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ABSTRACT 
 

Mobile spatio-temporal applications play a key role in many mission critical fields, 

including Business Intelligence, Traffic Management and Disaster Management. They 

are characterized by high data volume, velocity and large and variable number of mobile 

users. The design and implementation of these applications should not only consider this 

variablility, but also support other quality requirements such as performance and cost. In 

this thesis we propose an architecture for mobile spatio-temporal applications, which 

enables multiple angles of adaptivity. We also introduce a two-level adaptation 

mechanism that ensures system performance while facilitating scalability and context-

aware adaptivity. We validate the architecture and adaptation mechanisms by 

implementing a road quality assessment mobile application as a use case and by 

performing a series of experiments on cloud environment. We show that our proposed 

architecture can adapt at runtime and maintain service level objectives while offering 

cost-efficiency and robustness. 
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Chapter 1  
Introduction 

1.1 Motivation 

The widespread adoption and use of smart devices is driving for new models of 

ubiquitous computing. Smart devices usually offer a large set of functionalities including 

portable media players, GPS navigation and wireless internet connectivity. In order to do 

so they are equipped not only with powerful memory, processing and network resources 

but also with sensors such as GPS, accelerometer, camera, touchscreen; and the list seems 

to continuously grow with light-, temperature-, air quality-, humidity-sensors and so on. 

What is common about all these sensors is that they can continuously sample and produce 

rich data about the user’s context and environment, which can potentially be transmitted 

to an information management system. 

The capabilities described above can support the development applications with 

functionalities such as crowdsourcing for a common goal, personalization and context 

awareness. Despite this hardware innovation, it appears that the traditional paradigm for 

mobile application deployment is not sufficient to facilitate such applications. The model 

of context-agnostic design which contain a centralized server provisioned for a certain 

level of traffic is not only incompatible with those applications but also costly and rigid.  

The difficulties mentioned above are also true for a special category of mobile 

applications which are marked by their high mobility and change in time – spatio-
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temporal applications. Spatio-temporal applications are generally described as 

applications where spatial changes occur over time. Although the conceptual model and 

semantics for this field are mature, there still needs to be a lot of work for their efficient 

deployment on supporting infrastructures. In addition, modern devices can easily enable 

their client-side realization, which indicates that now is the right time to examine the 

optimal architectural designs and methods to effectively obtain the desired benefits from 

their use.  

The main challenge faced during the implementation of spatio-temporal applications is 

the tremendous variance in data traffic – both in time and space. As an example, we could 

consider a navigation mobile application. Users of the application who happen to be at 

the same point of road congestion, would likely all consult their navigation application at 

the same time, leading to increased data traffic at that specific point. Similar examples 

can be found in multiple other fields such as Business Intelligence, Disaster Management 

and so on, where unexpected events can triger specific activity and consequently 

localized peaks in data traffic.  

Another major challenge concerns the QoS characteristics of such applications and their 

ability to provide differentiated services based on time, space and user activity in a 

transparent manner. Services such as location awareness are not very useful when they 

are frequently interrupted, especially in cases where sensitivity plays an important role. In 

addition, such vigorous systems should be robust and resilient to state changes, which is 

almost impossible to achieve with inflexible centralized components. They should 
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innately adjust to changes in geographical distribution and unpredicted events or patterns 

with the least possible human intervention, while maintaining important characteristics 

including low latency and security. 

In addition to performance, it is very important to consider the optimal utilization of 

available resources. There are two main reasons that dictate careful resource management 

for spatio-temporal mobile applications. The first reason is that in spite of the continuous 

improvement of mobile devices’ features, they still suffer from many weaknesses such as 

limited computational power and battery lifespan. Concurrent applications constantly 

running on the background can drain battery very fast, particularly when they demand 

frequent wireless transmission of data. The second reason is the enormous number of 

users and consequently the vast amount of data that is produced, transmitted and 

processed. In this respect, traditional implementations on the server side would require 

expensive hardware appliances provisioned for maximum capacity, which could be 

avoided considering such applications’ load variability over space and time. Moreover, 

one significant parameter of cost is localization, since there are currently many examples 

where cost varies among different regions of server farms.  

One promising model which could provide viable solutions to many of the above-

mentioned concerns is Cloud Computing. The most indubious meaning of Cloud 

Computing would be “on demand access to elastic computing resources” and this 

paradigm has gained a lot of popularity over the past few years. The promise of this 

model is automation in the sense of seamless deployment and running of applications. 
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However, it is currently not a mature model and many of its aspects and capabilities are 

yet to be explored. For instance, it is not an obvious task to select the optimal 

architectural deployment on the cloud according to distinct characteristics of an 

application. The availability of diverse resources and alternative technologies comes at 

the cost of increasing the complexity of the optimization problem. Furthermore, the 

degrees of freedom require many architectural and management decisions to be made 

such as which should be the modularization of the system and where automation should 

take place. 

The work presented in this thesis explores the use of Cloud Computing for the 

deployment of spatio-temporal applications and addresses many of the challenges 

mentioned. We consider adaptivity as one crucial aspect of such systems and propose an 

adaptivity-enabling architecture which can facilitate scaling, context-aware adaptivity 

and dynamic configuration of real-time data transmisson parameters. To support these 

functionalities we apply techniques from the area of Autonomic Computing and we 

evaluate our methodologies using a mobile application for the assessment of road quality.    

1.2 Research Objectives 

The research objectives of this thesis can be summarized as follows: 

1) Define an architecture for mobile spatio-temporal applications, which can 

facilitate multiple levels of adaptation. 

2)  Define and evaluate adaptation mechanisms for mobile spatio-temporal 

applications for dynamic adjustment to changes in traffic load and users’ 
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spatial distribution, while maintaining QoS characteristics such as low 

response time. 

3) Evaluate alternative configurations and database technologies for real-time 

applications deployed on a cloud environment. 

The hypotheses tested in this work are: 

1) Our proposed architecture can support the functionalities of a spatio-

temporal application and be implemented in alternative configurations. 

2) In the context of three-tier, real-time applications, a NoSql Database 

System has significantly better performance than Sql Database System. 

3) Location-awareness and elastic scaling can be supported for mobile 

spatio-temporal applications, while maintaining response time lower than 

transmission period and infrastructural cost to a minimum.  

We propose a three-tier architecture for mobile spatio-temporal applications with the data 

tier and the logic tier deployed independently on the cloud. In addition, we define 

adaptive methods in order to continuously monitor the running instances of the 

application and proceed to corresponding adjustments to number of instances, geographic 

coverage and configuration parameters, as required according to defined policies. We 

also apply adaptation on the client side with mobile clients sharing partial state 

information, adjusting their sampling and transmission parameters and having some 

degree of freedom as to which server to direct their requests to, thus providing context-

aware adaptivity.   
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As a case study to validate and test our proposed architecture we consider a smartphone 

application for monitoring and assessing the condition of roads in a city. This application 

collects data about each vehicle position, speed and 6-axis acceleration and sends the 

users information about traffic congestion and road quality to a server. This application is 

ideal for demonstrating the potential of harnessing currently available technologies in an 

efficient fashion, to carry out tasks which would appear almost impossible until recently, 

such as applying a full-scale traffic monitoring using common smartphones. 

1.3 Research Contributions 

This research work introduces an architecture and adaptive techniques to implement 

mobile spatio-temporal applications in an efficient and effective manner, utilizing 

modern concepts and technologies. We test and validate the feasibility of our proposed 

framework by designing, implementing and deploying a traffic mobile application in the 

Amazon AWS environment and conducting a set of experiments, as will be described in 

more detail in Chapter 6.   

The first contribution of our work is the introduction of an adaptivity-enabling 

architecture for mobile spatio-temporal applications. Our architecture is unique in that it 

includes autonomic components with concrete functionality on multiple levels in a 

modular design. This architecture is three-tier providing a high degree of modifiability, as 

any tier of the application can be independently altered or replaced without critical 

implications on the other tiers. In adition, this architecture allows to test, configure, 

deploy and manage each of the tiers separately, whereas the application and data tiers can 
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easily be deployed on elastic infrastructures such as the cloud. Furthermore, we 

emphasize sensor management and local storage capabilities on the mobile web client so 

as to exploit the features of modern smart devices and promote dependable sampling and 

transmission of data. 

The second contribution of our work regards the introduction of adaptive methods for 

mobile spatio-temporal applications, which are compatible with our proposed 

architecture. We provide an analysis of the adaptations that can take place given the 

specific features of spatio-temporal applications and challenges during their deployment. 

Thus, we propose adaptations both at the server and at the client side. On the server side 

our methods support the adaptive scaling and configuration of distributed server clusters 

according to continuously changing distribution of requests. On the client side, they 

facilitate the routing of requests according to user’s current location and the optimal 

client configurations such as setting of sampling and transmission rates, according to 

availability. In addition, the clients and the servers share a common state about runtime 

metrics and can both implement adaptation decisions in a different scope, as will be 

thoroughly explained in Chapter 5. The key advantage of our approach is offering 

context-aware adaptivity and cost efficiency while maintaining important QoS 

characteristics, as we showcase in Chapter 6 by conducting a relevant set of experiments.  

A third contribution of our work derives from the fact that apart from evaluating the 

feasibility of our framework, we also conduct specific experiments which allow us to 

evaluate alternative settings and configurations of our application and acquire an 
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understanding of our problem space by observing concrete results. In this respect, we 

evaluate the use of two different database systems for our web application data tier, 

namely MySql and MongoDb, producing results for our application that could be 

generalized for mobile real-time applications running on Amazon AWS [37] instances. 

We generate different read/write mix workloads to simulate client requests and we 

measure performance characteristics such as latency, throughput and resource utilization. 

To our knowledge, such experiments for this class of applications have not been 

published yet and our work sheds some light on the advantages and disadvantages of each 

case. 

1.4 Thesis Overview 

This thesis is organized as follows. Chapter 2 presents the background for the main areas 

related with our research field; Chapter 3 presents the related work and provides an 

evaluation of approaches with regards to our work. Chapter 4 describes our proposed 

adaptation-enabling architecture for mobile spatio-temporal applications. Chapter 5 

describes our adaptive methods and related algorithms both for server and client 

adaptation.Chapter 6 describes our experimental settings and presents our obtained 

results. Conclusions and Further Work are presented in Chapter 7. 
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Chapter 2  
Background 

In this chapter we provide a brief overview of the main areas of this research, namely 

cloud computing, spatio-temporal applications and autonomic computing. The aim of this 

chapter is to provide readers with the relative background for the current work.  

2.1 Cloud Computing 

Cloud Computing (CC) has received significant attention and popularity over the past 

years, as a promising realization of the long-held dream of computing as a utility [1]. The 

predominant goal of Cloud Computing is to provide on-demand computing services with 

high reliability, scalability and availability in distributed environments. Former 

technologies such as Cluster and Grid have also aimed at allowing access to large 

amounts of computing power in a fully virtualized manner [2]. However, what presently 

make CC so attractive, are its characteristics such as pay-per-use, elastic capacity and 

illusion of infinite resources, self-service interface and virtualized resources, combined 

with the maturity of several technologies which have made CC viable [2]. 

CC has been described in many different ways [1][3] and no standard definition has been 

adopted until now. Recently, the Information Technology Laboratory at the National 

Institute of Standards and Technology (NIST) [4] has posted a working definition of 

cloud computing: “Cloud Computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., 
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networks, servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction”. According to 

NIST the essential features of the cloud model are Rapid Elasticity, Measured Service, 

On-Demand Self-Service, Ubiquitous Network Access and Location-Independent 

Resource Pooling. In addition, based on the different level of services that a cloud 

provider can offer, there are mainly three delivery models for cloud (Software as a 

Service, Platform as a Service, and Infrastructure as a Service). Finally, based on who 

owns, manages and operates the cloud appliances, cloud can be found in four deployment 

models (Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud). 

Unfortunately, the exact definition and use of this technology is still causing confusion 

among practitioners in the commercial and academic spheres [2][1]. 

Conceptually, in CC everything is assumed as a service (XaaS), such as IaaS 

(Infrastructure as a Service), SaaS (Software as a Service), PaaS (Platform as a Service), 

HaaS (Hardware as a Service), delivered over a network, such as the Internet. To this 

end, a large number of cloud service providers and middleware suits have emerged, each 

providing different CC services. This evolution has led to a prospect of CC in which 

cloud users can choose from a diverse set of different services and providers, while being 

able to act as service providers themselves. 
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2.2 Spatio-temporal applications 

Space and Time are the most important dimensions related with events in real-life 

activities. People’s behaviours and decisions are usually influenced by geographical 

space and time parameters. Spatio-temporal objects are those that have spatial and 

temporal attributes and their spatial attributes change over time [5]. Many location 

technologies such as GPS, TA (Timing Advance), AOA (Angle of Arrival) etc. are 

currently available, enabling for the development of applications based on data about 

moving objects, for example traffic control, weather monitoring, military affairs and so 

on. 

Throughout the past two decades there has been extensive research regarding spatial and 

temporal data models, database management systems (DBMS) and database applications 

[6]. The terms spatial database and temporal database have been extensively used in the 

scientific literature to refer to databases where the description of the data of interest to 

users includes, whenever relevant, some description of how the real-world phenomena 

represented in the database are positioned in a given spatial and temporal framework [7]. 

Spatio-temporal database models emerged from the integration of spatial and temporal 

database models which were developed separately [8]. 

Spatio-temporal data handling is not an obvious task due to the complexity of the data 

structures requiring careful analysis in structuring the dimensions, together with the 

representation and manipulation of the data involved [8]. Thus, specific management 

systems are required to describe the extent of objects in space as well as pervasive 
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phenomena, lifecycles and validity periods for time-varying information and trajectories 

or movement of mobile objects. These systems are called Spatio-Temporal database 

management systems and support explicit modeling and manipulation of data with spatial 

and temporal characteristics, facilitating efficient querying [7]. 

Spatio-temporal applications are real world applications, where spatial changes occur 

over the time line. Existing work on such applications examines them as traditional 

applications but with a special focus on data representation and management 

requirements, as explained above. In this respect, Pelekis et al. [8] provide a 

comprehensive review of the literature on different types of spatio-temporal data models 

that have been proposed as well as theories and concepts that have emerged. According 

to Pelekis et al. [8] spatio-temporal applications requirements fall in four categories, as 

follows. 

• Temporal Semantics: This category deals just with the nature of time including 

the basic features that are used to describe it. Main aspects include time 

granularity and density, time order and duration and time representation. 

• Spatial Semantics: This category handles the pure spatial aspects of the existing 

approaches. It mainly concerns structure of space (raster vs. vector 

representation), support of orientation, measurement capabilities and topological 

relationships. 
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• Spatio-Temporal Semantics: This category deals with the unified spatio-temporal 

semantics, such as datatypes, change and evolution in time and space and the 

degree of dimensionality. 

• Query Capabilities: The final category considers the query capabilities of the 

models. In specific it regards the degree to which spatio-temporal systems can 

support queries about spatial, temporal and interrelated spatio-temporal behaviors 

and relationships and the expressiveness of these queries.  

2.3 Autonomic computing  

Autonomic computing (AC) is a relatively new concept, which was introduced as an 

answer to dealing with the management and maintenance of complex, heterogeneous and 

distributed computer systems [9][10]. Inspired by the sophisticated mechanisms of the 

human body in order to respond and adapt to changing conditions, it was firstly 

referenced by IBM [11]. Autonomic Computing Systems (ACS) are systems that can 

effectively manage themselves throughout their lifecycle. 

There are four major self-* properties that can characterize a system as autonomic. These 

major characteristics are self-Configuration, self-Healing, self-Optimization, and self-

Protection, usually called self-CHOP [9]. Most applications implement some of these 

properties to acquire some form of autonomic behavior [13]. The description of these 

properties is as follows. 
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• Self-Configuration is the ability of the system to perform configurations 

according to predefined high-level policies and seamlessly adapt to change caused 

by automatic configurations [12]. An ACS must dynamically configure and 

reconfigure itself under changing conditions [9]. 

• Self-Healing is the ability of the system to automatically detect, diagnose and 

repair faults [12]. An ACS must perform failed components detection and 

eliminate or replace it with another component without affecting the operation of 

the rest of the system. In addition, it must predict problems and prevent failures 

[9]. 

• Self-Optimization is the ability of the system to continuously monitor and control 

resources to improve performance and efficiency [12]. Thus, it is the capability of 

maximizing resource allocation and utilization for satisfying user requests. 

Resource utilization and workload management are two significant issues in self- 

optimization. An ACS must identify and detect attacks and cover all aspects of 

system security at different levels such as the platform, operating system, 

applications, etc. [9]. 

• Self-Protection is the ability of the system to proactively identify and protect itself 

from malicious attacks or cascading failures that are not corrected by self-healing 

measures [12]. It must predict problems based on sensor reports and attempt to 

avoid them [9]. 
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Apart from the above-mentioned characteristics, which are considered major, there are 

also a number of minor characteristics that define an autonomous system. An ACS needs 

to be self-aware, i.e. to be knowledgeable about its components, its current status and 

available resources. In addition, it needs to know all relevant information about the 

resources and their usability. An ACS must also be aware of the environment in which it 

is executed, enabling it to respond to any changes in requirements and conditions, which 

is called context-awareness. Openness means that an ACS must operate in a 

heterogeneous environment and must be portable across multiple platforms. Finally, an 

ACS is characterized by information hiding, meaning that end users are not aware of its 

inner complexity and adaptivity implementation. A reference model of autonomic 

element, which is an element of a system with autonomic characteristics as described 

above, is depicted in Fig. 1. 

 

Monitor

Analyze Plan

ExecuteKnowledge

Sensor Effector

Managed Element

 

Figure 1. The reference model of autonomic element (MAPE-K Loop). 

Other important aspects of AC are the extent to which it is applied to a system and the 

different ways in which it can appear. The first distinction is usually found in literature as 
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weak adaptation versus strong adaptation [14]. Weak adaptation (or self-adaptation) 

refers to the modification of parameters, selection of proper behaviours and interaction 

protocols at the component level. On the other hand, strong adaptation (or self-

expression) refers to the bottom-up modification of the structure of components and 

possibly the emergence of new, unplanned characteristics during runtime. 

The second distinction regards the level at which adaptation takes place. Either identified 

as tight-coupling versus loose-coupling [9], externalization versus internalization [12] or 

individual versus collective adaptation [14], this property addresses whether adaptation in 

a system is centralized, inherent to the system itself or distributed to each of its 

components, analogously to orchestration versus choreography. The level of adaptation 

indicates the selection of the appropriate techniques and methodologies that should be 

utilized.  

2.4 Summary 

To sum up, in this chapter there was a synopsis of the main concepts and notions 

regarding the three pillars of research relevant to our work. Thus, we presented cloud 

computing as an emerging paradigm, which has revolutionized the way computing 

resources are delivered. We explained the advantages of cloud computing delivering 

resources as services over the internet and we provided the most commonly accepted 

definition of this model.  

Subsequently, we analyzed the specific features of spatio-temporal applications and 

stressed their importance for the management of real-life circumstances. We identified 
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important challenges within the development of such applications and discussed about 

the existing research in the field which covers mainly the data modeling aspect.  

Finally, we introduced autonomic computing and analysed its properties. We explained 

the self-* characteristics of an autonomic element and depicted its model. In addition, we 

discussed about different implementations of this paradigm and identified the points of 

distinction among them. 
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Chapter 3  
Related Work 

In this chapter we present existing work in solutions to vehicular sensing for traffic 

monitoring and road quality assessment as well as in autonomic mobile applications, in 

an attempt to relate our research contribution to existing approaches in our field of 

research. In Section 3.1 we present related work for traffic monitoring and road quality 

assessment while explaining how our architecture differs and what advantages it offers. 

In Section 3.2 we present related work on adaptive methods in mobile applications, 

aiming to point out their relationship to our work and how our adaptive methods for 

mobile spatio-temporal applications extend existing ideas and frameworks.  Finally in 

Section 3.3 there is a summary of this chapter. 

3.1 Application Architectures for assessing traffic and road 
quality 

Several solutions have been proposed as vehicular sensing systems for traffic monitoring 

and road quality assessment. In this section there is a short review of the closest 

approaches to our traffic application use case, most of which are intended for pothole 

detection. These solutions are based on the use of sensing hardware such as 

accelerometers, which can be found in almost every modern smartphone and their 

functionality can easily be extended beyond the detection of road anomalies. The first 

systems that paved the way towards effectively facing this problem used specific 
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hardware and software platforms designed to collect acceleration data in addition to GPS-

sensed geolocation data, such as the BusNet system [15] and the Pothole Patrol system 

[16]. However, it was soon realized that the deployment of such systems on the 

increasingly popular smartphones would have many advantages such us leveraging the 

potential of crowdsourcing and high scalability. The following systems are using 

smartphones to sense the condition of streets similarly to our solution. 

Mohan et al. [17] introduce the Nericell system, which addresses the challenge of 

monitoring road and traffic conditions using accelerometer, microphone, GSM Radio and 

GPS sensors available in smartphones. They also refer to the need for an aggregation 

server that collects the information acquired by mobile users but defer it for future work. 

Their approach assumes users holding their smartphones in arbitrary, continuously 

changing orientation and they define an analytical algorithmic methodology to virtually 

reorient the axes of the phone according to the vehicle’s orbit. They use two 

interchangeable threshold-based heuristics to detect bumps, z-peak or z-sus depending on 

the vehicle’s speed. In addition, they use “trigger sensing” for energy efficiency, which is 

the activation of resource intensive sensors only when certain conditions are met, as 

measured by the constantly active energy efficient sensors. This framework might have 

been one of the first to suggest mobile phones as sensors to detect road quality instead of 

specialized hardware but it does not explicitly describe a complete system architecture. 

What is more, the methodology for virtual reorientation is rather complex and possibly 
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prone to noise errors and the system has only been tested on a windows mobile OS, 

failing to address the need for cross-platform interoperability. 

Bhoraskar et al. [18] introduce Wolverine, a system similar to Nericell [17] but with 

different algorithm based on smartphone’s magnetometer to virtually reorient the 

coordinate axes of a disoriented phone and Machine Learning techniques to identify 

bumps and breaking events. They develop a mobile application for the Android Platform 

to test their system and use mean and standard deviations in the three coordinate axes 

(µX,µY ,µZ,σX,σY and σZ) over one-second windows of the collected acceleration data, 

after manually labeling them. In the same fashion as Mohan et al. [17], they do not 

provide architectural or infrastructural information about their proposed solution and 

mention the development of an application only for one specific platform. They also use 

machine-learning techniques for assessment, which makes seamless migration to other 

platforms even more challenging. 

Mendis et al. [19] also identify the benefits of participatory sensing to ensure road surface 

quality. They envision their system as an added layer to existing navigation systems for 

advanced real time event detection with simple resources such as a modern smartphone. 

They implement their system on an Android platform and try three different heuristics for 

acceleration-based pothole detection: Z-THRESH which is similar to Nericell [17] z-

peak, Z-DIFF which detects fast changes in vertical acceleration data and standard 

deviation of vertical axis acceleration (STDEV(Z)). Through testing and based on prior 

manual detection of potholes, they define the optimal configuration parameters for 
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successful pothole detection for each of the above-mentioned algorithms and indicate Z-

DIFF as the most effective one. Like the above-mentioned approaches, the authors do not 

provide any reference to a proposed architecture for their system. Moreover, they do not 

mention wireless transmission of data to a server, leaving many open issues about data 

gathering. 

Aksamit et al. [20] propose an approach to use mobile phones of large number of 

individual, anonymous car drivers and transmit sensed acceleration data wirelessly over 

the Internet. They use HTC Desire S mobile phone for testing and they keep the phone in 

the pocket and on the dashboard while being in a moving car. They use the power of the 

total acceleration signal to assess road quality and they transmit 12B frames of just the 

users’ real-time coordinates and the power of acceleration signal to the server. Their 

approach not only eliminates the effects of device rotation but is also resistant to noise 

and false positives due to the large amount of independent sources of data. Despite the 

fact that this approach is one of the first to explicitly recognize the power of 

crowdsourcing to assess the condition of roads, it uses a rather simplistic approach to 

minimize resource utilization, which might be unnecessary considering modern 

smartphone’s capabilities. Furthermore, like the above solutions it suffers from platform 

lock-in as it has only been tested using one specific platform. 

Ghose et al. [21] also present a system collecting data from multiple mobile users over 

the Internet. They claim that their solution, which is based on open standards, is 

improved compared to previous attempts regarding energy efficiency, privacy and 
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usability. It is phone-orientation-agnostic, it uses in-phone analytics and pre-processing in 

order to minimize the data volume that needs to be sent to the server and as a 

crowdsourcing application, it provides more accurate results. Regarding the heuristics, it 

calculates the derivatives of the measures constantly coming from device accelerometer 

and estimates an event’s confident score for specific location that is sent to the server 

through a REST-ful API. The system also includes a geo-spatial database and 

asynchronous backend aggregation processing for data fusion. Thus, data is uploaded to 

the server in a user-transparent manner and user is notified when approaching road 

anomalies. The authors claim that their solution can be easily deployed as an “app” on 

popular Smartphone platforms such as iPhone and Android but do not clearly present the 

relationship between the application and the data tier. In addition, the authors might claim 

low battery consumption because of pre-processing and lower transmission rate but pre-

processing itself could cause high levels of battery consumption and CPU utilization. 

To our knowledge, our application consists of unique features compared to other 

proposed solutions. Main advantages include the capabilities provided by our proposed 

three-tier architecture such as adaptiveness and robustness. Our architecture allows us to 

test, configure, deploy and manage each of the tiers separately and enables a seamless 

deployment of both data and logic tiers on scalable infrastructures. Moreover, our 

solution includes location-awareness components which can manage the transmission of 

user data to specific servers according to their location and smart monitoring metrics, 

providing more control and reliability to such inherently distributed systems.  
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Furthermore, it is a true cross-platform solution using open source libraries and 

PhoneGap to compile pure JavaScript and HTML5 code into native mobile applications. 

Thus, it can be developed centrally and deployed as a usable native application to any 

popular platform without the need of any supplementary hardware or software 

components. Using adaptive methods combined with configurable queuing and local 

storage on the device, users can send real time data reliably to the server-side, which 

according to the features mentioned can support a large number of concurrent users. 

3.2 Autonomic Mobile Applications 

The importance of adaptivity in highly dynamic mobile applications was early realized 

[24][25]. The improvements it can bring to performance, user experience and 

modifiability are apparent and have been experimentally verified [24][25][26]. 

Neophytou et al. [24] advocate the importance of adaptivity in the context of mobile 

wireless networks. Focusing on service reliability and maintenance of quality of service 

throughout environmental changes, they propose a QoS adaptation framework which can 

adapt  to changes in network topology or application requirements. The idea is to use 

methodologies such as QoS degradation and application reconfiguration in order to avoid 

termination or blocking of service, while maintaining QoS characteristics according to 

the availability of resources. They simulate the use of their framework for different types 

of applications on a UMTS network and show that a certain level of QoS can be 

maintained while probability of service block or termination can be significantly reduced. 

As will be explained later in this document, in our solution we also adopted the idea of 
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maintaining QoS requirements while satisfying the goal for service availability. Thus, we 

consider context awareness as a soft goal while focusing on maintaining low end-to-end 

response time.   

Similarly, Paspallis et al. [25] encourage the use of adaptivity in mobile applications, 

which can result in improved experience as perceived by users. They argue that 

separating the concerns of functional requirements implementation and enabling of 

adaptive behavior, can foster not only simplicity in development but also efficient 

resource utilization in distributed heterogeneous environments. They introduce and test a 

component framework which uses Java annotations to dynamically create links between 

various components with different roles and adapt to changes in the environment. Their 

approach is very interesting, defining functional and qualitative roles for the different 

components. However, the current popularity of paradigms such as Cloud Computing has 

shown that more focus should be on scalability and responsiveness rather than the ability 

of the application to restructure its components.  

Maciel et al. [26] also promote the separation of concerns in mobile applications 

adaptivity and they propose a middleware which abstracts control functions in a 

centralized fashion. They take under consideration the distinct characteristics and 

constraints of mobile applications and follow an aspect-oriented approach to deal with 

crosscutting concerns. The modular architecture that they propose is capable of providing 

adaptivity for different important attributes for mobile applications, such as connectivity, 

power and memory utilization, and security. An adaptivity manager is responsible for 
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monitoring, analysing and propagating adaptation while implementing preferred policies. 

This is very similar to our approach, where we use autonomic managers to provide 

adaptation such as scaling and localization. Nonetheless, our solution is not implemented 

as a middleware but using integral features of the deployment environment, which can 

result in smaller overhead in terms of running time and memory. 

A recent work by Pascual et al. [27] provides a more mature perspective of the 

application of Autonomic Computing principles to mobile applications. They define a 

Context Monitoring Service and a Dynamic Reconfiguration Service to implement 

MAPE-K loops on a middleware for mobile applications with the innovative feature that 

the adaptation planning can dynamically change at runtime. Analogously to the above-

mentioned works, they identify variability in requirements and propose the use of 

Feature models to define different significance of interacting features. Their plan 

generator uses a genetic algorithm to dynamically reconfigure the application in order to 

adapt to changes in context such as battery, network, location, memory e.t.c.. This work 

was reviewed after the implementation of our solution and despite the fact that it focuses 

on client-side adaptation, it seems to identify many of the important concerns in this field 

as we did, such as limited resources, conflicting requirements and the need for dynamic 

autonomic management which can be modified at runtime. 
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3.2.1 Context aware Mobile Applications 

The following two approaches concentrate on the context awareness aspect of mobile 

applications, enabling them to adapt to changes in context such as location, resource 

utilization and activity. 

Mowafi and Zhang [28] present a conceptual framework for user-centered context 

awareness in mobile applications. Using user’s transactions as implicit contextual input, 

their approach reduces the dependencies on environmental context acquisition which can 

insert significant ambiguity and data intensity. Thus, users can have their personalized 

context profile based on their self-defined environment (location, activity e.t.c.) which 

reduces the problem space per user. This attractive idea simplifies the procedure of 

context acquisition, but requires users to willingly share their behavioral information, 

which might not be obvious in practice. Nevertheless, the authors provide a conceptual 

model for context-aware mobile artifacts, identifying among others the importance of 

location-based adaptivity, similarly to our work. 

Likewise, David et al. [29] recognize the importance of context-awareness for mobile 

applications and introduce a context-aware middleware with multi-modal user interface. 

Instead of architectural concerns, they emphasize on the need for easy development and 

maintenance of configurable mobile applications. Their solution enables the runtime 

configuration of applications automatically or programmatically, selecting the most 

suitable among available alternative implementations of the same context-based 

functionality. Through a use case they show that, from a development perspective their 
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middleware simplifies the implementation of context-awareness as opposed to native 

applications alone. However, the authors do not specify which exactly is the context for 

which their methodology can be applied, leaving many open questions about their 

framework use. 

3.2.2 Energy Efficiency 

Our research on mobile application adaptivity revealed that among other resource 

utilization concerns, energy efficiency is one of the dominant aspects that drives research 

in this field. In this subsection there is a review of approaches on using adaptive methods 

to deal with power consumption of mobile applications. 

Mizouni et al. [30] propose an architecture where both the client and the server 

collaborate, using battery status as feedback, to adapt and increase the lifespan of the 

battery. By prioritizing tasks and adapting to power levels they span the service from 

high user experience to energy saving mode, providing different features at the 

application transparently to the user. They also introduce the notion of distributed 

adaptation decisions, where server and client have some shared knowledge about the 

status of the monitored element, which is something that we have also used for our 

solution where we have both server and client adaptation as will be explained in more 

detail in Chapter 5.  

In a similar fashion, Misra and Lim [31] introduce the ACQUA framework, which 

optimizes event based data acquisition from mobile devices for energy efficiency. They 

use a sequencing algorithm with impressive results, which filters sensed or other type of 
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event-based data prior to transmitting them to the server thus reducing the overall volume 

of  wirelessly transmitted data. In our work for our use-case mobile application, we also 

recognized the high energy cost of wireless transmission and therefore tried to keep it as 

low as possible by batch transmission and by not collecting data when users are not 

moving. However, in the future we could integrate the idea of dynamic reconfiguration of 

the cost functions based on continuous data retrieval and evaluation. 

In the same direction, Alnawaiseh and Abdelghany [32] propose an adaptive algorithm 

for keeping energy consumption to desired levels while at the same time maintaining 

high performance in tracking applications. Their framework is based on ad-hoc networks 

at which one node has knowledge and can make predictions of the position and speed of 

all other nodes within its  communication range. Instead of passive sensors which collect 

data and transmit them to a centralized server, they focus on  the organizing of sensors in 

groups, obtaining discrete roles and through simulation they show significant benefits in 

energy consumption. This approach can also be considered for future implementations of 

our application, with the possible drawback that it heavily depends on users’ sense of 

community. 

3.3 Summary 

In summary, in this chapter we reviewed work related to our main contributions: 

adaptable architectures for mobile applications for traffic and road condition monitoring, 

and adaptation mechanisms for mobile applications. Thus, we presented the main aspects 

of existing architectures and we identified similar ideas as well as the differences of our 
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architecture. We highlighted the main benefits of our approach including the multiple 

layers adaptivity capabilities that it offers. For the adaptation mechanisms part, we 

reviewed existing approaches towards adaptivity, context-awareness and energy 

efficiency for mobile applications. We explained how our approach was inspired by 

related work and we recognized the ideas that we adopted and the ability of our proposed 

architecture to support the adaptations mentioned, as will be better shown in the 

following chapters. 
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Chapter 4  
An Adaptation Enabling Architecture for 
Mobile Spatio-Temporal Applications 

This chapter presents the architecture that we propose for mobile spatio-temporal 

applications. The goal of this architecture is to take under consideration the specific 

nature of such applications and provide adaptation capabilities in a dynamic context. 

Thus, the three-tier architecture proposed in this chapter offers a high degree of 

modifiability, enabling the application of various methods in order to efficiently maintain 

desired QoS properties. 

The next sections are organized as follows: first we introduce the requirements for the 

above architecture in section 4.1; in section 4.2 we present our proposed architecture and 

explain its advantages and how it meets the requirements; sections 4.3 and 4.4 present our 

case study and empirical results that we obtained about its performance, respectively; 

finally, we present a summary in section 4.5 

4.1 Requirements 

The central idea behind an architecture specific to mobile spatio-temporal systems is to 

capture their distinct characteristics and support a high degree of modifiability and (self-) 

management.  

The requirements that our application architecture should satisfy are the following: 
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• Data should be transferred easily and reliably over different application 

components in a real-time basis. This requirement derives from the fact that the 

class of applications that we are examining are responsible for managing a large 

amount of complex spatio-temporal data.  

• The application should be agile, elastic and resilient to varying client traffic 

arriving from different physical locations. That is because an additional aspect of 

dynamicity is added to these already dynamic applications due to the fact that 

clients are mobile. Hence, application components should have the capability of 

being added, removed, replaced and modified according to demand. This aspect 

also dictates the use of location-awareness keeping under consideration not only 

improvements in performance but also the user experience.  

• Our architecture should support the distribution of functionalities with 

infrastructures facilitating heavy computation on the server side. The reason is 

that primal information derives from mobile devices with possibly limited 

capabilities. 

•  Our application should be designed focusing on efficient resource utilization and 

service localization aiming at cost efficiency. Techniques such as on-demand 

acquisition of resources and context-aware adaptivity should play a major role in 

our design. To this end, our architecture should make feasible the realization of 

the application using emerging technologies and frameworks which provide 

opportunities towards that direction. 
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• The application should be robust and secure. Spatio-temporal applications are 

particularly sensitive to rapid changes in time and space but remaining available is 

one of their crucial requirements. Our application should be able to handle 

unexpected events and be fault-tolerant, considering that it is intended for a large 

number of independent and diverse users. For the same reason, it should be able 

to provide secure transactions and prevent unauthorized access to user-generated 

data.  

4.2 The Architecture 

This section describes the three-tier architecture that we propose for mobile spatio-

temporal applications. The main reason for using a three-tier architecture is that the 

application consists of concrete components with concrete functionality and can easily be 

considered in a modular design. 

Apart from conceptual integrity, this architecture allows adaptivity throughout all angles 

of our framework. It also provides high degree of modifiability, as any tier of the 

application can be independently altered or replaced without critical implications on the 

other tiers. For example, the Logic Tier can be upgraded by moving the servers to an 

elastic cloud infrastructure and the Client Tier can be adjusted with different user 

interfaces of varying granularity adapting to users’ needs and platform diversity. 

Furthermore, this architecture allows to test, configure, deploy and manage each of the 

tiers separately.  
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In addition, the need for processing of an enormous amount of real-time data and the 

diversity of the hardware participating in this application dictate the use of a centralized 

architecture.  

Fig. 2 shows the architecture – tiers, components and connectors  – of the application, as 

will be explained below. 
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Figure 2. Application three-tier architecture. 

The Client Tier consists of the users’ view and controls. In our case, users are the mobile 

web clients. 
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Mobile web clients are the thin clients of our application, who are transmitting through 

mobile devices among other data, information about their current location and other 

sensed information such as speed and 6-axis acceleration. These clients are mobile and 

integrated to the application using wireless connection. This tier can be enriched with 

more functionality on the mobile application, providing services such as routing and 

annotated information on maps on the mobile screen. Main Components of Mobile 

Clients include: 

• UI: User Interface is responsible for user configurations and application 

interaction. Therefore it sends user-inserted configuration options to the Client 

Configuration Management component. It also displays information about user’s 

current position using map graphics and thus it receives such information during 

runtime from Geolocation Service Management component. 

• Client Configuration Management: This is the most important component for the 

implementation of runtime adaptation on the client side. It receives feedback 

from: 

-­‐ UI component, about user-inserted configuration options, 

-­‐ Sensor Management component, about  device resources utilization, 

-­‐ Geolocation Service Management component, about user’s current 

location, 

-­‐ Communication Management component, about transmission details such 

as response time, 
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-­‐ Servers Monitoring Client component, about monitoring details for servers 

such as CPU utilization and area coverage. 

It constantly assesses this information, plans and controls the dynamic 

configuration parameters for the various components. Thus, it controls the 

configuration parameters for the Communication Management, the Sensor 

Management, the Local Storage Management and the Geolocation Service 

Management components, as is described in each component below. 

• Geolocation Service Management: Manages geolocation services and facilitates 

the use of algorithms on top of GPS and device sensors in order to improve 

accuracy and to ensure optimal mobile device tracking. It periodically sends 

geolocation information to the Local Storage Management component for storage. 

It also sends runtime geolocation data to the UI component for display of current 

position on the screen, as well as to the Servers Monitoring Client and to the 

Client Configuration Management components to update with user’s current 

position. Its configuration parameters such as the sampling and storage rate are 

controlled by the Client Configuration Management component.  

• Local Storage Management: Manages local storage for caching and for storing 

data even while connectivity is not available. It is used to implement a queuing 

data flow, which is described below. It receives data both from the Sensor 

Management and the Geolocation Service Management components and it is 

configured by the Client Configuration Management component. It periodically 
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sends data to the Communication Management component, as will be described in 

more detail when describing the queuing data flow below. 

• Sensor Management: Manages sampling and collecting information from sensors 

such as accelerometer, gyroscope, camera etc. It is also responsible for collecting 

information about device resources utilization, such as battery and CPU 

utilization, which it sends as feedback to the Client Configuration Management 

component. Its configuration parameters are controlled by the Client 

Configuration Management component and the information it gathers from device 

sensors is sent to the Local Storage Management component for storage. 

• Communication Management: Receives data from Local Storage Management 

component and manages bi-directional communication between client and 

server(s). Configuration parameters such as the transmission rate are controlled by 

the Client Configuration Management component. The Client Configuration 

Management component also plans to which server data is transmitted and applies 

that configuration to the Communication Management component. This 

functionality is very important for the implementation of location-based 

adaptivity, which is part of the context-aware adaptivity that we propose for client 

adaptivity, as will be described in detail in Chapter 5. 

• Servers Monitoring Client: Receives monitoring data about running servers from 

the Logic Tier Monitoring Service.  It sends this data as feedback to the Client 

Configuration Management component and it receives information from 
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Geolocation Service Management component about current position, in order to 

scope the received information from the Monitoring Service, for example only 

about nearby servers.   

To this end, mobile devices’ local storage plays a very important role not only in coping 

with unreliable Internet connectivity but also in enabling data collection and data 

transmission to operate independently. In order to achieve this goal, a producer-consumer 

pattern is implemented, using a Queuing Flow for data storage and transmission as shown 

in Fig. 3. Data is retrieved from mobile device sensors and packaged by a Device Sensing 

Module. At every ‘Step’ (which may or may not be constant, according to application 

configuration), one record is added to the device Local Storage. In a FIFO fashion, data is 

moved from Local Storage to the Message Queue at every ‘queueStep’. Every 

‘sendStep’, the oldest item from the Message Queue is transmitted to the server. If the 

server receives an acknowledgement message, next item is prepared for transmission, 

otherwise same item is resent. It should be noted that both Message Queue and Local 

Storage are preconfigured with a maximum capacity to prevent memory leakage. 

Consequently, in situations where connectivity is lost, data is sent to the Message Queue 

until it reaches maximum capacity. From there on, data is accumulated at the local 

storage and is available when connectivity is restored and even in cases where application 

is unexpectedly terminated. 
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Figure 3. Queuing flow for data storage & transmission. 

The Logic Tier includes all the application logic and core processing of the application. It 

manages the interactions between different tiers, handling the incoming requests from the 

users and collecting all necessary data. It is also responsible for the processing and 

assessment of the data and for the monitoring and configuration of running services. 

Thus, main components are: 

• Data Exchange Management: Handles bi-directional transactions with Client Tier 

Communication Management component. It sends received data from clients to 

the Data Processing & Assessment component and updates information about 

users’ activity by communicating with the User Management component. It also 

sends information about its runtime performance to the Monitoring Service. Its 

configuration parameters such as the geographical areas covered by specific 

servers, are controlled by the Server Configuration Management component. 
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• Server Configuration Management: This components is responsible for runtime 

adaptation on the server side. However, it should be stressed that unlike the 

corresponding Configuration Management component on the Client Tier, this 

component does not offer all the server adaptivity capabilities, as we explain in 

Chapter 5. The reason is that in contradiction to the client adaptation which takes 

place internally within the application, the important server adaptations such as 

scaling happen externally outside the application. Thus, this component could be 

regarded as a controller of partial server adaptation and also as an interface to the 

external Autonomic Manager, as will be presented in Chapter 5. It receives 

feedback information about runtime performance of servers from the Monitoring 

Service component and about user activities and profiles from the User 

Management component, assesses this information and controls configuration 

parameters such as geographical area coverage for the Data Exchange 

Management component. 

• Monitoring Service: Gathers runtime information about servers’ performance and 

resource utilization and makes that information available to the Server 

Configuration Management component and to the Servers Monitoring Client 

component on the Client Tier, after required data processing and transformation. 

• User Management: Manages user information and profiles. It communicates with 

Data Persistence component to store such information and it also shares user 
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information with the Server Configuration Management component, providing 

input for adjustment of services per-user. 

• Data Processing and Assessment: Processes raw data and extracts useful results, 

depending on the application functionality. It is also responsible for data 

transformation when exchanging data with Data Exchange Management and Data 

Persistence components.  

• Data Persistence: Manages persistence of data for optimal data staging and 

transformation. It receives data from the Data Processing & Assessment and from 

the User Management components and communicates with the DBMS for 

storage. In order to offer the capability of seamlessly switching between different 

database technologies, this component includes a data layer which abstracts data 

modelling and functions for interaction with the DBMS. 

Finally, the Data Tier is the lowest tier of the application. It is responsible for the 

representation and storage of the collected information, as well as for the optimal data 

transaction and archiving. This tier is particularly important for the application, since a 

vast amount of real-time data has to constantly be not only gathered, but also available 

for use. 

The proposed architecture is suitable for mobile spatio-temporal applications because of 

the modifiability and adaptation capabilities that it offers. Its modular design allows for 

decoupling of different functionalities as well as independent management of its various 

components. Therefore, the application can be configurable and adjustable to different 
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levels of traffic load coming from mobile users. Furthermore, the different tiers can be 

managed individually and transparently to each other offering among others the 

capability of test-based selection of the most suitable technologies for the different tiers 

of a specific application, for example the best-performing database technology. 

In addition, the Mobile Web Client includes the Sensor Management, Communication 

Management and Local Storage Management components which can be orchestrated in 

order to ensure reliable sampling and transmission of real-time data. Suitable mechanisms 

can be applied using these components in order to promote service robustness by 

modifying configuration parameters on the client device during runtime. This offers 

advantages both at the client and the server side. The client side can benefit from the 

optimal utilization and tuning of its limited resources while at the same time the server 

can avoid situations of overloading or malicious traffic.  

Additionally, the logic and data tiers can easily be deployed on elastic infrastructures 

such as cloud. This fact, combined with location awareness management available on the 

client tier, enables the application of methods to facilitate server scaling based on demand 

as well as context-based adaptivity. Such an autonomic adjustment of the application 

according to traffic distribution can cause significant cost reduction and can 

accommodate localized services.      

Finally, despite the fact that security concerns are beyond the scope of this thesis, our 

proposed architecture can support availability not only because of its adaptation 

capabilities but also because it can easily support redundancy. Furthermore, an obvious 
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solution for secure transactions would be encryption and other authentication methods 

which can easily be implemented by the communication management components.  

4.3 Case Study 

In this section we present the application that we implemented in order to validate the 

feasibility of our proposed architecture. We refer to this application as Traffic Monitoring 

and Assessment of Road Quality (TMARQ) application. First there is a description of the 

application functionality and consequently we present the application’s implementation 

details and use. 

The application can be implemented using a smartphone that collects data about each 

vehicle position, speed and 6-axis acceleration and sends the users information about the 

traffic congestion and road quality. A graphical representation of such an application can 

be seen in Fig. 4.  

INTERNET

Traffic Application

 

Figure 4. Traffic monitoring & assessment of road quality app (TMARQ). 
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As can be seen from Fig. 4. the application consists of mobile clients, who are drivers and 

public transit passengers moving around a city and wirelessly transmitting sensed data 

through their smartphones over the internet. Data is aggregated and processed in a real-

time manner and useful results are constantly being extracted regarding road quality and 

traffic condition. 

It is obvious that such a dynamic application is heavily affected by time and space 

variables and it requires careful management in order to optimally utilize available 

resources in a smart fashion. The number of connected users is also a variable, which can 

potentially reach values of up to hundreds of thousands, if we consider the number of 

vehicles on the street in a city such as Toronto. It is clear that the volume of real time 

events that needs to be processed is extremely large. This computationally intensive 

application also needs to be highly modifiable and adjustable to continuously changing 

environments. 

4.3.1 Development and Implementation 

Following is a description of the implementation of our solution; the main concerns and 

the technologies used. One major issue about the implementation is the real-time 

collection of data from an enormous number of devices. This in turn requires 

interoperability between different devices and the server. The design choice to face this 

challenge was the use of PhoneGap [33] , which is a free and open source framework that 

allows for the translation of HTML, CSS and JavaScript into native mobile apps for 
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popular platforms using standardized web APIs. The mobile client application was 

developed in JavaScript and HTML5 [34], which is a standard, core technology of the 

Internet, compatible with almost all current mobile devices. Subsequently, it was 

compiled into native applications for Android, iOS, Blackberry and other platforms using 

PhoneGap. PhoneGap platform is HTML5 compatible, it is easy to use and provides a 

powerful set of APIs such as Geolocation and Acceleration. It also provides the capability 

of advanced local storage on the client side, enhancing the functionality of traditional 

methodologies such as cookies. That is temporarily stored data are transmitted from the 

client only when requested. One more interesting feature is that it exposes device APIs, 

which would not respond from the level of device browsers because most devices have 

not yet implemented all HTML5 features despite their claims. 

Another important consideration is the storage of a large amount of data. Storing 

information such as the location and acceleration of thousands or million users for a large 

period, using a traditional, relational database would impose multiple possible threats. 

Not only would the performance of the queries possibly decrease dramatically with the 

increasing number of “monitored” devices but also the flexibility of such a database 

would be fairly restrictive. This solution examines the use of NoSQL storage as an 

answer to these issues. In specific, the technology tried for the implementation was 

MongoDB [35], which is a very light, scalable, high-performance and open source 

NoSQL database. MongoDB provides high performance and modifiability with the 

apparent trade-off in ACIDity. It facilitates the storage of a large amount of data and 
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allows for any number of changes in the database schema, thus enabling migration to the 

cloud, extensions and multiple versioning. Furthermore, there are multiple libraries and 

drivers for MongoDB, making possible its use through diverse environments and 

frameworks, such as the one used for this implementation. However, in order to have a 

complete picture, the application was also tested using a corresponding MySQL DBMS. 

New technologies enable the migration of both Database types to scalable infrastructures, 

which is something that will be tested by the authors in the future. 

The environment, which was chosen for the development of the Logic Tier of the 

application, was Play Framework [36] . Play Framework is a Java Web framework which 

provides a wide set of capabilities on top of traditional Java web development. The main 

advantage of this framework is maintainability, as it offers the ability to dynamically 

modify an application without having to bring it down or re-deploy it. In addition, the 

requirement for additional software or servers such as Tomcat is optional, as it provides a 

powerful web server which can run autonomously on any node, listening to any port 

(9000 by default). Traditional J2EE technologies such as Java and JavaScript can be used 

as is but enriched with powerful scripting capabilities with only as many as few lines of 

code. 

When it comes to the use of the application from mobile devices, a map was considered 

as the most suitable means of representing information. In this respect, Google Maps API 

was used, but the use of other map services can also be examined and even a framework 
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for the optimal selection of map services in a service composition has been considered as 

a future task. 

Regarding data transmission, JSON was used as the simplest model to offer the necessary 

parsing and editing capabilities. JSON is a popular format and it is supported by most 

frameworks and programming languages either with the use of existing libraries, such as 

GSON for Java, or even natively, such as in JavaScript. 

With regards to the application logic, it is according to the practices dictated by the 

platform used, i.e. PlayFramework. The design pattern used for this platform is Model-

View-Controller. The Model Component includes the definition of the Data Schemes for 

the interaction between the Database and the rest of the application and the persistence 

and exchange of information between different components. The View concerns the 

client side code, which is written in HTML5 and JavaScript. It has been used for the 

Administrator View of the Desktop Web Client for the monitoring of the currently 

connected devices, which is shown on a map, the extraction of user data on ‘.csv’ files 

and animation of stored routes on a map . Furthermore, the Controllers are in charge of 

managing the application, including the View Controllers for the rendering of the 

necessary information to the Views, the Communication Controllers for the 

implementation of the bidirectional communication with the clients and the File 

Controllers for the file exchange between servers and clients and communication with the 

File System. Finally, Database Controllers perform all the queries to the database, based 
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on the formalizations defined in the Model Component. The Development View 

described above can be seen in Fig. 5. 

 

Figure 5. Development view of application server. 

 

4.3.2 Infrastructure Deployment 

When it comes to deployment of the application, it consists of multiple nodes. As 

mentioned above, one important aspect of our architecture is the ability to deploy the 

application servers on the cloud. For this implementation we used one of the most 

popular public cloud computing platforms, offered by Amazon.com, i.e. Amazon AWS 

[23]. Amazon AWS offers many remote computing services, the most popular being 

Amazon EC2 where a user can use a remote virtual machine (called instance) to deploy 

her application, and Amazon S3 for online web storage. The most useful features of this 

platform are scalability according to metrics such as CPU Utilization and monitoring.  

For the deployment of our application servers we used AWS Elastic Beanstalk, which is a 

PaaS service offering a complete deployment environment. It offers many Amazon AWS 
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services such as Amazon EC2, S3, elastic load balancers and AWS Cloudwatch for 

monitoring, making the process of defining policies for auto-scaling a simple task. 

Considering mobile clients, they are deployed as native application on the mobile 

devices, using of course the cross-platform capabilities offered by PhoneGap. Most of our 

tests were conducted using Android devices but it is expected that the application would 

work fine on other popular platforms as well. 

As for the Data Tier, current implementation includes either a remote MySQL DBMS or 

a remote MongoDB DBMS which is deployed on an Amazon EC2 instance, as will be 

described in the following experiments. The communication between the application 

servers and the database servers is conducted using corresponding drivers. The above- 

mentioned deployment is shown in Fig.6. 
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Amazon EC2 Instance<<executionEnvironment>>
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<<JDBC>>
<<JSP server>>

Tomcat 6.0.0
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<<executionEnvironment>>
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HTML5 Mobile App

<<webAppServer>>
Amazon CloudWatch

0 .. *

1 .. *
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Server
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<<executionEnvironment>>
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<<deploy>>
1 .. *

Servers Monitor

Autonomic Manager

<<execute>>

 

Figure 6. Deployment diagram. 
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As can be seen from Fig. 6, multiple Web Application Clusters, can contain a number of 

server instances. Thus, HTTP requests from mobile clients can be sent to either of those 

clusters, depending on client’s context (e.g. location etc) as well as servers’ state (e.g. cpu 

utilization, cost etc), as described in more detail throughout the client adaptation 

mechanism in Section 5.3 below. Another important thing to notice is the adaptation 

capability which is offered through this infrastructure deployment, externally to the 

application. Amazon CloudWatch serves as the Monitor for the managed elements, which 

are the application servers in our case and AWS Elastic Beanstalk serves as the 

Autonomic Manager who can analyze, plan and execute adaptations to the managed 

elements. Thus, this deployment diagram shows in practice how our proposed 

architecture can support server adaptation using existing technologies.  

 

4.3.3 Application Use 

At this point it would be useful to wrap up the application use and functionalities. A 

common use case would include a user inside a vehicle launching her mobile application 

and starting transmission of her location, speed, 6-axis acceleration and some other data 

retrieved by the smartphone’s embedded sensors. This data would be received by a server 

instance, which would communicate with the Database and store collected data. This 

would last for as long as the user uses the application. Afterwards, the user could launch 

the Desktop Web Client from her PC and export the data of her route in a ‘.csv’ file and 

watch the route being animated on a map. It should also be mentioned that the mobile 
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application includes a ‘Bad Button’ that a user can press to indicate bad road quality for 

parts of her route. However this is only for identification and verification of the most 

proper evaluation function to identify bad road quality and in future implementations bad 

road parts will be detected automatically. A use case diagram of the application can be 

seen in Fig. 7. 

 

 

Figure 7. Use case diagram. 

 

4.3.4 Data Collection 

In this subsection there is a discussion of the process of collecting and assessing data 

using our application. First there is a description of the algorithms we use to collect data 

and determine whether the quality of a road segment is good or not. Subsequently there is 

a presentation of sample results gathered through our application. 
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Our testing agreed with the fact that the most “painful” functionality of a mobile 

application from a power consumption perspective is frequent wireless transmission, as 

noticed by other researchers (see Chapter 3). In addition, keeping transmitted data to a 

minimum also has apparent implications on performance and cost, keeping the load of the 

application as a whole as low as possible. However, it is important for transmitted data to 

contain enough information in order to provide adequate input for assessment. Thus, 

there is an obvious trade-off in performance and quality of transmitted data. 

Our implementation choice to tackle this issue was the use of a regression algorithm at 

the client side. In this respect, we sampled data  for every new sensed value but we only 

kept statistical indicators (mean value, standard deviation and so on) for specified time 

intervals. We stored those values at the device local storage and we transmitted a set of 

such values to the server at predefined intervals. In addition, we paused the sampling of 

data at situations when user’s position did not change, avoiding the collection of useless 

information.  

When it comes to road quality assessment, we noticed that acceleration was not a 

sufficient indicator for road anomalies. Instead, our testing showed that whenever there 

were many bumps on the road there was big and sudden change in acceleration. 

Therefore, we used an acceleration forward operator (jerk) to indicate bad quality of road 

segments with satisfactory results. It is also important to notice that the quality of our 

results heavily depended on the physical direction of the mobile device and for that 
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reason we conducted our testing trying to keep the device on the same direction. Sample 

gathered data from mobile devices can be seen in the following graphs in Fig. 8. 
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Figure 8. Speed, acceleration and jerk over time. 
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In these graphs we can see speed over time as measured by the application, acceleration 

over time and acceleration differential operator over time. The values for acceleration are 

calculated as the square root of the sum of squares of each dimensional acceleration as 

such: 

• a = ax
2 + ay

2 + az
2 	
  ,	
  

where	
  ax,	
  ay	
  and	
  az	
  are	
  the	
  measured	
  by	
  the	
  application	
  accelerations	
  for	
  the	
  x,	
  y	
  

and	
  z	
  axis	
  correspondingly.	
  

When it comes to acceleration differential forward operator for each point, we define and 

calculate it as such: 

• adiff =
ai+1 − ai
ti+1 − ti

 ,	
  

where	
  :	
  

-­‐ ai+1	
   and	
   ai	
   are	
   the	
   next	
   and	
   the	
   current	
   estimated	
   acceleration	
  

respectively	
  and	
  	
  	
  

-­‐ ti+1	
  	
  and	
  	
  ti	
  	
  are	
  times	
  to	
  which	
  these	
  acceleration	
  values	
  correspond.	
  

In Fig. 8 the red portions of the graphs represent segments during which the “bad route” 

button of the mobile application was pressed, which was the input of the tester indicating 

that the quality of the road at the corresponding segment was bad. As we can see from the 

graphs, by setting a threshold to the appropriate level, we were able to identify 4 of the 6 

bad road segments, using the acceleration differential forward operator with 4 true 
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positives and 2 false negative, providing us with accuracy of 60% and precision of 100% 

for the specific example.  

It would be safe to assume that for this application, for practical reasons precision is more 

important than accuracy, as it is adequate to indicate the road segments with the worst 

quality which require immediate attention. However, it should be noticed again that the 

purpose of these experiments was not to come up with the best possible algorithm for this 

application but instead to show the feasibility of our open architecture to facilitate the 

implementation of such applications. In this respect, more experiments should be 

conducted in the future to determine the optimal threshold level and methodologies 

towards this goal.	
  

4.4 Summary 

To sum up, in this chapter we described the architecture that we propose for mobile 

spatio-temporal applications and the proof of concept of its implementation. As we 

explained, this 3-tier architecture supports adaptations in multiple layers and offers a high 

degree of modifiability. 

First we presented the requirements for this architecture and the rationale behind them. 

We identified adaptivity, agility, reliability and cost-efficiency among the most important 

requirements, based on the nature of this class of applications and we highlighted the 

opportunity of using emerging technologies to satisfy these requirements.  

Subsequently we described the proposed 3-tier architecture and its various components, 

stressing the main advantages that it offers. In this respect, we attempted to show how 
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this architecture satisfies the stated requirements and we noted how its modular design 

can support adaptivity at many layers. We also explained how proper orchestration of its 

various components can promote robustness and resiliency and we stressed the cost-

efficiency it can offer due to the scaling and resource management capabilities that it 

offers.  

Next we introduced our case study application that uses common smartphones to assess 

the traffic and the condition of roads. After explaining its use and the technologies that 

we used to build and deploy this application, we presented some graphs from field 

observation by testing the application and we proved the feasibility of successfully 

implementing this application using our open architecture, which offers the benefits 

mentioned in this chapter. 
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Chapter 5  
A Two-Levels Adaptations Architecture 

As mentioned in the previous chapters, one of the key foci of our proposed architecture is 

adaptiveness. In this chapter there is a description of the adaptation mechanisms 

employed by our architecture.  

Our proposed framework supports adaptation both on the server and on the client side. 

On the server side it supports the adaptive scaling and configuration of distributed server 

clusters according to changing demand. On the client side, it facilitates the routing of 

requests according to user’s current location and the optimal client configurations 

according to availability. Both of these adaptation mechanisms are described more 

thoroughly in the following sections. 

In Section 5.1 we provide an overview of our approach towards adaptiveness, which is 

the implementation of an adaptation mechanism that dictates the use of both server and 

client adaptations concurrently. In Sections 5.2 and 5.3 we present more details and the  

algorithms for each of the server and the client adaptation respectively. Finally in Section 

5.4 we summarize this chapter and we restate the contribution of the presented 

mechanism. 

5.1 Overview of Adaptation Mechanism 

The practice so far regarding adaptivity in mobile applications has been either to 

implement adaptive methods on the server side, for infrastructure performance and 
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robustness, which is usually realized externally to the application, or less commonly on 

the client side mainly for energy efficiency. We propose an adaptation mechanism based 

on the 3-tier architecture that was presented in Chapter 4, which uses both server and 

client adaptivity during application runtime. This adaptation mechanism dictates the use 

of two MAPE-K loops – one on the server and one on the client, as shown in Fig. 9.  
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EXECUTEKNOWLEDGE
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CLIENT ADAPTATION

SERVER A
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SERVER CDBMS

Mobile Clients 
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Mobile Clients 
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Mobile Clients 
in Area III

 

Figure 9. Adaptation mechanism for 3-tier architecture. 

 

The way that this adaptation mechanism works is that the client and the server adaptation 

run independently and concurrently. The server adaptive loop constantly monitors the 

state of a server and executes required runtime adaptations about scaling and 

modification of configurations according to defined policies and rules. Scaling and other 

infrastructural adjustments can be realized externally to the application, using existing 

tools as they will be explored in Chapter 6. The client adaptive loop does the same for 
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every mobile client in order to adjust configuration parameters such as sampling and 

transmission rates, but it also receives information about the state of running servers as 

feedback in order to analyze and plan the routing of requests from that client, based on 

her current location. It is important to notice that unlike server adaptation, client 

adaptation can be realised exclusively internally to the application, using the architectural 

components of the Client Tier as they were introduced in Section 4.2.    

As an illustrative example, let us consider the case of a spatio-temporal application where 

one mobile client, client_A directs her requests to server_A, because that is the 

geographically closest server. Client_A samples and transmits spatio-temporal 

information to server_A at rates that are configurable based for instance on her device 

resource utilization and response time from the server. At some point let us assume that 

client_A changes her location and is now closer to another application server – server_B. 

The adaptive loop on this cient would monitor this change and the result would be the 

redirection of requests from that point on to server_B. At the same time, the adaptive 

loop on the client constantly receives partial state information about both server_A and 

server_B for instance about their resource utilization.  

Subsequently, let us consider that at some point requests at server_B arrive at higher 

rates, causing the adaptive loop on server_B to execute its scaling in order to cope with 

the increase in traffic. In practice, scaling does not happen instantaneously, so for some 

time the adaptive loop on client_A would sense that utilization on server_B is high, and 
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that could cause the redirection of her requests back to server_A until utilization on 

server_B would drop.  

The advantages that this mechanism offers, as compared to using only one of either 

server or client adaptivity are apparent. To begin with, as it was illustrated through the 

previous example, despite the fact that the two adaptations run independently, their 

combination is synchronized through shared state information about the servers, and this 

can foster stability for the system. In addition, it allows for flexibility and prioritization of 

goals, since the requirement for context-aware adaptivity can be configured to take place 

only when the satisfaction of more important QoS characteristics is not threatened for 

instance due to unmanageable traffic. Furthermore, this conditional satisfaction of non-

functional requirements offers the ability for optimal utilization of resources and 

therefore cost-efficiency.  

The deployment diagram of the TMARQ application in Fig. 6, as presented in Subsection 

4.3.2 is one example of the deployment of our architecture enhanced with the above-

mentioned adaptation capabilities. To clarify where adaptation takes place in this 

example, client adaptation is realized internally to the application at the mobile clients by 

components of the Client Tier  while server adaptation takes place both at the web 

application servers and externally using Amazon CloudWatch service as a Monitor and 

AWS Elastic Beanstalk as an Autonomic Manager. In specific, AWS Elastic Beanstalk is 

responsible for the server-side scaling and internal components of the Logic Tier are 

responsible for the application of configuration parameters including the geographical 
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area covered by each cluster. In the following sections we have more detailed description 

of the server and the client adaptation separately. 

5.2 Server Adaptation 

An integral aspect of our proposed architecture is the ability to dynamically adjust to 

changing conditions, while maintaining important QoS characteristics such as availability 

and cost-effectiveness. On the server side, this is ensured by employing the adaptation 

architecture depicted in Fig. 10, inspired by the work of Woodside et al. [22]. 
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Figure 10. Server-side adaptation architecture. 

As can be seen from Fig. 10 , the system is composed of three main components: 

Running Servers, Servers Monitor and  Autonomic Manager. 

Running Servers are the managed elements of this architecture and the recipients of 

requests from mobile users from different geographic locations. At every given moment 

the Running Servers have a specific state (S). S contains information such as the number 

of server instances per web application cluster, the geographical area covered by each 
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cluster, the resource utilization at each cluster and performance metrics such as average 

latency and throughput. Through sensors this information is provided to the Servers 

Monitor which is constantly alert, either polling at specific intervals or listening for 

specific events. 

The Servers Monitor passes on this information to the Autonomic Manager, which is 

responsible for analyzing the current state and acting accordingly to ensure efficiency and 

quality of service. The Autonomic Manager consists of the Analyzer, the Planner and the 

Executor. The Planner takes as input the current state (S), the current cost and defined 

Policies and plans the general configuration and rules for all the controlled servers. It 

then communicates the decision to the Executor, which propagates the appropriate 

control (C) to the Effectors of the managed element. An example would be an increase in 

service requests at a specific area at a specific time, which would cause the increase of 

resource utilization and thus decrease in the performance of the Cluster responsible for 

that area. The autonomic manager would then decide for instance to increase the number 

of server instances of that cluster, improving the service performance. In Table 1 and 

Table 2 we can see the notation and the algorithm of the adaptation described in this 

section respectively. 
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Table : Notation 

SC Set of server clusters 

RIi Set of running instances for ith server cluster (SCi) 

Ni Number of running instances for ith server cluster  

Ai Geographical area covered by ith server cluster  

M
on

ito
re

d 
D

at
a Li Average latency of running instances for ith server cluster  

Uij jth resource utilization metric of running instances for ith server cluster  

Ti Average throughput of running instances for ith server cluster 

Ci Control over ith server cluster (e.g. “increase running instances by one”) 

G Set of general configuration rules/parameters for all server clusters (e.g. 

“CPUUtilization threshold for all server clusters is 70%”) 

Table 1. Notation for server adaptation. 

The Server Adaptation Algorithm is constantly executed while the application is running, 

as can be seen from Step 1 and Step 19 in Table 2, implementing the adaptive loop on the 

server side. Steps 2 - 12 implement the monitoring and the analyzing part of the adaptive 

loop, gathering and updating  information about the monitored data as these are presented 

in Table 1, iterating through all managed elements  and aggregating collected data by 

using the aggregation strategy that is relevant for each monitored element. Steps 13 and 

14 implement the planning part of the adaptive loop by receiving as an input the 
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monitored data, checking whether adaptation actions are required and planning 

accordingly. 

 

Algorithm 1 Server Adaptation Algorithm 
1: repeat 
2: //iterate through all server clusters 
3: for all server clusters SCi ∈ SC do 
4: //iterate through all running instances of cluster 
5:  for all running_instances ri ∈ RIi do   
6: //iterate through all monitored resources for instance 
7:   for all monitored_resources j ∈ U do 
8:   aggregate(Uij, <aggregation_typej>)  
9:   end for 
10:   aggregate(Ti, average) 
11:  aggregate(Li, average) 
12:  end for 
13:  if action_required(Uij, Ti, Li) 
14:   C ß plan_control(Uij, Ti, Li) 
15:   execute(C) 
16: end if 
17: end for 
18: update(G, current_state(U,T)) 
19: while application_is_running 

 
Table 2. Server adaptation algorithm. 

Steps 15 and 18 implement the execution part of the adaptive loop by enforcing required 

adaptations for each managed server and for general configuration parameters 

correspondingly.  

As mentioned above, server adaptation related to infrastructural adjustments is realized 

externally to the application. For example in our deployment diagram in Fig. 6 the role of 

the Autonomic Manager is assigned to Amazon Elastic Beanstalk and the role of the 



  64 

Servers Monitoring is assigned to AWS CloudWatch. However, adaptations can also 

happen internally to the application, for example updates of the servers’ configuration 

parameters. These adaptations are managed by the Server Configuration Management 

component on the Logic Tier, as we described in Section 4.2. This component can also 

provide the required interfaces for the enforcement of adaptations from sources external 

to the application.  

 

5.3 Client Adaptation 

Adaptation is also possible at the mobile client level. Mobile clients are wirelessly 

transmitting data to the server at specific rates. There are three incentives that dictate the 

application of autonomic management at this level.  

Firstly, client adaptation can contribute to better application performance by 

complementing server adaptation and preventing application unresponsiveness caused by 

resource over-allocation. With a suitable mechanism clients’ requests can be redirected to 

less “busy” servers than the ones they were originally assigned to, which is particularly 

valuable during transition periods. Secondly, the location, time and activity contexts of 

the mobile clients are constantly changing. At different times clients might find 

themselves in different environments, with different connectivity and possibly different 

rules.  Lastly, there has to be a careful consideration of the available resources of mobile 

clients. Mobile devices nowadays offer limited processing capabilities as compared to 
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PCs and their battery life is restricted, especially when they perform network-intensive 

tasks such as real-time transmission using 3G and GPS technologies. 

To address the above-mentioned issues we propose an adaptation mechanism which 

constantly monitors the state of the mobile client. State information at this level includes 

geographic location, resources utilization such as battery consumption, and service 

performance and availability metrics as perceived by the client such as response time. 

According to our mechanism, an integral part of the state information which is available 

to the client is also the resource utilization of the server clusters which are the potential 

recipients of client’s requests.  For example, the client is aware of CPU utilization of 

every server cluster that is closer to her location. The way this information becomes 

available to the client is through the Monitoring Service component on the Logic Tier, as 

was explained in Section 4.2. 

Based on the current state, an autonomic manager plans and executes decisions such as 

configuration of data collection and transmission rate and routing of service requests to 

suitable application cluster.  

Following is the algorithm of the client adaptation mechanism. It is important to notice 

that this algorithm depends on various functions running asynchronously. Some of them 

run periodically with possibly different periods and others are triggered by specific 

events, as shown in Table 4.  
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Table : Notation 

S_URL Selected server URL 

TR Transmission rate 

SR Sampling rate 

P Set of defined policies 

M
on

ito
re

d 
D

at
a 

GL Geographic location  

CRU Client resource utilization          

SRU Servers resource utilization  

R Average response time 

Table 3. Notation for client adaptation. 

In Table 4 we can see the asynchronous functions running, as well as their occurrence type 

and the updated output that they produce. Following in Table 5 we can see the Algorithm 

of the Client Adaptation as described in this section, expressed in pseudocode. 

 
Asynchronous	
  Function	
   Occurrence	
  Type	
   Updated	
  Output	
  
updateLocation	
   periodical	
   GL	
  
updateClientResourceUtilization	
   periodical	
   CRU	
  
updateServersResourceUtilization	
   periodical	
   SRU	
  
updateAverageResponseTime	
   event-­‐triggered	
   R	
  
updatePolicies	
   event-­‐triggered	
   P	
  

Table 4. Asynchronous functions during client adaptation. 
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Algorithm 2 Client Adaptation Algorithm 

Input: 

Geographic location  GL 
Client resource utilization          CRU 
Servers resource utilization  SRU 
Average response time R 
Current transmission rate TRt 
Current sampling rate SRt 

 Set of defined policies P 
   

Output: updates transmission rate TRt+1 
updates sampling rate SRt+1 
updates Selected Server URL S_URL 

 
1. (SRt+1 ,TRt+1) ß (SR0, TR0) 
2. while application_is_running do 
3.    SRt ßSRt+1 
4.    TRt ß TRt+1 
5.    State1 ß analyze(GL, R, SRU) 
6.    if (action_required(State1, P)) 
7.       S_URL ß select_server(State1, P) 
8.    end if 
9.    State2 ß analyze(CRU, TRt, SRt, R) 
10.    if (action_required(State2, P)) 
11.       SRt+1 ß update_SR(State2, P) 
12.       TRt+1 ß update_TR(State2, SRt+1, P) 
13.    end if 
14. end while 

Table 5. Algorithm for client adaptation. 

The first 4 asynchronous functions from Table 4 implement the Monitoring part of the 

adaptive loop on the client side. This monitored data is provided as feedback to the 

autonomic manager for analyzing. At this point we should notice that we have two 

different subclasses of client adaptation: 

• server selection according to geographic location, servers resource utilization, 

response time and defined policies and 
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• updating of sampling and transmission rates according to their current values, 

client resource utilization and response time.  

Analyzing for these adaptations is implemented at Step 5 and Step 9 of the algorithm in 

Table 5. The outcome is two different states, which are used for planning and execution 

of adaptations at Steps 6-8 and Steps 10-13. After initialization at Step 1, this algorithm is 

constantly executed as long as application is running, implementing the adaptive loop on 

the client side.  

This client adaptation is realized internally to the application by components on the 

Client Tier. Specifically, the Client Configuration Management component as was 

presented in Section 4.2 plays the role of the Autonomic Manager for the client adaptive 

loop. The monitoring part is implemented by all the components on the Client Tier from 

which the Client Configuration Management component receives feedback. After 

analyzing this feedback the Client Configuration Management component executes 

required adaptations by enforcing them to the relevant components. We should notice at 

this point that information about Servers Monitoring becomes available to the client from 

the Monitoring Service of the Logic Tier. At the design of our architecture we decided to 

have a separate communication channel for the transmission of this information to the 

client, other than the one for application data transmission, for decoupling and separation 

of data and control plane. 
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5.4 Summary 

To summarize, in this chapter we presented perhaps the most important contribution of 

our work, which is the introduction of a two-layer adaptation mechanism for mobile 

spatio-temporal applications. We explained how our mechanism works by the concurrent 

application of two adaptive loops; one loop for server adaptation for server scaling and 

reconfiguration and one loop for client adaptation for routing of requests and updating of 

device function parameters.  

After illustrating through an example what would be a common implementation of our 

mechanism, we described the advantages of stability, flexibility and cost-efficiency that 

this mechanism offers and we presented a possible deployment of a three-tier architecture 

implementing this mechanism. Subsequently, we explained each of the server and client 

adaptivity seperately and we presented their algorithms in pseudocode. 

The advantages of our proposed mechanism will be better illustrated through the 

adaptation experiments following in Chapter 6. 
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Chapter 6  
Experimental Results 

In this chapter we present the experiments that were conducted in order to validate our 

architecture and proposed methodologies and to produce valuable results about 

alternative configurations of our application. First there is a description of the 

experimental environment and the custom workload generator that we developed for the 

purpose of these experiments. Subsequently, we present the experiments that were 

conducted with alternative database systems, i.e. MongoDB and MySQL, and we 

evaluate their use based on obtained results. Lastly, we present the experiments that were 

realized using different types of adaptation in order to demonstrate the capability of our 

proposed methodology to implement context-aware adaptation and maintain QoS 

characteristics such as low latency while reducing resource utilization and thus cost.   

The purposes of the experiments presented in this chapter can be summarized as follows: 

• Evaluate the feasibility of our proposed architecture.  

• Showcase the capability of using and comparing alternative settings and 

configurations of our application. 

• Showcase the value of using our proposed adaptation methodologies.  

• Acquire an understanding of our problem space by observing concrete results. 

In Section 6.1 we describe the experimental environment and provide concrete details 

about the cloud technologies used and the functionalities that they offer. In addition, we 
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describe our approach for the simulation of clients and present our custom Workload 

Generator and its architecture.  

In Section 6.2 we present the first set of experiments according to which we used two 

alternative database systems; MySql and MongoDB. We performed these experiments in 

an attempt to showcase the capability of our architecture to seamlessly switch between 

different technologies for its different tiers. In this respect, we measured some of our 

application performance characteristics for these two systems and we performed their 

comparison for our specific use case. In specific, we generated a workload of up to 100 

clients and we tested the use of the two database systems when clients send only read 

requests, only write requests or both. Our results show better results for MongoDB in 

terms of response time and network traffic. 

In Section 6.3 we present the second set of experiments which regards the use of 

adaptation mechanisms for our mobile spatio-temporal application. We generate a 

workload of hundreds of concurrent users and show the inability of a static architecture to 

handle these requests and the need for adaptive mechanisms. In this respect, we present 

results using specializations of our adaptation mechanisms as presented in Chapter 5. In 

specific, we present results from experiments using alternative adaptation configurations 

using:  

i. only server adaptation for scaling out application servers,  

ii. only client adaptation for directing requests to alternative clusters according to 

location and server utilization and  
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iii. both adaptations.  

Through these experiments we intend to showcase the capability of implementing 

adaptive mechanisms on our architecture and to evaluate the use of those mechanisms. 

Our results show that using both server and client adaptation we can achieve location-

aware adaptation while maintaining low response time and reduced number of launched 

VMs, as compared to using only one of the adaptations.  

6.1 Experimental Environment 

In order to conduct experiments to showcase the use of our proposed architecture and 

methodologies, we used the traffic monitoring & road quality assessment app that we 

built, as presented in Section 4.3. We deployed the application servers on the Amazon 

AWS [23] platform. This cloud computing platform provides additional components for 

scaling, monitoring and management which allowed us to perform our different 

experiments. Specifically, we used PlayFramework [36] to develop our Java-based 

application servers, which allows to extract standalone applications in a WAR format. 

We deployed the WAR files of our application server on Apache Tomcat [37] 

environments running on Amazon EC2 Linux instances.  

For the monitoring part, we developed a monitoring client component that reuses the 

Amazon Cloudwatch monitoring service [38] which is available on Amazon AWS. For 

our experiments, the monitoring was set at 1-minute frequency, which is the most 

detailed monitoring that Amazon Cloudwatch is currently offering. Some of the metrics 

that this service provides include CPU Utilization of the running VMs, network 
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throughput for incoming and outgoing traffic and latency. Throughout our experiments 

we also monitored end-to-end response time from a client perspective, using our custom 

Workload generator, as will be explained in more detail later in this Section.  

All components that were necessary for our experiments, including the Database servers, 

were running on Amazon EC2 instances. However, this was not a hard requirement, as 

they were communicating with each other over HTTP and could thus be running at 

different environments as well. Hence, the Database servers were running on remote 

VMs which gave us the capability not only to configure them independently and 

seamlessly switch between alternative ones but also to monitor them separately. 

In order to generate workload and simulate the mobile clients for the experiments we 

developed a custom workload generator. This Java-based generator is similar to Apache 

JMeter [39] but it was developed for convenience. Not only is it extremely customizable 

making it possible to implement our adaptation mechanisms but also it can be easily 

integrated with other system components, such as the topology server for monitoring. 

Nonetheless, in order to verify its functionality we conducted tests which showed that it 

causes similar results to JMeter. The architecture of this generator is depicted in Fig. 11.  
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Figure 11. Workload generator architecture. 

As can be seen from Fig. 11, the main components of the Workload Generator are the 

following: 

• Client Manager: Manages the lifecycle and distribution of the simulated clients, 

according to commands and policies it receives from the Experiment Controller. 

By distribution, we imply direction of clients’ requests to specific servers (URLs). 

For every request sent the clients wait for a response and for every pair, metrics 

about the time elapsed are sent to the Monitoring component. It also receives 

runtime information from the Monitoring component which are required to 

implement policies and adaptation, mimicking application logic. 
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• Monitoring: Receives runtime information about the application components and  

response times from simulated clients. After relevant processing it stores this 

information in an appropriate format and also makes it available for real-time or 

offline presentation during the experiments.  

• Experiment Controller: Initiates and terminates experiments and controls their 

runtime configuration and parameters. It is responsible for enforcing defined 

policies to the Client Manager and handling events such as failures.   

• UI: User Interface for user configurations and system interaction during 

experiments, interacting with Experiment Controller. It also offers the 

functionality of presenting real-time runtime information about the experiment by 

receiving information from the Presentation component, as can be seen in Fig. 12. 

• Presentation: Receives information from Monitoring components and handles 

formatting and transmission of that information to the UI.  

• Results Storage: Handles storing of experimental results for persistence and future 

reference.  
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Figure 12. Screenshot of UI runtime monitoring. 

Our framework simulates each client by creating a different thread. Each client-thread 

periodically sends over HTTP a custom request to the application server  and waits for  a 

response. The server accepts the request and according to the message content it can 

decide what is the required action to be taken. If the message contains real-time spatio-

temporal information about the client, the server parses and persists this information 

writing corresponding records to the database. If there is no problem with storage it sends 

an “ok” response back to the client. Similarly, if the message contains a data acquisition 

query, the server translates the request to a  database specific query, retrieves and parses 

required data and renders an equivalent response back to the client. A sequence diagram 

of data transmission from a client is shown in Fig.13 below.  
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:DbServer:Client :AppServer

startTransmission( config )

:ClientManager

sendRequest( transmittedData )

storeData(data)

response

[response = ok]

[elapsedTime < a sec]

wait( remainingTime )

responseTime

[else]
error

[timeout = true]
timeout

loop
[clientStatus = active]

alt

[else]

alt

opt

 

Figure 13. Sequence diagram of data transmission. 

 

6.2 Database Experiments 

In this section we present the experiments that were conducted in order to measure 

performance characteristics, using alternative system configurations. To this extent, the 

experiments described in this section showcase the feasibility of our architecture and the 

ability to switch between different implementations in one tier independently of the other 

tiers. For these experiments we deploy the architecture that we proposed in Chapter 4 

using two alternative database technologies for the Data Tier. In specific, we examined 

the end-to-end response time as perceived by the mobile clients and we used both Sql and 
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NoSql DBMS for storage, to measure transaction durations and possible performance 

differences between these two systems, under generated workload.  

As mentioned above in Chapter 4, in order to offer the capability of seamlessly switching 

between different database technologies, the Data Persistence component on the Logic 

Tier includes a data layer which abstracts data modelling and functions for interaction 

with the DBMS. As a result, when changing the database at the data tier, no other 

changes need to be performed for the system, provided that the relevant APIs and 

connectivity drivers are available, as described below.    

In the first set of experiments we used MySql and MongoDB running on Linux EC2 64-

bit instances. The Linux distribution for all instances was Ubuntu 10.04 (Lucid Lynx), the 

version of MySql was 5.1.66-0ubuntu0.10.04.3 and the version of MongoDB was 2.4.1. 

The application server communicated with the remote database server using each time a 

relevant driver.  For persistence to the MySql server we used Java Persistence API (JPA) 

and for connectivity we used a JDBC driver. Correspondingly for the MongoDB server 

we used Morphia for persistence and a Mongo Java Driver for connectivity. For both 

databases we tried to keep the independent variables as similar as possible and therefore 

we used both similar data modelling and same number of connections throughout the 

experiments.  

The number of maximum connections proved to be one very important parameter through 

our testing and it was very often found to be a bottleneck. For our experiments we set the 

number of maximum connections per node to 100, which means that each application 
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server (only one for database experiments) could reach up to 100 connections to the 

database server. For data modelling our approach was to use only one big Table for the 

MySql database including all data attributes, in correspondence to one collection with all 

fields in the MongoDB database. The modelling for both databases can be seen in 

Appendix A. 

In Fig. 14 we can see a depiction of the experimental environment for the database 

experiments, showing the deployment of the various components as described above. The 

Workload Generator simulates clients which make requests and sends them to the 

TMARQ application running on an EC2 Instance. The application then stores the 

information it received to the database or queries the database to obtain required 

information, according to whether the request was a write or read request respectively, 

and then replies back to the client. A module within the Monitoring Service is an Amazon 

Cloudwatch client which collects monitoring information throughout the experiment and 

sends this information to the Workload Generator. 
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Figure 14. Experimental environment for alternative database experiments. 

 

A very interesting aspect of our application’s functionality is performance under varying 

workload. In specific we were interested in monitoring performance when workload is 

increasing, decreasing or remaining stable. Therefore the workload we chose to generate 

for these experiments consists of three phases; increasing number of clients (Phase I), 

stable number of clients (Phase II) and decreasing number of clients (Phase III), as can be 

seen in Fig. 15.   

 



  81 

Nu
mb

er
 o

f C
lie

nt
s

100

8 0

6 0

4 0

2 0

0

Phase I   Phase II   Phase III   

Time (sec)

60
1

58
1

56
1

54
1

52
1

50
1

48
1

46
1

44
1

42
1

40
1

38
1

36
1

34
1

32
1

30
1

28
1

26
1

24
1

22
1

20
1

18
1

16
1

14
1

12
1

10
1816141211

Workload Distr ibut ion

Page 1

 

Figure 15. Workload distribution for database experiments. 

 

During these experiments there were two different types of requests that a client could 

make to the application – read and write requests. During a read request a client would 

send information to the server that would be subsequently stored to the database. During 

a read request a client would request information about a specific username, which would 

cause a ‘select’ query to the database. The Experiment Controller would enforce to the 

Client Manager the defined ratio of read-to-write requests for each simulated client. 

Every client thread would thus send either a read or a write request in a sequence of 

requests as long as it would be active, according to that ratio.   

In order to assure that the experiments would simulate the application running in real-life 

scenario, we loaded the databases with 1,000,000 custom records (or documents for the 

MongoDB) before the beginning of the experiments. We also inserted the custom records 

in such a way that whenever there was a read request (i.e.‘select’) there would be 
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minimum influence on the results caused by caching. All the inserted data differed from 

each other for the field ‘username’ and each time there was a read request, it was about a 

different username. In addition, to make the scenario realistic, both databases were 

indexed, which is a feature that can increase the speed of read requests in extremely 

impressive rates with an insignificant overhead for the write requests, as we noticed from 

testing. 

We conducted three different experiments for each database with different ratio of read to 

write requests. Each client was selected to send a request every 1 sec. The end-to-end 

response time from client perspective, the CPU Utilization of the application server and 

the incoming and outgoing traffic to and from the application server over time for each 

use case can be seen in the following graphs. 

 

6.2.1 Results for ‘write’ requests 

In this subsection we present experimental results for clients sending only write requests, 

meaning that they only transmit data to the application server. As explained in Section 

6.1, a client sends a request in JSON format to the application, containing information 

about her location, speed and 6-axis acceleration. The server parses the received 

information and stores it to the database. The following diagrams show results for end-to-

end response time as perceived by the client, using MySql and MongoDB respectively.    
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Figure 16. Response time using MySql. 
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Figure 17. Response time using MongoDB. 

 

Intuitively, we would expect the system’s performance to be similar using the two 

different databases, since they perform a similar function, which is simply the storage of 

plain datatypes. Perhaps we would even expect better performance using MySql, since it 

has been the predominant system used over the past decades. However, as we can see 

from the results, response time is much smaller for MongoDB. This agrees with the 

performance superiority claims found on the MongoDB website [35], reporting that 

MongoDB can be about 2.5 times faster than MySql.   
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One obvious explanation of the results could be the fact that NoSql databases such as 

MongoDB provide no guarantees about ACIDity. Thus, for the same transaction they can 

perform much less functions than a relational database, therefore improving performance 

perhaps by sucrificing robustness and resilience. Some typical functionalities that are not 

offered by NoSql databases are locks and rollbacks. In addition, the concept of storing 

large amount of data fast – something that NoSql databases embrace – implies that there 

are minimal checks for data validation during their insertion to the database, as opposed 

to the full transactional model. 

Following in Fig. 18 and Fig. 19 we present results about CPU Utilization and network 

traffic using MySql and MongoDB respectively. 
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Figure 18. CPU and throughput using MySql. 

Time (sec)

60
1

55
1

50
1

45
1

40
1

35
1

30
1

25
1

20
1

15
1

10
1511

Nu
m

be
r o

f C
lie

nt
s

100

8 0

6 0

4 0

2 0

0

Phase I Phase II Phase III

Workload Distr ibut ion

Page 1

A
pp

 S
er

ve
r C

P
U

 U
til

iz
at

io
n 

(%
)

A
pp

 S
er

ve
r I

nc
om

in
g 

Tr
af

fic
 (B

yt
es

)
A

pp
 S

er
ve

r O
ut

go
in

g 
Tr

af
fic

 (B
yt

es
)

Time (Complete date plus hours and minutes)

 

Figure 19. CPU and throughput using MongoDB.
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Again from these results we can see that using MongoDB database results in better 

performance as compared to MySql, this time with regards to CPU Utilization and 

network traffic. For both these metrics there can be an obvious explanation, and that 

regards the size of transmitted objects and data representation.  

The advantage of MongoDB for this experiment is that it uses the JSON format for 

storage, which is the same representation as we use for data transmission. As a result, 

there are minimum requirements for data transformation and minimum overhead for data 

processing, which would explain the reduced CPU Utilization.  

Considering the network traffic, the overall size of the data exchanged between the 

application server and the database server is expected to be smaller for MongoDB, since 

it contains less information, for example about datatypes. In addition, the MySql system 

is possibly performing additional tasks such as checks and has a more heavy 

communications protocol. 

 

6.2.2 Results for ‘read’ requests 

This subsection shows our experimental results for clients sending only read requests, 

meaning that they only request from the application server information which exists in 

the database. As explained in Section 6.1, a client sends a request to the application 

asking information about a specific userName. The server then performs a ‘select’ query 

to the database, retrieves relevant information and passes it on to the client in a JSON 
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format. The following diagrams show results for end-to-end response time as perceived 

by the client, using MySql and MongoDB alternatively. 
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Figure 20. Response time using MySql. 
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Figure 21. Response time using MongoDB. 

 

In a similar fashion to the ‘write’ request experiments, we can see that MongoDB 

performs better in terms of speed. The reasons can be similar as explained for the ‘write’ 
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request experiments, namely the ACIDity related tasks performed only by the MySql 

database and not the MongoDB.  

What seems to be particular about these results is that when using MySql the response 

time appears to increase dramatically when the number of users increases, in contrast 

with using MongoDB where response time does not appear to change significantly. This 

leads us to assume that there is possibly a significant overhead for the MySql case, 

regarding networking functions such as maintaining state of open connections and 

avoiding overlapping transactions. In any case, the conclusion we can draw from these 

results is that MongoDB can perform better under a large number of concurrent users. 

Following are the results for CPU Utilization and network traffic for the two database 

systems in Fig. 22 and Fig. 23.  
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Figure 22. CPU and throughput using MySql. 
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Figure 23. CPU and throughput using MongoDB. 
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As in the ‘write’ request experiments, we see a big difference in CPU Utilization and 

network performance using MongoDB. The reasons are the same as explained in the 

‘write’ request experiments. Moreover, the fact that the difference in network 

performance is greater for these experiments, confirms that data representation can play 

an important role. We can assume that the size of data being sent from the database to the 

application server is significantly greater for the case of MySql. 

6.2.3 Results for 50% ‘read’ – 50% ‘write’ requests 

In this subsection there are results for clients sending both ‘read’ and ‘write’ requests,in 

an equal rate. Each simulated client is sending successively one ‘read’ request and then 

one ‘write’ request for as long as it is active. As it would be expected, results show 

performance which takes values intermediate to the values in ‘read’ and only ‘write’ 

experiments with the only exception that response time for MongoDB appears to be 

greater than response time for only ‘write’ requests which was shown in the previous 

experiments. Despite the fact that the difference is not great, it could be an indication that 

for the MongoDB system there are more resources being shared for both the read and the 

write requests, which could cause their exhaustion at situations with a large number of 

both ‘read’ and ‘write’ requests.  
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Figure 24. Response time using MySql. 
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Figure 25. Response time using MongoDB. 
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Figure 26. CPU and throughput using MySql. 
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Figure 27. CPU and throughput using MongoDB. 
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6.2.4 Results discussion 

The bargraphs below present the results in a more dense way for the extraction of useful 

conclusions about each database. In the first bargraph in Fig. 28 we can see the average 

response time using the two databases for the period during which the workload was 

maximum, i.e.100 concurrent clients. In Fig. 29 and Fig. 30 we show bargraphs about the 

maximum CPU Utilization of the application server and the maximum incoming and 

outgoing network traffic respectively. 

 

0"

10"

20"

30"

40"

50"

60"

70"

80"

write" read" 50%"read"3"50%"write"

Re
sp
on

se
'T
im

e'
(m

se
c)
'

MySql"

MongoDB"

 

Figure 28. Average response time during peak workload. 
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Figure 29. Maximum app server CPU utilization. 
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Figure 30. Maximum app server incoming (IN) and outgoing (OUT) network traffic. 
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To summarize, the results show that MongoDB performs better than MySql in almost 

every aspect. Using MongoDB we appear to achieve smaller response time, smaller CPU 

utilization at the application server and smaller incoming and outgoing network traffic for 

the same amount of information. The CPU and network utilization metrics observed are 

not very often taken under consideration when performing database performance testing 

but for our use case they are particularly important for two reasons. The first reason is 

that based on our proposed 3-tier architecture we have a remote database which needs to 

frequently interact with the application server over a specific network and therefore 

network performance characteristics are particularly important. The second reason is that 

based on the cloud paradigm, such resources are being used remotely and users are 

charged according to their utilization.  

As already explained, the main explanation of better performance results obtained for 

MongoDB concerning response time and resource utilization is the nature of NoSql 

databases. In this respect, NoSql databases focus on speed and easiness of data 

transmission, enabling the efficient storage of large, loosely structured data with no 

complex relationships. In an abstract way, we could consider NoSql databases as systems 

that receive blocks of bytes and simply drop them to memory. In contrast, relational 

databases such as MySql perform many more actions in order to guarantee high degrees 

of consistency, robustness and reliability. Furthermore, one more notable advantage of 

NoSql databases is the ability to modify the models of data during runtime due to their 

schemaless nature, as we verified during our testing.  
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More specifically for our experiments we used MongoDB, which is currently one of the 

leading NoSql databases in terms of performance. In addition, MongoDB also bears the 

advantage of storing data in a similar representation to our transmitted data, which is 

JSON format. This fact makes MongoDB particularly compatible with our architecture 

by minimizing any possible parsing and validation overheads, which is one of the main 

reasons for the observed lower CPU utilization using MongoDB.   

Of course the above-mentioned performance advantages for NoSql databases come at the 

cost of ACIDity. Despite the fact that our experiments were not designed to expose such 

vulnerabilities, these characteristics can be pivotal for many classes of applications which 

require reliable, safe and secure transactions such as e-banking. Another possible 

disadvantage of NoSql databases can be the lack of experience from their use, since they 

are a relatively new paradigm unlike Sql databases, for which we possess vast 

accumulated knowledge.  

In fact we detected some limitations of using NoSql databases through our experiments. 

One of them was average stored object size which for MongoDB was approximately 736 

Bytes while the equivalent record size for MySql was only 288 Bytes, leading to almost 

2.5 times smaller database size for the same amount of data. In addition, specifically for 

MongoDB we noticed that a database system running on a 32bit machine cannot exceed 

2GB of size, which is a serious limitation if only one database is used.   

It is important to notice that the intention of these experiments was not to cover all 

aspects of MongoDB and MySql and a thorough evaluation and comparison of the two 
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database technologies extends beyond the scope of the current thesis. Our main objective 

was to showcase that our architecture can support the implementation of different 

technologies as well as the testing and evaluation of their performance. Generalizing the 

results of these experiments to assess the use of the database technologies tested would 

not be accurate for two main reasons. The first reason is that MySql is not intended to be 

used with only one big table; without the use of more complex database schemas, we are 

denuding this relational database of many of its features and disallowing the exposure of 

its powerful characteristics such as query optimization. The second reason is scalability; 

the most advertised advantage of nosql databases is the ability to operate at scale and 

using only one VM for the Database server is not adequate to expose this functionality. 

Nonetheless, our experiments can reveal some important performance characteristics 

about these database technologies and compare their performance under similar 

conditions and during requests from concurrent users. Thus, we successfully showed that 

it is possible through our architecture to evaluate alternative database technologies for 

real-time applications. In particular, we showed that for our three-tier, real-time 

application  and under certain specified conditions, as explained in this chapter, 

MongoDB which is a NoSql database can have significantly better performance in terms 

of speed, network and CPU utilization, compared with MySql which is the most popular 

relational database. 
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6.3 Adaptation Experiments 

This Section presents our experiments about using adapation mechanisms for our mobile 

application. Our intention is to showcase the capability of implementing adaptive 

mechanisms on our architecture and to evaluate the use of those mechanisms and 

different adaptation configurations with regards to performance and cost. These 

experiments also serve as a use case for our proposed adaptation algorithms for mobile 

spatio-temporal applications as presented in Chapter 5, in an attempt to show in a realistic 

environment how the use of both server and client adaptation can produce better results 

as opposed to the use of each one separately. As a reminder, the client adaptation that we 

introduced in Chapter 5 facilitates the routing of requests according to user’s current 

location and the optimal client configurations according to availability. The server 

adaptation supports the adaptive scaling and configuration of distributed server clusters 

according to changing demand. Through these experiments we aim at showing the 

feasibility and efficiency of these two adaptations and the benefits from using them both 

at the same time in the adaptation mechanism that we propose. 

Thus, we produce a workload of 500 clients and after showing that the application is 

unable to handle such a traffic in a static manner, we perform experiments for two 

different configurations of the server adaptation, two different configurations of the client 

adaptation and then for both adaptations. For the purpose of these experiments, by ‘server 

adaptation’ we refer to the ability of the application servers to scale in and out according 

to CPU utilization as it is affected by decreasing or increasing workload. In contrast, by 
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‘client adaptation’ we refer to the ability of the mobile clients to direct their requests to 

alternate server clusters according to their location and the server clusters’ average CPU 

utilization. Both these adaptation functionalities are subsets of the adaptation mechanisms 

as were presented in Section 5. With our results we prove that using both server and 

client adaptation we can achieve location-aware adaptation, which is not achieved using 

only server adaptation, while maintaining low response time and reduced number of 

launched VMs and therefore reduced cost, as compared to using only client adaptation. 

The experimental settings were almost the same as for the database experiments, as 

described in the previous subsection. The difference was that for these experiments, 

instead of using only one Amazon EC2 instance, we used server clusters for the 

deployment of application servers. In fact, the deployment architecture that we used for 

these experiments is identical to the one depicted in the deployment diagram in Fig.6 

with the only difference that instead of actual mobile devices, we used our Workload 

Generator to simulate Mobile Clients. Thus, we used Amazon CloudWatch for 

monitoring the servers and AWS Elastic Beanstalk for analysis, planning and execution 

of the server-side infrastructural adaptations. We implemented the adaptive loop on the 

client side by applying corresponding management logic on the Workload Generator for 

distributing client’s requests to the different servers according to the feedback that it 

receives from monitoring services. 

Regarding the database, we used the same EC2 instance running MySql for all of the 

experiments, in an attempt to keep the experimental environment consistent and the 
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independent variables constant for as valid as possible comparison of results. Concerning 

the workload we generated for these experiments, it was similar to the one we used for 

the database experiments with three phases (increasing, stable and decreasing number of 

clients) with the difference that clients reached up to 500 and the duration of the 

experiments was longer.  The requests that these clients made were only ‘write’ requests 

and the transmission period was again set to one second. 

At this point it is also important to notice that for the purpose of our experiments we 

consider the quality of service of our application to be heavily dependent on the end-to-

end response time. Therefore, we consider a hard goal of the application runtime to 

maintain an average response time smaller than transmission period of the mobile clients. 

The reason is that for greater values of response time the application becomes 

‘unresponsive’ by which we mean that data is either lost or accumulated in high rates 

causing the application to crash. During these experiments there is also one additional 

quality of service characteristic and that is location-aware adaptivity. The approach we 

follow is a ‘best effort’ one, meaning that we treat ‘keeping average response time lower 

than transmission period’ as a strict SLO which should be maintained at all times whereas 

‘directing requests to servers closer to client’s location’ is considered one desired but not 

mandatory requirement, thus realizing prioritization of requirements. 

6.3.1 No Adaptation 

In this first experiment we show how the application is unable to handle traffic of 

hundreds of users without the use of dynamic methodologies. Thus, we use the same 
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static architecture that was used for the database experiments in Section 6.2, with only 

one small EC2 instance for the application server and we measure average response time 

while attempting to produce a workload of 500 simulated clients. The results can be seen 

in Fig. 31. 
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Figure 31. Response time for experiment without any adaptation. 

 

As we can see from the results the application is not able to handle incoming traffic and 

response time keeps increasing in an unmanageable fashion. What is more, the 

experiment cannot even be completed as the application crashes at some point, possibly 

because of code vulnerabilities and we can obtain no more results for response time after 

that point. 
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6.3.2 Only Server Adaptation 

In this subsection we present the results that we obtained using only server adaptation 

with two alternative configurations. As explained in Section 5.1, server adaptation refers 

to the adaptive scaling and configuration of distributed server clusters according to 

changing demand. Examples of such adaptation could be the increase of server instances 

of a cluster because of increase in the number of requests and the change of the borders 

of the geographical area a cluster ‘covers’ for example because of the positioning of an 

additional cluster at that area.  

For our experiments we consider as service adaptivity the special case of scaling in and 

scaling out of identical server instances in a cluster according to demand, which is the 

most popular adaptivity mechanism currently used for web applications.  In this respect 

we deploy our application servers inside one Web App Cluster, as can be seen in Fig. 32. 

For the Analysis, Planning and Execution of adaptation we use AWS Beanstalk and for 

Monitoring we use Amazon CloudWatch. This architecture provides the capability of 

monitoring running instances and auto-scaling according to predefined policies.  
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Figure 32. Architecture for server adaptation experiments. 

 

Thus, with reference to our Server-side Adaptation Architecture from Section 5.1 the 

Running Servers are the servers inside the cluster, the Servers Monitor is the Amazon 

CloudWatch service and the Autonomic Manager is the AWS Elastic Beanstalk 

environment. Using this architecture, we perform two different experiments: 

• sad_20-40: scale out for average CPU>40%, scale down for average CPU<20% 

and  

• sad_30-60: scale out for average CPU>60%, scale down for average CPU<30% . 

For these experiments, the Elastic Beanstalk environment receives monitoring 

information about the running instances in an interval of 1 minute. If the average CPU 

utilization of all running instances rises above the defined upper threshold it adds one 

EC2 instance to the cluster and if it drops below the defined lower threshold, it removes 
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one instance if that is possible, leaving always at least one instance running. For these 

experiments the number of running instances can take values from 1 to 5. In Fig. 33 and 

Fig. 34 we can see the response time, average CPU utilization and number of running 

instances in the cluster for the two experiments respectively. 

As we can see for the results, for both experiments the number of instances starts at 1, 

scales out to 5 instances for the maximum workload which is 500 clients, and then scales 

in back to 1 instance as the workload gradually decreases. However, from the results we 

can imply that for sad_30-60 the servers scale out too late and scale in too fast, which 

causes bad performance in terms of response time for the transition periods. For sad_20-

40 we can observe satisfactory results as response time is generally lower than 

transmission period, except for some very short exceptions. This could be comprehended 

as such: If we know this specific workload behavior in advance, we can safely assume 

that configuring the application according to sad_20-40 would guarantee the maintenance 

of performance whereas according to sad_30-60 it would not.  

Despite the fact that this adaptation can handle high rates of changing traffic, it does not 

provide location-based adaptivity, since all requests are directed to the same server 

cluster, among others creating the issue of ‘one point of failure’. 
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Figure 33. Response time, number of VMs and 
CPU for sad_20-40. 
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Figure 34. Response time, number of VMs and 
CPU for sad_30-60. 
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6.3.3 Only Client Adaptation 

This subsection presents the results that we acquired using only client adaptation with 

two alternative configurations. In Section 5.2 we explicitly explained our notion of client 

adaptation, according to which the mobile clients also monitor state and implement 

adaptations about the sampling and transmission rate and the selected server to which 

they direct their requests. For these experiments we specifically test the direction of 

requests to the appropriate server when there are more than one available, according to 

resource utilization on the server. The resource we refer to is CPU and thus we test the 

performance of our application when requests are redirected from one server cluster to 

another based on the average CPU of their running VMs.  

Again for these experiments we use a web application cluster for our servers but this time 

we have two different clusters where requests can be sent, which represents the 

geographic distribution of different servers for the same application, as is depicted in Fig. 

35. In addition, in order to test only client adaptation the environments are not scalable 

and so the number of running instances for each cluster is preset and constant; 2 server 

instances for Cluster A and 3 server instances for Cluster B. 

With reference to the algorithm presented in Section 5.2, the monitored parameters are 

assumed to be the geographic location of the simulated clients and the Server Resource 

Utilization, and specifically the average CPU utilization of each cluster which is provided 

from Amazon Cloudwatch to the Monitoring Service and then to the Workload 

Generator. This state information influences the adaptation that takes place at the  
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Figure 35. Architecture for client adaptation experiments. 

 

Workload Generator which has as an output the distribution of simulated clients to the 

two different clusters. This way we simulate the ability of each mobile client to direct 

requests according to feedback it receives about available servers’ utilization. 

Again for these experiments we measure response time as a QoS characteristic of the 

application runtime. In addition, we show how the prioritization of requirements is being 

implemented, since the goal is to enable the sending of requests to different servers based 

on location but only when this is possible while maintaining response time lower than 

transmission period. 
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Using the described architecture, we perform two different experiments: 

• cad_20: start sending traffic to second server cluster when CPU Utilization goes 

over 20%, start receiving back extra traffic when CPU Utilization drops under 

20%. 

• cad_30: start sending traffic to second server cluster when CPU Utilization goes 

over 30%, start receiving back extra traffic when CPU Utilization drops under 

30%. 

For both experiments we assume that all requests are supposed to be received by Cluster 

A because of the clients’ geographical location. However, as described we constantly 

monitor average CPU utilization on both clusters and when it receives values over a 

specific threshold for Cluster A caused by increased traffic, we redirect all new traffic to 

Cluster B. When the value drops below the same threshold, we start receiving traffic back 

to Cluster B with a specific rate. In Fig. 36 and Fig. 37 we can see the response time and 

average CPU utilization of both clusters for the two experiments respectively. 

As we can see, with both configurations the results are satisfactory, since average 

response time generally remains under 1 sec. However, with cad_30 we observe more 

smooth changes and lower values for CPU utilization, which indicates that this 

configuration is more suitable based on this certain traffic load behaviour.    

Despite the fact that with Client adaptation we achieved location awareness and good 

performance, it should be noticed that this architecture is the most costly, with 5 VMs 

running at all time for the application servers. 
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Figure 36. Response time and  

CPU utilization for cad_20. 
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Figure 37. Response time and  

CPU utilization for cad_30. 
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6.3.4 Both Client and Server Adaptation 

In the last experiment we test both client and server adaptation, as described above. To 

achieve that we use the exact same architecture with two clusters (Elastic Beanstalk 

environments) as in the client adaptation experiments with the only difference that the 

servers are now scalable and the number of server instances for each cluster can increase 

or decrease according to demand. For the configuration parameters, we combine the 

configurations from client adaptation and server adaptation experiments which produced 

best results, namely sad_20-40 and cad_30.  

The way that this adaptation works is that clients direct all their requests to Cluster A, 

assuming that this is the responsible cluster for these clients, based on their location. This 

cluster can scale from 1 to 2 server instances according to demand. When the average 

CPU utilization of its instances exceeds the predefined threshold (30%) all additional 

arriving requests are redirected to Cluster B, which can also scale from 1 to 3 server 

instances according to demand. When average CPU utilization on Cluster A drops under 

the threshold (30%), if there is traffic on Cluster B it starts receiving it back.    

The results for workload distribution per cluster, response time, average CPU utilization 

and number of running VMs over time for both clusters can be seen in Fig. 38 and Fig. 39 

and we refer to this experiment as cad_sad as it presents the use of both client and server 

adaptation at the same time. 

As we notice, application performance when combining both adaptations appears to be 

satisfactory. What is more, with this architecture we achieved location awareness and low 
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response time with a reduced  number of running VMs over time and therefore reduced 

cost.  
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Figure 38. Workload distribution and 

response time for cad_sad. 
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Figure 39. CPU and number of VMs of 

Cluster A and Cluster B for cad_sad.
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6.3.5 Discussion 

In the following bargraphs we can see compact results for all adaptation experiments 

presented. From Fig. 40 we can compare the different adaptations in terms of average 

response time as perceived by clients. For a more detailed view, we show results for the 

different phases of the workload distribution; Phase I during which number of clients 

increases from 0 to 500, Phase II during which number of clients remains constant at 500 

and Phase III where number of clients decreases from 500 to 0.  

As we can see from these results, all adaptations except from sad_30-60 for the reasons 

explained in the corresponding subsection, perform at satisfactory levels. This proves that 

with the use of any of these adaptations and the appropriate configuration we can achieve 

a sustainable application performance that can handle increasing and decreasing 

workload traffic as well as a large number of clients. We also notice that the differences 

between working adaptations are not great and could possibly be caused by the cloud 

variation, as will be explained in Subsection 6.3.6. In addition, for the maximum 

workload (Phase II), sad_20-40 appears to have the lowest response time, followed by 

cad_sad, then the two client adaptations and finally sad_30-60.  
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Figure 40. Average response time for Phase I (increasing clients), Phase II (constant clients) and 

Phase III (decreasing clients). 

As we mentioned in the beginning of this Section, what we consider as a strict SLO is 

keeping average response time below transmission period. Thus, for our application we 

can define SLO adherence as the percentage of time during which average response time 

remains under the defined threshold (1 sec), over the complete time of the experiment. 

According to this definition, we can see results about each adaptation in the bargraph 

below in Fig. 42. 

In addition, we can define relative cost as the number of running server instances 

multiplied by the time period by which they are running aggregated throughout the 

complete time of the experiments. Our granularity is set to 1 sec and therefore time 

period is measured by number of seconds. For instance, if we consider 3 server instances 
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running for 10 seconds and then 2 server instances running for 20 seconds we would have 

a relative cost of: 

• relative_cost	
  =	
  3	
  *	
  10	
  +	
  2	
  *	
  20	
  =	
  70	
  

Using this definition we calculate the complete relative cost of total running server 

instances for each experiment and we receive the results as depicted in Fig. 41.	
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Figure 41. SLO adherence  

for different adaptations. 
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Figure 42. Relative cost 

for different adaptations.

 

As we can see from Fig. 41, SLO adherence appears to be adequately high for all cases of 

adaptation except from sad_30-60, similarly to results for response time. For the rest of 

the cases, we can consider that they could all be qualified as successful, as they offer 

SLO adherence over 95% and the differences between them do not appear to be 

particularly significant. Thus, we could verify again from these results that the 
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application using any of these adaptations would be robust and capable of managing the 

assumed workload. 

From Fig. 42 we can see what is the most important advantage of using both adaptations 

– cost. As we can observe, using both adaptations has the lowest cost, even compared to 

the unsuccessful configuration of sad_30-60 which does not offer the required QoS. The 

relative cost of the two client adaptations has the largest value, as expected, since the full 

capacity of the application, 5 server instances, are constantly running throughout the 

complete experiment. Both adaptations have the lowest relative cost and sad_20-40 is 

somewhere in between.  

In Table 6 below we can see the results that were presented in this chapter, more compact 

for easier comparison. 

 
Adaptation	
   sad_20-­‐40	
   sad_30-­‐60	
   cad_20	
   cad_30	
   cad_sad	
  

Average	
  Response	
  Time	
  -­‐	
  Phase	
  I	
  (msec)	
   287.4	
   675.6	
   274.9	
   240.4	
   275.8	
  
Average	
  Response	
  Time	
  -­‐	
  Phase	
  II	
  (msec)	
   764.3	
   1315.3	
   873.3	
   831.4	
   813.8	
  

Average	
  Response	
  Time	
  -­‐	
  Phase	
  III	
  (msec)	
   193.4	
   354.6	
   262.3	
   284.8	
   267.3	
  

SLO	
  adherence	
  (%)	
   98.7	
   74.3	
   95.5	
   99.3	
   97.7	
  
Location-­‐based	
  adaptivity	
  support	
   ✗	
   ✗	
   ✓	
   ✓	
   ✓	
  
Relative	
  cost	
   8,842	
   7,705	
   10,780	
   10,780	
   7,625	
  

Table 6. Collective results for all adaptation experiments. 

As we can see from Table 6, it is obvious that the case of both adaptations offers the 

best results altogether. As compared to the cases of only client adaptation, it offers 29% 

reduced cost, in terms of the number of launched virtual machines. In comparison with 

sad_20-40, despite the fact that this adaptation seems to offer slightly (1%) higher SLO 
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adherence, again the cost is reduced by approximately 14%. In addition, this adaptation 

has the crucial disadvantage of not offering the desired support for location-based 

adaptivity, as opposed to cad_20, cad_30 and cad_sad. In fact what we mean by 

location-based adaptivity support is the apparent easiness by which one application 

server can be configured independently of any other servers and therefore can have a 

specific innate behaviour towards incoming requests from clients belonging to its ‘area 

of responsibility’. Thus claiming for instance that server adaptation alone does not offer 

this support, does not strictly exclude any type of context-aware adaptivity but rather the 

simplicity of its implementation according to that definition.  

Finally, compared to sad_30-60,  cad_sad offers much higher level of SLO adherence 

and lower cost, setting this case simply as an example of the wrong configuration of a 

partially successful solution. 

6.4 Threats to validity 

This section describes threats to the validity of our experiments, in terms of how they 

were alleviated as well as how they should be taken under consideration throughout 

evaluating our conclusions and generalising our results. 

6.4.1 Construct Validity 

The Construct validity refers to the degree to which experimental variables accurately 

measure the concepts they purport to measure. One important aspect of our experiments 

was the definition of QoS characteristics for the class of spatio-temporal applications that 
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we examine. In this respect, what we regarded as the most significant  quality metric was 

the end-to-end response time as perceived by the clients. The reason was not only that 

time is one of the two fundamental dimensions of these applications, but also because we 

intended to test our application in situations of increased workload and thus potential 

accumulation of unfinished tasks, which could lead to application unresponsiveness 

because of unmanageable rates of incoming requests, as proven in Subsection 6.3.1.   

The reason that we used end-to-end response time was that we aimed at testing the 

application performance as a whole. Due to the modularity of our architecture and the 

fact that it consists of multiple layers, we configured the internal method calls to be 

synchronous in order to expose the delays throughout all participating components. One 

additional rationale behind this configuration was that during our testing period we 

noticed that asynchronous configuration produced transparent behaviour to the end 

clients on one hand, but difficulties controlling the experiment and exposing useful 

results on the other. 

Another QoS dimension that we examine throughout our experiments is location-based 

adaptivity, as a specialization of context-aware adaptivity. Although location is not the 

only important context information that could be taken under consideration for a client 

and other context information such as activity and content should not be ignored, our 

claim is that location is the most important case for mobile spatio-temporal applications. 

An additional importance of this characteristic is that the redirection of requests to the 

appropriate server according to client’s location can also lead to cost savings, considering 
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for example different pricing policies depending on the physical geographical region at 

which the server hardware is located. 

More specifically about cost, which is also one of the important characteristics that we 

consider, it should be mentioned that different cloud providers currently offer different 

pricing policies for their services. Our choice of using relative cost as a metric, reflecting 

the utilization of number of server instances over time, implies a pricing policy of “pay 

per number of launched instances”, which is currently the case for AWS services but not 

for all service providers. Another issue that should be considered is the granularity at 

which cost is estimated; for example our definition of relative cost using a granularity of 

seconds could not currently have a reflection to the model used by AWS which calculates 

number of instances launched on an hourly basis. However, we believe that in the future, 

as cloud will mature pricing policies will become more granular and “pay-per-use” will 

be applied more accurately.  

6.4.2 Internal Validity 

Internal validity refers to the degree to which conclusions can be drawn about the causal 

effect of independent variables on dependent variables. Our first step in order to ensure 

internal validity was the conducting of thorough testing prior to the experiments, which 

enabled for the identification and mitigation of bottlenecks, such as the number of 

connections to the database and the type of the server instances. Through our testing we 

also acquired an understanding of the field which facilitated us in selecting the 

appropriate experimental setting concerning parameters such as the duration of the 
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experiment and maximum number of simulated clients and also in verifying that our 

experimental results showed reasonable behavior.  

In addition, in order to avoid instrumentation threats, we built our custom testing 

framework – the Workload Generator – that provided us with more control over the 

experiments and the monitoring granularity, which was kept the same for all experiments. 

When it comes to selection of parameters, such as the different adaptation configurations, 

they were selected randomly, of course within a range which would produce reasonable 

results. The same argument is valid for the selection of workload traffic behavior and 

duration of the experiments, which were selected randomly but carefully in order to be 

adequate in exposing application’s features, for example giving scaling enough time to 

take place. Specifically about the workload, we decided that there was no benefit in 

randomizing its change over the time of the experiment, as it was selected to show 

responsiveness of the application to increasing, decreasing and stable traffic. When it 

comes to transmission period, it was arbitrarily set to 1 second, but this value is a valid 

rate of data sampling for road quality assessment mobile applications, as observed by 

other researchers’ work which was reviewed in Section 3.1.  

Another point that should be mentioned is that we assumed CPU utilization as an 

adequate metric of server utilization which would affect response time. Through our 

testing our assumption proved to be valid, despite the fact that there should be no 

apparent reason why other metrics could not be used alternately, such as number of 

incoming requests over time or incoming/outgoing traffic. One advantage of CPU 
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utilization as a metric is its ability to be directly priced in a ‘processing power as a 

service’ manner, as is currently the case for some cloud providers, which price CPU 

cycles.  

Finally, concerning the database experiments in specific, we used not only the same 

configurations for the two different database systems but also corresponding data 

modelling, as explained in the relative section. This was necessary in order to evaluate 

and compare the different systems under as similar conditions as possible.   

6.4.3 External Validity 

External validity refers to the degree to which the results can be generalized to real-world 

settings. The most significant external threat to our experiments is the use of specific 

technologies. Our approach was to use the currently most popular technologies as 

representative examples of each paradigm. Thus, we used Java for the development of 

our web applications, we used Amazon AWS for our cloud services, which is currently 

the leading IaaS provider in terms of market share, we used MySql as a representative 

relational database system and MongoDB as a NoSql database system, which are 

currently the most popular  open-source Sql and NoSql systems respectively. 

Despite using the most perdominant technologies as representative examples, it should be 

highlighted that there is great variability with regards to cloud services among different 

providers. Different clouds might have different characteristics depending on many 

factors such as proprietary hardware and software appliances, architectures and business 
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processes. In addition, different vendors usually offer different services, SLAs, pricing 

policies and management capabilities. 

Moreover, great variance exists even for the cloud services within the same provider. As 

we noticed throughout our testing, different types of VMs can have significant 

differences in performance. However, as we noticed even two VMs of the same type, for 

example two Amazon EC2 small instances can differ considerably. This would suggest 

that repeating our experiments might not produce exactly the same results; for instance 

ranking of different adaptations based on performance might change since the differences 

are already small. 

Another threat to our external validity is the use of specific thresholds and configuration 

parameters. These configuration parameters should not be taken as panacea as they were 

selected randomly simply for the experimental purposes. With regards to our constraint 

that average response time should remain below transmission period, which we also 

expressed as an SLO, it was generated through observation of the testing results and 

perhaps more strict or more loose SLO definitions would be more appropriate in different 

cases, especially when transmission period changes significantly.   

Finally, as explained in Subsection 6.2.4, in no case should our conclusions derived from 

the database experiments be generalized for the use of Sql versus NoSql databases. In an 

attempt to compare these databases under similar settings, the way we used them was 

anorthodox, using MongoDB running on only one VM and using MySql with only one 

big table and no relationships. Thus, these results should only be comprehended as 



  123 

general findings on concrete characteristics of the two database systems and with regards 

to our specific use case application architecture. 

6.5 Summary 

In this chapter we presented our empirical results from the implementation and 

experimental evaluation of our proposed architecture and adaptation mechanism. 

First we described our experimental environment and presented the architecture of the 

Workload Generator that we built to simulate clients and monitor performance metrics. 

Subsequently, showing the results we obtained using two alternative database systems we 

proved that our architecture provides the capability of using different technologies in one 

tier without affecting the others and also the ability to test the alternative configuration of 

our application and draw useful performance conclusions. One such conclusion was that 

using MongoDB led to better results than MySql in terms of overall performance and 

through our results we also made some interesting observations about general 

characteristics of these two different systems and their comparison under similar 

conditions. However as we stressed out these results should not be generalised for these 

systems in any context and more detailed and complex testing would be required to 

showcase and compare their full potential. 

Concerning our adaptation mechanism, we presented results comparing only server 

adaptation, only client adaptation and both adaptations, where points of adaptation were a 

specialization of the adaptations that can be applied to our architecture, namely 

scalability, location-based adaptivity and routing of requests to the right server according 
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to servers’ resource utilization. Our results prove that the application of both server and 

client adaptivity, as suggested by our proposed mechanism, produces better overall 

results in terms of combined performance and cost-efficiency while offering location-

based adaptivity support. 

Finally we described in detail threats to validity of our research results, aiming at 

explaining what could be possible differences if our experiments were repeated and 

setting the expectations for generalizing our results. Thus we mentioned among others the 

threats of cloud variability and the use of particular technologies and we explicated how 

our results should be interpreted. 
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Chapter 7  
Conclusions 

In this thesis we proposed a 3-tier architecture and a comprehensive two-layer adaptation 

mechanism for mobile spatio-temporal applications, taking under consideration the 

particular nature of these dynamic applications and the available emerging paradigms 

such as cloud and NoSql databases. In order to validate the feasibility of our proposed 

framework, we considered, implemented and tested the use case of a mobile application 

for the collection of data to monitor traffic and assess the quality of roads. Our collected 

empirical data, after conducting a series of experiments, proves that the use of our 

architecture and mechanism can result in high performance, robust and cost-efficient 

applications with capabilities of context-aware adaptation. 

For the conduct of this thesis we studied the existing research work on Cloud Computing, 

Spatio-temporal applications and Autonomic Computing, in an attempt to acquire 

valuable background knowledge on these areas. We also reviewed  related work on traffic 

monitoring and road assessment using mobile devices as well as autonomic in mobile 

applications, in order to adopt useful ideas and identify opportunities for improvement in 

these fields of research. Taking this under consideration we believe that the contribution 

of our work can be summarized as follows: 

• We introduced and validated the use of an adaptivity-enabling architecture for 

mobile spatio-temporal applications. This 3-tier modular architecture allows to 
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test, deploy, replace and manage each of its tiers independently and allows for the 

application of adaptive methods at various angles, while exploiting mobile device 

features. 

• We proposed a two-layer adaptation mechanism for spatio-temporal mobile 

applications. This mechanism is compatible with our proposed architecture and it 

offers benefits in combined performance and cost while supporting context-aware 

adaptivity, as proven by our experimental results. 

• We conducted a series of experiments which allowed us to evaluate alternative 

settings and configurations of our application and acquire an understanding of our 

problem space by observing concrete results. In this regard, we tested MySql and 

MongoDB as alternative databases for our application and drew useful 

conclusions about their performance. 

Regarding our 3-tier architecture we explained how it meets some of the most important 

requirements for mobile spatio-temporal applications, such as the ability to handle time-

varying, geographically distributed traffic. We justified how its modular design fosters 

dynamicity and the application of adaptivity at multiple angles. In addition, we explicated 

how our architecture addresses the importance of mobile device capabilities using 

sensing, location management and local storage components to promote mechanisms for 

reliable data transmission. 

Our work on the adaptivity part was based on concepts from Autonomic Computing and 

we proposed the use of two adaptive loops that operate concurrently; one at the server 
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and one at the client side. We showed the algorithm for each adaptation and how these 

two adaptations can cooperate and result to application stability on one hand and 

flexibility on the other. In this respect, we explained how this mechanism can support the 

prioritization of requirements and the strict satisfaction of SLOs while at the same time 

facilitating additional desired features such as context-aware adaptivity in a best-effort 

manner.    

In an effort to empirically support our assumptions about our proposed architecture and 

mechanism and showcase the benefits from their use, we conducted a series of 

experiments. Our experimental results validate all three hypotheses as we defined them in 

our work: 

1) Our proposed architecture can support the functionalities of a spatio-

temporal application and be implemented in alternative configurations.  

This hypothesis was confirmed by implementing our use case application, 

showing that it can produce useful results and testing it under different adaptation 

configurations and with two alternative database systems.  

2) In the context of three-tier, real-time applications, a NoSql Database 

System has significantly better performance than Sql Database System. 

We verified this assumption by testing two different database systems, MySql and 

MongoDB and showed that the latter can produce smaller network traffic, while 

performing faster.  
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3) Location-awareness and elastic scaling can be supported for mobile 

spatio-temporal applications, while maintaining response time lower than transmission 

period and infrastructural cost to a minimum. 

This hypothesis was validated by applying a specialization of our adaptation 

mechanism on our implemented use case application and showing that response time can 

sufficiently remain under transmission period (set at 1 sec for our experiments), with 

support of scalability and location-based redirection of requests which leads to cost 

reduction. 

 

7.1 Future Work 

Our work can be considered as a first step towards the definition of a holistic approach 

for the application of adaptive methods specific to the class of mobile spatio-temporal 

applications. In this regard, during our research we identified many aspects that should be 

addressed through further work. 

One of the points that should be carefully examined in future research is the improvement 

of these applications deriving from data tier scalability. As we mentioned in this thesis, 

our 3-tier architectures enable the deployment of both application and data tiers on 

scalable infrastructures, but through our experiments we only showed application tier 

scalability. Complex database design and thorough evaluation of different database 

architectures extended beyond the scope of the current thesis; however in light of new 

database technologies such as MongoDB which favour horizontal scalability, it would be 
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very interesting to design experiments that expose this feature and how it can support 

persistence in context of data intensive mobile spatio-temporal applications. 

Regarding the data tier, it would also be valuable to examine the case of more complex 

relationships between data objects. Considering existing research about modelling spatio-

temporal data it would be of great interest to test the performance of our architecture 

using more complex database schemas. Our intuition is that relational databases would 

perform better under these circumstances but one compelling area of research would be 

the support of such complex data relationships using NoSql databases. In the same spirit, 

the support for geo-spatial indexes which exists in MongoDB in specific, should also be 

tested systematically.  

When it comes to adaptivity, there should be further work on the application of optimal 

algorithms and configuration parameters for specific use cases of applications. Moreover, 

further research on additional context features, other than location, that can be managed 

by similar architectures to ours would be very useful. In this direction, the deployment of 

such applications on different clouds should be evaluated, in terms of the different 

capabilities that they offer which can vary significantly due to cloud variability and early 

evolution phase.  

Furthermore, the implementation details of our proposed adaptation mechanism should 

further be examined and analyzed, as it is important to clarify some main concepts such 

as the communication between different layers of adaptation. Throughout our work we 

assume some shared state available to both server and client adaptations but it is 
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definitely a challenging task to assess efficient ways in which this state information can 

be delivered to different layers as well as persisted.   

Finally, serious attention should be paid to security issues of mobile spatio-temporal  

applications, since large amount of data are derived from users, much of which could be 

sensitive. Authorization and authentication processes should be examined in future work 

so that users can transmit data over secure networks. In addition, availability is one of the 

key features of such applications and thus they should be shielded from security attacks 

which is one more area that should further be researched. 

 

 



  131 

Bibliography 

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski et al., 

“Above the Clouds: A Berkeley view of cloud computing,” UC Berkeley Reliable 

Adaptive Distributed Systems Laboratory White Paper, 2009. 

[2] R. Buyya, J. Broberg, A. Goscinski, “Cloud computing principles and 

paradigms,” John Wiley & Sons, INC., Publication, March 2011. 

[3] Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M., “A break in the 

clouds towards a cloud definition,” ACM SIGCOMM Comput. Commun. Rev. 

39[37], pp.50–55, 2009. 

[4] Mell, P., Grance, T., “Perspectives on Cloud Computing and Standards,” National 

Institute of Standards and Technology (NIST), Information Technology 

Laboratory, 2009. 

[5] Han Liang; Wu Jie; Xie Kunqing; Ma Xiujun; Xu Dan; Zhang Huibin; Chen 

Zhuo; , "A spatio-temporal database prototype for managing moving objects in 

GIS," Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. 

Proceedings. 2005 IEEE International , vol.2, no., pp. 4 pp., 25-29 July 2005. 

[6] Stojanovic, D.; Djordjevic-Kjan, S.; Stojanovic, Z.; , "Modeling and management 

of spatio-temporal objects within temporal GIS application framework," Database 

Engineering and Applications, 2001 International Symposium on. , vol., no., 

pp.249-254, 2001. 

[7] Christine Parent, Stefano Spaccapietra, Esteban Zimányi, “Conceptual Modeling 

for Traditional and Spatio-Temporal Applications: The MADS Approach” 

Lecture Notes in Computer Science, Vol. 3534, Springer, 2006. 

[8] Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, and Yannis Theodoridis, 

“Literature review of spatio-temporal database models” Knowl. Eng. Rev. 19, 3 

(September 2004), 235-274. 



  132 

[9] Nami, Mohammad Reza; Sharifi, Mohsen; , "Autonomic Computing: A New 

Approach," Modelling & Simulation, 2007. AMS '07. First Asia International 

Conference on , vol., no., pp.352-357, 27-30 March 2007. 

[10] M  . Parashar, S. Hariri, “Autonomic Computing: Concepts, Infrastructure, and 

Applications,” Taylor & Francis Group, LLC, Publication, 2007. 

[11] J. Appavoo and et al. Enabling autonomic behavior in systems software with hot 

swapping. In IBM Systems Journal, volume 42, pages 60–76, January 2003. 

[12] Khalid, A.; Haye, M.A.; Khan, M.J.; Shamail, S.; , "Survey of Frameworks, 

Architectures and Techniques in Autonomic Computing," Autonomic and 

Autonomous Systems, 2009. ICAS '09. Fifth International Conference on , vol., 

no., pp.220-225, 20-25 April 2009. 

[13] Zhenxing Zhao; Congying Gao; Fu Duan; , "A survey on autonomic computing 

research," Computational Intelligence and Industrial Applications, 2009. 

PACIIA 2009. Asia-Pacific Conference on , vol.2, no., pp.288-291, 28-29 Nov. 

2009. 

[14] Zambonelli, F.; Bicocchi, N.; Cabri, G.; Leonardi, L.; Puviani, M.; , "On Self-

Adaptation, Self-Expression, and Self-Awareness in Autonomic Service 

Component Ensembles," Self-Adaptive and Self-Organizing Systems 

Workshops (SASOW), 2011 Fifth IEEE Conference on , vol., no., pp.108-113, 

3-7 Oct. 2011. 

[15] K. De Zoysa, C. Keppitiyagama, G.P. Seneviratne, and W.W.A.T. Shihan, “A 

public transport system based sensor network for road surface condition 

monitoring,” in Proceedings of the 2007 workshop on Networked systems for 

developing regions, ser. NSDR ’07. New York, NY, USA: ACM, 2007, pp. 9:1–

9:6. 

[16] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, 

“The pothole patrol: using a mobile sensor network for road surface 

monitoring,” in Proceeding of the 6th international conference on Mobile 



  133 

systems, applications, and services, ser. MobiSys ’08. New York, NY, USA: 

ACM, 2008, pp. 29–39. 

[17] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: using mobile 

smartphones for rich monitoring of road and traffic conditions,” in Proceedings 

of the 6th ACM conference on Embedded network sensor systems, ser. SenSys 

’08. New York, NY, USA: ACM, 2008, pp. 357– 358. 

[18] Bhoraskar, R.; Vankadhara, N.; Raman, B.; Kulkarni, P.; , "Wolverine: Traffic 

and road condition estimation using smartphone sensors," Communication 

Systems and Networks (COMSNETS), 2012 Fourth International Conference on 

, vol., no., pp.1-6, 3-7 Jan. 2012. 

[19] Mednis, A.; Strazdins, G.; Zviedris, R.; Kanonirs, G.; Selavo, L.; , "Real time 

pothole detection using Android smartphones with accelerometers,"Distributed 

Computing in Sensor Systems and Workshops (DCOSS), 2011 International 

Conference on , vol., no., pp.1-6, 27-29 June 2011. 

[20] Aksamit, P.; Szmechta, M.; , "Distributed, mobile, social system for road surface 

defects detection," Computational Intelligence and Intelligent Informatics 

(ISCIII), 2011 5th International Symposium on , vol., no., pp.37-40, 15-17 Sept. 

2011. 

[21] Ghose, A.; Biswas, P.; Bhaumik, C.; Sharma, M.; Pal, A.; Jha, A.; , "Road 

condition monitoring and alert application: Using in-vehicle Smartphone as 

Internet-connected sensor," Pervasive Computing and Communications 

Workshops (PERCOM Workshops), 2012 IEEE International Conference on , 

vol., no., pp.489-491, 19-23 March 2012. 

[22] Woodside, M.; Tao Zheng; Litoiu, M.; , "Service System Resource Management 

Based on a Tracked Layered Performance Model," Autonomic Computing, 

2006. ICAC '06. IEEE International Conference on , vol., no., pp. 175- 184, 13-

16 June 2006. 

[23] Amazon Web Services. Available: http://aws.amazon.com/.(URL) 



  134 

[24] Neophytou, M.; Stavrou, K.; Vassiliou, V.; Pitsillides, A., "The Importance of 

Adaptive Applications in Mobile Wireless Networks," Software in 

Telecommunications and Computer Networks, 2006. SoftCOM 2006. 

International Conference on , vol., no., pp.96,101, Sept. 29 2006-Oct. 1 2006. 

[25] Paspallis, N.; Papadopoulos, G.A., "An Approach for Developing Adaptive, 

Mobile Applications with Separation of Concerns,"Computer Software and 

Applications Conference, 2006. COMPSAC '06. 30th Annual International , 

vol.1, no., pp.299,306, 17-21 Sept. 2006. 

[26] Maciel da Costa, C.; da Silva Strzykalski, M.; Bernard, G., "An Aspect Oriented 

Middleware Architecture for Adaptive Mobile Computing 

Applications," Computer Software and Applications Conference, 2007. 

COMPSAC 2007. 31st Annual International , vol.2, no., pp.81,86, 24-27 July 

2007. 

[27] Gustavo G. Pascual, Monica Pinto, Lidia Fuentes, “Run-Time Adaptation of 

Mobile Applications using Genetic Algorithms,” SEAMS 2013.  

[28] Mowafi, Y.; Dongsong Zhang, "A User-centered Approach to Context-

awareness in Mobile Computing," Mobile and Ubiquitous Systems: Networking 

& Services, 2007. MobiQuitous 2007. Fourth Annual International Conference 

on , vol., no., pp.1,3, 6-10 Aug. 2007. 

[29] David, L.; Endler, M.; Barbosa, S.D.J.; Filho, J.V., "Middleware Support for 

Context-Aware Mobile Applications with Adaptive Multimodal User 

Interfaces," Ubi-Media Computing (U-Media), 2011 4th International 

Conference on , vol., no., pp.106,111, 3-4 July 2011. 

[30] Mizouni, R.; Serhani, M.A.; Benharref, A.; Al-Abassi, O., "Towards Battery-

Aware Self-Adaptive Mobile Applications,"Services Computing (SCC), 2012 

IEEE Ninth International Conference on , vol., no., pp.439,445, 24-29 June 

2012. 



  135 

[31] Misra, A.; Lipyeow Lim, "Optimizing Sensor Data Acquisition for Energy-

Efficient Smartphone-Based Continuous Event Processing," Mobile Data 

Management (MDM), 2011 12th IEEE International Conference on , vol.1, no., 

pp.88,97, 6-9 June 2011. 

[32] Alnawaiseh, A.; Abdelghany, K., "TeamSense: Energy-efficient autonomous 

mobile wireless sensor networks for object tracking," Wireless Communications 

and Mobile Computing Conference (IWCMC), 2012 8th International, vol., no., 

pp.660, 665, 27-31 Aug. 2012. 

[33] PhoneGap. Available: http://phonegap.com/.(URL) 

[34] HTML5specification. 

Available:http://www.w3.org/html/wg/drafts/html/master/.(URL)  

[35] MongoDB. Available: http://www.mongodb.org/.(URL) 

[36] Play Framework. Available: http://www.playframework.org/.(URL) 

[37] Apache Tomcat. Available: http://tomcat.apache.org/.(URL) 

[38] Amazon CloudWatch. Available: http://aws.amazon.com/cloudwatch/.(URL) 

[39] Apache JMeter. Available: http://jmeter.apache.org/.(URL) 

[40] Solomon, B.; Ionescu, D.; Litoiu, M.; Mihaescu, M., "Towards a Real-Time 

Reference Architecture for Autonomic Systems," Software Engineering for 

Adaptive and Self-Managing Systems, 2007. ICSE Workshops SEAMS '07. 

International Workshop on , vol., no., pp.10,10, 20-26 May 2007. 

[41] Ionescu, D.; Solomon, B.; Litoiu, M.; Mihaescu, M., "A Robust Autonomic 

Computing Architecture for Server Virtualization," Intelligent Engineering 

Systems, 2008. INES 2008. International Conference on , vol., no., pp.173,180, 

25-29 Feb. 2008. 

 



  136 

Appendix A: Implementation Details 
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