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Abstract 

 
 

Capillary sprouting is known to be guided by Dll4/Notch signaling in mouse 

retina, while maturation of the endothelium is regulated by Dll1 and Tie2. This study 

investigates the key molecules involved in endothelial sprouting and maturation, and the 

gene that orchestrates the expression of these targets in skeletal muscle in response to 

exercise. In exercised mice, Dll1 and Dll4 proteins were decreased with repeated 

training. Tie2 mRNA was downregulated with 5 days of exercise. The suppression of 

these molecules may induce destabilization of the endothelium and allow for sprouting 

to occur. Moreover, FoxO transcription factors have been shown to be anti-angiogenic 

and may negatively regulate genes involved in sprouting. Both Dll1 and Dll4 expression 

were not altered with repeated exercise in mice with endothelial cell directed conditional 

deletion of FoxO1/3a/4 (FoxO∆). We have provided insight into the mechanisms behind 

the initiation of capillary growth in skeletal muscle induced by exercise. 
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Chapter 1: Literature Review 

 

1.1 Skeletal Muscle 

Skeletal muscle is a type of striated muscle that represents approximately 49% of 

the total body mass in men and 41% of the total body mass in women (Cattrysse et al., 

2002). It is a malleable tissue that can adapt to changes in functional demands with its 

mechanical and metabolic properties (Flück, 2006). These changes include the 

alteration of muscular structures to enhance contractile force, velocity, and endurance. 

Muscular adaptions are crucial in regulating homeostasis within the body. Muscle 

loading and contraction are known to be the primary stimuli for muscular adaptions 

(Flück & Hoppeler, 2003). A prime example that contributes to this phenomenon is 

physical exercise.  

 

1.2 Exercise 

It is well recognized that regular physical activity is necessary for attaining and 

maintaining optimal health. The physiological adaption elicited by physical activity is 

largely dependent on the intensity, duration, frequency, and the type of exercise being 

executed. A single bout of exercise is sufficient to induce molecular synthesis and 

degradation within our body (Booth & Thomason, 1991). Fibre type switching, and 

increase in mitochondrion protein expression and anti-oxidants are some of the ways in 

which skeletal muscles adapt to prolonged or repeated exercise (Flück & Hoppeler, 

2003; Powers & Jackson, 2008). 



 

2 

 

Aerobic exercise training is strongly associated with cardiovascular adaptations, 

such as increase in cardiac output to improve blood flow and oxidative capacity (Booth 

& Thomason, 1991). Vascular remodeling also occurs with endurance exercise by 

increasing the number of capillaries in the working tissues to allow for a greater 

substrate exchange area (Bloor, 2005; Egginton, 2009; Lloyd et al., 2003). 

Muscular adaptations that occur with changes in the environment enable the 

muscle to fulfill the requirements of the body, and to minimize disruption of homeostasis 

which permits the organism to endure longer duration of physical work at the same 

power output before fatigue (Powers & Jackson, 2008).  

 

1.3 Capillaries  

Capillaries are the smallest microvessels in the circulation. They help maintain 

tissue viability by facilitating in the delivery of crucial nutrients, metabolites, and 

respiratory gases. A blood capillary consists of a lumen lined with a monolayer of 

endothelial cells (Hwa & Aird, 2007). The endothelial cells are attached adjacent to one 

another, embedded in the basement membrane of the extracellular matrix. This layer of 

sub-endothelial basement membrane regulates the exchange between the bloodstream 

and the surrounding tissues. Mural cells such as pericytes wrap around the capillaries, 

and help regulate endothelial proliferation and differentiation (Shepro & Morel, 1993).   

Capillaries are crucial for oxygen delivery and removal of metabolites from 

myofibres, particularly during periods of increased metabolic demand (Egginton & 

Gaffney, 2010). Adequate tissue perfusion is required for proper functioning of working 

tissue, as perfusion/metabolism mismatch could lead to insufficient production of ATP 
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and the increased accumulation of metabolic waste products (Wagner, 2000).  The 

capillaries within the skeletal muscle run parallel to the muscle fibres, forming a network 

which supplies the tissue with adequate oxygen to maintain its functions (Egginton, 

2011; Krogh, 1919a). The amount of blood vessels that surrounds a myofibre could 

determine the efficiency of tissue oxygenation. Plasticity within the microvascular 

network allows for changes in capillary density by the process of capillary growth 

(angiogenesis); this process commences according to the metabolic need of the 

surrounding tissue (Egginton, 2011). Increasing muscle capillarization can 1) increase 

the surface area for respiratory gas and substrate/metabolite exchange 2) decrease 

average diffusion path length within the muscle 3) increase the length of time for 

diffusive exchange between blood and tissue (Bloor, 2005). The early work of August 

Krogh showed the density of capillaries in the muscle is proportionate to the basal 

metabolic rate of the animal, quantified by measuring the number of capillaries per unit 

area of transverse muscle cross-section (Krogh, 1919a, 1919b). This technique is still 

commonly used by investigators to study vessel growth and regression. 

 

1.3.1 Fibre type specific capillarization 

The amount of capillarization within myofibres varies between the different fibre 

types. Slow-oxidative type 1 fibres are surrounded by more capillaries since they 

contain large numbers of oxidative enzymes with a large capacity for aerobic 

metabolism (Carrow et al., 1967; Gray & Renkin, 1978). In contrast, fast-twitch type IIb/x 

fibres have a relatively low mitochondrial volume and a limited capacity for aerobic 

metabolism, thus they require fewer capillaries (Gray & Renkin, 1978; Hudlická, 1985). 
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Alterations in fibre types and metabolic activity could lead to changes in blood vessel 

density as an adaptive response of the tissue (Hudlická et al., 1982). The processes 

that permit these physiological changes are driven by various cell signaling pathways, 

which will be described in detail in the following sections.  

 

1.4 Angiogenesis 

 

1.4.1 Angiogenesis 

Angiogenesis is the physiological process that involves the growth of new 

capillaries from pre-existing blood vessels. It is a vital process that occurs during growth 

and development, and it is sustained and regulated throughout life. Excess or 

insufficient capillary growth can lead to pathological conditions, such as tumor growth or 

peripheral artery disease (Carmeliet, 2003). When an angiogenic stimulus is present, 

endothelial cells from existing small vessels undergo proliferation, migration, 

differentiation, cell survival, and specialization to develop new blood vessels (Gerhardt, 

2008). The emerging vessels may come together or divide to form a capillary network 

that can supply a greater area within the tissue to match the changes in metabolic 

demands.  The sustainability and growth of the network is tightly regulated by the 

balance between pro- and anti-angiogenic factors. The continual opposition of these 

regulators and the downstream signaling pathways that they trigger will determine 

whether or not angiogenesis occurs within the body. 
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1.4.2 Exercise induced angiogenesis 

Exercise is a powerful stimulus for structural remodeling of the vasculature (Prior 

et al., 2004). During resting metabolic state, blood flow is greater in muscles with a 

higher quantity of oxidative fibres, but when muscle contraction occurs, vasodilators 

secreted by endothelial cells further increase blood flow to ensure a close coupling 

between muscle oxygen delivery and metabolic demand (Egginton & Hudlická, 1999; 

Hudlická, 1998). The initiation of vessel growth is dependent on the intensity of training, 

and it exhibits a much greater response in animals trained by running to exhaustion 

compared to moderate intensity exercise (Waters et al., 2004). The increase in muscle 

capillary would optimize the distribution of blood within the working tissue, and 

enhanced blood-tissue exchange properties (Bloor, 2005). Muscle samples obtained by 

needle biopsies have revealed that the number of capillaries per muscle fibre is higher 

in well-trained athletes compared to sedentary adults (Hermansen & Wachtlova, 1971). 

Endurance exercise performed at near maximal aerobic capacity enhances capillary-to-

fibre ratio in active skeletal muscle as early as 14 days of training (Slopack et al., 

manuscript in progress). When exercise training ceases, it can cause capillary 

regression as a consequence of detraining induced decreases in metabolic demand 

(Malek et al., 2010). This reduction in vascular density can occur as rapidly as 

neovascularisation following exercise (Malek et al., 2010; Roudier et al., 2010). These 

adaptations exhibited by trained muscle have been demonstrated in numerous studies 

conducted on various mammalians (Prior et al., 2004).   
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1.4.3 Forms of angiogenesis 

Angiogenesis can occur in two ways, sprouting angiogenesis and 

intussusception, commonly known as splitting angiogenesis. Both mechanisms lead to 

the expansion of the capillary network, but they involve different structural organization 

and signaling molecules. 

 

1.4.4 Splitting angiogenesis 

 Intussusceptive microvascular growth is a non-sprouting form of angiogenesis 

(Kurz et al., 2003). It was first described by Caduff and colleagues when they observed 

the rapidly developing microvasculature in the postnatal rat lung (Caduff et al., 1986). 

Unlike angiogenic sprouting, intussusceptive progression does not rely on the 

proliferation and migration of endothelial cells (Egginton et al., 2001; Williams et al., 

2006). The occurrence of vessel splitting is evident by the presence of transcapillary 

(intraluminal) tissue pillars (Burri & Tarek, 1990; Caduff et al., 1986). This process 

commences with the projection of opposing capillary walls into the vessel lumen, 

followed by the formation of a contact zone between the endothelial cells (Burri & Tarek, 

1990). Once the interendothelial junction is established, the endothelial bilayer becomes 

perforated centrally and transluminal pillar is formed, such pillars range from 1 to 2.5um 

in diameter (Djonov et al., 2003; Kurz et al., 2003). Intussusceptive angiogenesis plays 

a major role in vascular development, and recent studies have identified intravascular 

mechanical stimuli, such as shear stress that can initiate this process. 
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1.4.5 Sprouting angiogenesis 

When an angiogenic stimulus triggers the activation of endothelial cell, proteases 

are released and induce the enzymatic degradation of the capillary basement (Haas, 

2005). This allows endothelial cells to proliferate and migrate from the vessel wall into 

the interstitial matrix to form new connections with neighboring vessels. The sprouting 

process is highly regulated, as a distinct site must be selected from the original blood 

vessel in order for sprout formation to transpire (Gerhardt, 2008). The developing 

capillary sprout will protrude through the extracellular matrix toward an angiogenic 

stimulus, such as VEGF. Each sprout is led by a motile tip cell (Napp et al., 2012). The 

filopodia of the endothelial tip are enriched with VEGF receptors, allowing them to guide 

the developing sprout towards the VEGF source (Jakobsson et al., 2010). Furthermore, 

the filopodia of the tip cell are enriched with basement membrane proteolytic enzyme, 

membrane type 1 metalloproteinase (MT1-MMP) that facilitates migration toward the 

VEGF gradient (van Hinsbergh & Koolwijk, 2008). Following behind a tip cell are 

proliferating endothelial stalk cells that cause the elongation of the capillary sprout, and 

eventually become the trunk of the newly formed vessel (Blanco & Gerhardt, 2012).  Tip 

cells are frequently identified by Platelet-derived growth factor “b” (Pdgfb) and VEGFR3 

in the mouse embryo and retinal vasculature (Hellström et al., 2007; Tammela et al., 

2008). The association of these proteins with a tip cell phenotype allows researchers to 

distinguish between filopodia and stalk cells when observing endothelial sprouts.  
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1.4.6 Tip cell and stalk cell selection  

 The selection and arrangement of stalk and tip cells in the endothelium is 

accomplished by Dll4/Notch mediated lateral inhibition (Blanco & Gerhardt, 2012). Much 

of the literature that defined the effects of Notch/Dll signaling in endothelial sprouts is 

based on studies of the retinal vasculatures and the zebrafish embryo. The signaling 

mechanism behind tip cell formation has never been examined in complex tissues, like 

skeletal muscle. The Notch signaling pathway regulates tip cell formation during 

angiogenic sprouting, as shown in figure 1. It is a cell-cell signaling pathway that is 

activated by the binding of Notch receptors to the Delta-like ligand 4 (Dll4) on 

neighbouring cells (Kume, 2012). When Dll4 expression is upregulated by VEGF 

signaling in tip cells, it leads to the activation of Notch receptors in stalk cells, and in 

turn down-modulates VEGFR2/3 and upregulates VEGFR1 (Blanco & Gerhardt, 2012). 

The increase of VEGFR1 sequesters VEGF away from VEGFR-2, and results in the 

suppression of tip cell phenotype in the neighbouring (stalk) cells due to the decrease in 

VEGF induced migratory response (Blanco & Gerhardt, 2012; Carmeliet et al., 2009). 

The interaction between VEGF and Dll4-Notch signaling facilitates the functional 

distinction of endothelial cells into tip or stalk cells (Gerhardt, 2008).  

Recent time-lapse confocal imaging revealed that the tip/stalk cell selection is a 

dynamic process, as endothelial cells along the extending sprout compete for the tip 

position (Jakobsson et al., 2010). The position shuffling that occurs between tip cells 

and stalk cells is coordinated by VEGF and Notch activities. Fluctuation of VEGFR2 

may occur during endothelial outgrowth, and cells with higher VEGFR2 and lower 

VEGFR1 expression will surpass adjacent cells (Jakobsson et al., 2010; Siekmann et 
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al., 2013). This allows stalk cell with higher VEGFR2 levels to move into the tip position, 

and subsequently activates the Dll4/Notch pathway and suppresses its neighbouring 

cells from becoming tip cells (Jakobsson et al., 2010; Siekmann et al., 2013). Cell 

shuffling is hypothesized to enhance the ability for endothelial cells to determine the 

direction of VEGF gradient, hence providing a more robust network formation (Geudens 

& Gerhardt, 2011).  

Another Delta-like ligand, Dll1, is also expressed in the vascular endothelium 

(Kume, 2009). It is largely known to regulate vascular stability and  the maintenance of 

arterial phenotype (Limbourg et al., 2007). It has been recently identified as a key player 

in tip cell selection in mouse retina (Napp et al., 2012). 
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Figure 1-1. Dll4/Notch signaling mediate tip and stalk cell selection 

Dll4/Notch signaling mediates the selection and arrangement of stalk and tip cells 
through lateral inhibition in retinal vasculature and zebrafish embryo. VEGF signaling 
upregulates Dll4 expression, which activates Notch receptors in stalk cells, and leads to 
the suppression of VEGR2/3 and upregulation of VEGFR1. This limits VEGF binding to 
VEGFR2/3, and results in the inhibition of tip cell phenotype in the neighbouring stalk 
cells.  
 

1.5 Stimulation of angiogenesis 

 

1.5.1 Mechanical stretch 

 Mechanical stretch in muscle is associated with sprouting angiogenesis. Muscle 

sarcomere stretch can lead to endothelial stretch as external elastic force is applied to 

capillaries through the connection to skeletal muscle via connective tissue and 

extracellular matrix (Brown & Hudlicka, 2003). Synergistic muscle ablation is an 



 

11 

 

experimental model of muscle stretch and overload. Contraction of skeletal muscle in 

this manner can increase VEGF mRNA and protein production in vivo (Rivilis et al., 

2002), and upregulate Ang2 and Tie expression in vitro (Chang et al., 2003). Increased 

MMP-2 and MT1-MMP levels have also been observed in overloading the extensor 

digitorum longus (EDL) muscle in rats (Rivilis et al., 2002). These actions guided by 

mechanical forces developed within active muscle are stimuli that promote sprouting 

angiogenesis. 

 

1.5.2 Hypoxia 

  Similar to other bodily tissues, resting skeletal muscle homeostasis is 

compromised under acute or chronic hypoxic exposure, and the implementation of 

exercise could increase the magnitude of this imbalance  (Lundby et al., 2009). Oxygen 

availability can drop in the transition from rest to exercise during normoxic conditions, 

suggesting that exercising skeletal muscle operates at a very low partial pressure of 

oxygen (Richardson et al., 1995).  The hypoxic stimulus brings forth inadequate oxygen 

delivery/availability at the tissue level, thus, the tissue demand exceeds its oxygen 

supply. All nucleated cells in the human body have the ability to sense oxygen and are 

able to respond to oxygen shortage in order to maintain homeostasis (Lundby et al., 

2009).  The key mediator of cellular hypoxia is the hypoxia inducible factor (HIF) 

pathway, discovered by Semenza and colleagues (Wang & Semenza, 1995).  HIF-1 is a 

DNA-binding protein that is composed of two subunits: HIF-1α, which is highly sensitive 

to oxygen and has a short half-life, and HIF-1β (or ARNT: aryl hydrocarbon nuclear 

receptor) which is far less sensitive to oxygen levels (Semenza, 1999). HIF-1α is 
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degraded through hydroxylation under normoxic conditions (Lundby et al., 2009). During 

hypoxia, HIF-1α proteasomal degradation is blocked due to the inhibition of 

hydroxylation, and results in the accumulation of HIF-1α protein (Lundby et al., 2009). 

This allows for HIF-1α binding to HIF-1β, which forms the HIF-1 complex that can 

recognize hypoxia responsive elements (HRE) located in the nucleus of target genes 

(Lundby et al., 2009). The active HIF-1 transcriptional complex triggers expression of 

hundreds of downstream genes that enable the cells to manage oxygen stress, 

including those that regulate cell survival, metabolism, and angiogenesis (Fraisl et al., 

2009).   

 In the vasculature, oxygen availability can also dictates whether angiogenesis 

occurs (Ward, 2008). Endothelial cells have a number of oxygen-sensing mechanisms, 

including oxygen-sensitive NADPH oxidases, endothelial nitric oxide synthase (eNOS), 

and heme oxygenases (Ward, 2008). The ability for endothelial cells to rapidly divide, 

migrate, and form new capillaries under the condition of stress and hypoxia is due to 

their phenotypic plasticity, and their capability to generate adequate energy for the 

biosynthesis of macromolecules needed for rapid cell proliferation (Fraisl et al., 2009).  

 

1.5.3 Regulation of capillary growth by metabolism 

 During physical activity, increased skeletal muscle metabolism is required to 

match the energy requirements of the muscle. The upsurge of metabolites generated by 

the increase in metabolic activity may play a role in angiogenesis. Adenosine, produced 

from adenosine triphosphate (ATP) during exercise can elicit the angiogenic response 

by inducing endothelial cell migration and proliferation, and increases VEGF expression 
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(Adair, 2004; Grant et al., 1999; Murray & Wilson, 2001). Lactic acid, a metabolic by-

product of exercise has also been shown to induce migration and proliferation of 

endothelial cell both in vivo and in vitro (Murray & Wilson, 2001). 

 

1.6 Regulators of angiogenesis  

 

1.6.1 VEGF  

 VEGF-A is a 35 to 45 kDa peptide growth factor (Egginton, 2009). It was first 

described as a potent mitogen for endothelial cells and a vascular permeability factor 

that is important for normal vessel growth (Ferrara & Davis-Smyth, 1997). VEGF165 is 

the most abundant of numerous isoforms of VEGF-A (Ferrara & Davis-Smyth, 1997). It 

is produced by endothelial cells, perivascular cells, and host tissue cells, such as 

skeletal muscle (Egginton, 2009). Stimulation of endothelial cells with VEGF in vitro has 

been shown to accelerate proliferation and migration (Gerhardt, 2008).  The formation 

of an extracellular VEGF gradient is necessary in order for proper vascular patterning to 

occur.  Tissue VEGF levels are regulated at the level of transcription, isoform splicing, 

cell surface retention, and through uptake and degradation of VEGF protein (Gerhardt, 

2008). VEGF elicits angiogenic effects by binding to vascular endothelial growth factor 

receptor 2 (VEGFR2) located on the endothelial cell surface (Conway et al., 2001). 

When VEGF binds to VEGFR2 on the cell surface, it triggers a cascade of pro-

angiogenic events through multiple downstream signaling pathways including 

phosphatidyl-inositol 3 kinase (PI3K)/Protein kinase B (Akt), RhoGTPase, mitogen 

activated protein kinases (MAPK), extracellular-regulated kinase (ERK), and p38 and c-
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jun N-terminal kinase (JNK) (Milkiewicz, Ispanovic, Doyle, & Haas, 2006). Exercise 

stimuli have been shown to upregulate muscle VEGF expression in a time dependent 

manner (Breen et al., 1996; Gerhardt et al., 2003; Gustafsson et al., 2002; Hudlicka & 

Brown, 2009; Lloyd et al., 2003; Olenich et al., 2013; Waters et al., 2004). 

 

1.6.2 Angiopoietin/Tie2  

 Tie2 is a member of the tyrosine kinase (RTK) family of receptors; it consists of 

an N-terminal ligand-binding domain, a transmembrane domain, and an intracellular 

tyrosine kinase domain (Peters et al., 2004). Its expression is restricted to the surface of 

vascular endothelial cells (Schnürch & Risau, 1993).  Tie2 is highly conserved across 

vertebrate species, from zebrafish to human, with the utmost amino acid homology 

found in the kinase domain (Peters et al., 2004). Disruption of the Tie2 signaling 

pathway in transgenic mice resulted in vessel abnormalities which led to embryonic 

lethality (Dumont et al., 1994; Sato et al., 1995).  The blood vessels of Tie2 deficient 

embryos have a reduced number of endothelial cells, pericytes, and smooth muscle 

cells, which suggests its role in vascular branching and vessel stabilization (Patan, 

1998; Peters et al., 2004).  

The Tie2 receptor has 2 major ligands, angiopoietin 1 (Ang1) and angiopoietin 2 

(Ang2) (Asahara et al., 1998; Schnürch & Risau, 1993). When Tie2 is bound by Ang1 it 

becomes activated through auto-phosphorylation, inducing vessel stabilization by 

promoting the interactions between endothelial cells, pericytes, and the extracellular 

matrix (Pryor et al., 2010; Yancopoulos et al., 2000). Mice that lack Ang1 have a less 

complex vascular network, as it is displayed by rounded endothelial cells that are poorly 
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associated with pericytes and the extracellular matrix (Suri et al., 1996). Ang1-null mice 

die at embryonic day 12.5 (Suri et al., 1996). In contrast, Ang2 binding to Tie2 does not 

induce phosphorylation, but instead blocks the binding of Ang1 (Yancopoulos et al., 

2000). Studies have shown that Ang2 is an antagonist for Tie2 signaling, as transgenic 

overexpression of Ang2 disrupts capillary formation in the mouse embryo, exerting an 

effect very similar to that seen in Ang1-null mice (Maisonpierre et al., 1997). Ang2 is 

highly expressed during angiogenesis and its binding to Tie2 counteracts the effect of 

Ang1 and promotes destabilization and remodeling of the capillary (Hoier et al., 2011; 

Maisonpierre et al., 1997; Yancopoulos et al., 2000). 

 

1.6.3 Modulation of Ang/Tie signaling during exercise 

The concentration of the angiopoietins can fluctuate depending on whether the 

capillary network is in a latent or active state. Vessel stability is promoted when Ang1 

level is greater than Ang2, and when the concentration of Ang2 outcompetes Ang1, 

vessel instability is promoted and new capillary growth occurs (Gale & Yancopoulos, 

1999; Hoier et al., 2011; Lloyd et al., 2003). Lloyd and colleagues observed increases in 

Ang2-to-Ang1 ratio during exercise training, and Tie-2 mRNA expression was also 

upregulated and peaked at 8 days of treadmill running (Lloyd et al., 2003). The ratio 

between basal Ang2-to-Ang1 mRNA levels in human skeletal muscle was elevated after 

repeated bouts of single-legged exercise (Gustafsson et al., 2007). Ang1 gene 

expression was increased after 6 weeks of endurance training in humans, with no 

change in Ang2 levels (Timmons et al., 2005). Switching of the angiopoietin ratio can 

determine the regulatory response at different stages of angiogenesis. We hypothesize 
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the upregulation of Tie2 during exercise training is a marker of vascular stability and 

maturation of the capillary network. 

 

1.6.4 Matrix metalloproteinases  

The process of capillary growth requires the sprouting of new capillaries from 

pre-existing vessels. The expansion involves the progression of endothelial cell 

migrating into the interstitial matrix by degrading the basement membrane matrix 

(Kräling et al., 1999). Matrix metalloproteinases (MMPs) produced by endothelial cells 

are proteases that have the ability to cleave an assortment of extracellular matrix 

proteins. As reviewed by Haas, these proteins contribute to endothelial network 

formation which plays a major role in regulating both physiological and pathological 

angiogenesis (Haas, 2005). MMP-2 and MT1-MMP (MMP-14 or membrane type 1 

MMP) are the most well described types that are associated with capillary growth. 

MMP-2 is secreted from endothelial cells and requires MT1-MMP on the cell surface to 

activate its proteolytic functions (Murphy et al., 1999). Although MT1-MMP is produced 

at very low levels in quiescent endothelial cells (Haas, 2005), stimulated muscles have 

been shown to increase the production of both MT1-MMP and MMP2 (Haas et al., 

2000; Urso et al., 2009). Acute high-intensity resistance exercise also increase MMPs 

transiently in myofibres (Urso et al., 2009). The increase in MMP activity is said to be an 

early occurrence in active skeletal muscle which lead to the degradation of the 

basement membrane matrix, but it is not stimulated by increased in luminal flow (Brown 

& Hudlicka, 2003). MMP-2 protein levels have been shown to elevate as early as 12 

and 24 hours after a single exercise bout (Olenich et al., 2013). When endothelial nitric 
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oxide production was blocked, an elevation of MMP-2 protein level was observed in rat 

extensor digitorum longus muscle (Milkiewicz et al., 2006b). The type of mechanical 

stimulus is one of the key determinants of MMP production in skeletal muscle. High-

impact and high mechanical stress exercises that involve eccentric contraction seem to 

induce the greatest effect (Urso et al., 2009). 

 

1.7 Angiostatic factors   

 A number of angiogenic inhibitors have been shown to be essential under 

physiological conditions in regulating and maintaining the vascular network in a 

quiescence state. 

 

1.7.1 TSP-1 

Thrombospondin-1 (TSP-1) is a large glycoprotein that mediates cell-to-cell and 

cell-to-matrix interactions (DiPietro et al., 1996). TSP-1 exerts its angiostatic functions 

by inhibiting endothelial cell proliferation (Iruela-Arispe et al., 1999), migration (Tolsma 

et al., 1993), and tube and lumen formation (Iruela-Arispe et al., 1991; Tolsma et al., 

1997). Its effects are mediated by the TSP-1 domain, TSP-1 type-1 repeats (TSR1-3) 

(Bonnefoy et al., 2008; Olfert & Birot, 2011). The interaction of TSP-1 activation and 

TSR1-3 inhibits VEGF induced VEGFR2 activation by phosphorylation (Olfert & Birot, 

2011). TSP-1 can also prevent VEGF release from the extracellular matrix by hindering 

MMP-9 activation (Rodriguez-Manzaneque et al., 2001). The deletion of TSP-1 in mice 

has led to an increase in skeletal muscle capillarization (Malek & Olfert, 2009). This 

indicates that TSP-1 has mechanistic control over vessel growth. Exercise detraining 
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induced an increase in TSP-1 protein expression, which coincided with skeletal muscle 

atrophy and capillary regression (Roudier et al., 2010). Acute, but not chronic, exercise 

increases TSP-1 mRNA expression, which indicates that the reduction in angiogenic 

inhibitors by training would allow angio-adaptation to occur (Hoier et al., 2011; Olfert et 

al., 2006; Slopack et al., manuscript in progress). The upregulation of TSP-1 seen with 

acute exercise and detraining may prevent unnecessary capillary growth to occur, and 

down regulation of TSP-1 during prolonged exercise may be important for angiogenesis 

to take place in skeletal muscle.  

 

1.7.2 Endostatin 

Endostatin is a 20 kDa protein fragment released from collagen XVIII that exerts its anti-

angiogenic properties by inhibiting endothelial cell proliferation, migration, and tube 

formation (O’Reilly et al., 1997). This potent angiogenic inhibitor hinders with VEGF-

induced VEGFR2 signaling (Y.-M. Kim et al., 2002), and also prevents the catalysis of 

MMP-2 and MT1-MMP by restricting the activation of proMMP-2 (Kim et al., 2000). 

Olenich and colleague have shown that endostatin protein levels in mouse skeletal 

muscle were elevated as early as 2 hours post-acute exercise (Olenich et al., 2013). A 

single bout of cycling exercise was also sufficient to increase the plasma level of 

endostatin in humans (Rullman et al., 2007). This process was reversed in human 

subjects that have undergone endurance training for 6 months (Brixius et al., 2008). The 

role of endostatin with exercise is not well understood. Future studies should examine 

whether endostatin is involved in maintaining vascular homeostasis.  
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1.7.3 Semaphorin 

Semaphorin (Sema) constitutes a large family of transmembrane and secreted 

glycoproteins that are known to be involved in axonal guidance during neural 

development (Mark et al., 1997). The Sema family is categorized into eight classes. 

Class 1 and 2 are expressed in invertebrates, class 3-7 are found in vertebrates, and 

class 8 is specific to viruses (Goodman et al., 1999). All of the members have a 

conserved ~500 amino acid extracellular Sema domain (Kolodkin et al., 1993). 

Semaphorin signaling commences by binding to one of its class-specific receptors. 

Neuropilins (NRPs) are receptors for class 3 semaphorins (Sema3) (Kolodkin et al., 

1997). NRPs are expressed in neurons, endothelial cells, and tumor cells (Gagnon et 

al., 2000; Soker et al., 1998). NRPs have been credited with facilitating capillary growth, 

as they also interact with VEGF (Klagsbrun et al., 2002; Soker et al., 1998; Soker et al., 

2002). However, recent literature has determined that certain members of the Sema3 

family affect the vasculature in an inhibitory manner through NRPs. 

Sema3 consist of 6 secreted proteins, Sema3A through Sema3F (Goodman et 

al., 1999). Sema3F is expressed in endothelial cells (Guttmann-Raviv et al., 2007; 

Staton, 2011), and has been shown to inhibit tumor angiogenesis (Kessler et al., 2004). 

In vitro studies revealed that both Sema3A and Sema3F inhibit tube formation and 

migration of human dermal microvascular endothelial cells with and without the 

presence of VEGF (Staton, 2011). Guttmann-Raviv et al. showed that human embryonic 

kidney cells (HEK293) co-expressing Sema3A and Sema3F repelled endothelial cells, 

which caused areas of denuded zone in culture. Sema3F also induces endothelial 

apoptosis, and collapse the F-actin cytoskeleton (Bielenberg et al., 2008; Guttmann-
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Raviv et al., 2007). Similar to VEGF-A, Sema3F is a ligand of NRP2 (Klagsbrun et al., 

2002; Kolodkin et al., 1997). The overlapping binding site for NPR2 may suggest that 

functional competition between VEGF-A and Sema3F contributes to determining 

whether angiogenesis occurs (Geretti et al., 2007). The regulatory factors that govern 

the expression of Sema3F remain undetermined. 

 

1.7.4 Vasohibin 

Vasohibin (VASH-1) is expressed and secreted from the endothelium, and 

serves as a negative feedback regulator of angiogenesis (Watanabe et al., 2004). The 

p42 and p36 isoforms of VASH-1 are responsible for exerting anti-angiogenic activity 

(Olfert & Birot, 2011). This protein has been shown to inhibit endothelial cell 

proliferation, migration, and vascular tube formation in vivo and in vitro (Watanabe et al., 

2004). Kishlyansky et al. have found that VASH-1 protein levels were higher in less 

vascularized muscles compared to oxidative muscles, hence, its expression is muscle 

type specific (Kishlyansky et al., 2010). Rats that have undergone a single bout of 

running exercise showed an increase in VASH-1 protein expression in the plantaris 

muscle, and this increase was abolished after 3-5 days of training (Kishlyansky et al., 

2010). The similar expression patterns of VASH-1 and TSP-1 during exercise training 

suggests that the production of these two, and perhaps other, anti-angiogenic factors 

may be coordinated, so that they can complement one another in the inhibition of 

angiogenesis.  

Synchronizing signals must be present in order to coordinate the balance 

between pro- and anti-angiogenic factors. The Forkhead Box “O” (FoxO) transcription 
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factors have been established in regulating the transcription of numerous genes 

involved in capillary growth and regression. Recent work of Roudier et al. has 

elucidated the role of FoxO proteins in regulating the expression of TSP-1 in ischemic 

skeletal muscle (Roudier et al., 2013). The next section will discuss the contribution of 

FoxO proteins in orchestrating the pattern of angiogenesis.  

   

1.8 FoxO 

 The forkhead (Fox) family of transcription factors is classified by the presence of 

a 110 amino acid DNA binding domain (Kaufmann & Knöchel, 1996; Lai et al., 1993). It 

is comprised of over 80 members that have been identified in various species 

(Kaufmann & Knöchel, 1996). Members of the forkhead family have been shown to play 

vital roles during development and in the adults in regulating cellular differentiation and 

proliferation (Biggs et al., 2001). The FoxO subclass including FoxO1, FoxO3a, FoxO4, 

and FoxO6 are mammalian homologs (Anderson et al., 1998; Biggs et al., 2001; 

Furukawa-Hibi et al., 2002). FoxO1 and FoxO3a are highly expressed in endothelial 

cells (Biggs et al., 2001; Furuyama et al., 2000; Potente et al., 2005). While FoxO4 has 

relatively low expression in the endothelium, it has been shown to be expressed in the 

skeletal muscle (Biggs et al., 2001; T Furuyama et al., 2000; Potente et al., 2005). 

FoxO6 is strictly expressed in the brain (Jacobs et al., 2003). FoxO proteins exert their 

effects in the nucleus by binding to a forkhead responsive element on the promoters of 

downstream targets to mediate gene transcription, and initiate the coordination of 

proteins involved in the regulation of apoptosis and cell cycle transition (Brunet et al., 

1999; Furuyama et al., 2000; Huang & Tindall, 2007).  FoxO proteins are 
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phosphorylated by Akt on the serine or threonine residues which is located downstream 

of PI3K pathway (Brunet et al., 1999; Kops & Burgering, 2000). The activation of FoxO 

by Akt promotes 14-3-3 chaperone protein interaction that assists in the translocation of 

FoxO from the nucleus to the cytoplasm, where they may be targeted for proteasomal 

degradation (Brunet et al., 1999; Sunayama et al., 2005).  

 

1.8.1 FoxO in vascular development 

 Mammalian FoxO proteins modulate a wide variety of cellular functions in 

cardiovascular tissues. Their role in the developing vasculature has been demonstrated 

by Hosaka et al. and Furuyama et al. in a transgenic model, where FoxO1-deficient 

mice displayed embryos and yolk sacs vessel impairment and died on embryonic day 

11 (Furuyama et al., 2004; Hosaka et al., 2004). In contrast, FoxO3a- and FoxO4-null 

mice did not display embryonic abnormalities, and were similar to their wild type 

littermates (Furuyama et al., 2004; Hosaka et al., 2004). The unusual development of 

the vascular system in FoxO1-deficient mice was due to the insufficient response of 

endothelial cells to exogenous VEGF, which therefore disrupted an essential signaling 

pathway that is vital to normal vascular development (Furuyama et al., 2004). 

Furthermore, the development of endothelial specific FoxO1-deficient mice also 

displayed similar cardiovascular defects and embryonic lethality, thus  leading to the 

conclusion that this effect is endothelial FoxO1 dependent (Sengupta et al., 2012). 

These studies strongly support an essential role of endothelial FoxO1 in the formation of 

new vasculature.  
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1.8.2 FoxO in adult angiogenesis 

The role of FoxO appears to be reversed during postnatal development and 

adulthood. Contrary to FoxO deletion during mouse embryogenesis, FoxO1/3a/4-null 

induced at 4-5 weeks of age developed systemic hemangiomas (excessive growth of 

endothelial cells) that resulted in premature death (Paik et al., 2007). In vitro findings 

demonstrated enhanced proliferation and survival in endothelial cells derived from 

FoxO1/3a/4 deleted mice, and this effect was caused by the downregulation of Sprouty2 

(Paik et al., 2007). Robust endothelial cell proliferation and migration were observed in 

ex vivo 3D muscle explant culture excised from mice with conditional endothelial cell-

directed deletion of FoxO1/3a/4 (Roudier et al., 2013). Moreover, silencing of 

endogenous FoxO1 or FoxO3a gene expression with small interfering RNA led to a 

profound increase in endothelial cell migratory responses and tube formation in vitro 

(Potente et al., 2005). Thus, FoxO subclass 1 and 3a exhibit angiostatic potential, which 

indicates their crucial role in the regulation of endothelial cell homeostasis. 

 

1.8.3 FoxO and physical activity 

FoxO has recently been shown to regulate the balance between pro- and anti-

angiogenic factors in response to physical activity. The frequency of exercise performed 

influences the expression of FoxO.  An acute exercise bout induced increase in FoxO1 

and FoxO3a protein level, while repeated exercise of 14 days significantly 

downregulated FoxO1 and FoxO3a protein expression (Slopack et al., manuscript in 

progress). Previous work in our lab showed that FoxO transcription factors are able to 

negatively regulate the process of capillary growth, as mice with endothelial cell directed 
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deletion of FoxO1/3/4 (FoxO∆) have accelerated angiogenesis in response to repeated 

bouts of endurance exercise (Slopack et al., manuscript in progress). Furthermore, the 

expression patterns of TSP-1 during exercise training are similar to FoxO1 and FoxO3a, 

and the increase in TSP-1 with acute exercise is abolished in FoxO∆ animals (Slopack 

et al., 2013, manuscript in progress). This suggests that FoxO regulates downstream 

angiostatic targets such as, TSP-1 during exercise (Roudier et al., 2013; Slopack et al., 

manuscript in progress). 

The regulation of FoxO during physical activity could be a consequence of 

increased activation of Akt, which occurs in response to fluid shear stress (Dimmeler et 

al., 1998; Milkiewicz et al., 2011). Increased VEGF also could lead to the 

phosphorylation of FoxO1 and FoxO3a via the activation of Akt (Potente et al., 2005). 

Both shear stress and VEGF expression can be elevated with short term exercise 

(Breen et al., 1996; Gustafsson et al., 2002; Hudlicka et al., 2006), and return to basal 

level with prolonged training (Hudlicka et al., 2006; Lloyd et al., 2003; Olfert & Birot, 

2011; Pryor et al., 2010). The exercise response elicits the angio-adaption that occurs, 

and this process may be mediated by factors such as FoxO.  

 

1.9 Summary 

The coordinated regulation of angiogenic and angiostatic factors can control the 

behaviour of capillaries in response to different environmental stimuli, such as the 

frequency of exercise training. These regulatory signals orchestrate the extent to which 

capillarization occurs. As recently demonstrated by our lab, an increase in capillary-to-

fibre ratio was observed at 7 days of treadmill running in FoxO∆ mice (compared to 14 
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days in wildtype mice) (Slopack et al., manuscript in progress).  Beyond its role in 

controlling TSP1 production, the accelerated vessel growth suggests that FoxO 

transcription factors may also be able to negatively regulate genes involved in 

sprouting, which promotes enhanced sprouting in their absence. 

Tip cell formation in other models is strictly guided by Dll4/Notch signaling, while 

subsequent maintenance and maturation of the vascular network is regulated by Dll1 

and Tie2. It is probable that these factors are involved in sprouting and maturation of the 

capillary network that is known to occur in skeletal muscle in response to exercise 

training. These molecules have not been investigated within the skeletal muscle 

microcirculation, and nothing is known about the expression pattern of these factors in 

skeletal muscle in response to exercise.  

 

1.9.1 Study objectives 

Angiogenic growth factors that determine endothelial sprout and maturation must 

be coordinated in order to bring forth their intended effects. Transcription factors can act 

as those coordinating signals to ensure the occurrence of effective cellular responses. I 

hypothesize that FoxO transcription factors regulate genes such as Dll1, Dll4, and Tie2, 

which control the processes of sprout formation and capillary maturation in skeletal 

muscle. I focused on 2 major objectives to address this hypothesis. 

 

Objectives: 

1) To investigate the expression pattern of Dll1, Dll4, and Tie2 in skeletal muscle 

during endothelial sprout formation and capillary maturation. 
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2) To determine whether FoxO1 and FoxO3a regulate the expression of 

angiostatic factors (vasohibin, semaphorin 3F) and tip cell sprouting and 

maturation related proteins Dll1, Dll4, and Tie2 during endurance exercise. 
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Chapter 2: Methods 

 

Ethical Approval 

Animal studies were approved by York University Committee on Animal Care, 

and performed in accordance with Animal Care Procedures at York University and the 

American Physiological Society’s Guiding principles in the Care and Use of Animals.  

 

Mouse Model of Exercise Training  

 In the short term training protocol, twenty female FVB/n mice, age 9 weeks, were 

purchased from Charles River (Saint-Constant, QC, Canada). They were housed on a 

12:12 light-dark cycle with water and food ad libitum. 3 days prior to the exercise 

training regimen, mice were placed on the treadmill (#91447-3) for 15 minutes at a 

speed of 15m/min for acclimatization.  The mice were divided at random in to the 

sedentary group (n=5), 1 day of training (n=4), 1 day of training plus 2 hours of recovery 

(n=4), 3 day of training (n=4), and 5 days of training (n=4). Treadmill running was 

performed at a speed of 25m/min for 60 minutes for their respective training bouts. The 

sedentary group was placed on the treadmill daily to control for handling and 

environment. Mice were fasted 4 hours prior to their final bout of exercise, and they 

were anaesthetized (isoflurane/oxygen inhalation) immediately following their last bout 

of training, 2 hours after an acute bout of exercise, or rest. Gastrocnemius, plantaris, 

and soleus muscles were excised, weighed, and frozen in liquid nitrogen. The mice 

were euthanized by exsanguination.  
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Mouse Model of FoxO deletion  

 MxCre+:FoxO1,3,4L/L  ( FoxO) and MxCre-: FoxO1,3,4 (FoxO L/L) mice on a 

FVB/n background were bred at York University. They were housed on a 12:12 light-

dark cycle with water and food ad libitum. The FoxO1, FoxO3a, and FoxO4 genes of 

these mice have one exon that is flanked by two LoxP sites. FoxO mice also contained 

the Cre- recombinase (Cre) trans-gene under the control of Mx1-promoter. Mice were 

given 3 intraperitoneal injections every other day of 400ug of Polyinosinic-polycytidylic 

acid (Poly I:C) (#tlrl-picw Invitrogen) (2mg/mL) at approximately 4 weeks of age. Poly 

I:C induces the production of interferon-/β (IF-/β) by binding to the toll-like receptor 3. 

The Mx-promoter is then activated by IF-/β to initiate Cre transcription (Kühn et al., 

1995). In FoxO animals, activating the expression of  Cre recombinase will remove the 

portion of the FoxO genes flanked by the two LoxP sites, resulting in a near complete 

deletion of FoxO within endothelial cells (Paik et al., 2007) and other cells that express 

toll-like receptor 3. Poly I:C injection does not modify FoxO expression in FoxO L/L  as 

they lack the Cre trans-gene. 

 

Extended training 

In the extended training protocol, FoxO  (n=42, 21 female, 21 male) or FoxO L/L 

(n=42, 21 female, 21 male) were divided two weeks after Poly I:C injection. Each group 

were further allocated into their exercise groups: sedentary (n=6), 1 day of training 

(n=6), 7 days of training (n=6), 14 days of training (n=6), 28 days of training (n=6) and 

28 days sedentary (n=6). Acclimatization to the treadmill (15 minutes at a speed of 

15m/min) was performed 5 days prior to the training regimen. Running exercise was 
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performed at a speed of 25 m/min, 60 minutes per day. The 28 day trained mice ran on 

the treadmill 5 days/week for 4 weeks. The sedentary group was placed on the treadmill 

daily to control for handling and environment. Following the final bout of exercise, the 

mice were given a 2 hour recovery period before the administration of anaesthesia 

(isoflurane/oxygen inhalation). Gastrocnemius, soleus, plantaris, tibialis anterior, 

extensor digitorum longus, and heart were excised, weighed, and frozen in liquid 

nitrogen. The mice were euthanized by exsanguination. The plantaris was removed, 

weighed, embedded in cryogel, and then frozen in liquid nitrogen and cooled isopentane 

for histochemistry.  

 

The above 3 animal studies were conducted earlier for the thesis of Dara 

Slopack. I have contributed to the exercise training, muscle excision, and further 

analyses as described below. 

 

RNA extraction from muscle:  

~10mg of gastrocnemius muscle was used for RNA extraction via RNeasy 

Fibrous Tissue Mini Kit (Qiagen) as per manufacturer’s instructions. The extracted RNA 

was stored at -20 °C.  

 

qRT-PCR 

qRT-PCR was performed on extracts from the gastrocnemius muscle of  the 

sedentary, 1 day, 7 day, 14 day, and 28 day training groups. RNA was reverse 

transcribed to cDNA using Cells-to cDNA TM  kit (Ambion) according to the 
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manufacturer’s instructions (9ul of RNA per sample).  cDNA was diluted in 60uL of 

RNase free water.  4ul of cDNA was combined with TaqMan universal Fast PCR 

master mix (Applied Biosystems) and specific Taqman probes and primers (Applied 

Biosystems), as listed:  Dll1 (#Mm01279269_m1), Dll4 (#Mm01338015_m1), Tie2 

(#Mm0043243_m1), Vasohibin (#Mm00616592_m1), Sema3F (#Mm00441325_m1), 

and HPRT-1 housekeeping gene, as a control (#Mm00446968_M1). Samples were 

assessed in duplicate. qRT-PCR was performed in the following thermal conditions: 50 

°C for 30 minutes, 95 °C for 10 minutes, followed by 40 cycles of 95 °C for 15 seconds 

and 60 °C for 1 minute [7500 fast RT-PCR system (Applied Biosystems)].  To determine 

the amount of target sample mRNA, the average cycle threshold (CT) was calculated 

and compared to the average cycle threshold of HPRT-1 for the same samples with the 

formula ΔCT = AverageCT (sample) - AverageCT (control). The CT of the training samples 

was then compared to the CT of the sedentary samples by computing CT, where 

CT = CT(training) - CT(sedentary).  The amount of target amplification relative to the 

experimental control was calculated by the formula 2-CT.  

 

3D muscle explant angiogenesis assay  

 All tools and solutions were sterilized before surgery. Soleus muscles were 

carefully isolated from FVB/n mice. Each soleus was divided into 4–6 fragments or 

biopsy samples of approximately 3 X 3 mm in size. Biopsy samples were rinsed in cold 

sterile PBS and kept on ice until the next step. Then samples were rinsed 3 times with 

5% FCS in Dulbecco’s modified Eagle medium (DMEM; Gibco) and then embedded 

within a type 1 collagen gel as described below.  The collagen gel was prepared using 
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acid-soluble type 1 collagen from calf skin (5 mg/ml in 0.1% acetic acid; Elastin 

Products Co.). For 1 ml of mix, 120 ul of type 1 collagen (5 mg/ml), 400 ul of 2.5X  

DMEM, 50 ul of 0.1 N NaOH, and 10 ul of penicillin/streptomycin (Gibco) were mixed 

together. The solution was kept on ice (to avoid unwanted polymerization) until 

aliquoted into precooled 24-well tissue culture plates (250 ul of mix per well). Soleus 

biopsy samples were incubated for 1–2 min in cold collagen mix and then were placed 

at the center of the well. After polymerization (30 min at 37°C in CO2 incubator), DMEM 

containing 5% serum was added to each well. Medium was changed every other day.  

 Muscle biopsy samples were cultivated in medium with 5% FBS for different 

durations to allow the analysis of the successive steps of endothelial cell 

proliferation/migration into the collagen matrix until their assembly into primitive vascular 

tubes. After 4 d of culture in our conditions, endothelial cells were still in a dynamic 

phase of migration. Endothelial cells were stained for alkaline phosphatase activity by 

incubation with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (FAST 

BCIP/NBT; Sigma-Aldrich) for 45 min at 37°C. Pictures were acquired using an Axio 

Imager (Zeiss) equipped with an AxioCam camera (Zeiss).  

 

Immunofluorescence staining of explants 

 Muscle explants were stained with NG2 (#AB5320 Millipore), then counterstained 

with Isolectin (#FL-1101 Vector) and DAPI (#P5521 Promega) (1:1500 in PBS), then 

mounted onto slides with Immunofluor mounting medium and viewed with a Zeiss 

Axiovert 200M light microscope.  Explants were viewed using 10X or 40X objectives, 
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and images were captured at using Lambda 10-2 camera, and MetaMorph Imaging 

software.  

 

Muscle whole mount staining  

 Plantaris muscle cross-sections and longitudinal sections were cryosectioned to 

~10μm and ~15 μm thickness, respectively, and then mounted on microscope slides. 

The sections were fixed with 3.7% paraformaldehyde, and then blocked with 5% goat 

serum or 5% donkey serum diluted in phosphate-buffered saline. Immunostaining was 

performed with Dll1 (#H-265 Santa Cruz Biotechnology), Dll4 (#Ab7280 Abcam), Tie2 

(#AF762 R&D Systems), or Pdgfb (#Ab23914 Abcam) antibodies. The staining was 

visualized by the incubation with Alexa Fluor ® 488 goat anti-rabbit (#A11008 

Invitrogen), Alexa Fluor ® 568 donkey anti-goat (#A11057 Invitrogen), or DyLight 549 

goat anti-rabbit (#DI-1549 Vector Laboratory) secondary antibodies. The muscle 

sections also were counterstained with isolectin (#FL-1101 Vector) to detect capillary 

endothelial cells or α smooth muscle actin (#C6198 Sigma-Aldrich). Negative controls 

were first incubated with serum respected to the host of the secondary antibody, and at 

the same concentration as the primary antibody of the gene of interest. The 

immunostained muscle sections were viewed by Zeiss Observer Z1 confocal 

microscope with 488nm and 555nm lasers using 10x, 20x, and 63x objectives. Images 

were captured using Zen 2010 software set to line 4 averaging, and emission signals at 

75% for FITC and 63% for rhodamine. Z step sizes were taken at ~4.5 μm/step at 10x, 

~1.5μm/step at 20x, and ~0.83μm/step at 63x. At each magnification, image gain and 

offset were adjusted between the different targets and magnification to optimize the 
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quality of the signal, and these settings were kept the same between different exercise 

time points and for negative control of the same target.  

 

Statistical analysis 

 Statistical analyses were performed using Student’s t test, 1-way or 2-way 

ANOVA as appropriate, using Prism 4 (GraphPad Software Inc.). For 1-way and 2-way 

ANOVA analyses Bonferroni post-hoc test was used. The results were considered to be 

statistically significant at values of p < 0.05. 
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Chapter 3: Results 

 

Dll4/Notch signaling promotes endothelial tip cell formation in mouse retina and 

zebrafish embyro (Hellström et al., 2007; Jakobsson et al., 2010), and subsequent 

vascular maintenance is thought to be regulated by Dll1 and Tie2 pathways (Limbourg 

et al., 2007; Yancopoulos et al., 2000). To determine whether these molecules may play 

a role in angiogenic sprouting in skeletal muscle, I examined their transcript levels as 

well as their protein localization within the vasculature of skeletal muscle under resting 

and exercise conditions.  Using this model, we have found that exercise training induces 

the formation of new capillaries within 14 days (Slopack et al., manuscript in progress). 

 

Short term exercise influences Dll1, Dll4, and Tie2 expression 

 Transcript levels were assessed in mouse gastrocnemius muscle after acute and 

short term aerobic exercise. Dll1 mRNA level was significantly increased immediately 

after a single bout of exercise, returned to basal level after 2h of recovery, then 

increased again immediately after 3d of exercise (p<0.001, n=6) (Figure 3-1A). Dll4 

expression was not influenced by a single exercise bout, but showed a tendency for 

reduction at 5d of exercise (p=0.06, n=6) (Figure 3-1B). Tie2 was significantly down-

regulated at 5d of exercise compared to sedentary (p<0.05, n=6) (Figure 3-1C).   

 

Utilization of 3-D explant to examine sprout morphology 

 The muscle explant model was used initially as a tool to assess the localization 

of tip cell proteins.  I selected this method because endothelial cells migrate into the 3-D 
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collagen matrix from the soleus muscle biopsy 4 days after embedment, forming many 

filopodia-like structures. Thus, immunofluorescence staining of the muscle explants 

would allow localization of tip cell proteins to the extending endothelial cell sprouts.   To 

validate the model, the muscle biopsy was stained with isolectin to identify vascular 

endothelial cells, NG2 (a pericyte marker), and DAPI to locate nuclei. NG2 positive stain 

overlapped the isolectin stain. Pericytes appeared to surround the migrating endothelial 

cells, even at the furthest point of the cell migration. Images produced from the 3-D 

muscle explant did not provide good quality staining that could display EC sprout 

morphology, and presumably the localization of tip cell targets (Figure 3-2).  

Consequently, I did not pursue this model further, and chose to investigate the 

expression of putative tip cell proteins in histological sections of mouse muscle. 

 

Dll4 expression is decreased with exercise training 

 Immunostaining for Dll4 was performed on skeletal muscle from sedentary, 7 day 

and 14 day trained mice.  Both cross-sections and longitudinal sections of the muscle 

were assessed, to allow for a lateral view of the capillaries relative to muscle fibres and 

a side view that displays the length of the capillaries, respectively. The two viewing 

angles allowed us to better locate the expression of the protein of interest within the 

vascular network. As negative control, immunostaining using only species specific 

serum respected to the appropriate secondary showed no positive staining within the 

muscle or vasculature (Figure 3-13 – Figure 3-16). The Dll4 signals overlapped isolectin 

stain, which suggests that Dll4 is widely expressed in capillaries and large vessels of 

mouse skeletal muscle.  Both muscle cross-sections and longitudinal-sections displayed 
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a decrease in Dll4 staining intensity after 7d and 14d of treadmill running compared to 

sedentary mice (Figure 3-3, Figure 3-4). 

 

Dll1 is expressed in sedentary and 7d of training, but reduced after 14d of training 

 To determine if Dll1 protein is expressed in skeletal muscle and altered during 

exercise, Dll1 expression was assessed by immunohistochemistry. Dll1 signal is strong 

in sedentary and 7d of training, but diminished at 14d of training (Figure 3-5, Figure 3-

6). Positive Dll1 signals predominately overlapped isolectin staining, which suggests 

that Dll1 is expressed in capillaries and large vessels of mouse skeletal muscle. Dll1 

expression also was found in lateral segments between adjacent capillaries in the 

longitudinal muscle sections from exercised mice (see arrowheads in Figure 3-6), this 

occurrence was most prominent at the 7d time point. The expression of Dll1 in this 

location may suggest the development of lateral branches, as the selection of tip cell is 

commencing.  

 

Tie2 expression is present, but weak in sedentary and trained muscles 

 Tie2 expression in the endothelium has been shown to be associated with the 

recruitment of pericytes and smooth muscle cells (Patan, 1998; Peters et al., 2004) and 

thus may be an indicator of maturation and stabilization of the vascular network. Tie2 

immunostaining was detectable within capillaries, but the staining was uniformly weak in 

muscles from both sedentary and trained mice (Figure 3-7, Figure 3-8). 
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Pdgfb is not a definitive marker of tip cell in skeletal muscle 

 Tip cells are frequently identified by the presence of Pdgfb in mouse retina 

(Hellström et al., 2007). To determine if Pdgfb is a marker of tip cells in skeletal muscle, 

the localization of Pdgfb was assessed by immunohistochemistry. Pdgfb was expressed 

in the skeletal muscle endothelium, but its expression was not restricted to tip cells 

(Figure 3-9 and Figure 3-10). Pdgfb staining also was observed in areas close to, but 

not overlapped with, isolectin positive capillaries in both cross-sections and longitudinal 

sections. 

 

Dll1 and Pdgfb are expressed in endothelial cells, but not mural cells of skeletal muscle 

 Endothelial cells are closely associated with mural cells (pericytes or smooth 

muscle), and it is difficult to differentiate between the two at the light microscope level.  

To provide further evidence that Dll1 and Pdgfb are expressed in endothelial cells, and 

not in mural cells, longitudinal muscle sections from 7 days of training were stained with 

secondary antibody conjugated with Alexa Fluor 488 specific to the host of Dll1 and 

Pdgfb antibodies, then counterstained with α smooth muscle actin, a marker of smooth 

muscle cells and pericytes. Both Dll1 (Figure 3-11) and Pdgfb (Figure 3-12) signals 

were detected side-by-side to α smooth muscle actin positive staining, but the signals 

did not overlap. 

 

Exercise training elicited temperal changes in FoxO1 and FoxO3a expression 

 Recent work from our lab had found that FoxO1 and FoxO3a protein expression 

were decreased after repeated bouts of exercise compared to a single bout (Slopack et 
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al., manuscript in progress). To examine FoxO1 and FoxO3a transcript levels during 

exercise training, we assessed gastrocnemius muscle from mice that remained 

sedentary, or underwent treadmill running for 1, 7, or 14 days. FoxO1 mRNA was 

significantly elevated after a single bout of exercise (p<0.05, n=6) (Figure 3-17A). This 

increase in FoxO1 mRNA was abolished after 14 days of training (p<0.05, n=6) (Figure 

3-17A). FoxO3a mRNA was unchanged at day 1 compared to sedentary (n=6), but it 

significantly decreased after 7 and 14 days of training compared to a single exercise 

bout (p<0.05, n=6) (Figure 3-17B).  

 

Dll1, Dll4, and Tie2 expression were influenced by FoxO during exercise training 

 In addition to observing the expression pattern, we were interested to know how 

these factors are regulated. Our lab recently demonstrated that FoxO transcription 

factors are able to negatively regulate angiogenesis, as mice with endothelial cell 

directed deletion of FoxO1/3/4 (FoxO∆) have augmented endothelial cell proliferation 

and migration, and also display accelerated vessel growth in response to repeated 

bouts of endurance exercise (Slopack et al., manuscript in progress). To determine if 

FoxO regulates the expression of tip cell markers in muscle during exercise, Dll1, Dll4, 

and Tie2 mRNA levels were assessed in FoxOL/L and FoxO∆ mice that remained 

sedentary, or underwent exercise training for 1, 7 or 14 days. Dll1 expression was 

significantly down-regulated in FoxOL/L mouse gastrocnemius muscle after 7 and 14 

days of treadmill running, coinciding with the period of capillary sprouting (p<0.001, n=6) 

(Figure 3-18A). In FoxO∆ mice, basal Dll1 mRNA was reduced compared to wildtype, 

and there was no further decrease with training (p<0.05, n=6) (Figure 3-18A). There 
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was no change in Dll4 mRNA with exercise (n=6) (Figure 3-18B). In FoxO∆ mice, Dll4 

expression was decreased at 7d and 14d compared to FoxO L/L sedentary (p<0.05, n=6) 

(Figure 3-18B).  Tie2 expression was bi-phasic, increasing two-fold in animals trained 

for 1 and 14 days compared to sedentary counterparts (p<0.05, n=6) (Figure 3-18C). 

The up-regulation of Tie2 seen after 14 days of exercise was abolished in FoxO∆ 

animals (p<0.01, n=6) (Figure 3-18C).   

 

Influence of FoxO expression on angiostatic factors during exercise training 

 The process of endothelial sprout formation is also affected by the production of 

angiostatic factors. We previously found that the anti-angiogenic factor 

thrombospondin1 is regulated by FoxO proteins, leading us to hypothesize that FoxO 

proteins may coordinate the expression of multiple anti-angiogenic factors within 

skeletal muscle. Vasohibin expression was shown to be repressed in response to 

exercise training (Kishlyansky et al., 2010).  Vasohibin mRNA levels were assessed to 

determine whether its expression in skeletal muscle is controlled by FoxO during 

exercise. Neither a single bout nor long-term exercise influenced vasohibin mRNA 

levels in FoxOL/L animals (n=5 for 1d, n=6 for Sed and 14d) (Figure 3-19). In FoxO∆ 

mice, vasohibin mRNA expression was significantly up-regulated after a single bout of 

exercise compared to time matched FoxOL/L (p<0.05, n=5) (Figure 3-19).  

 

 Sema3F is reported to inhibit angiogenic sprouting, but its expression within 

skeletal muscle has not been reported to date.  Sema3F expression was up-regulated 

after a single bout of exercise and returned to basal levels after 7d and 14d of training, 
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coinciding closely with the mRNA expression pattern of FoxO1 (p<0.05, n=6) (Figure 3-

20A). Sema3F mRNA levels did not change with extended training (p=0.055, n=5 for 

Sed, n=6 for 28d) (Figure 3-20B). The increase in Sema3F mRNA expression seen at 

1d was abolished in FoxO∆ mice (p<0.05, n=5) (Figure 3-21). 
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Chapter 4: Discussion 

 

 The principle contribution of this study is to demonstrate the expression patterns 

of key molecules that are involved in endothelial sprout formation and maturation in 

mouse skeletal muscle during exercise. As shown with immunohistochemistry, both Dll1 

and Dll4 proteins were down-regulated with repeated bouts of aerobic exercise. Tie2 

protein was expressed in skeletal muscle, but its expression was not changed with 

exercise. Pdgfb was present in the skeletal muscle endothelium, but its expression was 

not limited to tip cells as previous studies have demonstrated in zebrafish embryo and 

mouse retina. Changes in tip cell gene expression in response to exercise were also 

assessed, but discrepancies were found between mRNA and protein levels. 

Furthermore, we have shown that FoxO transcription factors play a role in regulating the 

transcript levels of Dll1, Dll4, Tie2, and anti-angiogenic factors such as vasohibin and 

Sema3F in skeletal muscle during aerobic exercise. 

 Acute and short term exercise can elicit temporal expression of several 

angiogenic factors (Gavin & Wagner, 2001; Olenich et al., 2013). VEGF is known to be 

highly expressed during the early phases of an exercise regimen and diminishes as 

training continues (Breen et al., 1996; Lloyd et al., 2003). Elevation in Tie2 mRNA and 

Ang2-to-Ang1 ratio were also observed at the early time points and attenuated later in 

training (Lloyd et al., 2003). Repeated exercise training elicits effects such as inducing 

the expansion and remodeling of the vasculature, and promoting stabilization of the 

newly expanded capillary network, commonly seen at 7 and 14 days of exercise, at 

which point capillary density and capillary-to-fibre ratio have been reported to increase 
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(Olenich et al., 2013, Slopack et al., manuscript in progress). Beyond this, very little is 

known about the process of endothelial cell sprouting in skeletal muscle.  In order to 

identify tip cells and mature capillaries, I first examined the mRNA levels of several 

targets that have been previously established to be associated with the formation of 

capillary sprouts and vascular maturation. This was then followed by in vivo assessment 

using immunohistochemistry in order to observe changes in endothelial cell morphology 

and the localization of tip cell targets in skeletal muscle. 

Dll4/Notch signaling regulates the formation of tip cell during angiogenesis. Dll4 

mRNA was decreased (p=0.06) at day 5 of exercise compared to sedentary (Fig. 3-1B). 

The tendency of transcript reduction seen with Dll4 at this time point may allow for 

augmented tip cell phenotype selection without the interference of lateral inhibition. 

Evidence has shown that the expression of Dll4 is upregulated by VEGF (Blanco & 

Gerhardt, 2012); hence, the decline in VEGF expression with repeated exercise as 

previously reported by other researchers (Gavin & Wagner, 2001; Lloyd et al., 2003) 

may contribute to the downregulation of Dll4. Both muscle cross-sections and 

longitudinal sections displayed a broad expression of Dll4 in the skeletal muscle 

endothelium, based on the overlap with isolectin staining. Interestingly, Dll4 signals 

were also seen in some areas that were not isolectin positive, particularly in areas 

between two parallel capillaries (Fig. 3-4C). This area of enriched Dll4 protein may 

indicate an early sign of the formation of lateral branches between adjacent vessels. 

Other targets such as VEGFR3 that have previously been identified in tip cells 

(Tammela et al., 2011) should be investigated, as the isolectin staining did not appear to  

identify the extension of filopodia in skeletal muscle capillaries. The expression of Dll4 
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can also be seen in large vessels (Fig 3-3, 3-4C). Perhaps Dll4 serves similar functions 

as Dll1 in maintaining arterial phenotype in skeletal muscles. The decrease in Dll4 

protein expression seen at 7 days and 14 days of exercise compared to sedentary (Fig. 

3-3, 3-4) may suggest a state of enhanced endothelial sprouting, as lateral inhibition is 

subdued. 

Dll1 was previously reported to be involved with tip cell selection and a regulator 

of arterial maintenance (Limbourg et al., 2007; Napp et al., 2012). Dll1 expression 

during treadmill running was transient, increasing at day 1 and day 3 and returned to 

basal levels on the fifth day (Fig. 3-1A). This may suggest that the commencement of tip 

cell selection occurs at the early stages of the exercise regimen. This increase in Dll1 

expression is also immediate, as 2 hours of recovery following an acute bout of exercise 

is sufficient to return Dll1 mRNA back to basal levels. With repeated exercise, Dll1 is 

down-regulated in skeletal muscles at time points when initiation of capillary growth 

would be expected to occur with training (Fig. 3-18A). Dll1 had previously been 

identified in arterial endothelial cells, where its expression is crucial for vascular 

maintenance during fetal development (Sörensen et al., 2009). Our mRNA analyses 

suggest that the role of Dll1 may differ in adults, where the suppression of Dll1 is 

required for angiogenesis to occur during repeated exercise.  Recent findings from 

Adam and colleagues have found that Dll1 signaling is promoted in human umbilical 

vein endothelial cells when a quiescent endothelial phenotype is required (Adam et al., 

2013). With this concept in mind, the decrease in Dll1 at day 7 and 14 of training would 

correspond to the downregulation of Delta-Notch signaling in order to promote capillary 

growth. Similar to Dll4, Dll1 expression overlaps isolectin staining (Fig. 3-5, 3-6), and 
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also is localized to areas between adjacent vessels that were not isolectin positive (Fig. 

3-6). This further validates the concept of early development of lateral branches as this 

area of the endothelium is undergoing a pre-sprouting state of tip cell selection. This 

selection process may slow down in skeletal muscle at 14 days of exercise, as Dll1 

protein expression is decreased compared to sedentary and 7 days of training. Dll1 

immunostaining did not overlap with α smooth muscle actin (Fig. 3-11), indicating that it 

is not expressed within peri-endothelial cells of skeletal muscle.  

Tie2 expression in the endothelium has been shown to be associated with the 

recruitment of pericytes and smooth muscle cells which influence vessel architecture 

(Patan, 1998; Peters et al., 2004). The decrease in Tie2 mRNA at day 5 of exercise 

(Fig. 3-1C) may indicate the starting point at which capillary destabilization occurs in 

order to initiate morphological changes in the endothelium in response to repeated 

exercise. Increases in Tie2 mRNA with treadmill running at 1 and 14 days are 

consistent with its role in capillary stabilization (Fig. 3-18B), both before and following 

the formation of endothelial sprouts, respectively. Interestingly, our findings showed 

Tie2 protein expression is present in the capillaries, but the intensity of the signal 

remained unchanged with repeated exercise bouts compared to sedentary (Fig. 3-7, 3-

8). I also stained cultured mouse skeletal muscle endothelial cells (mSMECs) with 

isolection and the Tie2 antibody to validate the presence of Tie2. The Tie2 signal 

overlapped isolectin, thus we can conclude that the antibody is suitable for identifying 

Tie2 expression in murine endothelial cells. Technical issues such as antibody 

concentration and incubation time may need to be adjusted in order to properly assess 

Tie2 expression in muscle sections.  
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In other models, Pdgfb was shown to be a marker of tip cells (Hellström et al., 

2007). We have examined Pdgfb in mouse skeletal muscles and found that its 

expression extensive throughout the microvascular endothelium and is not limited to tip 

cells. Pdgfb signal from immunostaining of muscle cross- (Fig. 3-9) and longitudinal 

(Fig. 3-10) sections overlapped isolectin, suggesting that it is expressed on the surface 

of endothelial cells. Pdgfb protein was also identified in areas without positive isolectin 

staining (Fig. 3-10). These signals that were not overlapped with isolectin were seen in-

line and positioned superior and inferior of isolectin positive capillaries (Fig. 3-10C). 

Similar to Dll1, the Pdgfb signal was not found in mural cells (Fig. 3-12), suggesting its 

expression is specific to the surface of small vessels in the skeletal muscle endothelium. 

The retention motif of the Pdgfb gene is structurally similar to the VEGF-A heparin 

sulfate interacting domain (Ostman et al., 1991); hence, Pdgfb signals that were in-line, 

but did not overlap with isolectin stain may represent secreted Pdgfb proteins that were 

bound to heparin sulfate rich proteins, such as the extracellular matrix. More work will 

be required to decipher this phenomenon.  

We recently demonstrated the effects of FoxO transcription factor by use of the 

MxCre:FoxO1, 3, 4 transgenic mouse model. Conditional deletion of FoxO 1, 3a and 4 

in skeletal muscle endothelial cells attenuated the angiostatic properties of FoxO, 

resulting in accelerated capillary growth during exercise (Slopack et al., manuscript in 

progress). We hypothesized that gene targets involved in vessel sprouting contributed 

to this occurrence. Basal Dll1 transcript levels were downregulated in the FoxO 

transgenic animals, but neither Dll1 or Dll4 mRNA was altered with 7-day and 14-day of 

training in FoxO∆ mice (Fig. 3-18A, 3-18B), suggesting that the Delta/Notch signaling 
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pathway is not regulated by FoxO during repeated exercise. Furthermore, we observed 

the loss of the exercise response in Tie2 expression in the FoxO∆ model. However, our 

data reveal that Tie2 mRNA level is not regulated by FoxO at rest. While most of the 

changes fit in accordance with the alteration in FoxO protein, this is not apparent for 

Tie2 mRNA level at 14-day as FoxO protein is greatly reduced at that time point 

(Slopack et al., manuscript in progress). Tie2 expression at 14-day appears to be 

strongly dependent on FoxO. Although it is not a direct connection, the expression of 

Tie2 at this time point may occur indirectly through other genes that are influenced by 

FoxO. More work will be required to decipher this event during repeated aerobic 

exercise.  

 Our lab has recently shown that 2 hours following a single bout of exercise can 

elicit an increase in FoxO1 and FoxO3a transcript (Fig. 3-17A) and protein levels 

(Slopack et al., manuscript in progress), and that FoxO proteins regulated the 

expression of anti-angiogenic factor  TSP-1 at that time point (Slopack et al., manuscript 

in progress). This led us to believe that temporal changes in FoxO1 and FoxO3a in 

response to an acute exercise bout may influence the expression of additional 

downstream targets that act to repress an angiogenic response. Here, we look at the 

transcription of VASH-1 as it has previously been shown to share similar expression 

patterns as TSP-1 during short term exercise (Kishlyansky et al., 2010). Kishlyansky et 

al. observed an immediate increase in VASH-1 protein in skeletal muscle following 

acute exercise, while VASH-1 protein returned to basal level by 4 hours of recovery. We 

observed no change in VASH-1 mRNA levels following exercise with 2 hours recovery 

compared to sedentary animals (Fig. 3-19). It is possible that we would see increases in 
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VASH-1 mRNA if we assessed muscle immediately after the completion of exercise. 

The inconsistency seen between VASH-1 mRNA and protein levels may be due to an 

increased rate of protein translation, or that VASH-1 protein is required for structural 

maintenance in the skeletal muscle endothelium, thus it is less likely to be targeted for 

degradation. Alternatively, VASH-1 expression was elevated in FoxO∆ animals trained 

for 1 day plus 2 hours of recovery (Fig. 3-19). This upregulation may assist in 

compensating for the loss of FoxO, in continuing to provoke angiostatic signals to the 

endothelium. The negative regulation of VASH-1 by FoxO suggests that FoxO is able to 

suppress its downstream targets in coordinating the rate of which angiogenesis occurs.  

 Sema3F is expressed in endothelial cells and elicits anti-angiogenic properties, 

but the factors that regulate its expression are not known. I found that the expression 

patterns of Sema3F in skeletal muscle were very similar to that of FoxO1, FoxO3a, and 

TSP-1 in response to aerobic exercise (Fig. 3-20), leading to the hypothesis that FoxO 

transcription factors govern the expression of Sema3F during exercise. We examined 

Sema3F levels in FoxO∆ animals at the 1 day of exercise plus 2 hours of recovery, as 

FoxO1 and FoxO3a proteins were shown to be significantly elevated at the time point. 

The increase in Sema3F seen at 1d+2h of exercise was abolished in FoxO∆ animals 

(Fig. 3-21), demonstrating that its expression is regulated by FoxO transcription factors. 

Basal levels of Sema3F were unchanged in FoxO∆ mice compared to FoxOL/L. This 

suggests that FoxO is a key player in coordinating cellular events, including the 

regulation of multiple anti-angiogenic targets during exercise.  
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Chapter 5: Conclusions and Future Perspectives 

 

 This study provides novel insight into the mechanisms behind sprouting 

angiogenesis by examining genes related to tip cell formation in a model that has never 

been studied before for this purpose. We have contributed to the understanding of the 

physiology behind the initiation of capillary growth in skeletal muscle induced by 

exercise.  This is of particular interest for exploring targets stimulated by exercise 

therapy to promote the enhancement of blood flow in ischemic tissues. Our findings 

from the mRNA analysis and immunohistochemistry suggest that Dll1 and Dll4 are 

regulated in skeletal muscle during aerobic exercise. Tie2 is also shown to be regulated 

at the transcription level with exercise, and potentially may play a role in the maturation 

of the vascular network. The expression of these genes is altered at different exercise 

time-points which suggest their role in optimizing the initial periods of capillary sprouts, 

and shaping the foundation of the upcoming vascular network. The analysis of an 

exercise time-course, in conjunction with the use of the FoxO∆ mice provided 

understanding of the regulatory role that FoxO plays in coordinating the expression of 

pro- and anti-angiogenic factors in skeletal muscle during exercise.  

 Immunostaining of longitudinal muscle sections allowed us to visualize the length 

of the capillary network and the formation of lateral branches, which is believed to be an 

ideal approach to study endothelial sprouts induced by exercise. I expected to be able 

to identify tip cells in these muscle sections by using known markers, but the targets 

that I chose were not localized specifically to the filopodia of the capillary in skeletal 

muscle. Identifying the appropriate protein to be used as a tip cell marker is essential in 
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the continuation of studying vessel sprouts in this model. An objective approach in 

quantifying the strength of the immunostaining signal in muscle sections by using 

quantitative software is one method to provide an accurate representation of the protein 

expression. Quantitative protein analysis could also be used to provide a more accurate 

assessment of gene expression in skeletal muscle to reduce the discrepancies seen 

between mRNA assessments and immunostaining. In vitro analsysis of cell migration 

may also be suitable in determining the key players of sprout formation, and provide 

further understanding of these known targets in skeletal muscle endothelial cells. Other 

molecules such as VEGFR3 and Sema3A have previously been implicated in 

angiogenic sprouting in mouse retina (Kim et al., 2011; Tammela et al., 2008). They 

may potentially be candidates for the identification and regulation of tip cells in skeletal 

muscle. Although the exercise time-course of 1 to 14 days could be used to map out the 

occurrence of molecular and morphological responses in vascular remodeling during 

different phases of training, the current and previous studies have shown that the period 

of recovery following exercise can induce a dramatic change in gene expression. 

Broadening the time-course to include pre-exercise time periods would allow us to 

further pinpoint the expression of the target of interest. Utilizing siRNA or a Notch 

inhibitor in in vitro experimentation or a transgenic animal model of conditional deletion 

to suppress the gene expression of Dll1 and/or Dll4 may provide mechanistic 

approaches in exploring the role of Delta/Notch signaling in skeletal muscle 

endothelium.  

Future studies should continue to explore downstream targets of FoxO in 

identifying its role in coordinating the balance between angiogenic and angiostatic 
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factors in response to different stimuli. The expression pattern and localization of tip cell 

targets could also be examined in human subjects undergoing exercise. These 

observations could motivate future analysis in optimizing exercise training protocols that 

would improve the skeletal muscle vascularisation of peripheral artery disease patients.  
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Appendix 

 

In my first year of the masters program, I was involved with three collaborative 

projects which focused on 1) the mechanisms of corticosterone in mediating capillary 

growth, 2) the role of Angiotensin II in inducing angiogenic signals within skeletal 

muscle, and 3) the involvement of FoxO1 and FoxO3a in regulating exercise induced 

angiogenesis. The following is a summary of my contribution to the three manuscripts. 

 

Inhibition of proliferation, migration and proteolysis contribute to corticosterone-
mediated inhibition of angiogenesis (Shikatani, et al., 2012) 
 

Study objective 

 Corticosterone is an endogenous glucocorticoid in rodents. It is well established 

that pharmacological levels of glucocorticoid steroids promotes capillary regression, and 

prevents vascular development (Folkman et al., 1983; Small et al., 2005). However, the 

angiostatic effects of pathophysiological elevation of glucocorticoid are not known. The 

objective of this study is to assess the cellular mechanisms of pathophysiological 

concentration of corticosterone in the inhibition of angiogenesis.   

 

Results 

 Pure corticosterone pellets implanted subcutaneously in rats resulted in elevated 

basal plasma cortiosterone levels, which reduced capillary-to-fibre ratio in the tibialis 

anterior muscle compared to control rats. Capillary segments in 3D culture treated with 

600nM of corticosterone for 48h resulted in decrease in capillary sprouting compared to 
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control. Rat skeletal muscle endothelial cells treated with corticosterone had reduced 

VEGF mRNA levels and decreased proliferation rate compared to control. Scrape 

migration assay reveled that corticosterone reduced endothelial migration distance. This 

is likely contributed by the reduction in MMP-2 levels with corticosterone, as both total 

MMP-2 and activated MMP-2 levels were reduced in endothelial cells treated with 

corticosterone for 48h compared to control. Corticosterone mediates the inhibition of 

angiogenesis by interfering with endothelial cell proliferation, migration, and proteolysis. 

 

Project contribution 

 I was involved in the skeletal muscle endothelial cell culture experiments that 

displayed cell rounding with corticosterone treatment (Figure A-1 D/E), as well as, 

performed and captured the images of the endothelial cell migration assay (Figure A-2 

A). I have also contributed to the assessment of endothelial cell apoptosis by 

immunostaining for cleaved caspase-3 (Figure A-3 A/B).  
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Angiotensin II evokes angiogenic signals within skeletal muscle through 
coordinated effects on skeletal myocytes and endothelial cells (Gorman et al., 
2013) 
 

Study objective 

 Angiogenesis induced by skeletal muscle overload is contributed by the 

augmented expression of VEGF and MMP-2 (Rivilis et al., 2002; Williams et al., 2006). 

The upstream mediator of overload-induced expression of VEGF is not known. 

Angiotensin II (Ang II) is a regulator of the vasculature and is reported to modulate 

angiogenesis. This study demonstrates that Ang II promotes cross-talk between skeletal 

muscle fibres and endothelial cells, but that Ang II signaling is not required for overload-

induced angiogenesis. 

 

Results 

 The expression of angiotensinogen, a precursor of Ang II, is increased in 

overloaded extensor digitorum longus muscle. Ang II treatment stimulated the 

production of VEGF in myocytes and skeletal muscle endothelial cells. Ang II treatment 

also induced the phosphorylation of ERK1/2 in C2C12 myotubes and cultured 

endothelial cells. Blockade of AT1 receptor did not prevent capillary growth in response 

to muscle overload. Endothelial cells treated with both Ang II and AT1R blockade had 

increased VEGF mRNA levels compared to cells treated with Ang II alone. These 

results indicate that endogenous Ang II is involved with the production of VEGF by 

skeletal myocytes, but that Ang II is not required for overload-induced angiogenesis. 
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Project contribution 

 My contribution to this project includes performing the muscle overload and 

osmotic pump infusion surgeries on mice, the extraction of skeletal muscles and 

endothelial cell isolation from these animals, followed by the capillary-to-fibre 

assessment (Figure A-8), and mRNA (Figure A-4 A/B) and protein analysis (Figure A-4 

C-E) of angiotensinogen, AT1R, and AT2R levels. I also measured Ang, AT1R, AT2R, 

p-ERK1/2 and p-Akt protein levels in both cultured endothelial cells (Figure A-5, Figure 

A-7) and C2C12 myotubes (Figure A-5, Figure A-6). Moreover, I performed various drug 

treatments to assess VEGF mRNA levels in cultured endothelial cells and C2C12 

myotubes (Figure A-9). 
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FoxO1 and FoxO3a are involved in the regulation of exercise induced 
angiogenesis 
(Slopack et al., manuscript in progress) 
 

Study objective 

 FoxO1 and FoxO3a are expressed in endothelial cells and  their expression is 

known to have anti-angiogenic effects (Tatsuo Furuyama et al., 2004; Paik et al., 2007). 

The involvement of FoxO transcription factors in the regulation of exercise induced 

capillary growth is not known. The objective of this study is to assess whether FoxO1 

and FoxO3a are regulated in endothelial cells in response to aerobic exercise, and in 

turn, contribute to the angiogenic response seen with training. 

 

Results 

 FoxO3a protein was elevated after a single bout of treadmill running and returned 

to resting levels with 5 days of training. FoxO1 and FoxO3a levels were significantly 

increased after 28 days of training, a time point where there is no further increase in 

capillary-to-fibre ratio compared to 14 days of exercise. Mice with endothelial cell 

directed deletion of FoxO1/3/4 have reduced vascular endothelial expression of FoxO1 

and FoxO3a, reduced expression of thrombospondin1 and displayed an accelerated 

angiogenesis response to repeated bouts of endurance exercise. Both FoxO1 and 

FoxO3a play a role in mediating the angiogenic response elicited by aerobic exercise. 

 

Project contribution 

 My involvement with this project includes monitoring the mice exercise training 

regimen on the treadmill, endothelial cell isolation from mouse skeletal muscle, and 
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assisted with skeletal muscle extraction from mice following exercise. I also performed 

mRNA analysis on FoxO1 (Figure A-10 A, Figure A-11 A), FoxO3a (Figure A-10 B, 

Figure A-11 b), TSP-1 (Figure A-12), and Gadd45 (Figure A-13) in response to various 

exercise training time points.  
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