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Abstract

Probabilistic topic modeling is a powerful tool to uncover hidden thematic struc-

ture of documents. These hidden structures are useful for extracting concepts of

documents and other data mining tasks, such as information retrieval. Latent Dirich-

let allocation (LDA) [16], is a generative probabilistic topic model for collections of

discrete data such as text corpora. LDA represents documents as a bag-of-words,

where the important structure of documents is neglected. In this work, we proposed

three extended LDA models that incorporates syntactic and semantic structures of

text documents into probabilistic topic models.

Our first proposed topic model enriches text documents with collapsed typed

dependency relations to effectively acquire syntactic and semantic dependencies be-

tween consecutive and nonconsecutive words of text documents. This representation

has several benefits. It captures relations between consecutive and nonconsecutive

words of text documents. In addition, the labels of the collapsed typed dependency

relations help to eliminate less important relations, i.e., relations involving preposi-

tions. Moreover, in this thesis, we introduced a method to enforce topic similarity to

conceptually similar words. As a result, this algorithm leads to more coherent topic

distribution over words.

Our second and third proposed generative topic models incorporate term im-

portance into latent topic variables by boosting the probability of important terms

and consequently decreasing the probability of less important terms to better re-

flect the themes of documents. In essence, we assign weights to terms by employing

corpus-level and document-level approaches. We incorporate term importance using
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a nonuniform base measure for an asymmetric prior over topic term distributions in

the LDA framework. This leads to better estimates for important terms that occur

less frequently in documents. Experimental studies have been conducted to show the

effectiveness of our work across a variety of text mining applications.

Furthermore, we employ our topic models to build a personalized content-based

news recommender system. Our proposed recommender system eases reading and

navigation through online newspapers. In essence, the recommender system acts as

filters, delivering only news articles that can be considered relevant to a user. This

recommender system has been used by The Globe and Mail, a company that offers

most authoritative news in Canada, featuring national and international news.
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Chapter 1

Introduction

The increasing amount of electronic texts demands better tools for searching, explor-

ing, and organizing document collections. Previously, texts were collected and stored

in large text repositories and retrieved by a set of keywords. Documents were seldom

analysed using their themes, because there were very few technologies to extract their

thematic structures. To remedy the situation topic detection techniques have emerged.

Major categories of these techniques include text categorization, text clustering, key-

words extraction, keywords clustering, and topic modeling. In this work, we focus

on topic modeling. Topic modeling is a powerful statistical tool to uncover hidden

thematic structures of documents, also called “topics”. These topic models facilitate

document summarization and organization in a variety of applications in information

retrieval, vision, social network analysis, and text mining [11, 16, 40, 46, 77].

However, the discovered topics by existing topic modeling techniques may not

always well correspond to the themes of the documents. The algorithms developed

in this dissertation allow integrating semantic and syntactic structures of documents
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into topic models to influence the discovered topics. These algorithms are designed

as extra modules that can be incorporated into topic models.

1.1 Motivations for topic modeling

Consider the following sample text from an article of The Globe and Mail1:

“Tim Cestnick is president of Water Street Family Offices, and author of
several tax and personal finance books. There’s nothing like an education
about money while you’re still young. Aside from helping young people
make wise decisions about their investments, starting young can lead to
a much larger portfolio down the road. Time is an investors greatest
ally. As we head into registered retirement savings plan (RRSP) season,
encourage your adult children to contribute to their RRSPs. After raising
eyebrows for speaking to a journalist while on a leave to seek help for his
addiction issues, Toronto Mayor Rob Ford gave another media interview
insisting he is undergoing treatment in a facility that costs as much as six
figures. It’s worth every dime, every dime, he told the Toronto Sun. A
hundred grand is cheap. It’s a steal. Mr. Ford’s two interviews to the
Sun come amid mounting questions about the sincerity of his claim that
he is getting professional help. ”

Assume that our goal is to describe the common themes present in the sample

text. A simple scalable approach is to consider the word frequencies throughout the

text [55]. The sample text has been analyzed and the result is shown in Figure 1.1

that is a word cloud2 of the text document, where more frequent words appear larger.

Although this representation gives us a more understandable image of the text, this

representation yields little insight about different themes of the sample text.

1The Globe and Mail offers the most authoritative news in Canada, featuring national and

international news. http://www.theglobeandmail.com/
2http://www.wordle.net/
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Figure 1.1: The word cloud representation of the sample text. Note that words young,

ford, tax, and education are the most frequent words in the text.

A different approach is to hard cluster [3] the text by its word content, hoping

the cluster reflects a theme of the text. However, the sample text does not fit into

a single theme. For example, the sentence “Nowadays, people are mainly concerned

about their savings and the government’s contribution through the Canada Education

Savings Grant.” exhibits two different themes, savings and education.

Alternatively, soft clustering, also referred to as fuzzy clustering, is used to assign

the sample text into several clusters, where the text has fractional membership in

those clusters. Although this approach is useful in probabilistic text modeling, it is

incomplete. Soft clustering represents each document in the training set as a list of

numbers (the mixing proportions for themes), and there is no generative probabilistic

model for these numbers. As a consequence, this approach does not accurately assign

probabilities to a document outside the training set [16].

Latent topic modeling [16] solves this problem by assuming that each document

is represented as a random mixture over latent themes, called topics, where each

3



topic is characterized by a distribution over words. A good probabilistic topic model

of a collection of text documents assigns high probabilities to the documents of the

collection as well as to other similar documents [16, 40]. If we have K topics, the

probability of the ith word in a given document is

p(wi) =
K
∑

t=1

p(wi|zi = t)p(zi = t), (1.1)

where zi is a latent variable indicating the topic from which the ith word is drawn

and p(wi|zi = t) is the probability of the word wi under the tth topic. p(zi = t) is

the probability of choosing a word from topic t in the current document. Intuitively,

p(w|z) indicates the importance of word w to topic z. p(z) indicates the probability

of a particular topic given a document. In the following section, we explain Latent

Dirichlet Allocation (LDA) that is a generative latent topic model.

1.2 Latent topic modeling

Latent topic models assume a corpus is a collection of text documents. Text doc-

uments can include multiple topics, addressed by particular sets of words. Latent

topic models, such as Probabilistic Latent Semantic Indexing (PLSI) [45], and La-

tent Dirichlet Allocation (LDA) [16] consider a document to be a weighted mixture

of topics, where each topic is a multinomial distribution over words. Due to the

shortcomings of PLSI, described in detail in Chapter 2, in this thesis, we focus on

the Latent Dirichlet Allocation (LDA), proposed by Blei et al. [16]. LDA is a gener-

ative probabilistic topic model for collections of discrete data such as text corpora.

For example, consider a collection of The Globe and Mail articles that appeared on

4



Topic 1 Topic 2 Topic 3 Topic 4

(Tax) (Children) (Education) (Mayor)

tax young education ford

income children school mayor

retirement baby teacher city

pension kids government toronto

plan youth math rob

savings parents student councillor

financial school union miller

money mother parents doug

rrsp age class campaign

contribution boy public crack

· · · · · · · · · · · ·

Table 1.1: Top 10 terms of the most probable topics of The Globe and Mail collection.

Note that labels Tax, Children, Education, and Mayor are manually assigned.

The Globe and Mail newswire during the period between January 2010 to March

2014. This corpus contains 142, 163, 909 news articles. Using topics to explore the

articles at a broad level reveals different aspects of the collection [11]. Some of the

themes might correspond to the topics of the articles, i.e., tax, children, education,

and mayor. We could zoom in on a topic of interest to review details of the topic. For

example, Table 1.1 shows four most probable topics of The Globe and Mail corpus.

Note, in topic “Mayor”, words “ford” and “city” gain high probabilities.

The word cloud representation of four most probable topics of The Globe and

5



Figure 1.2: The word cloud representa-

tion of topic Tax.

Figure 1.3: The word cloud representa-

tion of of topic Children.

Figure 1.4: The word cloud representa-

tion of topic Education

Figure 1.5: The word cloud representa-

tion of topic Mayor.

6



Figure 1.6: The Globe and Mail topic evolution over time. Notice the popularity of

topic Tax in February that is the deadline of filing tax return documents in Canada.

Mail corpus is illustrated in Figures 1.2, 1.3, 1.4, and 1.5, where a word w with

high probability p(w|z) in a given topic (z) appears larger. Note that topic labels

are manually assigned. These topics, discovered by LDA, provide a much richer

understanding than the aforementioned solely word frequency representation of text

documents.

In addition, we could navigate through time to reveal how these topics have

evolved to see the popularity of a specific topic over a time period, as illustrated

in Figure 1.6.

Besides fundamental concepts of purely exploratory analysis of probabilistic topic

modeling, topic models have been applied to a wide variety of tasks in information

retrieval [76, 90], vision [38], social network analysis [8, 23, 56, 69], text classifica-

tion [51], machine translation [35, 89], and recommendation [48, 67, 91, 92].
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1.3 Open issues and our contributions

Most topic models consider documents to be a weighted mixture of topics, where

each topic is a multinomial distribution over words. Text documents are the only

observed data in most conventional topic models. Some words in a discovered topic

are ambiguous and can have multiple meanings. To identify the correct meaning of

each word, one needs to consider other words in the topic. For example, the word

“class” in topic 3, shown in Table 1.1, has many meanings. In one meaning, a “class”

is a collection of things sharing a common attribute, i.e., a group of students who are

taught together: “I was late for a class.” In the second, the word refers to the system

of ordering a society in which people are divided into sets based on perceived social or

economic status: “People who are socially disenfranchised by class.” Observing other

words in this topic, such as “education”, “school”, and “teacher”, helps to identify

the correct meaning of the word “class” that is “a group of students who are taught

together.” In order to obtain the correct meaning of the words in text documents, we

need to capture relations between consecutive and nonconsecutive words. Although,

the n-gram topic model [80] captures dependencies between words of a sentence, it

fails to consider dependencies between nonconsecutive words with a distance; thus, the

n-gram topic model is limited to capturing dependencies between consecutive words.

In this thesis, we solve this problem by building a Head-Driven Phrase Structure

Grammar (HPSG)-based topic model. We effectively acquire syntactic and semantic

dependencies between words and incorporate them into our HPSG-based topic model.

Our experimental studies show that our proposed model works considerably better

than similar LDA-based topic models.
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Moreover, text documents consist of words with possible conceptual similarities,

called synonyms, defined in lexical resources like WordNet [60]. It is reasonable to

expect the distribution of topics over synonymous words to be similar. For example, in

topic 2, shown in Table 1.1, synonymous words such as “kids”, “children”, and “baby”

should have similar higher probabilities, and words such as “school”, and “grown-up”

should have similar lower probabilities. In this thesis, we propose an algorithm to

enforce similar topic distribution over conceptually similar words.

In addition, existing topic models use fixed symmetric priors, and consider only

frequencies of terms in the corpus to estimate posteriors of latent variables [82]. This

representation makes sense from a point of view of computational efficiency [80], but it

does not utilize additional information about how important terms are in the context

of a corpus, to properly reflect the thematic structures of documents. Moreover, topics

estimated by LDA for infrequently occurring words are usually unreliable [70]. As a

result, most inferred topic distributions over terms contain terms that are irrelevant

to the topic and should not appear with a high probability in the topic. For instance,

in topic 3, shown in Table 1.1, it is reasonable for important terms such as “student”

and “class” to have high probabilities, but less important terms like “union” to have

a low probability. We build a more robust topic model by incorporating additional

information about term importance in a document into a topic model framework to

boost the probability of important terms and to consequently decrease the probability

of less important terms.

Furthermore, we integrate our topic model using term importance into the HPSG-

based topic model. The consecutive and nonconsecutive relations between words are

extracted by employing syntax and semantic analysis. We further assign importance
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weights to those relations using the context of the corpus or an external data source.

Then, these weights are incorporated into the HPSG-based topic model to increase

the probability of important relations and to consequently decrease the probability of

less important relations. Experimental studies show the effectiveness of our method.

Finally, we propose a news recommender system leveraging our topic models. We

build an automated recommender system that is able to filter news articles and make

recommendations based on users’ preferences. We use topic models to identify the

thematic structure of the corpus. These themes are incorporated into a content-based

recommender system to filter news articles that contain themes that are of less interest

to users and to recommend articles that are thematically similar to users’ preferences.

This work has been done in our collaboration with the data scientists at The Globe

and Mail.

In summary, to address the above open issues, the main contributions in the

dissertation are as below:

• We propose a novel topic model, called the HPSG-based Topic Model, to con-

sider syntactic and semantic structures of text documents in probabilistic topic

models.

• We propose an algorithm to enforce similar topic distribution over conceptually

similar words.

• We propose two novel generative topic models, called Topic Model using Corpus-

level Term Importance (TMCTI) and Topic Model using Document-level Term

Importance (TMDTI), that do not consider a fixed distribution prior over terms

10



but rather we adjust the prior by employing additional information about the

composition of terms that should have high or low probabilities in topics.

• We extend our HPSG-based topic model by using TMCTI and TMDTI ap-

proaches to consider importance of consecutive and nonconsecutive relations in

text documents.

• We conduct extensive experiments to evaluate the proposed topic modeling

techniques. Our evaluation results show that our techniques have the following

benefits. First, they lead to a more robust topic model that significantly im-

proves topic models in terms of perplexity. Second, our TMCTI and TMDTI

modeling techniques lead to significantly better topic models in terms of topic

coherence. Furthermore, the resultant topic models show better performance in

data mining tasks, such as text classification. In addition, integrating syntax

and semantics relationships into topic models enhances understandability of the

discovered topics.

• We apply probabilistic topic modeling techniques to the development of a per-

sonalized content-based news recommender system for The Globe and Mail,

and demonstrate that the use of topics to represent documents significantly im-

proves the recommendation performance over the bag-of-words based document

representation method.
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1.4 Thesis outline

We begin this thesis by formally defining the LDA model and explaining how topics

are learned from data in Chapter 2. This chapter also discusses some of the general

problems and issues related to topic modeling.

In Chapter 3 various topic modeling approaches proposed in the literature, how

they aim to tackle the issues of topic models, their advantages and drawbacks are

explained.

Chapter 4 introduces our first proposed probabilistic topic model, the HPSG-based

topic model, that enriches text documents with collapsed typed dependency relations

to effectively acquire syntactic and semantic dependencies between consecutive and

nonconsecutive words of text documents. In addition, in this chapter we propose

to enforce coherent topic assignments for conceptually similar words by generalizing

words with their synonyms. This chapter also compares our approach to the other

LDA-based approaches in terms of perplexity, stability, coherence, and accuracy.

Chapter 5 presents our two proposed generative topic models, the topic model

using corpus-level term importance (TMCTI) and the topic model using document-

level term importance (TMDTI), that incorporate term importance into latent topic

variables by boosting the probability of important terms and consequently decreasing

the probability of less important terms to better reflect the themes of documents. In

this chapter, we assign weights to terms by employing corpus-level and document-

level approaches. We incorporate term importance using a nonuniform base measure

for an asymmetric prior over topic-term distributions in the LDA framework. This

leads to better estimates for important terms that occur less frequently in documents.
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We show the performance of our topic models in text mining tasks. Moreover, in this

chapter, we investigate the extension of the HPSG-based topic model by using phrase

importance scores.

Chapter 6 we employ topic models to design a content-based news recommender

system that issues the most relevant news article recommendations to users accord-

ing to their personal read article history. This application has been developed in

collaboration with The Globe and Mail data scientists.

Chapter 7 concludes the thesis, summarizing the contributions, and describing

directions for further research.
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Chapter 2

Probabilistic Topic Models

In this section, we explain fundamental probabilistic topic models for text documents.

These topic models include: the Unigram Model, the Mixture of Unigrams, Probabilis-

tic Latent Semantic Indexing, and Latent Dirichlet Allocation. We also highlight their

key similarities and differences.

2.1 The Unigram Model

The Unigram Model assumes that a corpus is a collection of D documents, where each

document d consists of a list of words, denoted by d = {w1, w2, · · · , w|d|}. This model

generates documents by drawing the words independently from a single multinomial

distribution [16]. Furthermore, this model assumes that the words are generated not

only independently of the length of the document, but also of their positions in the

document. Thus,
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p(d) =

|d|
∏

i=1

p(wi), (2.1)

where p(wi) is the probability of wi, which can be estimated as the number of times

word wi occurs in a training corpus divided by the word occurrences in the corpus.

This basic model reduces each document to a vector of real numbers, each of which

represents ratios of word counts in the document to the entire corpus. However, this

model reveals little about inter document statistical structure. It ignores the correla-

tion between words in neighboring positions, as well as the topic of the document. To

resolve these issues, Nigam et al. [68] proposed to augment the model with a random

topic variable, explained in the following section.

2.2 The Mixture of Unigrams

Nigam et al. [68] assume that every document is generated according to a probability

distribution defined by a set of parameters, i.e., a random topic variable z. In the

mixture of unigrams, each document is generated by first choosing a topic z and then

generating |d| words independently from the conditional multinomial p(wi|z). p(wi|z)

is computed by dividing the number of times word wi occurs in topic z by the number

of word occurrences in topic z. The probability of the document is:

p(d) =
∑

z

p(z)

|d|
∏

i=1

p(wi|z). (2.2)

However, the assumption made by this model, each document is generated from

exactly one topic, is not generally true. In reality, each document may contain mul-

tiple topics.
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2.3 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI), proposed by Hofmann et al. [45],

removes the simplifying assumption made in the mixture of unigrams model, that

each document has only one topic. The PLSI model assumes that each document may

contain multiple topics, denoted by Z = {z1, z2, · · · , zK}. For a particular document

d, p(d) is the probability of selecting document d, p(z|d) is the probability of topic

z ∈ Z under document d, also referred to as the mixture weights of the topics for

document d, and p(w|z) is the probability of word w under topic z. In addition, this

model assumes that a document d and word w are conditionally independent given a

topic z. The PLSI model is defined as

p(d, w) = p(d)
∑

z∈Z

p(w|z)p(z|d). (2.3)

The shortcomings of PLSI come from the use of “only” training documents to

obtain distribution of topics over words. As a result, the model learns the topic

mixture only for those documents in the training set. Thus, there is no way to assign

a probability to a previously unseen document. Moreover, given the fact that the

number of topics is explicitly linked to the training documents, this number grows

linearly with the growth of the number of training documents. The parameters for

a K-topic PLSI model are K multinomial distributions of size V and D mixtures

over the K hidden topics, where V is the size of the set of unique vocabulary words

contained in the corpus, and D is the number of documents. This gives KV +

KD parameters and therefore linear growth in D. The linear growth in parameters

suggests that the model is prone to overfitting [16].
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These two problems are overcome by Latent Dirichlet Allocation (LDA) [16]. LDA

as explained in the following section, is a generative model and generalizes easily to

new documents. Furthermore, LDA treats the topic mixture weights as a K parameter

hidden random variable rather than a large set of individual parameters which are

explicitly linked to the training set. Thus, the K +KV parameters in a k-topic LDA

model do not grow with the size of the training corpus [16].

2.4 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), proposed by Blei et al. [16], is a generative prob-

abilistic model for collections of discrete data such as text corpora. The basic idea

is that documents are represented as random mixtures over latent topics, where each

topic is characterized by a distribution over words. LDA also assumes that a corpus is

a collection of D documents. Let D = {w1, w2, · · · , wN} represent a corpus of length

N , resulting from the concatenation of the D documents which contains N words in

total, where each word wi belongs to a set of unique vocabulary words of size V 1.

LDA assumes that each word wi ∈ D is associated with a latent topic variable zi where

i ∈ {1, 2, · · · , N}. Each of these topics t = 1 · · ·K is associated with a multinomial

~Φt over V vocabulary words, such that p(wi|zi = t) = Φzi,wi
. Each ~Φt is generated

from a Dirichlet distribution with prior ~β. Also, each document d is associated with

a multinomial distribution ~Θd over K topics, such that p(zi = t|d) = Θd,zi
, generated

from a Dirichlet distribution with prior ~α. To discover the set of topics used in the

1This set of vocabulary words can be the set of unique words contained in the corpus with removal

of stop words.
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corpus D, the objective is (1) to obtain an estimate of Φ, where Φ = {~Φt}
K
t=1, that

is the term distribution for each topic, and (2) to obtain an estimate of Θ, where

Θ = {~Θd}
D
d=1, that is the topic distribution for each document. LDA is one such

model.

In LDA, each document d is generated by first drawing a distribution over K topics

with parameters ~Θd, generated from a Dirichlet distribution with prior ~α. The words

in the document are then generated by drawing a topic zi = t from this distribution

and then drawing a word wi from that topic according to a multinomial distribution

with parameters ~Φt generated from a Dirichlet distribution with prior ~β [16].

This procedure is a joint probability distribution over the random variables (D, ~z, Φ, Θ)

given by [3]

p(D, ~z, Φ, Θ|~α, ~β) ∝

(

K
∏

t

p(~Φt|~β)

)(

D
∏

d

p(~Θd|~α)

)(

N
∏

i

Φzi,wi
Θdi,zi

)

, (2.4)

where Φ = {~Φt}
K
t=1, Θ = {~Θd}

D
d=1, Φzi,wi

is the with element in vector ~Φzi
, Θdi,zi

is the

zith element in the vector ~Θdi
, and di associates each word with a document index

di ∈ {1, 2, · · · , D}.

The LDA graphical model, and the conditional dependencies implied from the

distributions are represented in Figure 2.1.

Note that words are the only observed variables. The hyperparameters ~α and ~β

are input from the user. The latent topic assignments ~z, document distributions over

topics Θ, and topic distributions over words Φ are all unobserved. Estimation of Θ

and Φ requires computing the latent topic assignments ~z, p(~z|D, ~α, ~β). Unfortunately,

this posterior distribution is intractable due to the coupling between Φ and Θ [16].
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Figure 2.1: The graphical model representation of LDA. D represents the total num-

ber of documents, and |d| is the length of a document d. The directed edges indicate

conditional dependencies. For example, each word w depends on both the latent topic

z and the topic-word multinomial ~Φt, drawn from Dirichlet(~β) [16].
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However, various approximate inference algorithms can be used to infer the posterior

distribution. Some of these approximate inference algorithms are Laplace approx-

imation, Variational approximation [16], Expectation-propagation [62], and Gibbs

sampling [40]. These algorithms can differ in speed and accuracy. Asuncion et al. [5]

show that these inference algorithms have relatively similar predictive performance

when the hyperparameters for each method are selected in an optimal fashion. Thus,

the results are significantly affected by hyperparameter settings. These hyperparam-

eter settings can be learned from data [3, 16, 80]. However, others show that learning

hyperparameters from data can have strong impact on the learned topics [82]. In

our work, we focus on Gibbs sampling. Gibbs sampling is competitive in speed with

other existing algorithms. However, a significant advantage of Gibbs sampling is ease

of implementation in software. The following section describes Gibbs sampling and

how it is used with LDA.

2.4.1 Inference via Gibbs sampling

Griffiths et al. [39, 40] proposed to use Gibbs sampling to obtain approximate esti-

mates for the latent variables as well as the posterior distributions. Gibbs sampling

is a special case of Markov chain Monte Carlo (MCMC) algorithm. An MCMC al-

gorithm emulates high-dimensional probability distributions p(~z) by the stationary

behaviour of a Markov chain. This means that one sample is generated for each

transition in the chain after a stationary state of the chain has been reached, which

happens after a burn-in period [43]. Gibbs sampling is a simple Markov chain Monte

Carlo (MCMC) algorithm where the dimensions zi of the distribution are sampled
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alternatively one at a time, conditioned on the values of all other dimensions, denoted

by ~z−i [10, 43].

For example, consider the distribution p(~z) = p(z1, · · · , zN) from which we wish

to sample. At first, we initialize each zi ∈ ~z. Each step of Gibbs sampling involves

replacing the value of one of the variables, by the value drawn from the distribution of

that variable conditioned on the values of the remaining variables [10]. The procedure

of Gibbs sampling is summarized below:

1. Randomly initialize each zi ∈ ~z

2. For i = 1, · · · , N

(a) zi+1
1 ∼ p(z1|z

(i)
2 , z

(i)
3 , · · · , z

(i)
N )

(b) zi+1
2 ∼ p(z2|z

(i+1)
1 , z

(i)
3 , · · · , z

(i)
N )

· · ·

(c) zi+1
N ∼ p(zN |z

(i+1)
1 , z

(i+1)
2 , · · · , z

(i+1)
N−1 )

To build a Gibbs sampler, the full conditionals p(zi|~z−i) is found using:

p(zi|~z−i) =
p(~z)

p(~z−i)
. (2.5)

2.4.2 The collapsed LDA Gibbs sampler

Griffiths et al. derive a Gibbs sampler for LDA by applying the hidden variable

method from above [39, 43]. It is assumed that each document d is a multinomial

distribution over K topics with parameters ~Θd. Thus, for a word in document d,

p(zi = t|d) = Θd,t, where zi is the hidden variable, denoting topic assignment to word

21



i, and ~Θd is generated from a Dirichlet distribution with prior ~α. The tth topic is a

multinomial distribution over V words with parameter ~Φt, generated from a Dirichlet

distribution with prior ~β, thus p(wi|zi = t) = Φt,wi
[39, 40].

In this method, the parameter sets Θ and Φ can be integrated out because they

can be interpreted as statistics of the associations between the observed wi and the

corresponding zi [39, 43]. The strategy of integrating out Θ and Φ is referred to as

collapsed approach often used in Gibbs sampling [43].

For each topic t the distribution is given by

p(zi = t|~z−i,D) ∝ p(wi|zi = t, ~z−i,D−i)p(zi = t|~z−i), (2.6)

where ~z−i and D−i denote the ~z and D for all words other than wi. This expression

is an instance of Bayes’ rule with p(wi|zi = t, ~z−i,D−i) as the likelihood of the data

given a particular choice of zi and p(zi = t|~z−i) as the prior on zi. The likelihood is

obtained by integrating over the parameters Φ, which results in

p(wi|zi = t, ~z−i,D−i) =
n

(wi)
−i,t + β

n
(.)
−i,t + V β

, (2.7)

where n
(.)
−i,t is the total number of words assigned to topic t, excluding the current

one, and n
(wi)
−i,t is the total number of times word wi is assigned to topic t, excluding

the current one.

Similarly, the prior is calculated by integrating over the parameter Θ:

p(zi = t|~z−i) =
n

(d)
−i,t + α

n
(d)
−i,. + Kα

, (2.8)

where n
(d)
−i,t is the total number of words from document d assigned to topic t, excluding
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the current one, and n
(d)
−i,. is the total number of words in document d, excluding the

current one. Then, the conditional distribution for the topic assignments is given by

p(zi = t|~z−i,D) ∝
n

(wi)
−i,t + β

n
(.)
−i,t + V β

·
n

(d)
−i,t + α

n
(d)
−i,. + Kα

. (2.9)

The Markov Chain Monte Carlo (MCMC) algorithm is then straightforward. The

zi’s are initialized between 1 and K, determining the initial state of the Markov chain.

The chain is then run for a number of iterations, each time finding a new state by

sampling each zi from the distribution specified by Equation 2.9. After sufficient

iterations (i.e., burn-in period) for the chain to approach the target distribution, the

current values of the zi’s are recorded. However, the required length of the burn-in

is one of the drawbacks with MCMC approaches. In order to check that the Markov

chain has converged, experimental studies with different number of iterations are

conducted. The results that lead to a fine-grained decomposition of the corpus into

topics, and topics into words are selected [43]2.

With a set of samples from the posterior distributions Φ and Θ can be computed

by integrating across the full set of samples. For any single sample we can estimate

Θd,t by

Θd,t =
n

(d)
t + α

n(d)
. + Kα

, (2.10)

where n
(d)
t is the total number of words from document d assigned to topic t and n(d)

.

is the total number of words in document d.

Similarly, Φt,wi
is estimated by

2Subsequent samples are taken after an appropriate lag to ensure that their autocorrelation is

low [40]
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Φt,wi
=

n
(wi)
t + β

n
(.)
t + V β

, (2.11)

where n
(wi)
t is the total number of times word wi is assigned to topic t and n

(.)
t is the

total number of words assigned to topic t.

2.4.3 Estimation

The LDA trained generative models are typically used to estimate the probability

of unseen test data Dtest, given training data Dtrain and hyperparameters ~α and ~β.

This ability to estimate the probability of unseen data is the major difference between

LDA and PLSI, mentioned in Section 2.3. Let Dtest = {w1, w2, · · · , wM} represent a

test corpus of length M . The probability p(Dtest|Dtrain, ~ztrain, ~α, ~β) for the test corpus

is computed by normalizing the constant that relates the posterior distribution over

~ztrain to the joint distribution over Dtest and ~ztest in Bayes’ rule [81]. There are many

existing methods for estimating normalizing constants [83]. In this dissertaion, we

use the left-to-right algorithm for estimating normalizing constants by sequentially

approximating the marginalisation over latent topics [81, 83]. This method operates

in an incremental, left-to-right fashion, where topic assignments from positions n
′

> n

cannot influence the assignment at position n and words from positions n
′

> n cannot

influence the probability of the word at position n.

The left-to-right algorithm decomposes p(Dtest|Dtrain, ~ztrain, ~α, ~β) as:
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p(Dtest|Dtrain, ~ztrain, ~α, ~β) =
∏

n

p(wn|Dtest<n
,Dtrain, ~ztrain, ~α, ~β) (2.12)

=
∏

n

∑

~ztest≤n

p(wn, ~ztest≤n
|Dtest<n

,Dtrain, ~ztrain, ~α, ~β),

and uses algorithm 1 to approximate the sums over ~ztest≤n
.

Algorithm 1 A left-to-right estimation algorithm for topic models. The algorithm

computes l ≃
∑

n log
∑

~ztest≤n
p(wn, ztest≤n

|Dtest<n
,Dtrain, ~ztrain, ~α, ~β) using R parti-

cles [81].

1: initialize l := 0

2: for each position n ∈ Dtest do

3: pn = 0

4: for each particle r = 1 to R do

5: for (n
′

< n) do

6: resample zn
′ ∼ p(zn

′ |(~ztest<n
)−n

′ ,Dtest<n
,Dtrain, ~ztrain)

7: pn := pn +
∑

t p(wn|zn = t, ~ztest<n
,Dtest<n

,Dtrain, ~ztrain)p(zn = t|~ztest<n
, ~ztrain)

8: pn := pn/R

9: l := l + log pn

10: sample zn ∼ p(zn|~ztest<n
,Dtest≤n

,Dtrain, ~ztrain)

11: return l
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Chapter 3

Related Work

Text documents are the only observed data in most conventional topic models. How-

ever, more recent topic models extend previous models by incorporating extra in-

formation [3]. Extra information is obtained by enriching text representation to

include information, such as authors of the documents [74], images associated with

the text [13], style of writing and reviewers of the documents [61], and discriminative

frequent patterns of the documents [38]. The aforementioned topic models represent

documents as a bag-of-words, where the order of words, thus important linguistic

structures of documents are neglected [16, 40].

In order to include richer linguistic structures of text documents, many methods

were proposed to incorporate local word dependencies into topic models [20, 41, 42,

80, 85]. The following sections discuss current extensions to LDA.
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3.1 Syntactic LDA

Topic models represent documents as a bag-of-words, where the order of words, thus,

important linguistic structures of documents are neglected [16, 40]. To remedy this

problem, some recent methods integrate grammatical regularities of text documents

into topic models.

HMM-LDA [41] uses the states of a Hidden Markov Model to represent syntactic

and semantic words. The model assumes that words are either sampled from topics

randomly drawn from the topic mixture of the documents or from a syntactic class

sampled from a distribution of associated syntactic classes [42]. Their model only

considers local dependencies between variables of the syntactic states and fails to

obtain syntactic or semantic dependencies between words.

The Syntactic Topic Model (STM) [20] was proposed to integrate grammatical

regularities in the text to detect syntactically relevant topics. In STM, documents

are collections of dependency parse trees, in which words in the sentence are the

nodes in the graph and grammatical regularities are the edge labels [29]. The root in

the dependency parse tree is used as a governor. Topic assignment of the root node

affects topic assignments of all its children. Moreover, STM does not draw words

from just the document distribution over topics. Rather, it draws a word from a

distribution formed by the document distribution over topics weighted by the parse

tree distributions. Thus, topic assignment of a word depends on both the document’s

theme as well as the parents of the word in the parse tree. Although, STM improves

topic modeling by combining syntactic and thematic structures of documents, it does

not fully distinguish topic assignment of the words that share the same parent in the
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tree, i.e., children of a node. This problem specifically occurs when a root node has

many children [20].

3.2 Semantic LDA

Wallach [80] proposed a probabilistic language model by incorporating both n-gram

statistics and latent topic variables. They extend word generation by conditioning

on n previous words. However, the n-gram topic models do not capture relations

between nonconsecutive words.

Chemudugunta et al. [25] proposed an approach by combining semantic concepts,

defined by a subset of words in the documents, and statistical learning techniques.

Similar to the basic LDA, they assume that documents are distributed over topics.

However, they add another assumption that documents are also distributions over

concepts; and each concept is a distribution over words. A concept is restricted to

assign non-zero probabilities only to words under the concept; and zero probabilities

to words outside the concept. The Concept-Topic Model has the advantage of linking

known concepts to the data. The main disadvantage of the model is that the provided

concepts are limited to a specific domain and cannot be generalized.

Musat et al. [64] use ontological trees derived from Wordnet [60] to remove outliers

from topic labels, resultant from a topic modeling procedure. They align the distri-

bution of topics over words to the conceptual tree; and prune the words that are not

interrelated to other words from a conceptual perspective. Their method results in

a more conceptually cohesive topic words that improves topic readability. However,

their method is a post-processing step for improving topic modeling results. Applying

28



conceptual data in earlier steps of topic modeling may result in better results.

In order to incorporate the underlying significance of terms into topic models,

many methods were proposed. TagLDA [93] includes document structure knowledge

into topic models in the form of tags on terms. Each term in documents is tagged

based on its part-of-speech or its location in the document. Although TagLDA im-

proves LDA in terms of test set perplexity, it does not consider term importance in

topics. Also, the method describes knowledge on individual terms as opposed to a

collection of terms obtained from n-grams.

Recently, some work has been done to inject domain knowledge into topic models

to enforce probabilistically correlated terms to be in same topic and remove outliers [2,

64, 70]. However, none of these methods utilize term importance in topic models.

Wilson et al. [87] proposed a term weighting scheme for topic models. They weigh

terms by measuring the information content of the terms, and compute probabilities

based on the weighted counts. Although their approach has improved cross-language

retrieval tasks by eliminating frequent terms from topics, their approach does not dif-

ferentiate between actual low-content frequent terms and terms that occur frequently

but are very important with high semantic content [27]. Moreover, they do not con-

sider significance of terms to the theme of the corpus with respect to an external

data source (i.e. Wikipedia). In addition, they use a symmetric Dirichlet prior over

document-topic and topic-term distributions in the estimation process.
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3.3 Information about documents

This section discusses methods proposed to incorporate information about documents

in topic models. Blei et al. [15] proposed supervised topic models to improve inference

of latent topics. They paired each document with a label. Then, they jointly model

the documents and the responses to find latent topics that best predict the label.

This method particularly influences the topic assignments by the model.

Blei et al. [13] claim that similar annotated images of texts should share similar

caption words and thus similar text topics. They proposed Correspondence LDA

that is a joint model of images and their corresponding text, i.e., captions. They

segmented each image into regions based on their visual features, i.e., size. They

assume that each document is a multinomial distribution over topics, and each topic

is a multivariate Gaussian distribution over image regions to generate images; and

a multinomial distribution over caption words to generate the caption words. As

a result of this model, similar images will contain similar text topics. Also, This

model has many applications in vision tasks, such as automatic annotation of new

images [84, 86].

Markov Random Topic Fields, proposed by Daumé [28], represents a corpus by a

weighted graph. Documents are the nodes of the graph, and are connected via edges,

weighed based on the similarities of connected documents. Their model results in

similar documents to contain similar topics.

Rosen-zvi et al. [74] extend LDA by considering interests of authors of the docu-

ments. They assume that each author is a multinomial distribution over topics, and

each topic is a multinomial distribution over words. Each document is generated by

30



first drawing a distribution over authors. The words in the document are then gen-

erated by drawing a topic from this distribution and then drawing a word from that

topic. Their model significantly improves topic models. However, it ignores several

aspects of real world document generation, i.e., word ordering.

McCallum et al. [56] proposed an extension of the author topic model [74], where

topics are conditioned on both the sender as well as the receiver of the documents.

This extension does not require changes to the generative model of the author topic

model [74], and improves its results.

3.4 Correlated topic models

Correlated topic models modify the topic modeling procedure to capture dependen-

cies between topics. For example, a document about genetics is more likely to also be

about disease than x-ray astronomy [14]. Blei et al. [14] proposed Correlated Topic

Models (CTM) by relaxing the strong independence assumption between topics de-

tected by LDA [16]. They achieve this correlation by assuming documents to be a

logistic normal distribution over topics, allowing pairwise correlations between topics.

However, topics may correlate hierarchically. Blei et al. proposed Hierarchical LDA

(hLDA) [12] to capture hierarchical dependencies between topics. hLDA models top-

ics with a tree-structured hierarchy over topics where topics get more specific as one

moves from the root to the leaf. A document is generated by first choosing a path

from the root of the tree to the leaf. Then, a vector of topic proportions is drawn from

a Dirichlet distribution. After that the words are generated from a mixture of the

topics along the path from the root to the leaf. However, in hierarchical LDA, doc-
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uments are represented by a bag-of-words where syntax and semantics relationships

of the words in documents are neglected.

In this dissertation, in order to advance the state-of-the-art, we go beyond the

bag-of-words representation of text documents to incorporate syntax and semantics

of text documents into topic models. We enrich text documents with syntactic and

semantic dependencies between consecutive and nonconsecutive words. In addition,

we use WordNet to enforce coherent topic assignments for conceptually similar words

by generalizing words with their synonyms. Moreover, we use an external knowledge

(Wikipedia) to obtain importance weights of the terms of documents. We further

incorporate these term importance weights into latent topic variables by boosting the

probability of important terms and consequently decreasing the probability of less

important terms to better reflect the themes of documents.
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Chapter 4

Topic Modeling using Collapsed

Typed Dependency Relations

Topic modeling is a powerful tool to uncover hidden thematic structures of doc-

uments. Many conventional topic models represent documents as a bag-of-words,

where the important linguistic structures of documents are neglected. In this chap-

ter, we propose a novel topic model [32] that enriches text documents with collapsed

typed dependency relations to effectively acquire syntactic and semantic dependencies

between consecutive and nonconsecutive words. In addition, we propose to enforce

coherent topic assignments for conceptually similar words by generalizing words with

their synonyms. Our experimental studies show that the proposed model and strat-

egy outperform the original LDA model and the Bigram topic model in terms of

perplexity; and our performance is comparable to other models in terms of stability,

coherence, and accuracy.
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4.1 Introduction

Text documents are the only observed data in most conventional topic models. There-

fore, the order of words, and thus important linguistic structures of documents, i.e.

local word dependencies in a document, are typically neglected [16, 40]. Local word

dependencies are either dependencies between a set of consecutive words, or a set of

nonconsecutive words with arbitrary distances. For example, the term1 “data mining”

contains two words “data” and “mining” that are consecutively related. In addition,

in sentence “Some countries deny human basic civil rights.”, the term “human rights”

contains two nonconsecutive words “human” and “rights” that are syntactically re-

lated. In order to incorporate sequential consecutive dependencies between words

into topic models, the Bigram topic model [80] and Topical n-gram Model [85] extend

word generation by conditioning not only on the topic of the word, but also on n

previous words. However, the n-gram topic models only capture relations between

consecutive words, ignoring the relations between nonconsecutive words.

Moreover, text documents consist of words with possible conceptual similarities,

called synonyms, defined in lexical resources like WordNet [60]. It is reasonable to

expect the distribution of topics over synonymous words to be similar.

In this chapter, a novel topic model is proposed to consider syntactic and semantic

structures of text documents in probabilistic topic models. In essence, we enrich text

documents with the collapsed typed dependency relations to circumvent obstacles in

acquiring consecutive and nonconsecutive dependencies between words. In addition,

we investigate the influence of enforcing similar topic distribution over conceptually

1A term consists of one or more words forming a unit of a sentence.
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similar words by generalizing words with their synonyms.

The structure of this chapter is as follows: In Section 4.2, we discuss collapsed

typed dependency relations and HPSG parse trees. In Section 4.3, we explain our

proposed topic model incorporated with collapsed typed dependency relations. In

Section 4.4, we explain our method for generalizing words using synonyms. We dis-

cuss the relationship between our topic models and other similar counterparts in

Section 4.5. Section 4.6 introduces some criteria to evaluate topic models. Then, it

demonstrates the effectiveness of our approach through experiments. Finally, Sec-

tion 4.7 summarises the chapter.

4.2 Collapsed typed dependency relations and HPSG

parse trees

The bag-of-words representation of text documents is of particular interest in most

topic models. However, this representation does not contain information about the

relations between words. Relations could hold over a consecutive or nonconsecutive

neighborhood of a word [50].

In this work, we use the collapsed typed dependency relations to acquire syntactic

and semantic structures of text documents. This acquisition enables us to further

capture consecutive and nonconsecutive relations between words of text documents.

Typed dependency relations are extracted from typed dependency parse trees that

are respectively constructed according to the Head-Driven Phrase Structure Grammar

(HPSG) that is explained in the following section.
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4.2.1 The HPSG-based parse trees

The Head-Driven Phrase Structure Grammar (HPSG), developed by Pollard et al. [71],

is a highly structured grammatical representation of text documents. The reason we

choose the HPSG-based grammars is the high degree of its formal explicitness that

effectively analyzes syntactic relations concerning multi-word constituents [30, 50].

The HPSG-based parse tree of a sentence starts from a root and ends in leaf nodes

which represent words. Internal nodes of the tree represent syntactic roles of the

connected leaf nodes. For example, Figure 4.1 represents the HPSG-based parse tree

of the sentence “Some countries deny human basic civil rights.”2 In this tree, the left-

most branch, node NP represents the role of “noun phrase” for the leaf node “Some

countries”.

2Enju is used to extract the HPSG parse tree. This parser is available at

http://www.nactem.ac.uk/enju.
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S

NP

DP

DT

Some

NP

NNS

countries

VP

VP

VBP

deny

NP

NP

ADJP

JJ

human

NP

ADJP

JJ

basic

NP

ADJP

JJ

civil

NP

NNS

rights

Figure 4.1: The HPSG-based parse tree of the sentence “Some countries deny human

basic civil rights.” Abbreviations that are used in this tree are as follows: S: sentence;

NP: noun phrase; VP: verb phrase; DP: determiner phrase; DT: determiner; NNS:

plural noun; ADJP: adjective phrase; JJ: adjective.
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Grammatical Definition Example

Relation

root It points to the root of the sentence; “I love French fries.”

and acts as the root of the tree. root(root, love)

amod(wi,wj) Adjective Modifier: wj is an adjective that “Sam eats red meat.”

changes the meaning of wi. amod(meat, red)

rcmod(wi,wj) Relative Clause Modifier: wj ia a verb in a relative clause “I saw the man you love.”

that changes the meaning of wi. rcmod(man, love)

nsubj(wi,wj) Nominal Subject: wj is a subject “Clinton defeated Dole.”

of a verb wi. nsubj (defeated, Clinton)

dobj(wi,wj) Direct Object: wj is a “They win the lottery.”

direct object of a verb wi. dobj (win, lottery)

det(wi,wj) Determiner: wj is a determiner “The man is here.”

of the head of a noun phrase wi. det (man, The)

Table 4.1: Most common grammatical relations used in typed dependency parse trees, defined in de Marneffe et al. [29, 30].

A comprehensive set of all grammatical relations used in this dissertation is explained in Appendix A.
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The HPSG-based parse trees provide a high level syntactic representation of sen-

tences in text documents [30]. However, we need to capture specific relations between

every individual related pair of words. Thus, we need to elaborate HPSG to include

additional labelled grammatical relations between words. This is achieved by con-

structing the following collapsed typed dependency parse trees from the HPSG-based

parse trees.

4.2.2 Collapsed typed dependency relations

While the HPSG-based parse trees represent nesting of multi-word constituents, a

dependency parse tree represents dependencies between individual words. A typed

dependency parse tree of a sentence provides a tree representation of detailed gram-

matical relations between words in the sentence [30]. The algorithm to extract typed

dependency parse trees from the HPSG parse trees has two phases [30]: dependency

extraction and dependency typing. In the first phase, a sentence is parsed with a

phrase structure grammar parser (HPSG), explained in Section 4.2.1. The output

of this phase is arranged hierarchically and rooted with the most generic relation.

In the second phase, when the relation between an internal node and its connected

leaf node can be identified more precisely, more specific grammatical relations further

down in the hierarchy is used. For example, Figure 4.2 shows the typed dependency

parse tree for the sentence “Some countries deny human basic civil rights.” This tree

is constructed from the HPSG-based parse tree, shown in Figure 4.1. A more clear

view of this tree is also shown horizontally in Figure 4.3, where the order of the words

is present. Words in the sentence are nodes of the tree and grammatical relations are
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Figure 4.2: The typed dependency parse tree of the sentence “Some countries deny

human basic civil rights.” See Table 4.1 for the explanation of each relation.

the edge labels. For example, dobj edge label between two nodes edge and label rep-

resents that the word rights is the direct object of the verb deny. Each grammatical

relation is an instance of the 48 grammatical relations mentioned in [30]. Table 4.1

shows most common grammatical relations used in typed dependency parse trees. A

comprehensive set of all grammatical relations used in this dissertation is explained

in Appendix A.

As illustrated in Figure 4.3, nonconsecutive relations between words with gaps,

i.e. “human rights”, is captured under the amod relation. Using bag-of-words or

n-gram methods to represent text documents fails to capture these relations between

nonconsecutive words.

For each edge in the tree, we extract a relation rel(wi, wj), where rel is the edge

label representing a relation and wi and wj are two nodes of the edge. For example,

the set of relations extracted from the typed dependency parse tree, illustrated in Fig-

ure 4.3, is as follows: {root(root, deny), det(countries, Some), nsubj(deny, countries),
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Some countries

det

deny

nsubj

dobj
root

human basic civil rights

amod

amod

amod

.

Figure 4.3: The horizontal presentation of the typed dependency parse tree of the

sentence “Some countries deny human basic civil rights.” As illustrated in this figure,

the typed dependency parse tree effectively captures relations between nonconsecutive

words, i.e., amod relation between words human and rights.

amod(rights, human), amod(rights, basic), amod(rights, civil), dobj(deny, rights)}.

The relations from typed dependency parse trees are further processed by collaps-

ing relations involving prepositions and conjuncts to get direct dependencies between

content words [30]. This collapsing is often useful in simplifying and filtering the

relations. For instance, the sentence “A company is based in LA.” contains the fol-

lowing relations: prep(based, in) and pobj(in, LA), where prep represents that “in”

is a prepositional modifier of a verb “based”, and pobj represents that “LA” is the

object of a the preposition “in”. The dependencies involving the preposition “in” in

the aforementioned example will be collapsed into one single relation: prep-in(based,

LA). The collapsed typed dependency parse trees are constructed using the Stanford

parser toolkit that has phrase structured grammars integrated in [29, 30]3.

As a result, collapsed typed dependency relations not only capture relations be-

tween consecutive and nonconsecutive words, but they also eliminate less informative

relations involving prepositions.

3http://nlp.stanford.edu/software/lex-parser.shtml
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In our work, we use the collapsed typed dependency relations to represent the

corpus. These relations enable us to better distinguish topic assignments for the

relations involving the same parent. For instance, a tree including a parent with

c children, will be represented by c relations, where each relation denotes the edge

connecting the child and the parent. We further propose the following topic model

to consider the collapsed typed dependency relations and assign a discriminate topic

to each relation.

4.3 The HPSG-based topic model

In this section, we propose the HPSG-based topic model that enriches text documents

with collapsed typed dependency relations to effectively acquire syntactic and seman-

tic dependencies between consecutive and nonconsecutive words.

We assume that corpus R consists of M documents. We also assume that ~R =

{r1, r2, · · · , rR} represents a corpus of R unique collapsed dependency relations be-

tween words. This set of unique vocabulary relations can be the set of unique collapsed

typed dependency relations extracted from the corpus. These relations are instances

of the 48 grammatical relations described in Section 4.2.2, each of which consists of

two words. In addition, we assume that each relation ri ∈ ~R is associated with a

latent topic variable zi where i ∈ {1, 2, · · · , N}.

Our topic model assumes that each document d has a multinomial distribu-

tion over K topics with parameters ~Θd. Thus, for a relation ri in document d,

p(zri
= k|d) = Θd,k. In our proposed model, the kth topic is represented by a multi-

nomial distribution over R relations with parameters ~Φk, thus p(ri|zri
= k) = Φk,ri

.
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Inspired from LDA [16, 39, 40], we provide a procedure to generate documents. In

this procedure, each document d is generated by first drawing a distribution over

topics (~Θd), generated from a Dirichlet distribution with prior ~α. The relations in

the document are then generated by drawing a topic k from this distribution and

then drawing a relation from that topic according to a multinomial distribution over

relations (~Φk), generated from a Dirichlet distribution with prior ~β.

Note that the only observed variables are the relations in the collection of relations

~R. Document distribution over topics and topic distribution over relations are latent

variables generated from Dirichlet distributions with priors ~α and ~β, respectively. We

use Gibbs sampling to obtain approximate estimates for the latent variables. Gibbs

sampling is a simple Markov chain Monte Carlo algorithm that sequentially replaces

the value of one of the latent variables by a value drawn from the distribution of that

variable conditioned on the values of the remaining variables [10].

We adopt Gibbs sampling algorithm proposed by Griffiths et al. [39, 40] to draw

a topic from the conditional distribution iteratively. The complete likelihood of the

model is factored as: p(~R, ~z|~α, ~β) = p(~R|~z, ~β)p(~z|~α). The first probability is an

average over Φ, where Φ = {~Φk}
K
k=1:

p(~R|~z, ~β) =

∫

Φ

p(~R|~z, Φ)p(Φ|~β)dΦ. (4.1)

The first term in Equation 4.1 is obtained as:

p(~R|~z, Φ) =
K
∏

k=1

R
∏

i=1

(Φk,ri
)n

ri
k , (4.2)
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where nri

k is the total number of times topic k is assigned to relation ri. By expanding

p(Φ|~β) as a Dirichlet distribution, we obtain:

p(Φ|~β) =
K
∏

k=1

1

B(~β)

R
∏

i=1

(Φk,ri
)β−1, (4.3)

where B(.) is the Beta function. Substituting the first and the second terms of

Equation 4.1 with Equations 4.2 and 4.3, and using the Dirichlet integral4 yields:

p(~R|~z, ~β) =

∫

~Φk

K
∏

k=1

1

B(~β)

R
∏

i=1

(Φk,ri
)n

ri
k

+β−1d~Φk (4.4)

=
K
∏

k=1

1

B(~β)

∫

~Φk

R
∏

i=1

(Φk,ri
)n

ri
k

+β−1d~Φk

=
K
∏

k=1

B(~nk + ~β)

B(~β)
,

where ~nk = {nri

k }
R
i=1.

p(~z|~α) remains analogous to LDA and is obtained by:

p(~z|~α) =
M
∏

d=1

B(~nd + ~α)

B(~α)
, (4.5)

where ~nd = {nk
d}

K
k=1.

We can derive the full conditional distribution for relation ri in document d gen-

erated by topic zri
= k:

4B(~γ) =
∫

~x

∏N
i=1

(xi)
γi−1dN

~x
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p(zri
= k|~z−ri

, ~R) =
p(~R, ~z)

p(~R, ~z−ri
)

=
p(~R|~z)

p(~R−ri
|~z−ri

)p(ri)
·

p(~z)

p(~z−ri
)

(4.6)

=
B(~nk + ~β)

B(~nk,−ri
+ ~β)

·
B(~nd + ~α)

B(~nd,−d + ~α)

=
nri

k,−ri
+ β

∑R

i=1(n
ri

k,−ri
+ β)

·
nk

d,−d + α
∑K

k=1(n
k
d,−d + α)

,

where nri

k,−ri
is the total number of times topic k is assigned to relation ri, excluding

the current one, nk
d,−d is the total number of relations in document d assigned to topic

k, excluding the current assignment.

Finally, we need to calculate the multinomial parameter sets Φ and Θ. Note that

p(~Φk|~R, ~β) = Dirichlet(~Φk|~nk + ~β), and p(~Θd|~R, ~α) = Dirichlet(~Θ|~nd + ~α). Using

the expectation of the Dirichlet distribution (Dirichlet(β) = βi/
∑

i βi) yields:

Φk,ri
=

nri

k + β

n
(.)
k + Rβ

, (4.7)

Θd,k =
nd

k + α

n
(.)
d + Kα

, (4.8)

where n
(.)
k is the total number of relations assigned to topic k, nd

k is the number of

relations from document d assigned to topic k, and n
(.)
d is the total number of relations

in document d.

4.4 Generalizing words using synonyms

Text documents often contain words that are synonyms. Sets of synonyms can be

obtained from lexical resources like WordNet [60]. In this work, we investigate the
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influence of generalizing words using a synonym on topic modeling.

Similar to LDA [16], we assume that a document is a multinomial distribution over

K topics, where each topic is a multinomial distribution over V vocabulary words.

We also assume that documents are represented by a sequence of words, denoted

by W = {w1, w2, · · · , wN}, where wn ∈ W is the nth word in the sequence. Given

the fact that a set of synonyms shares a similar concept, it is reasonable to expect

them to have similar probabilities under topics. For example, if a text document is

about happiness, the inferred topic should assign higher probabilities to words such as

delighted, blessed, and prosperity; and lower probabilities to words such as sad, bitter,

and sorrow. In order to ensure that topics are similarly distributed over synonyms, we

propose the following algorithm to replace all synonyms of a word with an equivalent

synonym with the highest frequency in WordNet:

1. Group the words from WordNet, based on their conceptual similarities. Each

group will contain a set of synonyms.

2. For each group, find the frequency of the words in the group. The frequency of

a word is the number of occurrences of the word in WordNet.

3. Select the most frequent word in the group as the group representative.

4. For each wi ∈ W:

Look for a group where wi belongs to.

If a group is found, replace wi with the group representative, found in Step

3;

else, leave the word as is.
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For example, consider a text document that contains the word prosperous. This

word belongs to the following group of synonyms {delighted, blessed, prosperous,

happy, fortunate}. Our algorithm finds the frequency of each synonym in Word-

Net. It selects happy as the group representative because it is the most frequent

word in the group. Finally, our algorithm replaces the word prosperous with the word

happy.

4.5 Relationships to other work

In this work, we go beyond the bag-of-words representation of documents to incorpo-

rate syntax and semantics of text documents into topic models. This section reviews

the theoretical relationships of our contributions with previous topic models that used

syntactic and semantic structures of texts.

Our proposed topic model is similar to STM [20] due to using typed dependency

trees to represent syntactic structures of sentences. However, our topic model has

following major differences with STM. Firstly, STM draws a word from a single dis-

tribution formed by the document distribution over topics weighted by the parse tree

distributions. Thus, topic assignment of a word depends on both the document’s

theme as well as the parent of the word in the parse tree. However, in our model

we use two distributions: document distribution over topics and topic distribution

over the collapsed dependency relations. We first draw a distribution over topics;

then, we select a topic from this distribution and then draw a relation from that

topic distribution over the collapsed dependency relations. Secondly, STM does not

fully distinguish topic assignments of the words that share the same parent in the
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dependency parse tree, i.e., children of a node, as stated by Boyd-Graber et al. [20].

However, in our model each pair of related nodes in the parse tree introduces a dis-

criminate relation. Thus, topic assignment to the relations involving the same parent

is better distinguished. Thirdly, STM does not use labelled dependency relations

and lexicalization. However, our model uses the labels of dependency relations to

distinguish and further collapse relations involving prepositions and conjuncts to get

direct dependencies between content words. Finally, STM computes the posterior

topic distributions by Bayesian variational methods. Our model uses Gibbs sampling

to infer posterior topic distributions. This final difference is complementary rather

than competitive.

In addition, our proposed topic model differs from the n-gram topic models [80]

in capturing dependencies between words of a sentence. Our topic model considers

dependencies between nonconsecutive words with a distance; while the n-gram topic

model is limited to capturing dependencies between consecutive words.

Moreover, our proposed model, uses WordNet to enforce topic similarity for words

with conceptual similarities, by generalizing similar words with their synonyms. Lex-

ical resources, i.e. WordNet, were previously used in topic models. Musat et al. [63]

employs WordNet to improve topic models by removing unrelated words from the

simplified topic descriptions. Mei et al. [58] used WordNet to label each topic in a

multinomial topic model. Newman et al. [66] uses WordNet to evaluate topic co-

herence. None of them uses synonyms to generalize words prior to building topic

models.
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4.6 Experiments

We conducted experiments on two text corpora to compare the performance of four

following topic models: LDA [16], LDA on generalized words using synonyms, ex-

plained in Section 4.4, the Bigram Topic Model [80], and the HPSG-based topic

model, explained in Section 4.3. The four topic models were trained with 1000 iter-

ations of Gibbs sampling [39, 40] used in the MALLET [57]. Initial values for the

hyperparameters (α, β) applied to all our experiments were α = 50.0 and β = 0.01.

Note that these parameters are default parameters of most LDA-based topic models,

expected to result in a fine-grained decomposition of the corpus into topics [40].

In our experiments we used Associated Press corpus5 that consists of 2, 246 Associ-

ated Press articles, 33, 872 words, and 454, 370 collapsed typed dependency relations.

In addition, we used Reuters-21578 Distribution 1.06 that includes 10, 789 documents,

15, 996 words, and 793, 345 collapsed typed dependency relations. Note that all de-

pendency relations are the collapsed typed dependency relations extracted from the

corpus, excluding the “root” relations, as explained in Section 4.2.2.

Table 4.2 illustrates top 10 terms of the most probable topics generated by afore-

mentioned topic models on the Reuters corpus. The first column shows the words

generated by LDA. Some words in this topic are ambiguous and can have multiple

meanings. To identify the correct meaning of each word, one needs to consider other

words in the topic. For example, the word “share” has many meanings. Observing

other words in the topic, such as “bank” and “profit”, helps to identify the correct

meaning of the word “share” that is “assets belonging to an individual”. The second

5http://www.cs.princeton.edu/∼blei/lda-c
6http://www.research.att.com/∼lewis
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LDA LDA on generalized The Bigram The HPSG-based

words using synonyms Topic Model Topic Model

bank financial reconstruction plans money funds

profit international debt repayment overseas investments

foreign net private institute raising stake

share government traders reported foreign deposits

federal billion existing research commercial banks

japanese withdraw payments improve buyout transaction

policy currency banking office lack assets

rates rise borrowing occurred stock exchange

money sale federal supervisory account balance

shares february bank consultancies bank regulation

Table 4.2: Top 10 terms of the most probable topic, generated by four topic models:

LDA, LDA on generalized words using synonyms, the Bigram topic model, and the

HPSG-based topic model from Reuters corpus.

column shows the results of LDA on generalized words using synonyms. These words

are similar to the words in the first column and still suffer from ambiguity. The terms

generated by the Bigram Topic Model and the HPSG-based topic model are shown in

columns three and four, respectively. These topic models have less ambiguity, given

the fact that they generate terms that include pairs of words that are more descrip-

tive than single words. In addition, as opposed to the Bigram topic model, terms

generated by the HPSG-based topic model are not only limited to consecutive pairs

of words of a sentence, but they also contain pairs of related words with gaps.
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Given the text corpora, we compare our work with other topic models based on

the following criteria:

• High likelihood on a held-out test set (perplexity) [16].

• Coherent distribution of words learned by individual topics [66].

• Accurate distribution of topics over words.

• Stable distribution of topics over words across samples [74].

These criteria and experimental results are discussed in the subsequent sections.

4.6.1 Perplexity

Perplexity is the most common criterion to evaluate the quality of topic models [47].

Perplexity measures the cross-entropy between the term distribution learned by the

topic model and the distribution of terms in an unseen test document. Thus, lower

perplexity score indicates that the model is better in predicting distribution of the test

document [16, 25]. We evaluate perplexity as a function of number of topics for both

Associated Press and Reuters corpora. We trained the topic models on 90% of the

corpus to estimate the held out probability of previously unseen 10% of the corpus.

We compute the perplexity of the held-out test set with respect to the HPSG-based

topic model by

perplexity(Rtest) = exp

(

−

∑Q

d=1 logp(~Rd)
∑Q

d=1 |
~Rd|

)

, (4.9)

where Rtest is the test corpus with Q documents, ~Rd denotes the set of collapsed typed

dependency relations in document d ∈ Rtest, |~Rd| is the total number of collapsed
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typed dependency relations in document d, and p(~Rd) is the probability estimate

assigned to ~Rd by the HPSG-based topic model.

The results are illustrated in Figures 4.4 and 4.5. The x-axis shows the number of

topics (K) used in each model; the y-axis shows the perplexity. These figures clearly

indicate that the perplexity of our proposed topic model drastically decreases the

perplexity of LDA and LDA on generalized words using synonyms. Moreover, the

perplexity of our proposed topic model is slightly better than the perplexity of the

Bigrams Topic Model. The improvement in perplexity is due to using the collapsed

typed dependency relations instead of bag-of-words to represent the corpus. In our

method, every word is followed by another word that is semantically or syntactically

related to it. This representation leads to better estimates for unseen documents, and

thus lower perplexity.

4.6.2 Topic coherence

Topic coherence measures the integrity or coherence of top terms in a topic generated

by a topic model. In other words, top n terms generated by topic k, denoted by

~Φk = {r1, r2, · · · , rn}, are coherent if they are semantically similar. We use the

normalized pairwise mutual information (NPMI) [49] to calculate the average sum of

semantic similarity scores between every pair of top n terms of the topics generated

from the Associated Press corpus. Mathematically, the NPMI of top n topic terms is

computed by

NPMI(~Φk) =
n
∑

j=2

j−1
∑

i=1

log
p(ri,rj)

p(ri)·p(rj)

− log p(ri, rj)
, (4.10)
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Figure 4.4: Perplexity as a function of number of topics, using LDA, LDA on gen-

eralized words using synonyms, the Bigram topic model, and the HPSG-based topic

model on the Association Press corpus.
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Figure 4.5: Perplexity as a function of number of topics, using LDA, LDA on gen-

eralized words using synonyms, the Bigram topic model, and the HPSG-based topic

model on Reuters corpus.
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where p(x) is the probability that term x appears in a corpus. Wikipedia7 is used

as our training corpus. We compared the topic coherence of top 50 words from 20

topics generated by LDA, LDA on generalized words using synonyms, the Bigram

topic model, and the HPSG-based topic model on Reuters corpus. The results are

shown in Tables 4.3 and 4.4. LDA on generalized words using synonyms results in

more coherent topic distribution over words. This coherence is due to the fact that

we replaced conceptually related words with one general word, prior to modeling the

topic assignments. The HPSG-based topic model generates slightly more coherent

topic distributions over words than the Bigram topic model. The HPSG-based topic

model performs comparable to LDA in topic coherence.

4.6.3 Accuracy

The accuracy of a topic model is the degree of closeness of the topic distribution over

terms of a test corpus to actual topic distribution over terms of a topic-labeled corpus.

Note that calculating accuracy depends on the availability of the topic-labeled corpus.

We assume that the test corpus Rtest consists of Q documents

Rtest = {d1, d2, · · · , dQ}. Each document consists of H actual topic labels, denoted

by L = {l1, l2, · · · , lH}, where each li ∈ L represents an actual topic label for the

document. As mentioned earlier, a topic model generates K topics, where each topic

is a distribution over R relations, denoted by ~Φk = {r1, r2, · · · , rR}. The accuracy

score of the topic model is calculated by computing

7http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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Accuracy =

∑Q

i=1 mink=1,··· ,Kd(~Φk, L)

Q
, (4.11)

where d(~Φk, L) denotes the semantic similarity between two sets of ~Φk and L. This

semantic similarity is measured using the Lesk algorithm. The Lesk algorithm uses

dictionary definitions of two terms in a pair and counts the number of terms that are

shared between two definitions. The more overlapping the definitions are, the more

related the terms are8.

We compared the accuracy of LDA, LDA on generalized terms using synonyms, the

Bigram topic model, and the HPSG-based topic model on a subset of Reuters corpus

that contains topic labeled documents. As illustrated in Tables 4.5 and 4.6, these

algorithms are comparable in terms of accuracy. However, LDA is slightly better.

The HPSG-based topic model beats the Bigram topic model in terms of accuracy.

The reason is due to the fact that our topic model not only considers consecutive

relations between words (the Bigram topic model), but also nonconsecutive relations

between words.

4.6.4 Stability

Stability is the similarity of topic distributions over relations across different sam-

ples [74]. We follow the algorithm proposed by Rosen-Zvi et al. [74] to find the best

one-to-one topic alignment across samples. The algorithm finds the best aligned topic

pair by calculating minj=1,··· ,Kd(S1, S2), where d(S1, S2) denotes symmetrized Kull-

back Leibler (KL) divergences between the K topic distributions over relations from

8The Lesk toolkit is available at http://text-similarity.sourceforge.net
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Topic model Coherence

LDA 0.51

LDA on generalized 0.54

terms using synonyms

The Bigram 0.50

Topic Model

The HPSG-based 0.52

Topic Model

Table 4.3: The average topic coher-

ence of top 50 terms of 20 topics gen-

erated from Associated Press corpus.

Topic model Coherence

LDA 0.41

LDA on generalized 0.42

terms using synonyms

The Bigram 0.39

Topic Model

The HPSG-based 0.40

Topic Model

Table 4.4: The average topic coher-

ence of top 50 terms of 20 topics gen-

erated from Reuters corpus.

Topic model Accuracy

LDA 0.34

LDA on generalized 0.32

terms using synonyms

The Bigram 0.29

Topic Model

The HPSG-based 0.33

Topic Model

Table 4.5: Average accuracy of topic

distribution over terms from a subset

of topic-labeled Associated Press.

Topic model Accuracy

LDA 0.225

LDA on generalized 0.220

terms using synonyms

The Bigram 0.221

Topic Model

The HPSG-based 0.223

Topic Model

Table 4.6: Average accuracy of topic

distribution over terms from a subset

of topic-labeled Reuters.
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samples S1 and S2. KL divergence is calculated by d(S1, S2) =
∑

x∈X S1(x)log(S1(x)/S2(x)),

where X represents the set of relations in the samples [9]. We compare the stability of

topic distributions over relations across samples, generated by the HPSG-based topic

model and LDA on the Reuters corpus. The results, illustrated in Tables 4.7 and 4.8,

show that our proposed topic model is comparably as stable as LDA in producing

similar topic distributions over words across multiple samples. Similar results were

obtained using the Bigram topic model.

4.7 Summary

We proposed a novel method that incorporates syntactic and semantic structures

of text documents into probabilistic topic models. This representation has several

benefits. It captures relations between consecutive and nonconsecutive words of text

documents. In addition, the labels of the collapsed typed dependency relations help to

eliminate less important relations, i.e., relations involving prepositions. Also, words

of text documents, regardless of their parents in the collapsed typed dependency parse

trees, are distinguished in topic assignment. Furthermore, our experimental studies

show that the proposed topic model significantly outperforms LDA and is also better

than the Bigram topic model in terms of perplexity. We also show that our model

achieves comparable results with other models in terms of stability, coherence, and

accuracy. Besides, the results from our topic model have less ambiguity, given the

fact the generated terms include pairs of words that are more descriptive than single

words.

Moreover, we introduced a method to enforce topic similarity to conceptually
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similar words. As a result, this algorithm led to more coherent topic distribution over

words.
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Topics from sample 1 Best aligned topics from sample 2 Best KL

Topic 1 Topic 14 0.834

Topic 2 Topic 20 1.630

Topic 3 Topic 13 0.835

Topic 4 Topic 3 0.730

Topic 5 Topic 11 0.454

Topic 6 Topic 18 0.951

Topic 7 Topic 19 0.450

Topic 8 Topic 18 0.760

Topic 9 Topic 15 0.420

Topic 10 Topic 13 0.939

Topic 11 Topic 5 0.526

Topic 12 Topic 17 0.439

Topic 13 Topic 12 0.953

Topic 14 Topic 7 1.053

Topic 15 Topic 6 1.013

Topic 16 Topic 14 1.139

Topic 17 Topic 5 1.041

Topic 18 Topic 9 1.172

Topic 19 Topic 10 1.026

Topic 20 Topic 17 1.226

Average 0.87955

Table 4.7: Topic stability across two different runs of the HPSG-based topic model

on Reuters corpus.
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Topics from sample 1 Best aligned topics from sample 2 Best KL

Topic 1 Topic 5 0.821

Topic 2 Topic 12 1.073

Topic 3 Topic 8 0.533

Topic 4 Topic 19 0.721

Topic 5 Topic 3 1.031

Topic 6 Topic 18 1.050

Topic 7 Topic 7 0.836

Topic 8 Topic 8 0.754

Topic 9 Topic 15 0.428

Topic 10 Topic 13 0.765

Topic 11 Topic 7 0.818

Topic 12 Topic 8 0.798

Topic 13 Topic 6 0.961

Topic 14 Topic 5 0.764

Topic 15 Topic 12 1.161

Topic 16 Topic 8 0.867

Topic 17 Topic 6 0.791

Topic 18 Topic 4 0.921

Topic 19 Topic 18 1.064

Topic 20 Topic 8 1.091

Average 0.8624

Table 4.8: Topic stability across two different runs of LDA on Reuters corpus.
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Chapter 5

Topic Modeling using Term

Importance

Topic models such as Latent Dirichlet Allocation (LDA) are powerful tools to uncover

hidden thematic structures of documents. Typically, LDA uses symmetric Dirichlet

priors, neglecting the influence of term importance in documents. In this chapter [33],

we propose two generative topic models that incorporate term importance into la-

tent topic variables by boosting the probability of important terms and consequently

decreasing the probability of less important terms to better reflect the themes of

documents. In essence, we assign weights to terms by employing corpus-level and

document-level approaches. We incorporate term importance using a nonuniform

base measure for an asymmetric prior over topic-term distributions in the LDA frame-

work. This leads to better estimates for important terms that occur less frequently

in documents. Our experimental studies show that the proposed models outperform

LDA and the Bigram topic model in terms of perplexity and topic coherence. Ad-
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ditionally, our topic models show better performance than LDA in text classification

tasks.

5.1 Introduction

Topic modelling is a powerful statistical tool to uncover hidden thematic structures

and multi-faceted summaries of documents or other discrete data. Most topic models,

such as Latent Dirichlet Allocation (LDA) [16], consider documents to be a weighted

mixture of topics, where each topic is a multinomial distribution over terms. The

inferred topic model assigns a high probability to the topics of a corpus. In addition,

the highest probable terms in each topic provide important terms that summarize the

themes of the corpus [16, 40].

Typically, LDA-based topic models use fixed symmetric priors, and consider only

frequencies of terms in the corpus to estimate posteriors of latent variables [2, 82].

This strategy makes sense from a point of view of computational efficiency [80], but it

does not utilize additional information about how important a term is in the context of

a corpus or with respect to some external knowledge to properly identify more relevant

terms to describe a topic. As a result, some top-ranking terms in a topic may contain

terms that are frequent but not important to the topic. For instance, in a topic about

“sport”, it is reasonable for highly important terms such as “athletics”, “arena”, and

“track” to have a high probability, but less important terms like “announce”, “time”,

and “year” to have a low probability. However, if “time” and “year” frequently

appear in the documents about sports, these terms may obtain a high probability in

the distribution of the topic.
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In this chapter, we propose two novel generative topic models, topic model using

corpus-level term importance (TMCTI) and topic model using document-level term

importance (TMDTI). In our topic models, we consider an asymmetric Dirichlet prior

over the topic-term distributions, constructed from additional information about term

importance. In essence, we capture this additional information by adopting corpus-

level and document-level term importance measures. Consequently, we obtain a topic

model where terms can be a priori more or less probable in topics. We present

experiments using several topic models on two datasets. Our experiments show that

our topic models not only successfully incorporate term importance into LDA, but

also achieve better estimates for terms that occur rarely in the corpus. In addition,

our topic models improve perplexity and topic coherence of LDA and the Bigram

topic model. Also, our topic models result in higher accuracy than LDA in text

classification.

The structure of this chapter is as follows: In Section 5.2, we explain the methods

we use to measure term importance. In Section 5.3, we discuss our proposed topic

models using term importance. In Section 5.4, we demonstrate the effectiveness of

our approach through experiments. Finally, Section 5.5 concludes the chapter.

5.2 Measuring term importance

Term importance has long been beneficial in a variety of applications in natural lan-

guage processing and text mining [7, 47, 53]. We categorize the approaches we use to

measure term importance into two groups: corpus-level and document-level. Note that

it is possible to attribute term importance measures with natural linguistic features.
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For example, all-capitalized, bolded, underlined, or italic terms sometimes offer im-

portant cues about term significance [6, 53]. Moreover, it is possible to employ other

term importance measures, however, an investigation of these measures is beyond the

scope of this thesis. Notice that the term importance scores obtained by following

term importance measures are further normalized by scaling between zero and one.

5.2.1 Corpus-level term importance measures

Corpus-level term importance measures determine importance of a term across a

corpus, as discussed below.

5.2.1.1 A Wikipedia-based term importance measure

Wikipedia-based measures have been proved to be beneficial in natural language

processing applications [7, 37]. We adopt the approach proposed by Bendersky et

al. [7] to compute term importance by using the statistics of an external data source.

We use Wikipedia article titles1, as our external resource. Due to the large volume and

the high diversity of topics covered by Wikipedia, it is often assumed that important

terms will appear in article titles in Wikipedia [7]. We calculate the importance of

term t, g(t), by counting the number of times term t occurs within a Wikipedia title,

and normalize it by scaling between zero and one. We use Laplace smoothing to

assign positive weights to all terms whether or not they are observed in Wikipedia

titles.

1Available at http://dumps.wikimedia.org/enwiki/latest/
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5.2.1.2 An idf-Wikipedia-based term importance measure

The Wikipedia-based approach is only dependent on Wikipedia. Below we use the

inverse document frequency of term t, idf(t), to smooth the Wikipedia-based score.

The importance of term t, denoted by I(t), is defined as:

I(t) = g(t) × idf(t), (5.1)

where g(t) is defined in Section 5.2.1.1 and idf(t) = log(M/dft), where M is the total

number of documents in the corpus and dft is the number of documents containing

term t [47]. As a result, rare terms across documents tend to gain a higher score and

common terms like “the”, a lower score.

5.2.2 Document-level term importance measures

Document-level term importance measures determine the importance of a term in a

document.

5.2.2.1 A tfidf-based term importance measure

Term frequency-inverse document frequency (tfidf) [47] is a statistical measure that

increases proportionally to the frequency of a term in a document but lessens by the

frequency of the term among documents in the corpus. The tfidf score of a term t

in document d, represented by tfidf(t,d), is defined as

tfidf(t, d) = tft,d × log
M

dft

, (5.2)
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where tft,d measures the ratio of the number of times term t appears in document d

to the total number of terms in document d, and M is the total number of documents

in a corpus, and dft is the number of documents containing term t.

5.2.2.2 A tfidf-Wikipedia-based term importance measure

The tfidf-based approach, explained in Section 5.2.2.1, is rigidly dependent on docu-

ments. It assigns scores to terms of documents based on a single data source. Alter-

natively, we adopt the approach proposed by Bendersky et al. [7] to compute term

importance by combining the statistics of the underlying documents, i.e., tfidf , with

the statistics of an external data source, i.e., Wikipedia, to achieve a more accurate

score. We define I(t, d), the importance of term t in document d, as:

I(t, d) = tfidf(t, d) × g(t). (5.3)

where g(t) is a Wikipedia-based score defined earlier.

5.3 Proposed probabilistic topic models

We assume that a corpus consists of M documents denoted by {d1, d2, · · · , dM}.

Each document d contains Nd words denoted by {wd,1, wd,2, · · · , wd,Nd
}, where each

word is the basic unit of discrete data belonging to a vocabulary of V terms. In

addition, each term wd,n ∈ d is assigned a latent topic zd,n = k. Each of these

topics k ∈ {1, 2, · · · , K} is associated with a multinomial distribution (~Φk) over V

terms. In addition, each document d is a multinomial distribution (~Θd) over K topics,

where K is the number of topics in the corpus. We propose two probabilistic topic
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Figure 5.1: Graphical model represen-

tation of the topic model using corpus-

level term importance measures (TM-

CTI).

Figure 5.2: Graphical model repre-

sentation of the topic model using

document-level term importance mea-

sures (TMDTI).
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models to incorporate additional information about term importance into the LDA

framework to boost the probability of important terms and decrease the probability

of less important terms in topics.

5.3.1 Topic model using corpus-level term importance (TM-

CTI)

Let ~Λc = {Λc
1, Λ

c
2, · · · , Λc

V } represent the corpus-level importance scores of the V

terms in the vocabulary, where Λc
t ∈ ~Λc denotes the importance score of term t,

and 0 <Λc
t< 1. TMCTI is designed based on the LDA framework. The generative

procedure of TMCTI is formally stated in Algorithm 2, and graphically illustrated in

Figure 5.1.

Algorithm 2 Generative process for topic model using corpus-level term importance

(TMCTI).

1: for each topic k ∈ [1, K] do

2: Generate ~Φk ∼ Dir(~β ⊗ ~Λc), where ⊗ is an element-wise multiplication.

3: for each document d ∈ [1,M ] do

4: Generate ~Θd ∼ Dir(~α)

5: Generate document length Nd ∼ poisson(ξ)

6: for each word n ∈ [1, Nd] in document d do

7: Generate topic index zd,n ∼ Mult(~Θd)

8: Generate word wd,n ∼ Mult(~Φzd,n
)

This algorithm is similar to LDA in generating each document d by drawing a
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distribution over topics (~Θd), generated from a Dirichlet distribution with a prior ~α.

However, TMCTI differs from LDA in using an asymmetric Dirichlet prior ~β ⊗ ~Λc,

where β is a uniform symmetric vector determining how concentrated the probability

mass of a sample from a Dirichlet distribution is likely to be and λc is the corpus

level term importance vector ~Λc, for topic-term distributions ~Φk. Since the terms are

drawn from ~Φk, higher Λc
t values mean that term t is more likely in topic k. In this

procedure, we first observe the corpus-level term importance vector ~Λc. Then, the

asymmetric prior, ~β ⊗ ~Λc is an element-wise multiplication2 of ~β and ~Λc as shown

in Line 2 of Algorithm 2. For example, suppose a corpus has three terms in the

vocabulary with term importance scores given by ~Λc = {0.1, 0.2, 0.3}. Also, assume

~β = {0.1, 0.1, 0.1}, then ~β ⊗ ~Λc would be {0.01, 0.02, 0.03}.

TMCTI fulfils our requirement that the uniform symmetric Dirichlet prior ~β for

~Φk is replaced with the nonuniform asymmetric prior ~β ⊗ ~Λc with base measure ~Λc.

Thus, more important terms have a higher chance to be generated. The dependency

of ~Φk on both ~β and ~Λc is indicated by directed edges from ~Λc and ~β to ~Φk in the

plate notation in Figure 5.1.

5.3.1.1 Parameter estimation

The only observed variables are the words in the corpus ~W and the corpus-level

term importance vector ~Λc. The corpus-level term importance vector is observed

in the preprocessing step of our topic modelling procedure, using the corpus-level

approaches explained in Section 5.2.1. We assume an asymmetric prior ~β ⊗ ~Λc for

2An element-wise multiplication, denoted by ⊗ in Algorithm 2, of two vectors is element by

element multiplication of the vectors.
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Φ, and a symmetric prior ~α for Θ, where Φ = {~Φk}
K
k=1 and Θ = {~Θd}

M
d=1. These

priors are conjugate to the multinomial distributions Φ and Θ [40, 82]. Hence, we

can use collapsed Gibbs sampling [40, 34, 43] to obtain approximate estimates for

Φ and Θ. The complete likelihood of the model is factored as: p( ~W, ~z|~α, ~β ⊗ ~Λc) =

p( ~W |~z, ~β ⊗ ~Λc)p(~z|~α). The first probability is an average over Φ:

p( ~W |~z, ~β ⊗ ~Λc) =

∫

Φ

p( ~W |~z, Φ)p(Φ|~β ⊗ ~Λc)dΦ. (5.4)

The first term in Equation 5.4 is obtained as:

p( ~W |~z, Φ) =
K
∏

k=1

V
∏

t=1

(Φk,t)
nt

k , (5.5)

where nt
k is the total number of times topic k is assigned to term t. By expanding

p(Φ|~β ⊗ ~Λc) as a Dirichlet distribution, we obtain:

p(Φ|~β ⊗ ~Λc) =
K
∏

k=1

1

B(~β ⊗ ~Λc)

V
∏

t=1

(Φk,t)
βt×Λc

t−1, (5.6)

where B(.) is the Beta function. Substituting the first and the second terms of

Equation 5.4 with Equations 5.5 and 5.6, and using the Dirichlet integral3 yields:

p( ~W |~z, ~β ⊗ ~Λc) =

∫

~Φk

K
∏

k=1

1

B(~β ⊗ ~Λc)

V
∏

t=1

(Φk,t)
nt

k
+βt×Λc

t−1d~Φk (5.7)

=
K
∏

k=1

1

B(~β ⊗ ~Λc)

∫

~Φk

V
∏

t=1

(Φk,t)
nt

k
+βt×Λc

t−1d~Φk

=
K
∏

k=1

B(~nk + ~β ⊗ ~Λc)

B(~β ⊗ ~Λc)
,

3B(~γ) =
∫

~x

∏N
i=1

(xi)
γi−1dN

~x
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where ~nk = {nt
k}

V
t=1.

p(~z|~α) remains analogous to LDA and is obtained by:

p(~z|~α) =
M
∏

d=1

B(~nd + ~α)

B(~α)
, (5.8)

where ~nd = {nk
d}

K
k=1.

We can derive the full conditional distribution for term Wi = t in document d = l

generated by topic zi = k, given the corpus ~W = {Wi = t, ~W−i} and ~z = {zi = k, ~z−i}

where zi denotes the topic assignment for the ith term Wi ∈ ~W and ~z−i is topic

assignments for the rest of the terms ~W−i ⊂ ~W :

p(zi = k|~z−i, ~W ) =
p( ~W, ~z)

p( ~W, ~z−i)
=

p( ~W, ~z)

p( ~W−i|~z−i)p(wi)
·

p(~z)

p(~z−i)
(5.9)

=
B(~nk + ~β ⊗ ~Λc)

B(~nk,−i + ~β ⊗ ~Λc)
·

B(~nd + ~α)

B(~nd,−l + ~α)

=
nt

k,−i + βt × Λc
t

∑V

t=1(n
t
k,−i + βt × Λc

t)
·

nk
d,−l + α

∑K

k=1(n
k
d,−l + α)

,

where nt
k,−i is the total number of times topic k is assigned to term t, excluding the

current one, nk
d,−l is the total number of terms in document d assigned to topic k,

excluding the current assignment.

Finally, we need to calculate the multinomial parameter sets Φ and Θ. Note that

p(~Φk| ~W, ~β⊗~Λc) = Dirichlet(~Φk|~nk + ~β⊗~Λc), and p(~Θd| ~W, ~α) = Dirichlet(~Θ|~nd+~α).

Using the expectation of the Dirichlet distribution (Dirichlet(β) = βi/
∑

i βi) yields:

Φk,t =
nt

k + βt × Λc
t

∑V

t=1(n
t
k + βt × Λc

t)
, (5.10)
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Θd,k =
nd

k + α

n
(.)
d + Kα

, (5.11)

where nd
k is the number of terms from document d assigned to topic k, and n

(.)
d is the

total number of terms in document d.

5.3.2 Topic model using document-level term importance

(TMDTI)

In TMDTI, different from LDA [16] and TMCTI explained in Section 5.3.1, for each

document d and each topic k, a new topic-term distribution ~Φkd is drawn. In LDA

and TMCTI, Φ is a V ×K array of term probabilities given topics, where V is the size

of the vocabulary and K is the number of topics. In TMDTI, Φ is a three dimensional

V ×K ×M array of term probabilities for each topic for each document, where M is

the number of documents. That is, Φ = {~Φkd}, where k = 1, · · · , K, d = 1, · · · ,M ,

and ~Φkd is the topic distribution over V terms for document d and topic k. Moreover,

the Dirichlet prior ~βk for ~Φkd is replaced with a document-specific Dirichlet prior

~βk ⊗ ~Λd that is a nonuniform asymmetric prior with a concentration parameter ~βk

and a nonuniform base measure ~Λd. Since the terms are drawn from ~Φkd, higher Λd
t

values mean that term t is more likely in document d in topic k.

Algorithm 3 represents the TMDTI generative probabilistic process. This process

is graphically illustrated in Figure 5.2. Similar to TMCTI, an element-wise multi-

plication of ~βk and ~Λd, as shown in Line 5 of Algorithm 3, is used to compute the

asymmetric prior ~βk⊗~Λd. Note that TMDTI is similar to LDA and TMCTI in gener-

ating a document d by drawing a distribution over topics ~Θd, which is in turn drawn
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from a Dirichlet distribution with a prior ~α.

Algorithm 3 Generative process for topic model using document-level term impor-

tance (TMDTI).

1: for each document d ∈ [1,M ] do

2: Generate ~Θd ∼ Dirichlet(~α)

3: Generate document length Nd ∼ poisson(ξ)

4: for each topic k ∈ [1, K] do

5: Generate ~Φkd ∼ Dirichlet(~βk ⊗ ~Λd).

6: for each word n ∈ [1, Nd] in document d do

7: Generate topic index zd,n ∼ Mult(~Θd)

8: Generate word wd,n ∼ Mult(~Φzd,nd)

TMDTI also fulfils our requirement that the uniform symmetric Dirichlet prior ~βk

for ~Φkd is replaced with a document-dependent nonuniform asymmetric prior ~βk⊗~Λd.

Thus, more important terms have a higher chance to be generated.

5.3.2.1 Parameter estimation

The only observed variables are the words in the corpus ~W and the document-level

term importance matrix ~Λd of the corpus. ~Λd is computed in the preprocessing step

of our topic modelling procedure, using the approaches explained in Section 5.2.2.

We assume an asymmetric prior ~βk ⊗ ~Λd for Φ, and a symmetric prior ~α for Θ. Due

to the conjugacy of these priors to the multinomial distributions Φ and Θ [34, 82], we

can use Gibbs sampling procedure to estimate the latent variables Φ and Θ. Similar

derivation procedure, explained in Section 5.3.1, is used to obtain the full conditional
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distribution for following Gibbs sampling equation:

p(zi = k|~z−i, ~W ) =
nt

k,d,−i + βd
kt × Λd

t
∑V

t=1(n
t
k,d,−i + βd

kt × Λd
t )

·
nk

d,−l + α
∑K

k=1(n
k
d,−l + α)

, (5.12)

where nt
k,d,−i is the total number of times term t in document d is assigned to topic k,

excluding the current one. Finally, similar to the procedure, explained in Section 5.3.1,

the conditional distribution for Φ is:

Φk,d,t =
nt

kd + βd
kt × Λd

t
∑V

t=1(n
t
kd + βd

kt × Λd
t )

, (5.13)

where nt
kd denotes the number of times term t is assigned to topic k in document d.

The distributions over topics (Θ) is similar to the ones in LDA and TMCTI given by

Equation 5.11.

5.3.3 Integrating the HPSG-based topic model into topic

model using term importance

In Chapter 4, we propose the HPSG-based topic model [32] that enriches text docu-

ments with collapsed typed dependency relations to effectively acquire syntactic and

semantic dependencies between consecutive and nonconsecutive words of text docu-

ments. Thus, we assume that the corpus is represented by R unique collapsed de-

pendency relations between words, denoted by ~R = {r1, r2, · · · , rR}. These relations

are instances of the 48 grammatical relations, described in Chapter 4, each of which

consists of two words. In the HPSG-based topic model, we used symmetric Dirichlet

priors, neglecting the influence of term importance in dependency relations and thus
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in documents. In this section, we propose to incorporate relation importance into

the HPSG-based topic model by boosting the probability of important relations and

consequently decreasing the probability of less important relations to better reflect

the themes of documents. We assign weights to relations by employing corpus-level

and document-level approaches. We incorporate relation importance using a nonuni-

form base measure for an asymmetric prior over topic-relation distributions in the

HPSG-based topic model.

5.3.3.1 The HPSG-based topic model using corpus-level relation impor-

tance

Similar to TMCTI, explained in Section 5.3.1, we assume that ~Λc = {Λc
1, Λ

c
2, · · · , Λc

R}

represents the corpus-level importance scores of R relations in the set of unique col-

lapsed typed dependency relations, where Λc
r ∈ ~Λc denotes the importance score of

relation r, extracted from the corpus, and 0 <Λc
r< 1.

The generative process for this topic model is similar to Algorithm 2. Each doc-

ument d is generated by drawing a distribution over topics (~Θd), generted from a

Dirichlet distribution with a prior ~α. However, different from TMCTI, the corpus

is represented by typed dependency relations. Therefore, each topic k is gener-

ated by drawing a distribution over relations (~Θk), generated from an asymmetric

prior ~β ⊗ ~Λc, obtained from an element-wise multiplication of the corpus-level rela-

tion importance vector ~Λc and ~β. Thus, the likelihood of the model is defined as:

p(~R, ~z|~α, ~β ⊗ ~Λc) = p(~R|~z, ~β ⊗ ~Λc)p(~z|~α), where the first probablity is:
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p(~R|~z, ~β ⊗ ~Λc) =

∫

Φ

p(~R|~z, Φ)p(Φ|~β ⊗ ~Λc)dΦ. (5.14)

The first term in Equation 5.14 is obtained as:

p(~R|~z, Φ) =
K
∏

k=1

R
∏

r=1

(Φk,r)
nr

k , (5.15)

where nr
k is the total number of times topic k is assigned to relation r. By expanding

p(Φ|~β ⊗ ~Λc) as a Dirichlet distribution, we obtain:

p(Φ|~β ⊗ ~Λc) =
K
∏

k=1

1

B(~β ⊗ ~Λc)

R
∏

r=1

(Φk,r)
βr×Λc

r−1, (5.16)

where B(.) is the Beta function.

Following the procedure explained in Section 5.3.1, the conditional distribution

for Φ is:

Φk,r =
nr

k + βr × Λc
r

∑R

r=1(n
r
k + βr × Λc

r)
, (5.17)

The distributions over topics (Θ) is similar to the ones in LDA and TMCTI given

by Equation 5.11.

5.3.3.2 The HPSG-based topic model using document-level relation im-

portance

Similar to TMDTI, for each document d and each topic k, a new topic-term dis-

tribution ~Φkd is drawn. However, the Dirichlet prior ~βk for ~Φkd is replaced with a
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document-specific Dirichlet prior ~βk ⊗ ~Λd that is a nonuniform asymmetric prior with

a concentration parameter ~βk and a nonuniform base measure ~Λd, where the vector

~Λd represents the document-level relation importance. Since the relations are drawn

from ~Φkd, higher Λd
r values mean that relation r is more likely in document d in topic

k.

Similar to the procedure explained in Section 5.3.2, the conditional distribution

for Φ is:

Φk,d,r =
nr

kd + βd
kr × Λd

r
∑R

r=1(n
r
kd + βd

kr × Λd
r)

, (5.18)

where nr
kd denotes the number of times term r is assigned to topic k in document d.

The distributions over topics (Θ) is similar to the ones in LDA and TMCTI given by

Equation 5.11.

5.3.4 Efficiency

Efficiency is a function of the number of iterations and the cost of each iteration of

Gibbs sampling. Both LDA [16, 40] and the Bigram topic model [80] require O(KV )

for each iteration of Gibbs sampling4 [72, 88], where V is the number of terms in the

vocabulary and K is the number of topics. TMCTI and TMDTI require the same

time complexity for each iteration of Gibbs sampling. However, both algorithms

require a preprocessing step to compute their asymmetric priors using corpus-level

and document-level approaches. Due to the use of hash indexing to store the scores of

4For clarity the time complexity of the multinomial random number generator mult() is assumed

to be O(1).
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LDA TMCTI-Wiki TMCTI-idfWiki TMDTI-tfidf TMDTI-tfidfWiki

million cash bank million investment

billion million company company million

japanese bank cash billion company

offer share million share state

share billion share stock official

said investment stock plan billion

financial business union contract president

bank stock pay cash share

cash commercial money business stock

workers president financial bid bank

Table 5.1: Ranked list of 10 terms of the most probable topic, generated from the

Associated Press corpus by following topic models: LDA, TMCTI using Wikipedia-

based measure, TMCTI using idf-Wikipedia-based measure, TMDTI using tfidf-based

measure and TMDTI using tfidf-Wikipedia-based measure.

words in Wikipedia, TMCTI needs a single iteration, O(V ), through the vocabulary

to compute the corpus-level term importance vector. TMDTI requires an iteration

for each document to compute the document-level term importance vectors. Thus,

the time complexity of the preprocessing step of TMDTI is O(MV ), where M is the

number of documents. Note that using hashing techniques to compute tfidf [73, 75]

can enhance the time complexity of TMDTI to O(M log V ).
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5.4 Experiments

In our experiments we use the Associated Press corpus5 that consists of 2, 246 As-

sociated Press documents, 33, 872 terms, and 454, 370 collapsed typed dependency

relations. In addition, we use Reuters-21578 Distribution 1.06 that includes 21, 578

documents. Due to the skew distribution of these documents [4, 31, 68], we only use

a collection of documents belonging to the set of the 10 most populous classes. This

collection contains 10, 789 documents, 15, 996 terms, and 793, 345 collapsed typed de-

pendency relations. Text cleaning is performed, which includes removal of most punc-

tuation marks except embedded apostrophes and underscores. Then, corpus-level and

document-level term importance scores are computed using approaches explained in

Section 5.2.

We conduct experiments to compare the performance of following topic mod-

els: LDA [16], the Bigram topic model [80], WLDA [87], TMCTI explained in Sec-

tion 5.3.1, TMDTI explained in Section 5.3.2, bigram TMCTI, bigram TMDTI, and

the HPSG-based topic model using relation importance. For bigram methods, terms

are consecutive word pairs, occurring in the corpus. Similarly, for the HPSG-based

topic model, terms are consecutive or nonconsecutive word pairs, occurring in the

corpus. Thus, statistics presented in Sections 5.2 and 5.3 are based on such terms.

In WLDA [87], terms are weighed by measuring their information content using

corpus-level and document-level measures. Corpus-level term importance is computed

using

5http://www.cs.princeton.edu/∼blei/lda-c
6http://www.research.att.com/∼lewis
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I(t) = − log2 p(t), (5.19)

where p(t) is estimated from observed frequencies in the corpus and is computed as

the number of occurrences of term t in the corpus, divided by the total number of

term occurrences in the corpus. The objective of using this formula is to give high-

probability terms such as “the” low weights [87]. LDA using this term-weighting

function is denoted as Log-WLDA [87].

In [87] document-level term importance scores are computed using pointwise mu-

tual information (PMI) between term t and document d, which is defined as follows:

PMI(t, d) = log2

p(t|d)

p(t)
. (5.20)

Note that in [87], the PMI score between t and d is defined as − log2
p(t|d)
p(t)

. Here

we remove the minus sign to be consistent with the formal PMI definition [26]. We

compute p(t|d) by dividing the number of times term t occurs in document d by the

number of term occurrences in d, and p(t) by dividing the the number times t occurs

in the corpus by the total number of term occurrences in the corpus. LDA using this

document-dependent term weighting function is denoted as PMI-WLDA [87].

The topic models are trained with 1000 iterations of Gibbs sampling to obtain

samples from the posterior distribution over all possible assignments of terms to topics

~z at several choices of number of topics K. Initial values for the hyperparameters

α and β applied to all our experiments are α = 50.0/K and β = 0.01. Note that

these parameters are default parameters of most LDA-based topic models, expected

to result in a fine-grained decomposition of the corpus into topics [40].
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Table 5.1 illustrates ranked lists of the top 10 terms of the most probable topic

generated by the aforementioned unigram topic models on the Associated Press cor-

pus. Observing terms such as “cash”, “bank”, and “investment” helps to conclude

that the top theme of the corpus is about “finance”. In this table, boldface indicates

important (i.e., highly related) terms, whereas the unrelated terms are underlined.

The terms that are not in boldface nor underlined are fairly related to the “finance”

theme. Notice that our models (i.e., the 2nd to 5th columns) produce fewer unre-

lated terms and more important terms than the original LDA model. In addition,

the important terms are positioned higher and unrelated terms are lower in our mod-

els than in LDA. These observations validate the effectiveness of incorporating term

importance into LDA.

Below, we compare our models with other topic models in terms of perplexity and

topic coherence. In addition, we evaluate the performance of the topic models in text

classification tasks.

5.4.1 Perplexity

Perplexity is the most common criterion to evaluate the quality of topic models [47].

Perplexity measures the cross-entropy between the term distribution learned by the

topic model and the distribution of terms in an unseen test document. Thus, a lower

perplexity score indicates that the model is better in predicting distribution of the

test document [16].

We evaluate perplexity as a function of different numbers of topics K, where

K = 20, K = 40, K = 60, K = 80, and K = 100. Our experimental studies
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Figure 5.3: Perplexity as a function of number of topics, using LDA, Log-WLDA,

PMI-WLDA, TMCTI Wikipedia-based, TMCTI idf-Wikipedia-based, TMDTI tfidf-

based, and TMDTI tfidf-Wikipedia-based on the Association Press corpus.

show that increasing K values to more than 100 causes over-fitting that makes the

perplexity of the new documents to explode. We train the topic models on 90% of

the corpus to estimate the held out probability of remaining 10% of the corpus. We

compute the perplexity of the held-out test set with respect to the topic model by

perplexity(Dtest) = exp

(

−

∑Q

d=1 log p(td)
∑Q

d=1 |td|

)

, (5.21)

where Dtest is the test corpus with Q documents, td denotes the set of terms in

document d ∈ Dtest, |td| is the total number of terms in document d, and p(td) is the

probability estimate assigned to td by the topic model.
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Figure 5.4: Perplexity as a function of number of topics, using LDA, Log-

WLDA, PMI-WLDA, TMCTI Wikipedia-based, TMCTI idf-Wikipedia-based mea-

sure, TMDTI tfidf-based measure, and TMDTI tfidf-Wikipedia-based on the Reuters

corpus.
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Figure 5.5: Perplexity as a function of number of topics, using Bigram topic

model, Bigram TMCTI Wikipedia-based, Bigram TMCTI idf-Wikipedia-based, Bi-

gram TMDTI tfidf-based, and Bigram TMDTI tfidf-Wikipedia-based on Association

Press.
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Figure 5.6: Perplexity as a function of number of topics, from Bigram topic model,

Bigram TMCTI Wikipedia-based, Bigram TMCTI idf-Wikipedia-based, Bigram

TMDTI tfidf-based, and Bigram TMDTI tfidf-Wikipedia-based on the Reuters cor-

pus.
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Figure 5.7: Perplexity as a function of number of topics, from the HPSG-based

topic model, HPSG-TMCTI Wikipedia-based, HPSG-TMCTI idf-Wikipedia-based,

HPSG-TMDTI tfidf-based, and HPSG-TMDTI tfidf-Wikipedia-based on the Associ-

ated Press corpus.
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Figure 5.8: Perplexity as a function of number of topics, from the HPSG-based topic

model, HPSG-TMCTI Wikipedia-based, HPSG-TMCTI idf-Wikipedia-based, HPSG-

TMDTI tfidf-based, and HPSG-TMDTI tfidf-Wikipedia-based on the Reuters corpus.

88



Figure 5.9: Perplexity as a function of number of topics and error bars, from

the HPSG-based topic model, HPSG-TMCTI Wikipedia-based, HPSG-TMCTI idf-

Wikipedia-based, HPSG-TMDTI tfidf-based, and HPSG-TMDTI tfidf-Wikipedia-

based on the Associated Press corpus.

The results are illustrated in Figures 5.3, 5.4, 5.5, and 5.6. The x-axis shows the

number of topics (K) used in each model; the y-axis shows the perplexity. These

figures clearly indicate that the perplexity of our proposed topic models on both un-

igrams and bigrams improve over LDA. Among the four term importance measures,

The topic model using tfidf-Wikipedia-based achieves the best performance in terms of

perplexity, followed by tfidf-based, idf-Wikipedia-based, and solely Wikipedia-based

measures. The results also indicate that topic models using document-level term im-

portance measures perform better than the ones using corpus-level measures. More-

over, Figures 5.8 and 5.7 show the performance of the HPSG-based topic model using

both corpus-level and document-level relation importance measures. Better estimates

for held-out documents for our HPSG-based topic model using relation importance is

due to augmenting topic models with both collapsed typed dependency relations and
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term importance. We also assessed the quality of the predictions of HPSG-based topic

model with standard deviations in 5-fold cross-validation. The results are illustrated

in Figure 5.9.

5.4.2 Topic coherence

Topic coherence measures the integrity or coherence of top terms in a topic generated

by a topic model. In other words, top n terms generated by topic k, denoted by ~Φk =

{t1, t2, · · · , tn}, are coherent if they are semantically similar. We use the normalized

pairwise mutual information (NPMI) [49] to calculate the average sum of semantic

similarity scores between every pair of top 50 terms of the topics generated from the

Associated Press corpus. Mathematically, the NPMI of top-n topic terms is computed

by

NPMI(t) =
n
∑

j=2

j−1
∑

i=1

log
p(ti,tj)

p(ti)·p(tj)

− log p(ti, tj)
, (5.22)

where p(x) is the probablity that term x appears in a corpus. Wikipedia7 is used as

our training corpus. Table 5.3 shows the average coherence scores of all the compared

methods. Our proposed models lead to more coherent topics than the original LDA

and the Bigram topic model. This coherence is due to the fact that we replaced

the global constant prior for topic distributions over terms by a term importance

prior. Thus, on the one hand, less important terms to a topic gain a lower probability

and descend in the topic-term distributions, and on the other hand, important terms

ascend in the topic-term distributions. As a result, more related terms to the topic

7http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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Topic model Coherence

LDA 0.512

TMCTI-Wiki 0.953

TMCTI-idfWiki 0.526

TMDTI-tfidf 0.519

TMDTI-tfidfWiki 0.834

Bigram topic model 0.507

Bigram TMCTI-Wiki 0.951

Bigram TMCTI-idfWiki 0.892

Bigram TMDTI-tfidf 0.743

Bigram TMDTI-tfidfWiki 0.835

Table 5.2: The average topic coherence of top 50 terms of 100 topics generated from

the Associated Press corpus.

appear higher in the topic-term distributions leading to more coherent topics. We

also observe that topic models that leverage Wikipedia produce more coherent topics

than the ones that do not, with the solely Wikipedia-based measure achieves the

highest coherence scores. This is due to the higher probabilities assigned to terms

occurring in Wikipedia titles, which results in topics more likely being described by

these title words.

5.4.3 Classification

Document classification is the task of assigning documents to class(es) [68]. A key

issue in document classification is how to represents a document [54, 19]. The com-
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Topic model Coherence

LDA 0.413

TMCTI-Wiki 0.845

TMCTI-idfWiki 0.621

TMDTI-tfidf 0.476

TMDTI-tfidfWiki 0.857

Bigram topic model 0.391

Bigram TMCTI-Wiki 0.834

Bigram TMCTI-idfWiki 0.768

Bigram TMDTI-tfidf 0.713

Bigram TMDTI-tfidfWiki 0.825

Table 5.3: The average topic coherence of top 50 terms of 100 topics generated from

the Reuters corpus.
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mon approach to document representation is the bag-of-words representation, where

a document is represented with a vector of the words that appear in it [19]. Often,

the tfidf values of words are used in a document vector in the bag-of-words represen-

tation so that common words across documents are less important than less frequent

words. Alternatively, LDA-based approaches represent a document as a multinomial

distribution over topics. This representation has been effective in text classification

tasks [51]. We compare the use of our topic models for document representation

against original LDA and tfidf -based bag-of-words methods in document classifica-

tion tasks. We use the Reuters collection [4], that contains 7, 770 training and 3, 019

testing documents. The documents are multilabeled and can belong to one or more

of the 10 classes. Results, shown in Table 5.4, are reported using the Näıve Bayes [68]

classifier8. Note that the reported accuracy for the LDA-based approaches is the

average accuracy that measures the percentage of correctly classified documents, ob-

tained from experiments on different numbers of topics K, where K = 20, K = 40,

K = 60, K = 80, and K = 100. Moreover, the table shows the standard deviation

across 10-fold cross-validation runs for various topic models.

Empirical comparisons show that using topic models to represent documents im-

proves the accuracy of text classification tasks. Moreover, incorporating term impor-

tance into topic models yields a higher accuracy than when using solely LDA-based

topic models. Key to this improvement is incorporating term importance as a nonuni-

form base measure into the asymmetric prior over topic-term distributions. This leads

to better estimates for less frequent important terms and consequently, better repre-

sentation of the multinomial distribution over topics, and thus, better accuracy for

8Other classification algorithms yield similar results.
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Document representation Accuracy Standard deviation

bag-of-words with tfidf 45.3% 1.28%

LDA 54.6% 0.94%

TMCTI-Wiki 55.7% 0.82%

TMCTI-idfWiki 58.3% 0.85%

TMDTI-tfidf 65.2% 1.546%

TMDTI-tfidfWiki 67.4% 0.78%

Bigram topic model 55.2% 1.75%

Bigram TMCTI-Wiki 55.4% 0.97%

Bigram TMCTI-idfWiki 56.2% 1.45%

Bigram TMDTI-tfidf 58.6% 1.06%

Bigram TMDTI-tfidfWiki 66.3% 1.45%

Table 5.4: Classification results for the Reuters corpus.
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text classification.

5.5 Summary

We proposed two LDA-based topic models that do not consider a symmetric distribu-

tion prior over terms but rather adjust the prior by employing additional information

about the importance of terms in a topic. The importance of terms in a topic is

captured by corpus-level and document-level term importance scores. These scores

are used as base measures for a nonuniform asymmetric Dirichlet distribution prior

over terms. As a result, terms can be a priori more or less probable in a topic.

Our topic model has several benefits. The prior knowledge about term impor-

tance leads to a more robust topic model that boosts the probability of important

terms. As a result, highly related terms to the central theme of the corpus are gener-

ated. In addition, our experimental studies show that our topic models significantly

outperform LDA and the Bigram topic model in terms of perplexity and coherence.

Moreover, incorporating importance vectors as a base measure for our Dirichlet priors

yield a higher accuracy in classification tasks. We also found that topic models using

document-level term importance measures perform better than corpus-level ones in

perplexity and text classification, and measures leveraging Wikipedia produce more

coherent topics. We recommend that the topic model using tfidf-Wikipedia-based

measure is the best measure to use with our proposed LDA-based models. In addi-

tion, our method is an extra module that can be easily incorporated into other topic

models.
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Chapter 6

News Recommender System

People have always been confronting with a growing amount of data, which in turn

demands more on their abilities to filter the content according to their preferences.

Among the increasingly overwhelming amounts of webpages, documents, pictures, or

videos, it is no longer intuitive to find what we really need. Furthermore, duplicate

or several information sources are found covering the same topics. The users are

sensitive to the recentness of information and their interests are also changing over

time along with the content of the Web [65].

During the past two decades, the concepts of recommender systems have emerged

to remedy the situation. The essence of recommender systems are highly associated

with the extensive work in cognitive science, approximation theory, information re-

trieval, forecasting theories, and management science [1]. Recommender systems have

many applications, such as product recommendations at Amazon.com [52], movies

recommendations by MovieLens [59], and news recommendations [1].

In this chapter, we present an application of topic modeling to news recommender

96



systems. The reasons we employ topic models in news recommender systems are as

follows. Firstly, topic models yield great insight about different themes of a newspaper

article. Secondly, topic models capture probabilities of assigning different themes to

newspaper articles. Thirdly, topic models provide a generative probabilistic model

for the themes. As a consequence, topic models accurately assign probabilities to an

unseen document. We focus specifically on the design and development of a news

recommender system for The Globe and Mail1. The Globe and Mail offers most

authoritative news in Canada, featuring national and international news. The goal

is to design a news recommender system that eases reading and navigation through

online newspapers. In essence, the recommender system acts as filters, delivering only

news articles that can be considered relevant to a user.

There are in general three types of recommender systems: Collaborative filtering-

based, Content-based, and Hybrid-based. Collaborative filtering-based recommender

systems make recommendations based on the behavior of other users in the system.

Intuitively, these systems assume that if users agree about the quality of some items,

then, they will likely agree about other items [36]. For example, if a group of users

have similar tastes to Mary, then, Mary is likely to like the things the group likes

which she hasn’t seen yet. However, in this approach the introduction of new users

or new items can cause the cold start problem, as there will be insufficient data

on these new entries for the collaborative filtering to draw any inferences for new

users or items. Addressing the cold start problem can be important for a new user’s

engagement and is therefore of critical significance in trade applications. The content-

based recommender systems make recommendations independent of other users, but

1http://www.theglobeandmail.com/
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based on items a user likes [1]. This system only considers the properties of items, i.e.

the content of news articles, and accordingly makes recommendations. For example,

in a news recommender system, if Mary likes sports news, then, the content-based

recommender system is likely to recommend articles about sports to her. Therefore, in

this approach, introducing new users or items does not cause the cold start problem.

Once a new user shows interest to an item, the system keeps recommending other

items similar to the user’s preferences. The hybrid recommender systems generate

recommendations by combining the two aforementioned recommendation techniques.

Given the fact that this recommender system contains collaborative filtering-based

approaches, it suffers from the cold start problem.

Due to the textual nature of our news application domain and avoiding the

cold start problem, we focus on content-based recommender systems. Most exist-

ing content-based news recommender systems are based on keywords that is they

represent the content of news articles using a set of keywords neglecting the thematic

structure of the articles. We apply topic models to discover hidden themes of the news

articles, and we incorporate these themes into a content-based recommender system.

Our experimental studies show that the proposed recommender system yields more

accurate results than other counterparts.

The structure of this chapter is as follows. In Section 6.1, a general introduction

of our application domain is explained. In Section 6.2, the related literature is re-

viewed. Section 6.3 presents our proposed content-based news recommender system.

In Section 6.4, we demonstrate the effectiveness of our approach through experiments.

Section 6.5 concludes the chapter.
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6.1 Introduction

News recommender systems arise to efficiently handle the overwhelming number of

news articles, simplify navigations, and retrieve relevant information. Formally, the

recommendation problem can be formulated as follows: Let U be the collection of |U|

users, represented by U = {u1, u2, · · · , u|U|}, and let C = D∪Q represent all the news

articles, where D, denoted by D = {d1, d2, · · · , dM}, is the collection of read articles

that is all news articles that have been read by at least one user, and Q, denoted by

Q = {q1, q2, · · · , qN}, is the collection of non-read articles that is all the latest articles

published daily that have not yet been read and are to be recommended2.

Let f be a utility function that measures the usefulness of a news article c ∈ C to

a user ul ∈ U , i.e., f : U ×C → R, where R is a totally ordered set (e.g., non-negative

integers or real numbers within a certain range). Then, for each user ul ∈ U , we want

to choose such news article c
′

∈ C that maximizes the user’s utility. More formally:

∀ul ∈ U , c
′

ul
= argmaxc∈Cf(ul, c). (6.1)

In recommender systems, the sets U and C are usually defined by several charac-

teristics [1]. Similarly, in our work, each user ul ∈ U is defined by a unique identifier,

such as user ID. Each article in the collection C is defined by a unique article iden-

tifier and article content. In addition, we represent the utility of a news article by

the amount of time a user spends on the article, which indicates the interestingness

of the news article to the user. For example, user u0 spent two minutes (out of five

2Note that our news recommender system is capable of personalizing the collection of non-read

articles (Q) for each user.
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minutes3) on the news article “d0: SpaceX launches fifth official mission”.

In our recommender system, the amount of time spent on the collection of non-

read articles (Q) is not available. Thus, the fundamental issue of our recommender

system is that the utility function f is not defined on the whole U × C space, but

only on U × D space. This means f needs to be extrapolated to the space U × Q.

Therefore, the goal of our news recommender system is to estimate the time each user

would spend on the non-read news articles and issue appropriate recommendations

based on these estimates.

In this chapter, we propose a content-based news recommender system by em-

ploying LDA-based approaches to measure the similarity between read news articles

and non-read news articles. LDA-based approaches elicit a topic model from the col-

lection of news articles. The topic model represents news articles as a multinomial

distribution over topics, where each topic is a multinomial distribution over words.

Then, given the time a user has spent on read news articles, and the topic models of

the collection of news articles, a user’s time spent toward non-read news articles is

estimated.

6.2 Related Work

The main objective of a news recommender system is to estimate a utility function f

that best predicts users’ interests in the latest published articles. The estimates are

obtained using different methods from machine learning, approximation theory, and

3In order to avoid idle time spent on a news article, we normalize the time by scaling between

zero and five.
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various heuristics [1].

All of the known recommender techniques have strengths and weaknesses. In this

section we briefly survey the different recommender techniques, the data that they

support, and the algorithms they employ [18, 21]. On this basis, the following three

recommender techniques are distinguished:

• Collaborative filtering-based recommender systems predict the utility of items

based on the behavior of other users in the system [1]. For example, in a

news recommender application domain, in order to recommend news articles

to a user x, the collaborative filtering-based recommender system tries to find

similar users to user x, i.e., other users that have similar tastes in news (rate the

same news similarly). Then, only the news articles that are most liked by similar

users to user x will be recommended. The greatest strength of this approach

is that it considers users’ information, i.e. similar users’ tastes. However, in

the personalized recommender systems, the introduction of new users or new

items can cause the cold start problem, as there will be insufficient data on

these new entries for the collaborative filtering to draw any inferences for new

users or items. In collaborative filtering-based recommender systems, a new

item cannot be recommended until some users rate it, also referred to as the

new item cold start problem. The system requires a substantial number of

users to show interest to a new item before that item can be recommended [21].

Moreover, new users are unlikely given good recommendations because of the

lack of their activities or interest history, the system is unable to find similar

users to a new user. This problem is often referred to as the new user cold start
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problem [17].

• Content-based recommender systems recommend items similar to items a user

preferred in the past [1]. For example, a content-based news recommender sys-

tem observes the collection of news articles a user prefers and reads frequently.

Then, only the news articles that have a high degree of similarity to the user’s

read articles are recommended. The greatest strength of this approach is that

it only considers the properties of an item, i.e. the content of news articles,

and accordingly makes recommendations. Therefore, in this approach, once a

new user is introduced to the system, as soon as they read their first article,

the content-based recommender system starts by recommending articles similar

to the read article. Thus, this approach does not cause the cold start prob-

lem mentioned in collaborative recommender systems. The weakness of this

approach is that users are limited to being recommended news articles that are

similar to their read history.

• Hybrid recommender systems generate recommendations by combining the above

two recommendation techniques, thus, maximizing the benefits and minimizing

the disadvantages of them [1]. For example, a hybrid recommendation system

that combines content-based and collaborative recommendation systems con-

siders both the content of news articles and a user’s demographic information

to issue recommendations. Given the fact that this approach contains collab-

orative recommender systems, it contains the disadvantages of such systems.

Therefore, this approach also suffers from the cold start problem.

Due to the textual nature of our news recommendation domain and avoiding
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the cold start problem, our proposed recommender system adopts a content-based

approach that considers the content of news articles and accordingly issues recom-

mendations.

6.3 The content-based recommender system

Our content-based recommender system employs probabilistic topic models to un-

cover the thematic similarity between news articles and a user’s preferences. Then,

news articles that have a high degree of similarity to the user’s preferences are rec-

ommended.

We assume a collection of users is represented by U = {u0, u1, · · · , u|U|}. Let the

corpus of news articles be C = D ∪ Q, where D = {d1, d2, · · · , dM} is the collection

of read articles, and Q = {q1, q2, · · · , qN} is the collection of non-read articles. We

define a read article di ∈ D as a tuple of textual content and a subset of readers. That

is di =< ti, Ui >, where ti is the textual content, represented by a sequence of terms

of the article and Ui ⊂ U is a subset of users associated with the article. Similarly, a

non-read article qj ∈ Q is defined by qj =< tj, ∅ >, where the set of readers is empty.

Our task is to appropriately recommend non-read articles to users or alternatively

to assign users to non-read articles. In other words, for each non-read article qj =<

tj, ∅ >, we plan to predict the most appropriate subset of users and replace it with

the empty set (∅).

The proposed content-based news recommender system consists of the following

three steps.
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6.3.1 Step 1: Building a topic model

In this step, we use LDA-based topic models to best reflect the thematic structure of

news articles. We build a topic model from the collection of read articles (D). Our

topic model assumes that each news article di ∈ D has a multinomial distribution

over K topics with parameters ~Θdi
. As a result of this step, we obtain ΘD that is an

M × K array of topic probabilities given read articles, where M is the total number

of read articles and K is the total number of topics.

6.3.2 Step 2: Inference and learning

We use the topic model, built in Step 1, to infer the multinomial distribution of each

non-read article (qj ∈ Q) over K topics with parameters ~Θqj
. As a result of this step,

we obtain ΘQ that is an N × K array of topic probabilities given non-read articles,

where N is the total number of non-read articles and K is the total number of topics.

6.3.3 Step 3: Making recommendations

For each user ul ∈ U , we obtain their collection of read articles Dul
⊂ D and their

respective topic vectors ΘDul
. Given a collection of non-read articles Q, and their

topic vectors ΘQ, our proposed method outputs a ranked list Qul
y = {q0, q1, · · · , qy},

where qr ∈ Q, of y non-read articles interesting to a user ul.

The probability of article qr being interesting to user ul is computed for each

qr ∈ Q as

p(qr|ul,Q, Dul
) =

InterestingnessScore(qr, ul, Dul
)

∑

qj∈Q
InterestingnessScore(qj, ul, Dul

)
, (6.2)
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InterestingnessScore(qr, ul, Dul
) =

∑

di∈Dul

DocSim(qr, di, Dul
) · timeSpent[ul, di].

(6.3)

InterestingnessScore(qr, ul, Dul
) calculates how interesting article qr is to user ul.

This score can be any real non-negative number. DocSim(qr, di, Dul
) measures the

similarity between two articles, i.e. qr and di, given a collection of read articles by user

ul (Dul
) and returns a similarity measure ranging between [0, 1], and timeSpent[ul, di]

is the amount of time user ul spends on article di.

We apply LDA-based approaches to compute the article similarity. We utilize two

arrays ~Θqr
and ~Θdi

, obtained from Steps 1 and 2, to determine the similarity between

qr and di. Arrays ~Θqr
and ~Θdi

represent the latent topic distribution of articles qr and

di. Thus, inspired from Chang et al. [24], we view each article as a topic-based vector

and use cosine-based similarity measure to compute the similarity between a read and

a non-read article. Note that our experimental studies show similar results for other

similarity measure approaches, such as Manhattan distance. A comprehensive survey

on similarity measures between vectors can be found at [22].

Cosine similarity is a measure of similarity between two vectors of an inner product

space that measures the cosine of the angle between them. The more similar hence

the more co-oriented the vectors, thus the cosine of the angle between them is closer to

one. Cosine similarity measure is often used to compare documents for text mining,

classification, and clustering purposes [22]. Equation 6.4 is used to calculate the

similarity.
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cosine − similarity(~Θqr
, ~Θdi

) =
~Θqr

· ~Θdi

|~Θqr
| × |~Θdi

|
, (6.4)

where “·” denotes the inner product of two vectors, and |~x| represents the size of the

vector.

Finally, we return top y articles ranked by the p(qr|ul,Q, Dul
) probability.

6.4 Experiments

We conducted experiments on The Globe and Mail news article corpus. The Globe and

Mail collection appeared on The Globe and Mail newswire during the period between

January 2010 to March 2014. The articles were assembled and indexed with article

IDs by personnel from The Globe and Mail. The Globe and Mail corpus contains

142, 163, 909 news articles. Moreover, the collection contains 10, 150 subscribed users

that have spent some time, i.e. any real non-negative number between one and five,

on each article. In order to avoid idle time spent on a news article, we normalize the

time by scaling between zero and five. The news articles are divided into 142, 163, 000

read articles that are read by at least one reader and 909 non-read articles that are

recently published.

We compare the performance of our proposed content-based recommender system

against baseline recommendation systems that solely use bag-of-words tfidf repre-

sentation of news articles. The following topic models are used in our experiments:

LDA [16], the Bigram Topic Model [80], TMCTI and TMDTI, explained in Chapter 5.

The topic models were trained with 1000 iterations of Gibbs sampling [39, 40] used in

the MALLET [57]. Initial values for the hyperparameters α and β applied to all our
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Figure 6.1: Average perplexity as a function of number of topics, using LDA, TMCTI

Wikipedia-based, TMCTI idf-Wikipedia-based measure, TMDTI tfidf-based measure,

and TMDTI tfidf-Wikipedia-based on The Globe and Mail corpus.

experiments are α = 50.0/K and β = 0.01. Note that these parameters are default

parameters of most LDA-based topic models, expected to result in a fine-grained

decomposition of the corpus into topics [40].

6.4.1 Number of topics

An open question in topic modeling is how to set the number of topics K. Several

approaches exist, but ultimately, the appropriate number of topics must depend on

both the corpus itself and user modeling goals [78, 40].

The optimum number of topics is expected to result in a fine-grained decomposi-

tion of the corpus into topics [40], where topic distributions over words are of minimum

similarity. Furthermore, the optimum number of topics leads to a low cross-entropy

between the term distribution learned by the topic model and the distribution of

terms in an unseen test article. Thus, the optimum number of topics results in a
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Figure 6.2: Similarity of topic distributions over words, as a function of number of

topics, using LDA on The Globe and Mail corpus.

lower perplexity score indicating that the model is better in predicting distribution

of the test article [16].

In our experiments, we learn topics for different values of K and choose the value

which minimizes the perplexity score. The experiments are conducted using different

topic models for different number of topics K, where K = 20 · · ·K = 300. Figure 6.1

illustrates the average perplexity as a function of number of K. In this figure, the

values of K ∈ [180 · · · 190] achieve the best performance in terms of perplexity.

As mentioned earlier, a topic model generates K topics, where each topic is a

distribution over V words, denoted by ~Φk = {w1, w2, · · · , wV }. Similarity between

topics is the similarity of topic distributions over words across different topics. We

calculate the normalized average sum of similarity scores between every pair of K

topics (K ∈ [180 · · · 190]), generated from The Globe and Mail corpus. As illustrated

in Figure 6.2, K = 187 results in the most fine-grained decomposition of the corpus

into topics with the minimum similarity between topic-word distributions.
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6.4.2 Evaluation of the recommender system

In this section, we evaluate the performance of our proposed content-based news

recommender system using the following metrics: precision, recall, and F-measure.

Precision, recall, and F-measure are well-known evaluation metrics in information

retrieval literature [55]. For each user, we use the original set of read articles as the

ground truth Tg. Assume that the set of recommended news articles are Tr, so that

the correctly recommended articles are Tg ∩ Tr. Precision, recall, and F-measure are

defined as follows:

precision =
|Tg ∩ Tr|

|Tr|
, (6.5)

recall =
|Tg ∩ Tr|

|Tg|
, (6.6)

F1 =
2 · precision · recall

precision + recall
. (6.7)

In our experiments, the number of recommended articles ranges from 1 to 30.

Figures 6.3, 6.4, and 6.5 illustrate the precision, recall, and F-measure of the proposed

recommender system as a function of number of recommended articles.

Empirical comparisons show that using topic models to represent articles im-

proves the precision, recall, and F-measure of our proposed recommender system.

Since the only difference between the comparisons is the article similarity function

DocSim(qr, di, Dul
), which compares the similarity between a new non-read article

qr and a read article di, analyzing the differences between the two article similarity

measures provides explanation about the performance difference.
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Figure 6.3: Precision of the proposed recommender system as a function of number

of recommended articles, using the following article representation methods: bag-of-

words with tfidf, LDA, the bigram topic model, TMCTI Wikipedia-based, TMCTI idf-

Wikipedia-based measure, TMDTI tfidf-based measure, and TMDTI tfidf-Wikipedia-

based on The Globe and Mail corpus.
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Figure 6.4: Recall of the proposed recommender system as a function of number

of recommended articles, using the following article representation methods: bag-of-

words with tfidf, LDA, the bigram topic model, TMCTI Wikipedia-based, TMCTI idf-

Wikipedia-based measure, TMDTI tfidf-based measure, and TMDTI tfidf-Wikipedia-

based on The Globe and Mail corpus.
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Figure 6.5: F-measure of the proposed recommender system as a function of number

of recommended articles, using the following article representation methods: bag-of-

words with tfidf, LDA, the bigram topic model, TMCTI Wikipedia-based, TMCTI idf-

Wikipedia-based measure, TMDTI tfidf-based measure, and TMDTI tfidf-Wikipedia-

based on The Globe and Mail corpus.

112



The bag-of-words with tfidf approach represents two articles by tfidf vectors.

Then, the cosine similarity between these vectors are computed and used in the

recommendation system. Generally speaking, the tfidf article similarity measures the

quantity of term overlap, where each term has a different weight, in the two arti-

cles [79]. This approach ignores the thematic structures of articles to perform the

similarity measure.

The LDA-based approaches first generate a set of topic vectors for the articles,

each of which is represented by a distribution over terms. Terms in each topic are

semantically coherent. Then, LDA-based recommender systems measure the cosine

similarity between the topic vectors. Generally speaking, using LDA-based topic vec-

tors quantifies the topic similarity between the two articles. Moreover, incorporating

term importance into topic models yields a higher precision, recall, and F-measure

than when using solely LDA-based topic vectors. Key to this improvement is incorpo-

rating term importance as a nonuniform base measure into the asymmetric prior over

topic-term distributions. This leads to better estimates for less frequent important

terms and consequently, more coherent representation of the multinomial distribution

over topics, and thus, better quantifies the topic similarity between the two articles.

Hence we recommend using TMTDI-tfidfWiki topic model to represent articles

for content-based news recommender systems.

6.5 Summary

This chapter presents a content-based recommender system for The Globe and Mail,

a company that offers most authoritative news in Canada, featuring national and
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international news. One of the important problems of The Globe and Mail newswire is

the growing amount of articles, which in turn demands a system to automatically filter

and deliver the content according to readers’ preferences. Furthermore, in the current

collaborative-based recommender system at The Globe and Mail, the introduction

of new users or new news articles can cause the cold start problem, as there will be

insufficient data on these new entries for the collaborative filtering to work accurately.

We propose to utilize the latent Dirichlet allocation (LDA) model to discover hid-

den themes of the news articles. We incorporate these themes into a content-based

recommender system. Our experimental studies show that the proposed recommen-

dation system yields better results than solely bag-of-words with tfidf presentation.

Moreover, given the fact that our recommender system only considers the content of

news articles to make recommendations, introducing a new user or a new news article

does not cause the cold start problem.
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Chapter 7

Conclusion and Future Work

Topic modelling is a powerful statistical tool to uncover hidden thematic structures

and multi-faceted summaries of documents or other discrete data. Most topic models,

such as Latent Dirichlet Allocation (LDA), consider documents to be a weighted

mixture of topics, where each topic is a multinomial distribution over terms. The

inferred topic model assigns a high probability to the topics of a corpus. In addition,

the highest probable terms in each topic provide important terms that summarize the

themes of the corpus.

The bag-of-words representation of text documents is of particular interest in most

topic models. However, this representation does not contain information about the

underlying structure of text documents. The goal of many topic modelling applica-

tions is to better discover the hidden thematic structure of a dataset, and this re-

quirement is not always adequately addressed by the standard unsupervised machine

learning setting. Incorporating additional knowledge about the dataset or statistics

of an external data source into topic modelling applications allows us to explore or
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better understand a dataset.

7.1 Our approaches

In this dissertation, we proposed three extended LDA models that incorporates syn-

tactic and semantic structures of text documents into probabilistic topic models.

Our first proposed topic model, the HPSG-based topic model, enriches text doc-

uments with collapsed typed dependency relations to effectively acquire syntactic

and semantic dependencies between consecutive and nonconsecutive words of text

documents. This representation has several benefits. It captures relations between

consecutive and nonconsecutive words of text documents. In addition, the labels of

the collapsed typed dependency relations help to eliminate less important relations,

i.e., relations involving prepositions. Furthermore, our experimental studies show

that the proposed topic model significantly outperforms LDA and is also better than

the Bigram Topic Model in terms of perplexity. We also show that our model achieves

comparable results with other models in terms of stability, coherence, and accuracy.

Besides, the results from our topic model have less ambiguity, given the fact the

generated terms include pairs of words that are more descriptive than single words.

Our second and third proposed topic models do not use a symmetric distribution

prior over terms but rather adjust the prior by employing additional information

about the importance of terms in a topic. The importance of terms in a topic is

captured by corpus-level (TMCTI) and document-level (TMDTI) term importance

scores. These scores are used as base measures for a nonuniform asymmetric Dirichlet

distribution prior over terms. As a result, terms can be a priori more or less probable
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in a topic. Our topic models have several benefits. The prior knowledge about

term importance leads to a more robust topic model that boosts the probability

of important terms. As a result, highly related terms to the central theme of the

corpus are generated. In addition, our method is an extra module that can be easily

incorporated into other topic models. Furthermore, our experimental studies show

that our topic models significantly outperform LDA and the Bigram Topic Model in

terms of perplexity and coherence. We also found that topic models using document-

level term importance measures perform better than corpus-level ones in perplexity,

and measures leveraging Wikipedia produce more coherent topics. We recommend

that the topic model using tfidf-Wikipedia-based measure is the best measure to use

with our proposed extended LDA models.

Furthermore, we extend the HPSG-based topic model to include term importance.

Typed dependency relations of text documents are extracted by employing syntax and

semantic analysis. We further assign weights to those relations using the context of

the corpus or an external data source. Then, these weights are incorporated into

the HPSG-based topic model to increase the probability of important relations and

to consequently decrease the probability of less important relations. Experimental

studies show the effectiveness of our method.

Moreover, in this thesis, we introduced a method to enforce topic similarity to

conceptually similar words. As a result, this algorithm led to more coherent topic

distribution over words.

In addition, we applied our topic models in a content-based recommendation sys-

tem for The Globe and Mail to ease reading and navigation through online newspaper

articles. The proposed recommender system yields better results than the ones us-
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ing bag-of-words methods for representing documents. Moreover, our recommender

system does not suffer from the cold start problem.

7.2 Future directions

While the topic models presented in this thesis represent significant advances in prob-

abilistic topic modelling, there are still many interesting opportunities for further

improvement.

The inclusion of term importance is a powerful tool in topic modelling. While

employing document level or corpus level term importance measures is very useful

to estimate term importance, these measures do not take users’ feedback into con-

sideration. In order to make best predictions about term importance, it may be

advantageous to leverage users’ feedback.

The combination of collapsed typed dependency relations and topic modelling

provides interesting directions for future work. The definition of syntactic typed

dependency relations could allow the incorporation of sentiment similarity of terms

of the corpus into typed dependency relations. We could eliminate relations that

include terms that are not sentimentally related. This elimination could lead to more

coherent topic word distributions.

Applying topic models in a content-based recommender system yields more ac-

curate results than other recommender systems. However, our content-based recom-

mender system must effectively evolve with its content. In our current system, the

topic model needs to be generated offline. For instance, once non-read news articles

enter the collection of read articles, the topic model needs to be updated to reflect
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the themes of new articles. This offline generation of a topic model is a drawback,

as it hinders the system’s ability to evolve quickly. We could develop a real-time

content-based recommender system, that leverages a stream of news articles and is

capable of handling online LDA [44].
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Appendix A

Typed Dependency Relations

The Stanford typed dependencies relations were designed to provide a simple descrip-

tion of the grammatical relationships between consecutive and nonconsective words

of a sentence [29]. The current representation of the set of Stanford typed depen-

dencies relations contains 48 grammatical relations, denoted by rel(wi, wj), where rel

represents a relation between wi and wj. The grammatical relations are defined in

Table A.1, in alphabetical order according to the dependency’s abbreviated name.
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Grammatical

Relations

Definition Example

acomp(wi,wj) Adjectival complement: wj is an

adjective that complements a verb

wi.

“She looks

very beautiful.”

acomp(looks, beautiful)

advcl(wi,wj) Adverbial clause modifier: wj is a

clause that modifies a verb or a

clause wi.

“The accident happened

as the night was falling.”

advcl(happened, falling)

advmod(wi,wj) Adverb modifier: wj is a non-

clausal adverb that modifies the

“Genetically modified

food”

meaning of word wi. advmod(modified,

genetically)

agent(wi,wj) Agent: wj is the complement of

a passive verb wi which is intro-

duced by the preposition “by” and

does the action.

“The man has been

killed by the police.”

agent(killed, police)

amod(wi,wj) Adjective Modifier: wj is an ad-

jective that changes the meaning

of wi.

“Sam eats red meat.”

amod(meat, red)

Continued on next page
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Table A.1 – Continued from previous page

Grammatical

Relations

Definition Example

appos(wi,wj) Appositional modifier: wj is a

noun immediately to the right of

the first noun wi that modifies or

defines wi.

“Sam, my

brother, arrived.”

appos(Sam, brother)

aux(wi,wj) Auxiliary: wj is a modal auxiliary

of a clause, where the main verb

is wi.

“Reagan has died.”

aux(died, has)

auxpass(wi,wj) Passive auxiliary: wj is a modal

auxiliary of a passive clause,

where the main verb is wi.

“Kennedy has

been killed.”

auxpass(killed, been)

cc(wi,wj) Coordination: wj is an element of

a conjunct and the coordinating

conjunction word wi.

“Bill is big and honest.”

cc(big, and)

ccomp(wi,wj) Clausal complement: wj is a de-

pendent clause with an internal

subject which functions like an ob-

ject of the verb or adjective wi.

“He says that you like to

swim.” ccomp(says, like)

Continued on next page
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Grammatical

Relations

Definition Example

conj(wi,wj) Conjunct: A relation between two

elements wi and wj connected by a

coordinating conjunction, such as

“and” and “or”.

“Bill is big and honest.”

conj(big, honest)

conj-

negcc(wi,wj)

Negated coordination: A “but

not”, “instead of”, “rather than”,

and “but rather” relationship be-

tween wi and wj.

“computers but not

laptops.” conj −

negcc(computers, laptops)

cop(wi,wj) Copula: A relation between the

complement of a copular verb wi

and the copular verb wj. Nor-

mally, copula is taken as a depen-

dent of its complement.

“Bill is big.” cop(big, is)

csubj(wi,wj) Clausal subject: wj is a clausal

syntactic subject of a clause wi.

“What she said

makes sense.”

csubj(makes, said)

csubjpass(wi,wj) Clausal passive subject: wj is a

clausal syntactic subject of a pas-

sive clause wi.

“That she lied was

suspected by everyone.”

csubjpass(suspected, lied)

Continued on next page
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Grammatical

Relations

Definition Example

det(wi,wj) Determiner: wj is a determiner of

the head of a noun phrase wi.

“The man is here.”

det(man, The)

discourse(wi,wj) Discourse element: wj is used for

interjections and other discourse

particles and elements (which are

not clearly linked to the structure

of the sentence, except in an ex-

pressive way).

“Iguazu is in Argentina

uh-huh.” det(is, uh −

huh)

dobj(wi,wj) Direct object: wj is the noun

phrase which is the (accusative)

object of the verb wi.

“She gave me a raise.”

dobj(gave, raise)

expl(wi,wj) Expletive: wj is an existential

there for the verb wi.

“There is a ghost in the

room” expl(is, There)

goeswith(wi,wj) Goes with: This relation links two

parts of a word that are separated

in text that is not well edited.

“They come here with

out legal permission.”

goeswith(with, out)

iobj(wi,wj) Indirect object: wj is a noun

phrase which is a (dative) object

of a verb wi.

“She gave me a raise.”

iobj(gave,me)

Continued on next page
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Grammatical

Relations

Definition Example

mark(wi,wj) Marker: wj is a word introducing

a finite clause subordinate to an-

other clause wi.

“He says that you

like to swim.”

mark(that, swim)

mwe(wi,wj) Multi-word expression: This rela-

tion is used for certain multi-word

idioms that behave like a single

function word.

“He cried because of

you.” mwe(of, because)

neg(wi,wj) Negation modifier: wj modifies a

word wi.

“Bill is not a scientist.”

neg(scientist, not)

nn(wi,wj) Noun compound modifier: wi is

any noun that serves to modify the

head noun wj.

“Oil price future”

nn(future, oil)

npadvmod(wi,wj) Noun phrase as adverbial modi-

fier: wj is a noun phrase used as

an adverbial modifier of a phrase

wi.

“The director is

65 years old.”

npadvmod(old, years)

nsubj(wi,wj) Nominal subject: wj is a subject

of a verb wi.

“Clinton defeated Dole.”

nsubj(defeated, Clinton)

Continued on next page
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Grammatical

Relations

Definition Example

nsubjpass(wi,wj) Passive nominal subject: wj is a

noun phrase which is the syntactic

subject of a passive clause wi.

“Dole was defeated

by Clinton” nsubj-

pass(defeated, Dole)

num(wi,wj) Numeric modifier: the noun wj is

any number phrase that modifies

the meaning of the noun wi with

a quantity.

“Sam ate 3 sheep.”

num(sheep, 3)

number(wi,wj) Element of compound number: wj

is a part of a number phrase or

currency amount wi.

“I have four thou-

sand sheep.”

number(thousand, four)

parataxis(wi,wj) Parataxis: wj is the main verb of

a clause and wi is other senten-

tial element(s), such as a senten-

tial parenthetical, a clause after a

“:” or a “;”.

“The guy, John said, left

early in the morning.”

parataxis(left, said)

pcomp(wi,wj) Prepositional complement: wj is

the clause or prepositional phrase

complement of a preposition wi.

“They heard about

you missing classes.”

pcomp(about,missing)

Continued on next page
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Grammatical

Relations

Definition Example

pobj(wi,wj) Object of a preposition: wj is the

head of a noun phrase following

the preposition wi.

“I sat on the chair.”

pobj(on, chair)

poss(wi,wj) Possession modifier: wj is the pos-

sessive determiner of the head of

the noun wi.

“their offices”

poss(offices, their)

possessive(wi,wj) Possessive modifier: wj is the pos-

sessive modifier of the head of the

noun wi and the genitive “’s”.

“Bill’s clothes”

possessive(John,′ s)

preconj(wi,wj) Preconjunct: wj is the head of a

noun phrase that appears at the

beginning of a conjunction wi (and

puts emphasis on wi).

“Both the boys and

the girls are here.”

preconj(boys, both)

predet(wi,wj) Predeterminer: The relation be-

tween the head of a noun wi and

a word that precedes and modi-

fies the meaning of the noun de-

terminer wj.

“All the boys are here.”

predet(boys, all)

Continued on next page
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Grammatical

Relations

Definition Example

prep(wi,wj) Prepositional modifier: wj is a

prepositional phrase that modifies

the meaning of a verb, adjective,

noun, or even another prepositon

wi.

“I saw a cat in a hat.”

prep(cat, in)

prepc(wi,wj) Prepositional clausal modifier: wj

is the prepositional clausal modi-

fier of wi.

“He purchased it with-

out paying a premium.”

prepc(purchased, paying)

prt(wi,wj) Phrasal verb particle: wj is the

particle for the verb wi.

“They shut down the sta-

tion.” prt(shut, down)

quantmod(wi,wj) Quantifier phrase modifier: wj

modifies the head of a quantifier

phrase constituent wi.

“About 200 people

came to the party.”

quantmod(200, About)

rcmod(wi,wj) Relative clause modifier: wj ia

a verb in a relative clause that

changes the meaning of wi.

“I saw the man you love.”

rcmod(man, love)

ref(wi,wj) Referent: wj is a relative clause

that modifies the noun wi.

“I saw the book

which you bought”

ref(book, which)

Continued on next page
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Grammatical

Relations

Definition Example

root(wi,wj) Root: It points to the root of the

sentence; and acts as the root of

the tree.

“I love French fries.”

root(root, love)

tmod(wi,wj) Temporal modifier: wj is a noun

phrase constituent that modifies

the meaning of a constituent wi.

“Last night, I

swam in the pool.”

tmod(swam, night)

vmod(wi,wj) Reduced non-finite verbal modi-

fier: wj is a participial or infinitive

form of a verb heading a phrase

wi.

“I don’t have any-

thing to say to you”

vmod(anything, say)

xcomp(wi,wj) Open clausal complement: wj is a

predicative or clausal complement

of a verb or an adjective wi with-

out its own subject.

“I am ready to leave.”

xcomp(ready, leave)

xsubj(wi,wj) Controlling subject: The rela-

tion between the head of an open

clausal complement wj and the ex-

ternal subject of that clause.

“Tom likes to eat fish.”

xsubj(eat, Tom)

Continued on next page
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Table A.1: Grammatical relations used in typed depen-

dency parse trees, defined in de Marneffe et al. [29, 30].
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