on the line y=x against its rescaled
position n−ν(x− 2) in 2D. The walks were of lengths 10 ≤ n ≤ 70
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Chapter 5

Rescaling pressure

In the previous section we mentioned that a particle placed close to a polymer will
experience a pressure in the vicinity of the polymer. This pressure induces a repulsive
net force on the particle. In this chapter we examine a model for entropic pressure close
to a self-avoiding walk. In particular, a scaling relation is developed for the pressure.

The scaling is tested in section 5.4 using data generated by the Rosenbluth algorithm.
Our numerical results verify the scaling formula (see section 5.3).

5.1 Modelling the entropic pressure near a walk

The purpose of this section is to introduce scaling formulas for walks in half-spaces
and walks that end at a lattice point ~r. These formulas will prove useful in the modelling
of the entropic pressure near a walk.

Let L be a line through the origin in R2. This line cuts R2 into two half-lattices.
This can be generalized in higher spaces, where L is a hyperplane of dimension d− 1.

Denote the number of self-avoiding walks of length n from the origin confined to one
of the half-spaces (on one side of L) by c+

n . It is believed that c+
n has an asymptotic

formula

c+
n ' C1n

γ1−1µn (5.1)

where γ1 = 61/64 in two-dimensions [41].

Define cendn (~r) to be the number of SAWs of length n rooted at ~0 ending at ~r in the
square lattice L2. Let cendn (r) =

∑
|~r|=r c

end
n (~r) be the number of walks of length n from

~0 to a distance r from the origin. Since these walks end on a circle of radius r, we can
assume that

cendn (r) ' A0r c
end
n (~r) (5.2)
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in L2 (where A0 is a constant).

The average end-to-end distance of self-avoiding walks of length n is denoted by
Re = 〈r〉n and has a scaling relation introduced in equation 2.30. The expected distance
of the endpoint of the walk from the origin can be computed using cendn (r):

Re = 〈r〉n =
1

cn

∑
r≥0

r cendn (r) ∼ Cnν (5.3)

where ν is the metric exponent of the self-avoiding walk and is known in two dimensions
to be exactly ν = 3/4.

The ratio cendn (r)/cn is the end-to-end distribution function Pr(n, r) of self-avoiding
walks. It is the probability density of self-avoiding walks of n steps which reach the
distance r = |~r| [25]. In particular it is thought that for large n the distribution in
d-dimensions approaches a limiting shape,

Pr(n, r) ∼ R−de F0

( r
Re

)
(5.4)

The asymptotic expression above is the inverse of the volume occupied by the end point
of the walk multiplied by a scaling function F0 (which is a function of the distance of
the walk from the origin scaled by Re). The short- and long-range behaviors of F0(x)
were determined in terms of γ and ν [24].

F0(x) =

{
xg if x is small

e−x
δ

if x is large
(5.5)

where g = γ−1
ν

[24]and δ = 1
1−ν [25]. Thus in terms of Pr(n, r) we have

cendn (~r) ∼ Pr(n, r) cn

= C0
1

Rd
e

F0

( r
Re

)
cn (5.6)

= C0r
−d( r

Re

)d
F0

( r
Re

)
cn

Let xdF0(x) = G(x), then we have

cendn (~r) ∼ r−dG
( r
Re

)
cn (5.7)

Substituting cn from 2.21 gives:

cendn (~r) ∼ nγ−1µnr−dG
( r
Re

)
(5.8)

Note that Rg ∼ Re ∼ Cnν , where R2
g is the mean square radius of gyration of SAWs.
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5.2 The number of walks passing through a point ~r

In order to find the pressure due to a particle near a walk, we need to determine a
scaling formula for the number of walks passing through a lattice point ~r.

A walk of length n passing through ~r (denoted by cn(~r)) can be divided into two
subwalks that do not cross each other (see figure 5.1). A subwalk of length k starting
at ~0 ending at ~r and a subwalk of length n− k starting at ~r in a half-space. Since these
two walks are assumed not to intersect, the second walk is modeled by growing a walk
in half-space separated by a wall normal to and passing through ~r. Therefore, we have

cn(~r) ∼
n∑
k=0

cendk (~r)c+
n−k (5.9)

Figure 5.1: A walk of length n divided into two subwalks; a subwalk of length k ending
~r and a subwalk of length n− k in half-space starting at ~r.

Substitute the number of walks that ends at ~r and the number of walks in a half-space
from scaling formulas 5.6 and 5.1 to obtain:

cn(~r) ∼ C0C1µ
n

∫
k

r−2(
r

Rg

)
d

F0(
r

Rg

)kγ−1(n− k)γ1−1dk (5.10)

where the summation is approximated by an integral. Since d=2, the above formula
simplifies to:

cn(~r) ∼ C0C1µ
n

∫
k

R−2
g F0(

r

Rg

) kγ−1(n− k)γ1−1dk (5.11)
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Scale distance by r = aRg, where Rg ' Cnν is the root of the mean square radius of
gyration of the walk, and a is the scaling factor. Then ~r = (aRg)

~r
|~r| and cn(~r) becomes

a function of a. Let

ĉn(a) = cn

(
(aRg)

~r

|~r|
)

(5.12)

The function ĉn(a) is the number of walks passing through a point at distance aRg from
the origin and in the direction of ~r.

F0 in equation 5.10 becomes

F0(
r

Rg

) = F0

(aCnν
Ckν

)
= F0

(
a
(
k/n

)−ν)
(5.13)

Replace F0 and Rg in 5.11 and put C3 = C−2C0C1 to see that

ĉn(a) ∼ C3µ
n

∫
k

k−2νF0

(
a
(
k/n

)−ν)
kγ−1(n− k)γ1−1dk (5.14)

In other words,

ĉn(a) ∼ C3n
−2νnγ−1nγ1−1n µn

∫
k

(
k/n

)−2ν
F0

(
a
(
k/n

)−ν) (
k/n

)γ−1(
1− k/n

)γ1−1
d(k/n).

(5.15)
Substituting x = k/n gives:

ĉn(a) ∼ C3n
−2ν+γ+γ1−1µn

∫ 1

0

x−2νF0(ax−ν) xγ−1(1− x)γ1−1dx (5.16)

Define the function

g(a) =

∫ 1

0

x−2νF0(ax−ν) xγ−1(1− x)γ1−1dx (5.17)

where F0 is defined in equation 5.5. Therefore, we have

ĉn(a) ∼ C3n
−2ν+γ+γ1−1µng(a) (5.18)

Notice that ĉn(a) is only dependent on the distance from the origin and not on the
direction. Dependence of ĉn(a) on a is given by g(a). By 5.5 as a increases g(a) decays
quickly to zero. Plot 5.2 shows the dependence of g(a) on a on a log-log scale. For small
values of a the plot decrease slowly but decays to zero quickly as log(a) approaches to
0.
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Figure 5.2: Plot of log(g(a)) against log(a)

5.3 The rescaled pressure

The pressure at the point ~r due to a polymer placed at ~0 is given by formula 4.8. Let
r = |~r| and let Pn(r) be the mean pressure at a distance r from the origin (that is the
average over all directions). The scaling of Pn(r) can be found by rescaling distance by
r = aRg, where Rg is the mean radius of gyration. Define the rescaled pressure by

Pn(a) = Pn(aRg) (5.19)

where 0 ≤ a and Rg = Cnν defines the length scale. Then, equation 4.8 gives the
pressure of a polymer at a distance aRg from the origin:

Pn(a) = − log
(
1− ĉn(a)

cn

)
(5.20)

where cn is the number of walks of length n and ĉn(a) is the number of polymers passing
through a point a distance aRg of the origin. To find the scaling of the pressure we
substitute for cn and ĉn(a) from equations 2.21 and 5.18. In particular, for a not too
small and n large we have

Pn(a) ∼ − log
(

1− C3n
−2ν+γ+γ1−1µng(a)

Cnγ−1µn

)
Let

A =
C3n

−2ν+γ+γ1−1µng(a)

Cnγ−1µn
(5.21)

So that Pn(a) ∼ log(1−A). Since −2ν + γ + γ1 − 1 ≤ 0 and since g(a) decays to zero
quickly as a increases, A→ 0. Thus Pn(a) ∼ 1− (1− A) +O(A2) ∼ A, or

44



Pn(a) ∼ C3n
−2ν+γ+γ1−1µng(a)

Cnγ−1µn
(5.22)

For some constant C4 the above simplifies to

Pn(a) ∼ C4g(a)n−2ν+γ1 (5.23)

Using the Flory value ν = 3/4 and exact value γ1 = 61/64 gives the following relation
in d=2:

nρPn ∼ g(a) (5.24)

where ρ = 2ν − γ1 which equals to 35/64 in 2-dimensions. Note that right-hand side is
independent of n.

Since the lattice is rescaled by a factor of n−ν , we can test the prediction in 5.24
numerically by plotting nρPn against ~r/nν . This should collapse data for different
choices of ~r and n into a single curve which has similar shape to figure 5.2 and is a
function of a only.

5.4 Numerical results

Monte Carlo simulations using the Rosenbluth algorithm generate a sample of 106

walks of length 1 ≤ n ≤ 70 in two dimensions. From this sample we find the number
of walks passing through the lattice sites of the form (±x,±x) and (±x,∓x) for 1 ≤
x ≤ 70. If we take the average of these four groups of data, we get an estimate for the
number of walks in L2 passing through the points (x, x), where 1 ≤ x ≤ 70.

We substitute these data in equation 4.8 to calculate the pressure at the point ~r in
two-dimensions. For polymers of length n the pressure at lattice points with n

2
≤ |x|

and n
2
≤ |y| is zero, since a polymer rooted at origin can not pass through such points.

Table 5.1 shows the results for cn and cn(1, 1) and the corresponding pressure at this
point in 2D. Similarly, the pressure at points (x, 0) with 1 ≤ x ≤ 70 can be estimated
numerically.

5.4.1 The pressure near a polymer

The pressure near walks is computed from the data similar to the data in Table
5.1. In Figure 5.3 the pressure of the polymer along points on the x-axis is plotted
as a function of the distance from the origin; that is Pn(x, 0) is plotted against x for
1 ≤ n ≤ 70.
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n cn cn(1, 1) Pn(1, 1)

27 8.8e+ 011 2.17E + 11 0.1231

28 2.35e+ 012 5.81E + 11 0.1232

29 6.27e+ 012 1.56E + 12 0.1238

30 1.67e+ 013 4.16E + 12 0.1244

31 4.46e+ 013 1.11E + 13 0.1242

32 1.19e+ 014 2.97E + 13 0.1246

33 3.17e+ 014 7.92E + 13 0.1248

34 8.46e+ 014 2.12E + 14 0.1251

35 2.25e+ 015 5.63E + 14 0.1252

Table 5.1: Table of estimates of cn , cn(1, 1) and Pn(1, 1) for walks of length 27 ≤ n ≤ 35
in 2D

Figure 5.3 shows that the pressure increases quickly as we get closer to the origin in
the xy-plane. Since the origin is always occupied, the pressure at this point is infinity.

Figure 5.3: Plot of pressure on the points (x,0) on the x-axis against its position in 2D.
The curves represent the pressure along the x-axis for polymers of length 1 ≤ n ≤ 70

The scaling of pressure can be uncovered using equation 5.24. That is, rescale the
distance by a factor of n−ν and rescale the pressure by nρ. The scaling analysis in
previous section predicts that plotting nρPn against n−ν |r| will collapse data of all
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length on a single curve.

Using the exact estimates for ν = 3/4 and γ1 = 61/64 in two-dimensions, we get
ρ = 2ν − γ1 = 35/64. Hence, the rescaled data n35/64Pn should be plotted against
n−0.75|~r|. This is done in Figure 5.4 where data of Figure 5.3 is used. As it can be seen,
the rescaled pressure Pn for all lengths 1 ≤ n ≤ 70 aligns along a single curve. This is
strong evidence in support of the scaling relation derived in 5.24.

Figure 5.4: Testing the scaling prediction in equation 5.24. The rescaled pressure
n35/64Pn plotted as a function of n−3/4x. These data include all the data points in
figure 5.3. The data collapse to a single curve, uncovering the scaling function g(a) in
equation 5.24

Equation 5.24 suggests that nρPn can be approximated by the function g(a). To test
this proposition, we plot the numerical data of Figure 5.4 in log-log axes (see Figure
5.6 ) and compare it with the theoretically calculated plot of g(a) in Figure 5.2 . As
it can be seen, Figures 5.6 and 5.2 have similar shape and this shows that the scaling
approximation of pressure made in equation 5.24 is correct and can be determined as
a function of distance. As expected, the pressure is high for lattice points close to the
origin. But as we pass a distance of roughly r ∼ nν (or a ∼ 1) the pressure drops
sharply to zero. This crossover happens at the boundary layer of the polymer, which
may be considered a gas of monomers localised inside its mean radius (see picture 5.5.)

The turnover at the boundary of the polymer defines a surface layer. Inside the
surface layer a density of vertices is occupied by the lattice polymer, that causes the
non-zero entropic pressure which decreases with increasing distance. Once we pass the
surface layer, the pressure decreases quickly, and, as we go farther from the origin, the
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Figure 5.5: Schematic illustration of boundary layer of polymer. Inside the surface
layer there is a density of vertices occupied by the lattice polymer. This underlies the
entropic pressure which decreases with increasing distance.

pressure drops to zero. This can be seen in the sharp descent of nρPn with increasing
distance in Figure 5.6 for 1 ≤ a.

Figure 5.6: The same data as in Figure 5.4, but on a log-log scale. These data accu-
mulate along a curve which is similar in shape to g(a) plotted in 5.2, but with rescaled
axes.
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5.4.2 Pressure in other directions

The scaling of Pn(a) in equation (27) suggests that the pressure field is isotropic, that
is, the same in all directions. This can be tested numerically by examining the rescaled
pressure along other directions in the lattice.

Consider first the pressure Pn(x, x) along the points on the diagonal direction in
the lattice. The pressure is a function of the distance |r| = ||(x, x)||2 =

√
2 x from

the origin. Therefore, if we rescale the distance by
√

2 xn−0.75 and plot it against the
rescaled pressure n35/64Pn, we should see that the data is collapsed on a single curve
again. This is confirmed in Figure 5.7 for 1 ≤ n ≤ 70.

Figure 5.7: Testing the scaling prediction in equation 5.24. The rescaled pressure
N35/64Pn(x, x) plotted as a function of

√
2xn−3/4. The data collapse to a single curve,

uncovering the scaling function g(a) in equation 5.24

Comparing Figures 5.7 to 5.4 shows a similar pattern in the rescaled data. So in
Figure 5.8 we plotted the data of figures 5.7 and 5.4 on the same scale and axes.
Since the scaling along the diagonal is the same as along the x-axis, this supports the
suggestion that the pressure field is isotropic, even at small distances in L2.

The data for pressure on vertices (x,0) and (x,x) from figures 5.7 and 5.4 are plotted
in figure 5.9 on logarithmic axes. The result is a graph similar to Figure 5.6 with a
well-defined surface layer. For a particle approaching the surface layer, the relative
pressure gradient is small at first. As the surface layer is reached, the pressure grows
sharply. The pressure gradient increases more gently as the surface layer is crossed
towards the vertices closer to origin. This is seen in Figure 5.9 for small values of a, as
the surface layer is crossed and we get closer to the origin.
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Figure 5.8: The data in Figures 5.7 and 5.4 plotted on the same scale and axes.

Figure 5.9: The data in Figures 5.7 and 5.4 are plotted on the same log-log scale. The
blue data represent the pressure along r = (x, x) and the red data is from figure 5.4.
This data accumulate along a curve which is similar in shape to g(a) plotted in 5.2, but
with rescaled axes.
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Chapter 6

Conclusions

The first problem examined in this thesis is finding the number of different conforma-
tions of a polymer of a given length. We used the Rosenbluth algorithm for approximate
enumeration of self-avoiding walks as a model of polymer entropy in two and three di-
mensions. In addition, we have calculated some of the polymer properties such as radius
of gyration and end-to-end distance.

Monte Carlo methods for the calculation of the number of walks, radius of gyration
and other properties walks produces data which can be used to examine the scaling
formulas for walks.In this thesis we fitted our numerical results to the scaling relations
to estimate critical exponents. The methods we used are approximate enumeration and
linear regression. The results show acceptable fitness to those of published papers.

Improved computing power and better approximate enumeration data may make it
possible to apply more sophisticated series analysis techniques such as Pade or dif-
ferential approximants to Monte Carlo data in later work. Also using Monte Carlo
simulation to find the correction-to-scaling exponent in scaling formulas would be an
interesting question to consider.

We developed a model to determine the scaling of entropic pressure in the vicinity
of a linear polymer rooted at the origin in the square lattice. The scaling relation was
tested numerically by collecting data using Rosenbluth sampling of self-avoiding walks
in L2.

The data gathered in figures 5.7 and 5.4 support the scaling relation 5.24. These data
show that the pressure is independent of length of polymer. Moreover, the pressure is
decaying at the same rate in every direction (pressure is isotropic.) In particular, figure
5.9 reveals a similar shape as in theoretically driven plot of g(a) in 5.2.
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We also studied the speed of a unit mass particle accelerating away from the vicinity
of the polymer due to pressure gradient. Our numerical results suggest that the terminal
velocity is independent of the size of polymer - and only dependent on the initial position
of the particle.

In future we can use similar models for a directed path in the vicinity of a hard wall.
Such a path will exert pressure on the wall because of loss of entropy. The pressure at
a particular point may be estimated by approximating the loss of entropy if the point
is excluded from the path [34].
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