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Abstract

Question generation (QG) aims to automatically generate questions from text doc-

uments. Neural question generation (NQG) applies deep neural networks to solve

the problem of QG. Deep neural networks have been successfully applied to many

real-world problems, including natural language processing (NLP). However, their

performance relies heavily on the availability of a large amount of labelled training

data where the desired output of the model to be learned given an input is provided.

For domains where labelled training data are very limited, NQG models suffers from

poor performance. Another problem that NQG encounters is the problem of rare and

unknown words, which are the words that occur during both training and inference

phases but do not exist in the vocabulary list of the system. In this thesis, solutions

to both problems are presented. We first investigate the impact of transfer learning

on NQG on a domain where labelled training data are very limited, and explore the

effects of transferring knowledge learned from data in a general domain into different

layers of the NQG network. To deal with the rare and unseen word problem, we

integrate semantic relationships defined in the WordNet lexical database, which is a

type of general knowledge external to the training data, into the input representa-

tion of the NQG system. We conduct experiments to evaluate the proposed models

and demonstrate significant improvements over the state-of-the-art methods across

various evaluation metrics.
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Chapter One

Introduction

The task of Question Generation (QG) aims to generate a set of question-answer

(QA) pairs from raw text without the need of human labor. The generated QAs can

be useful for training deep neural network models for building e.g., dialog systems.

QG can also benefit reading comprehension (Du, Shao, and Cardie, 2017), self-

learning, forming questions to estimate students’ knowledge and preparing course

materials for the students (Heilman and Smith, 2010). Question generation methods

can be classified into two categories: (1) the rule-based approach, e.g,. (Mitkov and

Ha, 2003; Heilman and Smith, 2010; Mazidi and Nielsen, 2015) (2) the deep learning

approach, e.g,. (Du, Shao, and Cardie, 2017; Zhou et al., 2017; Sun et al., 2018).

Traditional rule-based approaches use hand-crafted rules to form questions, which

requires labor-intensive formation of rules. Also, the rules generated in one domain

may not be transferable across domains. Deep learning approaches have been ap-

plied on many natural language processing tasks, such as machine translation, text

summarization, etc. These tasks inspired the use of neural network-based methods

for questions generation as well. For example, Du, Shao, and Cardie (2017) employed
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the sequence-to-sequence model on this task. In general, end-to-end neural-based ap-

proaches are more capable of generating complex questions than rule-based methods

(G. Chen et al., 2018).

1.1 Motivations

One of the most important characteristics of Deep Neural Networks (DNNs) is

that their performance relies on the availability of a large amount of data. Sufficient

amounts of training data play an important role when developing these models.

Neural network approaches for QG are competitive when a large amount of data is

provided. For example, neural question generation (NQG) models trained on SQuAD

(Rajpurkar et al., 2016), which is a general purpose question and answer (QA) data

set containing about 100,000 QA pairs, achieve good performance. However, the

performance of NQG systems is far from satisfaction when only a small set of QA

pairs is available for training. This is often the case when generating questions for

a specific domain (such as car manuals) where labeled data (i.e., existing QA pairs)

are scarce. A technique for dealing with small data sets is transfer learning, where

knowledge learned from one domain is transferred to another. More specifically, in

transfer learning, models learned for tasks for which a large amount of labelled data

are available are used in learning a model for tasks where labelled data are very

limited. Transfer learning has been used in computer vision and some NLP tasks

such as text classification, but little investigation has been done on its use in neural

question generation, especially on the car manual domain.
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Another problem with Natural Language Processing (NLP) applications is brought

by out-of-vocabulary words (OOV). Words play an integral part in building NLP sys-

tems. They are the input and/or output to these systems. A very large number of

words exists in each language, whose vocabulary is also evolving. The common out-

put layer of NLG systems is a softmax whose dimension is the number of words in

the vocabulary. In order to reduce the computational complexity of these systems,

the vocabulary is often shrunk to contain the top-k most frequent words from the

training data (Gülçehre et al., 2016). The words that do not appear in this vo-

cabulary are unknown words, which are represented by the 〈UNK〉 token. These

words are referred as the out-of-vocabulary words, and they have the same vector

representation during training and test time. Therefore, this problem have an ad-

verse impact on many Natural Language Generation (NLG) tasks such as Neural

Question Generation.

1.2 Contributions

The objective of this work is to address the above open issues for neural question

generation (NQG). Below are the contributions of the thesis:

• We investigate the use of transfer learning in question generation for a domain

where labeled data is scarce. In particular, we would like to see whether the

QG models learned from a large amount of general-purpose QA pairs can help

learn QG models in a specific domain (e.g., car manuals) where labelled data

are very limited. In addition, we study the impact of partially transferring
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parameters from different layers of the source model, e.g., embedding weights

and inner layers parameters and demonstrate the performance of the model

after being fine-tuned on the target domain. We also explore the impact of

choosing more semantically similar instances to the domain of our interest as

the training data.

• We propose a new word representation method for the NQG problem when

encountering out-of-vocabulary words during the training and testing phases.

Instead of utilizing one vector representation for all the unknown words, we

incorporate the general knowledge of human beings into a neural network-

based approach for question generation to determine the vector representation

of an unknown word. In particular, we utilize the synonym relations between

words defined in WordNet (Miller et al., 1990) in the embedding layer of the

neural network. In other words, the embedding vector for each unknown word is

computed based on its synonym representations existing in the embedding table

of our system. Embedding table is a simple lookup table in the system that

stores the word embeddings for the words existed in the vocabulary. This table

maps each word index to its distributed representation. The words embedding

vectors can be obtained from this table using their indices.

• We conduct empirical evaluation of our proposed methods on the state-of-the-

art NQG models. The experimental results show that our proposed methods

improve BLEU, ROUGE and METEOR scores considerably where the available

data for training a deep neural model is not sufficient on the specific domain
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of car manuals. We demonstrate the effects of using both techniques, namely

parameter initialization as an additional step of training our model using a

large QA dataset and employing the wordnet synonym relation on top of our

NQG model in chapter 4. The generated questions have a better quality in

terms of coherence, grammar and their relatedness to the provided answers

compare to our baseline models.

1.3 Overview of the thesis

The structure of the thesis is as follows: In Chapter 2, we discuss types of Question

Generation followed by methods for evaluating NQG systems. We further provide

a brief introduction of deep learning techniques specifically for text generation. In

Chapter 3, we review the related works for neural question generation. Chapter 4 is

devoted to our domain adaptation technique for NQG. We also propose a method to

tackle the problem with out-of-vocabulary words by incorporating relations defined

in the WordNet (Miller et al., 1990) lexical database in our NQG system. The list

of the abbreviations used in this thesis are provided on pages x and xi.
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Chapter Two

Background

This chapter provides background knowledge to the concepts of the subsequent

chapters. It reviews techniques used in natural language processing, mostly neural

networks, followed by fundamentals of deep learning. It then introduces the founda-

tion of common deep learning architectures in NLP.

2.1 Word Embedding

Word embedding is a technique to represent words as vectors of real numbers. It

is used in many natural language processing tasks such as sentiment classification,

question answering system, text summarization and question generation.

2.1.1 One-hot Encoding

One-hot representation is an integer vector representation of a word w in the

vocabulary V. The dimension of this vector is equal to the size of V, i.e., w is repre-

sented in the R|V |×1 dimensional space. The value of the vector at the corresponding

6



index for w is 1 while the other elements have the value 0 in the sorted order for the

English language. However, in this representation the similarity between the word

vectors is not considered. However, it would be useful to have representations that

can be used to capture semantic similarities between words.

2.1.2 Embedding matrix

Embedding matrix E maps each word in the vocabulary of the system to a vector

representation where E ∈ R|V |×d, where d is the embedding dimension. The embed-

ding matrix can be learnt through probabilistic a neural language model (Yoshua

Bengio et al., 2003) or other techniques such as Word2vec (Mikolov, Sutskever, et

al., 2013), GloVe (Pennington, Socher, and C. Manning, 2014), etc. In many NLP ap-

plications, the word representations are obtained from the embedding matrix. With

these featurized representations we can capture analogies such as "king is to queen

as man is to woman". As depicted in Figure 2.1 1 the concept that discriminates sir

from madam would also distinguish other word pairs such as man and woman. This

discriminative concept could be gender.

2.1.3 Language Model

Language models compute the probability of words occurring in a sequence, de-

noted as P (w1, w2, ..., wn). This technique generates words and phrases that are more

likely to appear in the same context together. The probability of a word appearing

at a certain location of the sequence depends on the previous words:
1https://nlp.stanford.edu/projects/glove/
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Figure 2.1 GloVe model’s word representation by (Pennington, Socher, and
C. Manning, 2014)

P (w1, w2, ..., wn) =
n∏

i=1

P (wi|w1, ..., wi−1) (2.1)

(1) n-gram Language Models

The n-gram language model calculates the probability in equation (2.1) by consid-

ering the count of the n-grams. More specifically, the probability of a word occurring
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at the i -th location from the n-gram language model is computed as follows:

P (wi|w1, ..., wi−1) = P (wi|wi−1, ..., wi−(n−1)) ≈
count(wi−(n−1), ..., wi−1, wi)

count(wi−(n−1), ..., wi−1)
(2.2)

where count(x) is the number of occurrences of sequence x in a training corpus of

text. There are a few issues with the proposed n-gram models. One is caused by

the Sparsity problem, which is if the n-gram is not seen before, then the numerator

or denominator in equation (2.2) become zero. In order to address this problem,

techniques such as smoothing (S. F. Chen and Goodman, 1996) and back-off (Katz,

1987) are used. Another problem with the n-gram language model is that the counts

of n-grams in the corpus need to be stored. This leads to the storage problem.

(2) Neural Probabilistic Language Model

Yoshua Bengio et al. (2003) introduced a neural language model which aims to

learn distributed representation of words as well as the probability distribution over

the vocabulary given context word embeddings as well:

P (wt|wt−n+1, ..., wt−1) =
exp(ywt)∑
w∈V exp(yw)

y = b+Wx+ Utanh(d+Hx)

x = (C(wt−n+1), ..., C(t− 2), C(t− 1)) (2.3)

Let m be the number of features, C ∈ R|V |×m is the matrix of distributed word

representations that are learnt during training the model. b, d, W, U and H are the

parameters of the model. The architecture of this model is shown in Figure 2.2.
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Figure 2.2 The first architecture of deep neural network model for natural
language processing introduced by (Yoshua Bengio et al., 2003)

2.1.4 Word2vec

Word2vec (Mikolov, K. Chen, et al., 2013) is another model for learning the dis-

tributed representation of words. It utilizes either two model architectures: Contin-

uous Bag-of-Words Model (CBOW) and Continuous Skip-gram Model, Figure 2.3.

In the former model, a word is being predicted based on the surrounding context

words, while in the skip-gram model the surrounding words are predicted based on

the current word. The output layer of this model is softmax which is computationally
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expensive due to the normalization over all the vocabulary of the system. Therefore,

hierarchical softmax and negative sampling (Mikolov, K. Chen, et al., 2013) could

be replaced with the normal softmax layer.

Figure 2.3 CBOW and Skip-gram architectures introduced by (Mikolov,
K. Chen, et al., 2013)

2.1.5 GloVe

GloVe (Pennington, Socher, and C. Manning, 2014) is an unsupervised learning

algorithm for deriving the distributed word representations. Instead of considering

only surrounding context words to generate the word embeddings, this model takes

the global word co-occurrence statistics into account.
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2.1.6 Contextual Representation

(1) Embeddings from Language Models (ELMo)

Word embeddings derived from pre-trained models such as GloVe or word2vec

do not consider the context into account (Peters, Ammar, et al., 2017; McCann

et al., 2017). ELMo (Peters, Neumann, et al., 2018) representations learn the word

vectors through a bi directional LSTM that is trained with a coupled language model

(section 2.1.3) objective on a large text corpus. A forward language model computes

the following word in a sequence, while the backward language model predicts the

previous token.

(2) Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) is a language

representation model. The semantic of a word is well understood when the context

that the word is placed into is considered. Word embeddings such as Word2vec

(section 2.1.4) and GloVe (section 2.1.5) allow downstream tasks to leverage linguistic

information which is learnt from a larger corpus. However, one of the limitations

to these methods is that they do not take the context of the word into account.

ELMo (section 2.1.6) and ULMFiT (Howard and Ruder, 2018) are types of deep

contextualized word representations. These context-dependent representations are

obtained through learning via bi directional language modeling (section 2.1.3). The

problem with these models is that they do not take both previous and subsequent

words into account at the same time. In order to make good predictions and capture

a deeper semantic of the the context, this task is vital. BERT uses transformer’s
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encoder (section 2.3) that solves this problem by reading the entire sequence of words

at once. BERT is trained using two objectives: masked language model (MLM) and

next sentence prediction. Masked Language Model (MLM): a percentage of

the input tokens are masked at random and they are replaced with [MASK ] token

and the model predicts masked tokens with cross-entropy loss. Next Sentence

Prediction (NSP): During the NSP task, the model tries to predict whether two

sentence are followed by each other or not using binary classification loss. This pre-

trained model can be fine-tuned with an additional output layer for various tasks

such as natural language inference and question answering systems.

2.2 Recurrent Neural Network (RNN)

Traditional neural networks do not consider the dependency between words. In

other words, the connection between words is not integrated within the representation

of a sentence. Recurrent neural networks tackle this problem by incorporating loops

within their architecture. Hence, the information can be passed through different

time steps and the network is aware of the earlier steps.

Figure 2.4 Unrolled recurrent neural network
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Figure 2.42 demonstrates an unrolled recurrent neural network at different time

steps. Considering the RNN as function f , it outputs information (hidden state) at

time step t, ht, as follows:

ht = f(xt, ht−1) (2.4)

where xt is the input word vector such as Word2Vec (Mikolov, Sutskever, et al.,

2013), GloVe (Pennington, Socher, and C. Manning, 2014) or a vector embedding

learnt from scratch, etc., at time step t. ht−1 is the hidden state from the previous

step and h0 = 0. To train this network, the loss function at time step t is usually

cross entropy:

L(ŷ<t>, y<t>) = −
|V |∑
i=1

y<t>
i logŷ<t>

i (2.5)

where ŷ<t> is the softmax output and y<t> is the target word. The overall loss is

the average over all time steps for each individual prediction:

Ltotal = −
1

T

T∑
t=1

|V |∑
i=1

y<t>
i logŷ<t>

i (2.6)

2.2.1 Long Short Term Memory

Learning long-term dependency by RNNs becomes more difficult as the context

becomes longer (Y. Bengio, Simard, and Frasconi, 1994). Long short term memory

(LSTM) (Hochreiter and Schmidhuber, 1997) is a special kind of RNN suitable for

tasks involving long-term dependencies. LSTM contains of four different layers in its

architecture instead of a single layer as in RNN (see Figure 2.5 3).
2https://colah.github.io/posts/2015-08-Understanding-LSTMs
3https://en.wikipedia.org/wiki/Long_short-term_memory
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Figure 2.5 Different layers in a LSTM cell

LSTM consist of input gate i, forget gate f , output gate o and cell state C.

Assuming g as the LSTM function:

ht = g(xt, ht−1) (2.7)

where ht computes the hidden state of the current time step and h0 = 0. g is de-

rived by the following computations for different layers (Hochreiter and Schmidhuber,

1997):

• Forget gate layer ft, controls the information from the previous step that would

remain at time step t, equation (2.8). It outputs a value between 0 and 1, where

1 means to keep all the information and 0 means to eliminate the information

completely:

ft = σ(Wfxxt +Wfhht−1 + bf ) (2.8)
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where Wfx, Wfh and bf are learnable parameters and xt is the word input

representation at step t.

• Input gate layer i, computes the values that would be updated. The tanh layer

determines the new vector C̃t for cell state C.

it = σ(Wixxt +Wihht−1 + bi) (2.9)

C̃t = tanh(Wcxxt +Wchht−1 + bC) (2.10)

where Wix, Wih, Wcx, Wch, bi and bC are learnable parameters.

• The new cell state Ct is calculated by forgetting parts of the previous cell state

and updating the new vector value C̃t:

Ct = ft � Ct−1 + it � C̃t (2.11)

where � is the element-wise product. The cell state Ct is passed through a

tanh layer so that the values would be within the range -1 and 1. The output

prediction ht is derived by the output gate layer ot:

ot = σ(Woxxt +Wohht−1 + bo) (2.12)

ht = ot � tanh(Ct) (2.13)

where Wox, Woh and bo are learnable parameters.

2.2.2 Gated Recurrent Unit

Gated recurrent unit (Kyunghyun Cho et al., 2014) (GRU) is a variation of

LSTM. Unlike LSTM, GRU has 2 gate layers that are update and reset, and it does

16



not contain cell state. GRUs have less complex architecture in contrast to LSTMs

and therefore they are computationally less expensive. rt is the reset gate at step t

that determines whether the previous hidden state should be ignored or not. zt is

the update gate which controls the amount of information transferred to the current

hidden state from the previous state.

rt = σ(Wrxxt +Wrhht−1)

zt = σ(Wzxxt +Wzhht−1) (2.14)

where Wrx, Wrh, Wzx and Wzh are learnable parameters. ht is the new hidden

state:

h̃t = tanh(Whxxt +Whh(rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t (2.15)

where Whx and Whh are learnable parameters.

2.2.3 Bi directional RNN

In order to expand the information captured from the input sequence (e.g., a sen-

tence) to the network, hidden layers of opposite directions are connected. The for-

ward RNN generates forward hidden states (
−→
h1,
−→
h2, ...,

−→
hI) while the backward RNN

generates backward hidden states (
←−
h1,
←−
h2, ...,

←−
hI). Bi directional recurrent neural net-

work (BRNN) (Schuster and Paliwal, 1997) is trained simultaneously on positive and

negative time directions that are forward and backward states respectively (depicted
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in Figure 2.6). This feature becomes vital when the context of the input is required to

accomplish a task (e.g., dialogue systems, summarization). Therefore, by considering

the previous and the following steps, system would have a better understanding of

the context. Finally, the hidden state for time step i is hi = [
−→
hi ;
←−
hi ]. [x; y] represents

the concatenation of x and y.

Figure 2.6 Unfolded bi directional RNN at three different time steps (Schus-
ter and Paliwal, 1997).

2.2.4 Encoder-Decoder Architecture

In order to apply RNN to tasks where input and output sequences have vari-

ous lengths (e.g., summarization, question generation, speech recognition), encoder-

decoder structure (Kyunghyun Cho et al., 2014) is proposed. The idea is that one

RNN (encoder) encodes the sentence into an intermediate representation while an-

other RNN (decoder) converts the representation to another sequence.
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(1) Encoder

The words in the input sentence is converted to word embeddings. This repre-

sentation is then passed to the encoder (simple RNN, LSTM or GRU) to generate

hidden states:

hi = f(xi, hi−1) (2.16)

where f is a non-linear activation function, xi is the word embedding at step i.

h0 is initialized to 0. Therefore, the input sentence with length n is converted to

intermediate representation h = {h1, h2, ..., hI}. The encoder RNN outputs whole

encoded input representation as the context vector v.

(2) Decoder

The decoder (simple RNN, LSTM or GRU) takes the context vector v and gen-

erates decoder’s hidden state sj at each time state of the decoder j :

sj = g(sj−1, yj−1, v) (2.17)

where g is a non-linear activation function, sj−1 is the previous decoder hidden state

and yj−1 is the previous generated output. y0, usually denoted by < s >, is the

beginning of the decoder state. The goal of the decoder is to estimate the probability

of sequence (y1, y2, ..., yJ) given the input sequence (x1, x2, ..., xI). The conditional

probability of yj is:

p(yj|v, y1, y2, ..., yj−1) = softmax(Wsj + b) (2.18)

where W and b are learnable parameters and softmax(xi) = exp(xi)∑|V |
j exp(xj)
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2.2.5 Attention

The RNN encoder-decoder architecture performs well on short sentences, however

as the sequence becomes longer, the performance of the model decreases (KyungHyun

Cho et al., 2014). For this purpose, (Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio, 2014) extend the simple encoder-decoder structure to align and translate jointly

for the task of machine translation. At each time step of the decoder, model take

the relevant part of the source input as well as the previous hidden state into con-

sideration. More specifically, the model generates a word based on the new context

vectors corresponding to input positions (see Figure 2.7):

Figure 2.7 Generation of target word yt given the source sequence
x1, x2, ..., xT (Bahdanau, Kyunghyun Cho, and Yoshua Bengio, 2014)
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vj =
I∑

i=1

αijhi (2.19)

αij =
exp(eij)∑I

i′=1 exp(ei′j)
(2.20)

where eij corresponds to the relevance of i -th step of the encoder and j -th step

of the decoder. The relevance is known as "alignment" in the context of machine

translation. To calculate the score for the relatedness between different time steps

of the encoder and the decoder, the scoring functions are as in equation (2.21).

score(hi, sj) =


hTi sj dot product

hTi Wasj multiplicative attention

W T
a tanh(Whhi,Wssj) additive attention

(2.21)

where Wa, Wh and Ws are learnable parameters. Having the scoring function, αij

(i.e., attention distribution) is derived by softmax function over encoder states at

j -th step of decoding the output as in equation (2.20). Therefore, we compute the

weighted sum of the encoder states as in equation (2.19) to obtain the context vector

vj. vj can be used during decoding instead of using only the last hidden state of the

encoder. Equation (2.17) is therefore modified as:

sj = g(sj−1, yj−1, vj) (2.22)

There are multiple approaches to compute the alignment of inputs at position i

and the output at position j as proposed in (T. Luong, Pham, and C. D. Manning,

2015). By having Global attention, the model consider all the hidden states of the
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Figure 2.8 The performance of different neural machine translation (NMT)
models on long sentences (T. Luong, Pham, and C. D. Manning, 2015)

encoder to compute the context vector. However, this approach is computationally

expensive through backpropagation when dealing with large sequences e.g., para-

graphs (T. Luong, Pham, and C. D. Manning, 2015). Local attention considers a

subset of all encoder states to derive the context vector and it is easier for the model

to be trained on. Figure 2.9 demonstrates an alignment model that computes the

attention weight αij between the ith word of the source sentence (English) and the

j th word of the target sentence (French).

2.2.6 Coverage Mechanism

One of the common problems during sentence decoding in sequence-to-sequence

models is repetition (Mi et al., 2016; Sankaran et al., 2016). See, P. J. Liu, and C. D.

Manning (2017) addresses this problem in the abstractive text summarization task

by employing the coverage mechanism introduced by (Sankaran et al., 2016). The
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Figure 2.9 Alignment model for neural machine translation (Bahdanau,
Kyunghyun Cho, and Yoshua Bengio, 2014)

attention given to each piece of the input is summed up as follows:

cj =

j−1∑
j′=0

αj′ (2.23)

ct is the distribution over the source document that the words have been so far

received. c0 would be initialized to zero. The coverage vector would be considered in

computing the attention score (equation 2.21), therefore the next prediction is aware

of the words that have been covered during decoding up to step t. The new attention
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score is calculated as:

score(hi, sj) = W T (Whhi +Wssj +Wccij + battn) (2.24)

Finally, the coverage loss is defined as:

covlossj =
∑
i

min(αij, cij) (2.25)

This term would motivate higher attention weight when the word has not covered

so far, since the loss would be still low. In contrast, if the word has been covered

during decoding, the attention weight would have a lower value.

2.3 Transformer Models

Transformer (Vaswani et al., 2017) model is originally represented for the se-

quence problems. This method replaces the RNN based models with the attention

mechanism. The architecture of this model consists of two parts: encoder and de-

coder that are composed of a stack of identical layers, as illustrated in Figure (2.10).

2.3.1 Transformer Encoder

The encoder in the transformer model consists of a stack of N = 6 layers. Each

of encoder’s layer has two sub-layers: multi-head self-attention and a position-wise

fully connected feed-forward neural network. A residual connection (He et al., 2015)

is employed around each of the sub-layers followed by layer normalization (Ba, J. R.

Kiros, and Hinton, 2016). To compute the sequence representation, self-attention
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Figure 2.10 Transformer model architecture (Vaswani et al., 2017)

mechanism considers the relevance of different positions of words in a sequence.

Self-attention has been incorporated into different NLP tasks such as natural lan-

guage inference (Parikh et al., 2016), abstractive summarization (Paulus, Xiong,

and Socher, 2017). Each token in the sequence X = {x1, ..., xn} computes attention

weights over all the other tokens in the same sequence. All word vectors in the input

sequence are projected into key, query and value vectors. These vectors are obtained
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by multiplying the embedding vector of each word (xi) with three learnable matrices

WQ , WK and W V . The query and key vectors help to calculate the self-attention

scores (i.e,. weight each token in the input) as follows:

ei,j =
(xiW

Q)(xjW
K)T√

dk
(2.26)

where WQ and WK are parameter matrices for query and key vectors respectively

and dk is the dimension of the key vector. i,j are different locations of the words in

a sequence. The result is further passed through a softmax function and the output

for the token at location i is computed as follows:

oi =

n∑
j=1

softmax(ei,j)(xjW
V ) (2.27)

where W V is a parameter matrix for the value vector. Since the transformer does

not follow the RNN atchitecture, in order to consider the word orders in a sequence,

positional encoding is encoded into the input embeddings. The position of the words

in each sequence are represented as linear combinations of each other.

2.3.2 Transformer Decoder

The decoder is also composed of N = 6 layers. Each layer consists of three sub-

layers, multi-head self-attention followed by encoder-decoder attention and position-

wise fully connected feed-forward neural network. Residual connection and layer

normalization are employed around the sub-layers in decoder as well. During the

training phase, subsequent words in the sequence are masked. This mechanism

26



confirms that the prediction at a certain location of the sequence depends only on

the previous words. Vaswani et al. (2017) performs multi-head attention, where

attention mechanism is computed multiple times with various query, key and value

weight matrices (WQ
i ,W

K
i and W V

i respectively, where i is the ith attention head).

The results are further concatenated together.

2.4 Sequence Model Decoders

In a sequence-to-sequence task, the model’s objective is to output the best se-

quence Ŷ ∗ given another sequence, where Y is the target output:

Ŷ ∗ = argmaxProb(Y |X) (2.28)

The search space to find such sequence can be large. There are a few techniques to

shrink the size of the candidates and form the output sequence:

2.4.1 Greedy Decoding

Greedy decoding is an algorithm which chooses the most probable word according

to the model’s vocabulary. However, this model does not guarantee to select the

most probable output throughout decoding. It considers a small search space of

the possible words. Moreover, if an incorrect word is selected at a certain location,

generating the upcoming words are highly dependent on the wrong choice.
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2.4.2 Beam Search

Beam search is another algorithm used for generating the most probable sequence

during decoding. This method is commonly used in Neural Machine Translation. At

each time step of the decoding, this algorithm chooses the top β most common

candidate of words, where β is the hyperparamter of the model. The precision of

choosing candidates during decoding is increased if β is chosen to be a large number

and leads to a better result. However, this approach is computationally expensive,

since a larger number of candidates are estimated at different location of the words.
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Chapter Three

Related Work

3.1 Question Generation

People are able to ask creative and rich questions in different domains in their

everyday life (Rothe, Lake, and Gureckis, 2017). Question generation (QG) aims to

create questions from databases, text documents, etc. QG can benefit the education

system by providing questions and answers (QAs) as reading comprehension materi-

als (Heilman and Smith, 2010). It can also assist chatbots to actively ask questions

in a conversation. Some question-answering systems use a set of QAs as their knowl-

edge base for interactively answering questions that a user may ask. For example, the

knowledge base for the netpeople Assistant Platform developed by iNAGO Inc.1 uses

a set of QAs generated from the text documents in a domain as part of its knowledge

base to enable interactive question-answering with the user when the user’s intent

is not well captured by the question that the user asks. Manually creating such

a knowledge base from the text documents is labor-intensive and time-consuming.
1http://www.inago.com
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Tools for automatic questions generation would greatly speed up the creation of such

a knowledge base for the interactive QA system.

Automatic question generation from texts is a challenging task. Generating coher-

ent, grammatically-correct questions requires a good level of language understanding.

Existing automatic QG methods can be classified into two categories: rule-based ap-

proaches and neural network approaches (also called neural approaches).

3.1.1 Rule-based Question Generation

Traditional question generation approaches focused on two fundamental aspect

for generating a question: "what to ask" and "how to ask" (L. Pan et al., 2019). The

former requires for machines to highlight important parts of the input text while the

latter focuses on generating coherent and grammatically correct questions. These

traditional approaches take either semantic (Chali and Hasan, 2015; Yao, Bouma,

and Zhang, 2012) or syntactic (M. Liu, Calvo, and Rus, 2010; Heilman, 2011) pars-

ing to generate intermediate representations of the text. These representations are

further fed into template-based methods (W. Chen and Aist, 2009; Rokhlenko and

Szpektor, 2013) to form questions. The syntax-based question generation methods

depend heavily on NLP tools. Wolfe (1976) proposed a syntactic-based approach for

automatic question generation to enhance an independent study of textual contents.

Gates (2008) utilizes NLP software to parse the document and recognizes named en-

tities with BBN’s IdentiFinder (Bikel, Schwartz, and Weischedel, 1999), PropBank

(Palmer, Gildea, and Kingsbury, 2005), and so on. This system generates reading

comprehension questions using human-defined transformation rules. It is tested on
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the CBC4Kids corpus (Leidner et al., 2003) which contains news texts for children.

Heilman and Smith (2010) presented a question generation system where the ques-

tions are first over-generated and are then further ranked. However, their system

relies on hand-crafted rules. These approaches do not consider semantics of the text

and cannot be used for different domains of study. The meaning of the sentence is

sometimes required for the sentences to be parsed accurately to form rich questions.

Chali and Hasan (2015) introduced a topic to question method. The method utilizes

named entity and semantic role labeling information and further apply rules to create

questions. Mazidi and Nielsen (2014) generate questions and answers from sentences

using sematic role labels. These architectures heavily rely on the intermediate trans-

formations and templates to form questions which would be difficult to be applied

to data in other domains of study.

3.1.2 Neural Question Generation

Recently, neural approaches for the task of question generation are commonly

used to tackle issues brought by traditional QG methods such as their reliance on

the hand crafted rules. End-to-end architectures can be optimized to address both

"what to ask" and "how to ask" aspects to form a question. Given the input answer

X = {x1 , x2, ... , xI} where xi represents the i -th word in the sentence, the task of

an NQG system is to generate target question Ŷ = {y1 , y2, ... , yJ} where yj is the

j -th word in the question. The model focuses to find the best question Ŷ such that

it maximizes the conditional probability given the answer X:
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Ŷ = argmax
Y

Prob(Y |X)

= argmax
Y

J∑
j=1

P (yj|X, y<j)

(3.1)

where words generated in Ŷ are either from the input answer X or from the vocab-

ulary V .

Most NQG approaches benefit from the sequence-to-sequence framework (Sutskever,

Vinyals, and Le, 2014). They also incorporate the attention mechanism (Bahdanau,

Kyunghyun Cho, and Yoshua Bengio, 2014) so that the decoder has access to the

entire input source while predicting the output, and the copy mechanism (Gülçehre

et al., 2016) to address the problem with unknown words. Learning to generate

questions via sequence-to-sequence models is a challenging task. This task requires

deep understanding of the context and the target facet to ask about. QG can be

applied on knowledge bases (Reddy et al., 2017) or on images (Mostafazadeh et

al., 2016). Mostafazadeh et al. (2016) introduced the Visual Question Generation

(VQG) task. In the proposed task the system would ask questions about an image.

Du, Shao, and Cardie (2017) first presented trainable end-to-end question genera-

tion model via attention-based sequence to sequence learning method (Bahdanau,

Kyunghyun Cho, and Yoshua Bengio, 2014). The proposed model is motivated by

neural approaches on machine translation (Sutskever, Vinyals, and Le, 2014), text

summarization (Rush, Chopra, and Weston, 2015), etc. The model is experimented

on the SQuAD (Rajpurkar et al., 2016) dataset and does not depend on NLP tools

or handcrafted rules generated by humans. The rules are usually associated with
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specific domains, and also it is expensive to create such rules. The input sentence is

fed into the RNN encoder and the question is generated via the RNN based decoder.

The model focuses on specific parts of the input sentence while predicting the ques-

tion based on the global attention (T. Luong, Pham, and C. D. Manning, 2015). This

is similar to how people ask questions in general by taking specific parts of the input

sentence into consideration as well as the context that the sentence is placed into.

Zhou et al. (2017) further enhanced the sequence to sequence model with position

aware encoding and lexical features such as word cases, part-of-speech (POS) tagging

and named-entity recognition (NER) using the Stanford CoreNLP v3.7.0 (C. Man-

ning et al., 2014) (see Figure 3.1). Position aware encoding indicates the answer span

by the inside–outside–beginning (BIO) tagging scheme, where B specifies the start

of an answer, tag I is assigned to words in the answer span and tag O determines

words that are not a part of the answer. This information is encoded as an extra

feature indicating the positions of the answer in a context. They also incorporate

the copy mechanism (Gülçehre et al., 2016) in their model. The copy mechanism

produces the probability of copying words from the source input at every time step.

Their experiments demonstrate the positive effects of these modifications.

(Duan et al., 2017) presented their work for NQG using convolutional neural

network (CNN) and recurrent neural network (RNN). They also leverage the gen-

erated questions to enhance existing question answering systems. Sun et al. (2018)

improved the performance of the feature-enriched pointer-generator model by intro-

ducing a question word distribution which is generated based on the answer position

in the paragraph. Moreover, they argued context words closer to the answer are
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Figure 3.1 Neural Question Generation (NQG) framework proposed by
(Zhou et al., 2017)

more relevant and accurate to be copied and therefore deserve more attention. They

modified the attention distribution by incorporating trainable positional word em-

bedding of each word in the sentence w.r.t its relative distance to the answer. Figure

3.2 demonstrates the hybrid model by (Sun et al., 2018) where position-aware at-

tention distribution aims to copy the words closer to the answer and the question

word distribution sample question words that are related to the answer and their

surrounding words. (Harrison and Walker, 2018) incorporated sentence embedding

as well as the linguistic information such as named entity recognition and coreference

resolution using (Finkel, Grenager, and C. Manning, 2005; C. Manning et al., 2014).

Sentence embedding provides additional information at the sentence level as well

as the word level. They demonstrate refinement in generating questions with their
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Figure 3.2 Hybrid model for neural question generation proposed by (Sun
et al., 2018)

system by conducting human evaluation. Zhao et al. (2018) assist QG by utilizing

paragraph-level information with gated self-attention encoder and maxout pointer.

A self-matching representation is first derived from the input as in (W. Wang et al.,

2017). The maxout pointer mechanism avoid repetition during decoding. Details of

this model are discussed in section 4.1. Kim et al. (2018) address the problem of

generating unrelated questions to the source context by existing NQG models. They

propose the answer-separated sequence to sequence by which the passage and the

answer are treated individually to improve the provided information. The aforemen-

tioned methods are data-driven and bring good performance if the available target
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data is sufficient. Given context or sentence, in order to train deep models that

performs well on predicting questions, a large amount of available labelled dataset is

required.

3.1.3 Dealing With Rare and Unseen Words

Most NLP approaches utilize softmax layer as the output of their network. This

softmax layer might compute the probability of each word in the vocabulary list in the

output at different time steps. Computing high dimensional softmax is expensive,

therefore the vocabulary of the system is usually shrunk to contain top-K most

frequent words in the training data. The words that are not in the vocabulary

are replaced with the < unk > token during both training and test time. This

would impact the performance of the model negatively, and bring issues such as

difficulties to understand a good representation of the input data. By containing

all the words in the training data into the vocabulary list, we might still observe

words that do not appear in the training data. The words that are outside of the

vocabulary are replaced with < unk > token. The network might output < unk >

tokens during decoding. This is referred to unknown word problem. To address

this problem, (Gülçehre et al., 2016) proposed pointer softmax (PS) by which the

network is able to copy words from the source sentence. As depicted in Figure 3.3,

this model generates a switching variable zt which decides whether to copy from the

source text or to choose the word from the list of the vocabulary. In other words,

the switching variable decides to predict the word by copying from the input based

on the pointer distribution or to sample from the vocabulary softmax. To this end,
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the model utilizes two softmax layers, shortlist softmax and location softmax. The

location softmax points to the location of the source text from which the word would

be copied, while the shortlist softmax is the same as the softmax output layer based

on which the word will be sampled from the vocabulary.

Figure 3.3 Pointer Softmax (PS) architecture by (Gülçehre et al., 2016)

(Sennrich, Haddow, and Birch, 2015) proposed a technique to address the problem

with unknown words. The method would represent the unknown words as sequences

of subword units by incorporating a compression algorithm that is Byte Pair Encoding

introduced by (Gage, 1994). Another approach to deal with the rare and unknown

words is the work presented by (Ling et al., 2015). Word embeddings are derived

by feeding the character level embeddings into bi directional LSTMs. Finally, the

final word embedding is obtained from the forward and backward hidden states.

M. Luong and C. D. Manning (2016) also deal with the unknown word problem by

Hybrid Word-Character Model. This model incorporates both word and character

level models. It computes the word representation and recover the unknown target
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words if it is needed. Figure 3.4 shows an example of the word-character model for

the task of NMT (English to French). This model translate the sentence at the word

level. However, for the < unk > words in the source sentence a deep LSTM model is

learnt over the characters. The last hidden state of the LSTM is the representation

of the word. If the model produces < unk > token during decoding, the character

level decoder would also recover the target word by another bi directional LSTM

that is initialized by the current word state.

Figure 3.4 Hybrid Neural Machine Translation (M. Luong and C. D. Man-
ning, 2016)
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3.1.4 Human Evaluation

Human evaluation is the first method to evaluate fluency, grammar, coherence and

fluency of the system. There are automatic ways of evaluation which are discussed in

this chapter, section 3.1.5, however there are multiple alternative correct outputs for

each sentence as input. The problem with human judges is their dependence on the

human labour which is a time-consuming process and therefore, it is not efficient.

3.1.5 Automatic Question Generation Evaluation

Automatic evaluation metrics such as BLEU (Papineni et al., 2002), METEOR

(Banerjee and Lavie, 2005) and ROUGE (Lin, 2004) are commonly used to measure

the performance of generated questions by NQG systems.

(1) BLEU Measure

BLEU (Bilingual Evaluation Understudy) measure (Papineni et al., 2002) is

widely used to evaluate machine translation systems. This metric is shown to be

as one of the first measures to evaluate the correspondence between human and

system’s output (Bojar, Kos, and Mareček, 2010). BLEU utilizes modified form of

the precision to compare the machine generated translation with multiple reference

translations. If the generated text is close to any one of the references provided by

humans, the BLEU score would be higher. BLEU is the averaged percentage of n-

gram matches between the reference sentence and the hypothesis (Ŷ ). BLEU n-gram

score (pn) on generated sentences (gen) is computed as:
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pn =

∑
Ŷ ∈gen

∑
n−gram∈Ŷ Countclip(n− gram)∑

Ŷ ′∈gen
∑

n−gram∈Ŷ ′ Count(n− gram′)
(3.2)

where Countclip = min(Count,Max_Ref_Count). Count is the number of n-

grams in Ŷ and Max_Ref_Count demonstrates the maximum number of n-gram

occurrences in the reference.

To compute the BLEU score, a Brevity Penalty (BP) term is used to penalize

the score for short generated translations. If the length of the generated sentence is

short, it is more likely for the generated n-garms to appear in the reference sentences.

The BP factor is derived as follows:

BP =


1 if Ŷlength < reflength

exp(1− Ŷlength

reflength
) otherwise

(3.3)

where Ŷlength and reflength are the length of the hypothesis and the test corpus’

effective reference respectively.

The BLEU-N score is defined as:

BLEU_N = BP · exp( 1
N

N∑
n=1

logpn) (3.4)

(2) ROUGE Measure

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measure (Lin, 2004)

is commonly used to measure the performance of machine generated summaries and

translation in contrast to human generated outputs. ROUGE-N computes the re-

call of n-gram overlap between the generated output and the reference in a set of

summaries:
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ROUGE_N =

∑
Ŷ ∈gen

∑
n−gram∈Ŷ Countmatch(n− gram)∑

Ŷ ∈gen
∑

n−gram∈Ŷ Count(n− gram)
(3.5)

where Countmatch(n − gram) is the maximum number of co-occurring n-grams be-

tween the generated (Ŷ ) and the set of reference summaries (gen). ROUGE-S

Allows any pair of word in the sentence order with arbitrary gaps to be consid-

ered to measure the overlap between the reference and the generated output. This

is called as the Skip-Bigram Co-Occurrence statistics. ROUGE-L compares the

longest matching sequence of words between the generated and the reference out-

puts. ROUGE-W also considers the longest matching sequence of words, however

this measure favours the matches that are consecutive.

(3) METEOR Measure

METEOR (Metric for Evaluation of Translation with Explicit ORdering) measure

(Banerjee and Lavie, 2005) is originally used for machine generated translation eval-

uation compared to human reference. This measure first takes the uni-gram matches

m between the machine and reference translation and calculates the precision P and

recall R:

P =
m

uh
(3.6a)

R =
m

ur
(3.6b)

where uh and ur are the number of uni-grams in the machine generated output and

the reference respectively. This matching mechanism is not only based on the exact

matches but it considers stemming and synonym relations as well. The METEOR
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score is calculated as:

METEOR = Fmean ∗ (1− p)

Fmean =
10PR

R + 9P
(3.7)

where Fmean is the weighted harmonic mean between precision and recall. p is the

penalty term proposed by (Banerjee and Lavie, 2005).

3.2 Transfer Learning in Natural Language Process-

ing

Supervised deep learning requires a large amount of labelled data to build a good

model. Such a model is expected to perform well on the task and the domain of

the data that the model is trained on. However, acquiring training data is often

labor-intensive and expensive. Thus, ideas of using data in a different but related

domain (referred to as the source domain) have proposed to help learn a model for

the target task or domain of interest to achieve a better generalization. Since some of

the information such as linguistic representations, semantics, etc., are shared across

the source and the target settings, the knowledge learned and transferred from the

source domain can be adapted to the target domain and tasks. In other words,

knowledge such as model parameters can be transferred to a new task or domain,

where there is a very limited amount of labeled data available. Transfer learning is

such a technique.
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3.2.1 Definition of Transfer Learning

Following S. J. Pan and Q. Yang (2010), we state the definition of transfer learn-

ing. We first define domain and task terms. Domain D consists of feature space X

and a marginal probability P(X), D = {X , P (X)}, where X = {x1, x2, ..., xn} ∈ X ,

and xi is the vector representation of the ith input data (X is a learning sample).

Based on the above definition, domains are different if they have different feature

spaces or different marginal probability distributions. Task T consists of label space

Y and conditional probability P (Y |X) which is usually learnt from training data

containing pairs of {xi, yi}, where xi ∈ X, yi ∈ Y and Y is the corresponding labels

for the particular learning sample X, T = {Y , P (Y |X)}. Given a source domain

DS , a source task TS , a target domain DT and a target task TT , the objective of

transfer learning is to improve the learning of the target conditional probability dis-

tribution P (YT |XT ) in DT utilizing the knowledge obtained from DS and TS , where

DS 6= DT , or TS 6= TT . Based on the definition of the domain if DS 6= DT , then

either XS 6= XT or PS(X) 6= PT (X). Similarly, if TS 6= TT then either YS 6= YT or

P (YS|XS) 6= P (YT |XT ).

3.2.2 Transfer Learning Scenarios

There are different scenarios where transfer learning can be applied (Ruder, 2017):

• The feature spaces of source and target domain are different, XS 6= XT , e.g.,

the languages used in both source and target domains are different, known as

cross-lingual adaptation.
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• The marginal probability distributions of source and target input data are

different, P (XS) 6= P (XT ), e.g., the topics that are discussed in both source

and target documents are different, that is known as domain adaptation.

• Source and target label spaces are different, YS 6= YT , e.g., label spaces for

both source and target tasks are different.

• The conditional probability of source and target tasks are different, P (YS|XS) 6=

P (YT |XT ), e.g., source and target documents are not balanced with respect to

their label classes.

In this work, our NQG problem is defined to generate questions on the car manual

topic, where there is not sufficient amount of labeled data available. Therefore, we

study the effect of parameter initialization of the neural-based model trained on a

large QA dataset (parent model) to our system (child model). The topics discussed in

both datasets are different, consequently based on the definition of transfer learning

P (XS) 6= P (XT ). We first train our parent model on the large available dataset,

SQuAD, and then use the learnt parameters from the parent model to initialize the

child model with the knowledge obtained in the previous step. The parameters of

the model are further fine-tuned on the target training data.

3.2.3 Transfer Learning for NLP

Transfer learning can benefit the performance of many NLP algorithms since at-

tributes such as linguistic information are shared across different NLP tasks. More-

over, gathering labelled data can be rather expensive, depending on the task. There-
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fore, transfer learning would assist such settings. Various transfer learning methods

have improved the performance of NLP tasks (D. Wang and Zheng, 2015). Pre-

training approaches in NLP are mostly based on the language modeling task. Pre-

trained word embeddings such as Word2vec (Mikolov, Sutskever, et al., 2013) and

GloVe (Pennington, Socher, and C. Manning, 2014), etc., are key factors for language

understanding and training various NLP models. These are word-level approaches

that have shown improvements in the performance of target models (Collobert et al.,

2011; Xiong, Zhong, and Socher, 2016). Skip-Thought vectors introduced by (R.

Kiros et al., 2015) are derived from an encoder-decoder framework that attempts

to predict the surrounded sentences in a passage in an unsupervised matter. The

intuition of this work is that consecutive sentences can be useful to construct sen-

tence representation. R. Kiros et al. (2015) have shown good performance on 8

transfer tasks using these vectors. Universal sentence representations by (Conneau

et al., 2017) outperformed the existing unsupervised approaches. Peters, Neumann,

et al. (2018) proposed new word representations learnt by training a deep bi direc-

tional language model. The word vectors in this proposed method are a function

of the entire sentence. They showed using these new representations would benefit

the performance of NLP tasks such as question answering, textual entailment, se-

mantic role labeling, coreference resolution, named entity extraction and sentiment

analysis. Howard and Ruder (2018), Radford (2018), and Devlin et al. (2018) also

presented effective transfer learning approaches where pre-trained embeddings could

be fine-tuned on the available labelled training data in many NLP tasks. Recently,

the pre-trained models are trained on deeper models (e.g., 24 layers (Devlin et al.,
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2018)) in contrast to earlier approaches ((Yoshua Bengio et al., 2003) with 1 layer).

In order to use the pre-trained models on downstream tasks, approaches such as

feature extraction and fine-tuning can be applied. Feature extraction is referred to

using the parameters of the pre-trained model on the target task (i.e., the parame-

ters are frozen and transferred to another model). However, the fine-tuning approach

optimizes the parameters of the pre-trained model on the target task. The model

would converge faster in contrast to random initialization. Features from the pre-

trained models can be transferred and fine-tuned using various training objectives

(Felbo et al., 2017; Long et al., 2015). Transfer learning has also shown huge success

in computer vision, where deep neural networks trained on ImageNet (Russakovsky

et al., 2014) appear to be successful as feature extractors for multiple tasks such

as image captioning (Karpathy and Li, 2014) and visual question answering (Hu

et al., 2015). In Natural Language Processing, tasks such as sequence tagging and

named entity recognition benefited from transfer learning as well (Z. Yang et al.,

2015; Chiticariu et al., 2010). Chung, H. Lee, and Glass (2017) experiment the

performance of two models on TOEFL listening comprehension test (Tseng et al.,

2016) and MCTest (Richardson, Burges, and Renshaw, 2013) via a transfer learning

method from MovieQA dataset (Tapaswi et al., 2015) for a multi-choice question

answering task. By pre-training the model on MovieQA the performance of models

rose considerably. Mou et al. (2016) demonstrate that transfer learning on NLP

models relies on how source and target tasks are similar to each other semantically.

We observe two major issues with the exiting NQG models: (1) Unknown words

that appear by shrinking the vocabulary size to reduce the computational cost during

46



test and training end-to-end deep models, are represented by one input vector. Hence,

the semantic aspect of the rare/unknown words would not be captured by the model.

(2) Training neural-based approaches for QG systems requires a large amount of

training data. This amount might not be available for a specific domain of study.

Therefore, it would lead deep neural networks to overfit. In our work, we address

these issues in the context of NQG: (1) In order to solve the problem with the

small available labeled QA dataset on a specific domain of study, we investigate

the impact of parameter initialization from the model trained on an existing large

dataset, SQuAD (Rajpurkar et al., 2016). The parameters are transferred to a

model to be trained on a small set of labeled examples; (2) To address the problem

with rare and unknown words, we integrate the relationships in the WordNet lexical

database (Miller et al., 1990) into the NQG system. In particular, we make use of

synonym connections defined in WordNet to help compute the input representations

of unknown words.
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Chapter Four

Improving NQG with Transfer

Learning and Concept-Aware Word

Embeddings

In this chapter, we first explain the architecture of our baseline model, Maxout

Pointer and Gated Self-attention Networks (MP-GSN) (Zhao et al., 2018), that is

originally proposed for the neural question generation task. Secondly, we investigate

the effect of transfer learning on this task and improve our baseline model on a

domain where available training data are not sufficient. Thirdly, we introduce the

concept-aware model to incorporate the general knowledge of human beings into the

input representation of our NQG system. Finally, we explain our experiments and

give a brief summary of our proposed methods.
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4.1 Baseline (Maxout Pointer and Gated Self-attention

Networks)

Given an input answer X = {x1 , x2, ... , xM}, the task of our NQG system is to

generate the target question Q = {q1 , q2, ... , qT } where xi and qi are words, and

M and T are the length of input and output sequences, respectively.

Our system is based on Paragraph-level Neural Question Generation with Maxout

Pointer and Gated Self-attention Networks (MP-GSN) introduced by Zhao et al.

(2018). The MP-GSN model was designed to tackle the problems brought by long

text as inputs by using gated self-attention encoder and maxout pointer decoder.

The model has shown great performance with both sentence-level and paragraph-

level inputs. The architecture of the MP-GSN model is depicted in Figure 4.1. The

details of the model are described as follows.

(1) Encoder with Self-attention

The encoder in MP-GSN is a two-layer bidirectional LSTM. As shown in Figure

4.1, in the paragraph-level of MP-GSN at each time step of the encoder, the previous

hidden state and the concatenation of the word embedding et and meta-word repre-

sentation mt of whether the corresponding word is in or out of the answer are fed

into the LSTM. However, in the sentence-level approach of MP-GSN we only feed

the word embedding into the encoder.
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Figure 4.1 Maxout Pointer and Gated Self-attention Networks for NQG by
(Zhao et al., 2018)

−→ut =
−−−−→
LSTM(wt,

−−→ut−1)

←−ut =
←−−−−
LSTM(wt,

←−−ut−1)

ut = [−→ut ,←−ut ]

U = [ut]
M
t=1 (4.1)

where ut represents the RNN hidden state at step t and it is the concatenation of −→ut

and ←−ut , and wt is the embedding of the word at step t of the input text.

A gated self-attention mechanism (W. Wang et al., 2017) is applied to the encoder
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to capture dependencies within the passage hidden states and therefore improve the

encoded representation:

αt = softmax(UWuut)

st =
M∑
t′=1

αtut′ (4.2)

where Wu is learnable parameter, αt is the attention weight between ut and elements

in U, and st is the self-matching representation vector for ut which is the weighted

sum of the input hidden states. The final passage representation Û is computed as

follows:

ft = tanh(Wf [st;ut])

gt = σ(Wg[st;ut])

ût = gt · ft + (1− gt) · ut

Û = [ût]
M
t=1 (4.3)

where Wf and Wg are learnable parameters, ft is the new enhanced self-matching

representation at step t which is derived by concatenating st and ut, gt decides the

amount that ut is updated, and ût is the final encoder state at step t.

(2) Decoder with Maxout Pointer

The decoder is a two-layer unidirectional LSTM. To compute the hidden state

st at step t, the decoder receives the word embedding wt and the previous decoder

state st−1. The decoder hidden state is used to calculate the attention distribution
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αt:

dt = LSTM(wt, dt−1)

αt = softmax(ÛWddt) (4.4)

where Wd is the learnable parameter. The weighted sum of encoder hidden states

(context vector ct) is calculated by the attention distribution for time step t of the

decoder:

ct =
M∑
i=1

αt,iui (4.5)

The context vector ct is concatenated with the decoder state st and fed through

the tanh layer to compute the new decoder state (ŝt):

d̂t = tanh(Wd̂[dt, ct]) (4.6)

where Wd̂ is the learnable parameter. The generative score at step t is computed

using equation (4.7). This score is utilized to produce the probability of sampling a

word from the vocabulary, Pvocab in equation (4.8). Pvocab is used to predict words w

in equation (4.9).

scoregent = Wvd̂t (4.7)

Pvocab = softmax(scoregent ) (4.8)

P (w) = Pvocab(w) (4.9)
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where Wv is the learnable parameter. In MP-GSN, the copy mechanism is similar

to the one in (Gu et al., 2016). In order to avoid repetitions in the output sequence,

especially when the input sequence is long, Zhao et al. (2018) proposed a maxout

pointer mechanism to calculate the score of copying word w from the input sequence

at step t :

scorecopyt (w) =


max
i:w=xi

αit xi ∈ X

−inf otherwise
(4.10)

Finally the concatenation of scorecopyt and scoregent is passed to a softmax function

and probabilities pointing to the same words are summed up to generate a new word.

Zhao et al. (2018) conducted experiments on SQuAD (Rajpurkar et al., 2016) and

MS MARCO (Nguyen et al., 2016) datasets on both paragraph-level and sentence-

level inputs. Their proposed method improves the generation of the questions in

terms of BLEU_1, BLEU_2, BLEU_3, BLEU_4, METEOR and ROUGE-L.

4.2 Transfer Learning for Neural Question Genera-

tion

As part of our collaborative project with iNAGO Inc.1, our NQG system is de-

signed to generate questions from car manuals. The provided dataset in the specific

domain of Car Manual consists of 4,672 question-answer pairs, which is not sufficient

to train a deep neural question generation model. The performance of supervised
1http://www.inago.com

53



machine learning methods relies on the amount of available labelled training data.

They are prone to overfit when there is not sufficient training examples available. To

overcome this issue, we apply a transfer learning method. Fine-tuning is one of the

transfer learning techniques where a model that has been trained on a task is trans-

ferred to a second similar task by initializing the second model with the parameters

learned for the first task and fine-tuning the model with the data for the second task.

This would allow the second model to benefit from the feature extraction from the

previous model instead of training the parameters from the scratch.

We investigate three issues in the application of the transfer learning to neural

question generation. First, we would like to see whether using a large amount of

question-answer (QA) pairs from a general domain to train the first model is benefi-

cial for initializing the model for the second task. Second, we would like to investigate

whether transferring only parts of the parameters in the first model is beneficial to

the second task. Finally, since the QAs in the general domain may not be relevant

to car manuals, we would like to investigate whether selection of more relevant QAs

from the first data set to train the first model would be beneficial to the second task.

The diagram for the proposed approaches are represented in Figure 4.4.

4.2.1 Transfer Learning of the Whole Model with All Data

We investigate how fine-tuning of the whole first model generated with all the

data in the first task would address the deficit of data in our NQG system. We train

our model in two stages. In the first stage, we train an NQG system (that is, an MP-
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GSN model2) on a large amount of question-answer (QA) pairs. The SQuAD dataset

(Rajpurkar et al., 2016) is used for such a purpose, which contains approximately

80k QAs generated from Wikipedia pages.

In the second stage, we fine-tune the NQG model trained in the first stage on the

car manual dataset. That is, instead of random initialization in training the second

model, we utilize the parameters learnt from the SQuAD dataset to initialize the

second model, and then fine-tune the initialized parameters on the dataset in the car

manual domain.

Based on our experiments, shown in Chapter 5, transferring learnt parameters

using the big QA dataset (SQuAD) proved to be advantageous and leads to a better

model in cases where there is a small amount of labeled data available. As shown

in Table 5.1, this technique could improve BLEU-1, BLEU-2, BLEU-3, BLEU-4,

METEOR and ROUGE-L considerably.

4.2.2 Partial Model Transfer

We further investigate the impact of partially transferring parameters from dif-

ferent layers of the source model. We study which part of the knowledge can be

transferred from the parent model to the child model to make improvements to the

performance of the target and to obtain a black-box understanding of transfer learn-

ing. In all the experiments we use the pre-trained GloVe word embeddings. In this

investigation, we divide the parameters of our model into two sets: (1) embedding
2In both phases of training an MP-GSN model, we use the GloVe embeddings for the input

words, and freeze the word embeddings during the training.
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parameters and (2) non-embedding parameters (which we refer to as inner-layer pa-

rameters). We would like to see whether transferring only the embedding parameters

or the ones in the inner layers would increase or decrease the performance of the tar-

get model. When we transfer only the embedding parameters, we randomly initialize

the inner-layer parameters of the child model, and the embedding layer’s weights are

initialized from the parent model,while they are freezed throughout the fine-tuning

step. Then, inner layer’s parameters are trained on the target domain.

When transferring only the inner-layer parameters, we use pre-trained GloVe em-

bedding as the word representation for our target model vocabulary. Inner layer pa-

rameters are transferred from the source/parent model. The embedding weights are

freezed, while other parameters are fine-tuned on the target model. We experiment

how fine-tuning this pre-trained model on the child model effect the performance of

the system. We observe minor improvement when the pre-trained word embeddings

are updated on the target domain.

We will show in Table 5.2 that transferring either the embedding or inner-layer

parameters benefits the second model, with the inner-layer parameter transfer pro-

ducing a better target model. In addition, knowledge gained from both embed-

ding and inner layers of the pre-trained model improves our target model the most

significantly. The best performance is achieved when inner layers parameters are

transferred and the pre-trained GloVe embeddings are fine-tuned along with the

embedding and inner layer’s parameters.
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4.2.3 Data Selection for Transfer Learning

In this section we investigate the impact of the similarity between the data in the

source domain and the data in the target domain on the transfer learning performance

in the NQG task. As mentioned earlier, our source data set, SQuAD, is a general-

purpose QA dataset containing questions generated from Wikipedia pages that cover

various topics. The QAs in SQuAD are very different from the QAs in our target car

manual data set. However, some QAs in the SQuAD data set may be more similar

or relevant to the car manual domain than others.

In this investigation, we explore the effect of selecting from the SQuAD data set

instances that are more relevant to the target domain of car manuals and removing

less relevant examples from the source domain on the performance of transfer learn-

ing. For such a purpose, we explore two different ways to measure the similarity

between an instance (i.e., a QA pair) in SQuAD and the car manual domain. Both

similarity-measuring methods are based the cosine similarity measure, but they use

different text representations.

(1) Similarity Measure Based on Sentence-level Representation

In this method, for each instance xsi in the source (e.g., SQuAD) data set (where

s denotes source and i is the instance index in the source data set), we compute a

similarity score between xsi and each instance xtj in the target (e.g., car manuals)

training set (where t denotes target and j is the instance index in the target data

set).

To calculate the similarity, each instance is represented by a vector. We use
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the pre-trained BERT language representation model (Devlin et al., 2018) to com-

pute the vector for each instance. As described in Section 2.1.6, the BERT model

was trained on BooksCorpus (Zhu et al., 2015) and English Wikipedia passages by

jointly conditioning on both left and right context in all layers on two tasks: masked

language model and next sentence prediction. The trained model can provide a con-

textualized embedding for an input text. To obtain an embedding for an instance in

either of our data sets, We feed the instance (i.e., a question and paragraph/sentence

pair) to the pre-trained BERT model and retrieve a vector representation for the

input.

The similarity between instance xsi in the source data set and instance xtj in the

target training set is then computed by the cosine similarity measure:

CosineSim(Es
i , E

t
j) =

Es
i · Et

j

‖Es
i ‖·‖Et

j‖
(4.11)

where Es
i and Et

j are the vector representations of xsi and xtj, respectively.

Then, the similarity between xsi and the target domain is measured by the average

similarity between xsi and each instance in the target training data, as follows:

SimilarityScore(xsi ) =

∑N
j=1CosineSim(Es

i , E
t
j)

N
(4.12)

where N is the number of instances in the target training data set.

We keep an instance if its similarity value is above a pre-defined threshold. In

our experiments, we set different threshold values to investigate the effect of source

data selection on the transfer learning performance.

58



(2) Similarity Measure Based on Word-level Representation

In this method, we use a word-level similarity to compute a a similarity score be-

tween an instance xsi in the source data set and the target domain. For this purpose,

we use a set of keywords to represent the target domain. The set of keywords for

the car manual domain is obtained using the LDA topic modeling technique (Blei,

Ng, and Jordan, 2003) that identifies topics from input documents (which are car

manuals in our case) 3. In topic modeling, each topic is a distribution over words.

We choose the top 10 words from each topic and merge them into a list of keywords.

Furthermore, we use TopMine (El-Kishky et al., 2014) to extract top phrases. Top-

Mine is an LDA-based method that involves first mining frequent phrases, and then

using these phrases to represent documents. We select the resultant top phrases and

break them down into unigrams and add them to the list of keywords. The list of

the keywords are provided in the supplementary material.

To measure the similarity between an instance xsi in the source data set and the

target domain, each word in xsi and the target domain keyword set is represented by

its pre-trained GloVe embedding (Pennington, Socher, and C. Manning, 2014). For

each word w in xsi , we compute the cosine similarity between w and each word in the

target domain keyword set, and then average the similarity scores over all the words

in the keyword set to obtain the similarity between w and the target domain. Then,

the similarity between xsi and the target domain is the average of such similarity

scores among all the words in xsi . Finally, an instance in the source data set is

selected if its similarity score to the target domain is above a user-defined threshold.
3The number of topics is set to be 20, since this number results in the lowest perplexity score
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4.3 Concept-aware Model for Neural Question Gen-

eration

The problem of rare and unknown words can affect the performance of NLP

systems and cause negative impacts on understanding the natural language. Recent

NLP-based approaches use softmax as the output layer of their system. The output

dimension of this layer corresponds to the vocabulary size. This vocabulary is usually

shrunk to contain the top-k most frequent words from the training data. This would

make training deep neural networks computationally less expensive. The words that

do not appear in this vocabulary are unknown words and they are represented by

< unk > token. This representation would bring issues such that the system is

not able to learn good representation of the infrequent words occurring during the

training step. Furthermore, the key information in the text representation can be

lost due to the replacement of these words with only a single token during training

and test time (T. Luong, Sutskever, et al., 2014).

There are approaches to tackle this matter as discussed in section (3.1.3), such

as pointer softmax (Gülçehre et al., 2016) in machine translation and text sum-

marization, character-level embeddings (Ling et al., 2015) in language modeling,

part-of-speech tagging, etc. To address the rare and unknown words problem for

neural question generation task, we propose a concept-aware model. Inspired by

(F. Liu et al., 2019), a model that is proposed to handle unknown words in ma-

chine translation systems, we present concept-aware model for the neural question

generation problem. We encode enhanced vector representations for words that are
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not seen throughout the training and test steps. WordNet (Miller et al., 1990), a

lexical database containing semantic relations between words in English, assists our

NQG system in generating these representations of rare and unknown words. In

other words, we incorporate our NQG system with the general knowledge of human

beings. However, unlike (F. Liu et al., 2019) by which sense embeddings are derived

through LSTM-RNN language model, we obtain word embeddings from GloVe. We

look for the words in the embedding table of the system. Also, the sense vector repre-

sentation from synonyms are derived by computing the average over the pre-trained

word embeddings. Instead of using the last hidden state as the sentence embedding,

we sum over the word vectors in a sentence and divide by the number of the words

in each sequence.

4.3.1 WordNet Lexical Database

Wordnet (Miller et al., 1990) is an on-line lexical database in English developed in

Princeton University by Cognitive Science Laboratory 4. It is used in many natural

language processing systems such as information retrieval, word sense disambiguation

(this task determines the sense of the word in a specific context), etc. Words are

grouped into synsets in this database. The term synset or synonym set is referred to

elements that are semantically similar to each other. In other words, words having

the same sense (a word sense is one aspect of the meaning of a word) are grouped

into a synset. If a word has multiple senses, then it belongs to different synsets.

Figure 4.2 shows senses of the word bass with their meanings in this lexical database
4http:// www.cogsci.princeton.edu/
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5.

Figure 4.2 A portion of the WordNet 3.0 entry for the noun bass

WordNet groups words by lexical and semantic relations. These relations are

synonymy, hyponymy, hypernymy, meronymy and etc. Hyponym refers to a word

whose meaning is included in the meaning of another word, while hypernym is a word

that its meaning include a group of other words. Meronymy is the relation which

indicates a member of something. Figure 4.3 is an example of the representation

of semantic relations between words. NLTK (Bird and Loper, 2004) is a toolkit for

natural language processing systems in English. Definition, examples and relations

for each synset can be obtained from this toolkit. Table 4.1 shows an example from
5https://web.stanford.edu/ jurafsky/slp3/C.pdf
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WordNet using NLTK for the noun "internet" which has 1 sense in this database.

Word: Internet

Synsets: Synset(’internet.n.01’)

Definition: a computer network consisting of a worldwide network of computer

networks that use the TCP/IP network protocols to facilitate data transmission and

exchange.

Synonyms: ’net’, ’cyberspace’

Table 4.1 Definition and synonyms for the word "internet" in the WordNet
lexical database.

4.3.2 Integrating WordNet relation into neural question gen-

eration system

To deal with the unknown word problem for neural question generation, we ex-

ploit synonym relation defined in WordNet into our system. We capture a better

understanding of the natural language when encountering unknown and rare words.

Unknown words are usually converted to < unk > token in NLP systems during

both training and testing. Instead of simply converting these words to a single to-

ken and having one vector representation throughout training and inference phase,

we embed the conceptual aspect of the word using WordNet. We incorporate the

neural networks of question generation with the knowledge of human beings. Having

constructed a vector for each word that is not in the vocabulary list and would be
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Figure 4.3 Network representation of semantic relations (Miller et al., 1990)

mapped to the < unk > token in the embedding layer, the system have a better

understanding of the input text in terms of semantics. We further demonstrate the

effectiveness of this method for our NQG system when the vocabulary size is small

due to short amount of labeled training data being available in a specific domain of

study. The details of our proposed concept-aware model is as follows.

For each unknown word xm, we obtain a set of synonyms S ′
m from WordNet,

where S ′m = {s′1 , s′2, ... , s′k} and s′i is the ith synonym for xm and k is the number

of obtained synonyms. The synonyms in set S ′m are represented by deriving their

vector representations from the embedding table of the system. The embedding table

contains the word indices mapped to their corresponding distributed representations.

The vector representations in the table can be randomly initialized and learnt during
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training. We choose pre-trained GloVe (Pennington, Socher, and C. Manning, 2014)

word embeddings to initialize the word vector values. Instead of having only one

representation for the < unk > token, we compute a conceptual representation

based on elements in S
′
m. We search for the word embedding of each synonym

s′i in the embedding table and call this emb(s′i). Assuming p as the number of

existing synonyms in the embedding table, where 0 ≤ p ≤ k. Then, we compute the

conceptual vector for the unknown word xm as follows:

emb∗(xm) =
emb(s′1) + emb(s′2) + ...+ emb(s′p)

p
(4.13)

where emb∗(xm) is the concept-aware vector for xm. The fixed representation of

< unk > token for the unknown word xm is replaced by the new enhanced vector

emb∗(xm) in the embedding layer and is fed into the encoder during both training and

test time. For example, as shown in Table 4.2 our model found the embedding vectors

of ”documentary”, ”docudrama” and ”documentary-film” (synonyms for the unknown

word "infotainment") from the embedding table. Then, the concept-aware vector is

computed based on the synonym representations as in equation (4.13) and fed into

the encoder of the system. Therefore, we incorporate the knowledge of human beings

into the neural based approach for QG and capture a better understanding of the

input sentence. If p = 0, we use the < unk > representation as the word embedding.

In cases where for a specific unknown word, multiple synsets are captured, we

apply the following steps:

• We first compute an enhanced conceptual vector for each synset based on its

synonyms as in equation (4.13) .
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Unknown/Rare word Synset Synonyms

"slick" "slickness.n.03" "slip"

"consultant" "adviser.n.01" "advisor"

Table 4.2 Examples of unknown word synonym relations derived from the
WordNet lexical database and the embedding table of our system.

• For each synset, we replace the < unk > token representation with the concept-

aware vector. Therefore, we construct a set of sentences s = {s1, s2, ..., sm}

where m is the number of the synsets and each sentence contains a different

conceptual embedding vector of the unknown word.

• For each sentence si in s, we compute a sentence embedding emb(si) by av-

eraging over its word vectors. Similarly, we calculate the original sentence

embedding emb(s∗) containing the < unk > token.

• To choose one of the synsets we calculate the cosine similarity between each

sentence embedding emb(si) and emb(s∗) as follows:

cos( ~emb(si), ~emb(s∗)) =
~emb(si) · ~emb(s∗)

‖emb(si)‖‖emb(s∗)‖
(4.14)

• Among all subsets in s, we pick a sentence whose embedding makes the co-

sine similarity value higher. The word representation of the unknown word is

derived from the selected sentence.

Finally, the enhanced word vector representations are used in the embedding layer

and the model is trained using maxout pointer and gated self-attention networks,

section (4.1).
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4.4 Summary

In this chapter, we have presented a concept-aware model to address the problem

with rare and unknown words and investigated the effect of transfer learning on

the neural question generation problem. Figure 4.4 illustrates the structure of the

presented approaches and contributions of the thesis.

Figure 4.4 Transfer Learning and Concept-aware approaches for Neural
Question Generation.
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Chapter Five

Empirical Evaluation

This chapter provides information on the settings of our experiments, description

of the datasets and evaluation metrics that are used. We further report and discuss

the outcome of each experiment. In the end, we provide examples of the outputs

generated by our models.

5.1 Datasets

• Car Manual dataset: This dataset (provided by iNAGO Inc. 1) contains

4672 questions and answers (QAs) created by human annotators from two car

manuals of Ford and GM, denoted as Car Manuals. We divide the dataset into

training (4360 QAs) and testing sets (312 QAs).

• SQuAD dataset: We use the Stanford Question Answering Dataset (SQuAD)

(Rajpurkar et al., 2016). This is a reading comprehension dataset that contains

questions posed by crowdworkers about the Wikipedia articles. The answers to
1http://www.inago.com
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questions are obtained from a segment of text from the articles. We adopt types

of SQuAD: 1) Paragraph-level: The dataset is split into training set (87,599 QA

pairs), a validation set (5,285 QA pairs) and test set (5,285 QA pairs). Answers

to the questions are specified by BIO (Inside-outside-beginning) tagging. 2)

Sentence-level: We use the processed SQuAD (Du, Shao, and Cardie, 2017).

The data has been divided into a training set (70,484 QA pairs), a validation

set (10,570 QA pairs) and test set (11,877 QA pairs).

5.2 Evaluation Metrics

We report BLEU-1, BLEU-2, BLEU-3, BLEU-4 (Papineni et al., 2002) , ME-

TEOR (Banerjee and Lavie, 2005) and ROUGE (Lin, 2004) scores as the evaluation

metrics of our NQG system using the nlgeval (Sharma et al., 2017) package 2. BLEU-

N is a modified precision of n-grams between the generated questions by our NQG

system and the reference questions. ROUGE-L compares the longest matching se-

quence of words between question generated by the system and reference questions.

METEOR calculates the similarity between the generated and reference questions by

considering paraphrases, synonyms and stemming. The details regarding the auto-

matic evaluation metrics used in our experiments are discussed in chapter 2 (section

3.1.5).
2https://github.com/Maluuba/nlg-eval
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5.3 Baseline Systems

• Seq2seq + attn: We implement a sequence-to-sequence model with attention

mechanism as one of our baseline methods. We use the default setting as

mentioned in (Huang, 2017a). We use gated recurrent unit (GRU) (Kyunghyun

Cho et al., 2014) and the hidden size is set to 256. The model is trained using

stochastic gradient descent optimizer with learning rate initialized to 0.01.

• Transformer (Vaswani et al., 2017): This model is originally presented for

the sequence-to-sequence problem and it replaces the RNN-based models with

the attention mechanism. The model is composed of two parts, Encoder and

Decoder. Both Encoder and Decoder contain a stack of identical layers. The

sequence can be processed in parallel during training. In the experiment, we

use the default setting as in (Huang, 2017b).

• MP-GSN : This method is originally proposed for question generation which

utilizes paragraph-level information with gated self-attention encoder and max-

out pointer. A self-matching representation is first derived from the input as

in (W. Wang et al., 2017). The maxout pointer mechanism avoids repetition

during decoding. The method can do both sentence-level and paragraph-level

question generation. Details of this model is discussed in section (4.1). In our

experiment, we use pre-trained GloVe word vectors of 300 dimensions. We uti-

lize Bidirectional LSTM encoder and unidirectional LSTM decoder both with

hidden dimensions of 300. We set the number of layers to 2 in both the encoder

and the decoder. We set the batch size to 16 due to the better performance
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of the baseline model. We use the stochastic gradient descent (SGD) opti-

mizer with learning rate 0.1 for 20 epochs. These are the default setting in the

implementation of the algorithm in (S. Lee, 2019).

5.4 Experiments and Results on Whole Model Trans-

fer and Concept-aware Generation

We first conduct the following set of experiments:

• seq2seq + attn on car manual: As our first experiment, we train and test this

baseline model on the car manual training and test data.

• Transformers (Vaswani et al., 2017) on car manual: As the second experiment,

we train and test this model on car manual dataset,

• MP-GSN (Zhao et al., 2018) on car manual: The MP-GSN is both trained and

tested on the car manual dataset for this experiment.

• MP-GSN on SQuAD: As the forth experiment, we train the MP-GSN on

SQuAD and test the model on the car manual dataset.

• Concept-aware model (section 4.3): The concept-aware MP-GSN is firstly

trained on the car manual training data. Secondly, we use the car manual

test data during prediction.

• Fine-tuning sentence-level SQuAD: In this experiment, we train sentence-level

MP-GSN on SQuAD as the parent model, and the model is fine-tuned on car
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manual training data and evaluated on car manual test data.

• Fine-tuning paragraph-level SQuAD: First, the paragraph-level MP-GSN is

trained on SQuAD. Then, the parameters of the model is fine-tuned on the car

manual training data. The performance of the model is evaluated on the car

manual test data.

• Hybrid model: The last experiment is applied on our hybrid model by which

both transfer learning technique and concept-aware model are combined. We

train MP-GSN on the SQuAD as the base model. We train a concept-aware

MP-GSN by initializing parameters from the base model. We test this model

on the car manual dataset.

The results of our experiments are given in Table 5.1. Since during inference we

use the car manual test data, we measure the evaluation metrics on sentence-level

approach of MP-GSN. The MP-GSN which incorporates the gated self-attention en-

coder and maxout pointer decoder, outperforms the transformers and seq2seq + attn

baseline models in terms of BLEU-1, BLEU-2, BLEU-3, METEOR and ROUGE-L

on the car manual test dataset. The MP-GSN trained on SQuAD performs poorly

during inference on the car manual domain test dataset. One possible explanation

is the domain difference of the data during training and test time. Fine-tuning the

sentence-level approach of MP-GSN trained using SQuAD on car manual training

data (fine-tuning sentence-level SQuAD) would lead to performance improvements in

terms of BLEU-2, BLEU-3, BLEU-4 and METEOR scores. However, by training the

paragraph-level MP-GSN on SQuAD and further fine-tuning the model on the car
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
B
as
el
in
es seq2seq+attn 32.63 17.51 10.49 6.64 12.32 32.29

transformer 38.59 23.47 15.44 9.69 13.46 39.31

MP-GSN (trained on carmanual) 58.16 46.74 39.34 33.65 29.49 59.15

O
ur
s

MP-GSN (trained on SQuAD) 36.41 20.41 13.22 8.82 16.22 35.32

concept-aware model 59.29 47.89 40.36 34.61 30.03 60.26

fine-tuning sentence-level 57.7 47.09 40.74 35.66 30.04 59.06

fine-tuning paragraph-level 62.96 52.24 45.34 39.68 32.65 62.15

fine-tuning paragraph-level

(+ GloVe)
62.96 52.72 46.22 40.96 32.67 62.03

hybrid model 61.29 50.59 43.70 38.29 32.1 61.36

Table 5.1 Comparing the results of the baselines with the proposed ap-
proaches in terms of BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR and
ROUGE-L on the car manual test data.

manual training dataset (fine-tuning paragraph-level SQuAD), we achieve significant

improvements in terms of all the evaluation metrics on the test dataset in compare

to the baselines. This approach exceeds (Zhao et al., 2018) by (+4.8 BLEU-1, +5.5

BLEU-2, +6 BLEU-3, +6.03 BLEU-4, +3.16 METEOR, 3 ROUGE-L) points. We

also explore the effect of fine-tuning the pre-trained GloVe word embeddings and

observe improvements in terms of BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR

scores.
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5.5 Comparison of Results between Partial and Full

Model Transfer

We also investigate the effect of transferring different layers of our deep neural

network model trained on large QA dataset (parent model) to the same architecture

using car manual training dataset (child model). We divide the transfer learning

technique into multiple steps: (1) transferring the embedding layer parameters, (2)

transferring the non-embedding layers (inner layers) parameters, (3) transferring all

the layers parameters. In the first experiment, embedding layer parameters in the

source model are initialized by pre-trained GloVe word embeddings based on the

SQuAD vocabulary set and they are transferred to the target model. As shown in

Table 5.2, the embedding layer contains transferable information and it improves our

baseline model by about 1 score in terms of all the evaluation metrics used in our

work.

Moreover, we demonstrate the effect of transferring non-embedding layers (in-

ner layers) using MP-GSN. During this experiment, we initialize the embedding

parameters based on our target vocabulary set, and the inner layer parameters are

transferred from the source model and further fine-tuned on the target domain. This

approach increases the evaluation scores (+6.09 BLEU-1, +7.22 BLEU-2, +7.87

BLEU-3, +8.02 BLEU-4, +4.09 METEOR, +4.42 ROUGE-L) in comparison to our

MP-GSN baseline model. This confirms that transferring the inner layer parameters

plays the most crucial role of transfer learning on our NQG system.

In addition, transferring parameters from all the layers of the source model would
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

baseline 58.16 46.74 39.34 33.65 29.49 59.15
O
ur
s

transfer embedding 59.67 47.60 40.19 34.54 30.22 60.58

transfer inner layers 64.25 53.96 47.21 41.67 33.58 63.57

transfer all layers 62.96 52.24 45.34 39.68 32.65 62.15

transfer all layers

+ fine-tuning GloVe
62.96 52.72 46.22 40.96 32.67 62.03

transfer inner layers

+ fine-tuning GloVe
64.83 54.72 48.08 42.73 33.87 63.88

Table 5.2 Exploring the model’s performance by transferring different lay-
ers of the maxout pointer and gated self-attention network.

achieve better results in comparison to transferring only the embedding layer. We

further demonstrate the effect of fine-tuning GloVe embeddings on the target domain

in Table 5.2. Fine-tuning GloVe embeddings during the experiments slightly increases

the BLEU, METEOR and ROUGE-L scores. The best performance during the

analysis of the model transfer is achieved when the embedding table is initialized

with the target vocabulary and inner layer parameters from the source model is

fine-tuned on the target model without freezing the GloVe embeddings. We deduce

that both embedding and non-embedding layers contain transferable information,

but nonetheless they are not as optimal as transferring the inner layers parameters.

5.6 Results on In-domain Instance Selection

We further conduct experiments to see the impact of initializing parameters using

instances that are more similar to the car manual domain. As described in Section
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4.2.3, we use two types of similarity measures to measure the similarity of an instance

in the source data set to the target domain to select instances from the source (i.e.,

SQuAD) data set: sentence-level and word-level similarity measures.

With the sentence-level based similarity measure, we extract subsets of SQuAD

with the similarity value higher than pre-defined thresholds (i.e., 0.1, 0.2, 0.3 and

0.4), which result in 87, 591, 86, 828, 67, 401 and 14, 518 instances respectively. Con-

sequently, the examples from SQuAD that are more similar to the car manual in-

stances in terms of sentence vector representations are extracted. Note that the

higher the threshold value is, the more similar the subset of selected instance is to

the target domain, but the smaller the selected subset is. Since 87, 591 number of in-

stances have similarity threshold more than 0.1 to our target domain, we conjecture

that BERT embedding do not capture the good representation of the paragraph-level

input.

With the word-level similarity measure, we select instances in the source domain

data set whose similarity score is positive, which results in 14, 090 paragraph-question

pairs to train the source model. The reason that we only use zero as the similarity

threshold is that a higher threshold value (e.g., 0.1) leads to a subset of the source

domain data that is smaller than our target domain data set.

The results of this experiment are displayed in Table 5.3. As shown in the table,

by setting the threshold value to 0.4 for the sentence-level comparison or using the

word-level similarity measure (with a threshold of zero), only 16% of the original

source data are selected and used to train the source model, but the performance

still rise considerably, compared with the baseline that does not use transfer learning.
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However, neither of the methods outperforms the model trained by all the instances

from SQuAD. The reason is that the size of the training data for both method is

decreased significantly due to the selection. Thus, we conclude that the impact of

having a large data set in the source domain outweighs using a smaller subset (about

16%) of the source data that are semantically more similar to the target domain. For

the models with similarity thresholds of 0.1, 0.2 and 0,3, their performance is better

than the baseline but again not as good as the model trained with all the source

data. Although their data set sizes are not as small as the one when the threshold

is set to 0.1, the sizes are smaller than the original. Since their similarity thresholds

are low, we conjecture that the overall similarity of the selected data by these three

thresholds to the target domain may not be much different from the one for the

original data. and thus the size of the source training data is more important in this

situation.

To see whether instance semantic similarity matters when the data sizes are the

same or similar, we randomly select 14, 575 instances from the SQuAD data set to

train the parent model, in order to compare with the model with the word-level

similarity and the model with the 0.1 threshold for the sentence-level similarity. As

shown in Table 5.3, we observe that using similar instances obtained from the word-

level comparison results in a better performance in contrast to employing a randomly

chosen subset of training data with the same amount of QA pairs. However, the

performance of the model with the 0.4 threshold for the sentence-level similarity

does not outperform the model with randomly-selected data set of similar size. We

conjecture that the our sentence-level similarity measure might not well capture the
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similarity between a training instance and the target domain. Based on our results,

the word-level similarity measure (which is based on a set of keywords in the target

domain generated by the LDA model) is better.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
# of

examples

Baseline 58.16 46.74 39.34 33.65 29.49 59.15 0

(0.1 similarity threshold) 61.53 51 44.47 39.31 32.03 61.25 87,591

(0.2 similarity threshold) 61.37 50.79 44.27 39.13 31.6 60.71 86,828

(0.3 similarity threshold) 62.24 51.16 44.12 38.57 32.04 61.21 67,401

(0.4 similarity threshold) 61.06 49.73 42.60 36.98 31.42 60.94 14,518

(word-level similarity) 62.38 51.25 44.15 38.47 32.06 61.66 14,090

(samples randomly chosen) 61.19 49.85 42.74 37.12 31.31 61.08 14,575

(all the source data) 62.96 52.24 45.34 39.68 32.65 62.15 87,599

Table 5.3 Comparing effects of transfer learning on MP-GSN using different
subsets of the source domain examples that are more similar to the target
domain.

5.7 Discussion on Results for Concept-aware Model

As shown in Table 5.1, our concept-aware model could improve the MP-GSN

model by at least about 1 point in terms of all the evaluation metrics. Our hybrid

model which combines both fine-tuning and concept-aware word representation ap-

proaches does not demonstrate the most optimal performance. We believe this is due

to deriving the concept-aware vector of each unknown word from a larger vocabulary

set of ≈ 45K words during training and fine-tuning steps as opposed to the smaller

vocabulary size of ≈ 5K using car manual QA pairs. Consequently, higher number
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Figure 5.1 Comparing the performance of MP-GSN on the target domain
by choosing in-domain instances from the source domain
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of synonyms would match the existing words in the embedding table. The derived

synonyms from WordNet might contain different senses, and therefore computing an

average vector from their word vectors would not capture a good representation of

the unknown word. On the other hand, by implementing the concept-aware model

on the smaller QA dataset (consists of ≈ 5K words in the vocabulary set) in the

domain of car manuals, synonyms related to this specific domain would be selected.

Hence, a better representation for each unknown word is constructed, and this would

result in a better performance in compare to our baseline model.
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5.8 Examples

This section is devoted to examples from the test set, generated questions by our

models along with the reference questions. In each example:

• Sentence denotes the source sentence from which the question would be gen-

erated.

• MP-GSN denotes the output question by our baseline model (4.1).

• concept-aware model represents the generated question by the concept-

aware model (4.3).

• Fine-tuned SQuAD indicates the question generated after fine-tuning MP-

GSN on car manual training data (4.2).

• Reference denotes the target question.

We observe that in in most examples MP-GSN struggles to generate grammati-

cally correct questions or the question is not related to the answer provided. Concept-

aware model and the transfer learning learning could improve the performance of

the baseline model in terms of the aforementioned problems and in some cases these

models are able to generate questions as well as human-written questions.
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Example (1):

Sentence: if the vehicle is equipped , the position of the throttle and brake

pedals can be changed.

MP-GSN: can i use the brake pedals be changed?

concept-aware model: can the position of the brake pedals be changed?

Fine-tuned SQuAD: can the position of the throttle and brake pedals be

changed?

Reference: can the positions of the throttle be changed?

Example (2):

Sentence: the head-up display rotation option feature allows you to adjust

the angle of the head-up display image.

MP-GSN: how does the head-up display rotation feature feature?

concept-aware model: how do i adjust the angle of the head-up display?

Fine-tuned SQuAD: what does the head-up display rotation option do?

Reference: what is the head-up display rotation option?

Continued on next page
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Example (3):

Sentence: in canada , the law requires that forward-facing child restraints

have a top tether , and that the tether be attached .

MP-GSN: what is the personalization options for forward-facing child re-

straints ?

concept-aware model: does the law requires that forward-facing child re-

straints have a top tether ?

Fine-tuned SQuAD: does the law need that child restraints have a top tether

?

Reference: what does canadian law say about forward-facing child restraints

?

Example (4):

Sentence: see my.cadillac.com to register your vehicle for the owner experi-

ence program.

MP-GSN: what should i do if the vehicle is program in the owner experience

program?

concept-aware model: how do i use my vehicle for the owner experience

program?

Continued on next page
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Fine-tuned SQuAD: how can i register my vehicle for the owner experience

program?

Reference: how do i register my vehicle for the online owner experience

program?

Continued on next page
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Example (5):

Sentence: to enhance your ownership experience , we and our participating

dealers are proud to offer courtesy transportation , a customer support program

for vehicles with the bumper-to-bumper ( base warranty coverage period in

canada ) , extended powertrain , and/or hybrid-specific warranties in both the

u.s. and canada.

MP-GSN: what should i do if i am to enhance my ownership experience?

concept-aware model: how do i enhance my ownership experience?

Fine-tuned SQuAD: how do i enhance my ownership experience?

Reference: what is the courtesy transportation program?

Example (6):

Sentence: the proximity sensing option in the display feature allows the fea-

ture to be turned on or off.

MP-GSN: what is the proximity sensing option in the display?

concept-aware model: what is the proximity sensing option in the person-

alization menu for?

Fine-tuned SQuAD: what is the proximity sensing option in the display for?

Reference: what is the proximity sensing feature in the personalization menu

for?

Continued on next page
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Example (7):

Sentence: the roadside assistance program is not available for any of the

countries in the central american and caribbean region.

MP-GSN: is the roadside assistance program available for?

concept-aware model: what is the roadside assistance program for?

Fine-tuned SQuAD: where is the roadside assistance program not available?

Reference: where is the roadside assistance program not available?

Example (8):

Sentence: replace wiper blades at least once per year for optimum perfor-

mance.

MP-GSN: how can i replace wiper blades blades?

concept-aware model: how do i replace the wiper blades?

Fine-tuned SQuAD: how often should i replace wiper blades?

Reference: when should i replace wiper blades?

Continued on next page
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Example (9):

Sentence: to access the driver door key lock cylinder , pull the door handle

to the open position and hold it open until cap removal is complete. then ,

insert the key into the slot on the bottom of the cap , lift the key upward and

remove the cap. finally , use the key in the cylinder.

MP-GSN: how do i access the driver door key?

concept-aware model: how do i access the driver door key lock?

Fine-tuned SQuAD: how do i access the driver door key lock cylinder?

Reference: how do i access the driver door key lock cylinder?

Example (10):

Sentence: operating the engine with the air cleaner/filter off can cause you

or others to be burned.

MP-GSN: can i use the engine with the air with the air?

concept-aware model: can i use the engine with the air with the air?

Fine-tuned SQuAD: can i use the engine with the air cleaner off?

Reference: what can happen if i operate the engine with the air filter off?

Table 5.4 Examples of questions generated by MP-GSN, concept-aware
model and fine-tuned MP-GSN on car manual dataset.
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5.9 Summary

In summary, we tackle the issues brought by lack of labeled data and out-of-

vocabulary words for training deep neural question generation model. We presented

a concept-aware model to address the problem with out-of-vocabulary words and

a transfer learning technique to solve the issue brought by having small labelled

training examples. Our proposed models generate better quality questions in terms

of grammar, coherence and their relatedness to the input answer by incorporating

the existing large QA dataset i.e., SQuAD and integrating the word relations defined

in WordNet. The experiments show that our proposed methods outperformed the

state-of-the-art approaches for NQG in the specific domain of car manuals.
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Chapter Six

Conclusion & Future Work

6.1 Conclusion

We present a concept-aware model and incorporate a transfer learning approach

for neural question generation problem in this thesis. This task aims to automati-

cally generate questions from text documents. The proposed methods address issues

brought by having insufficient labelled training data, and encountering rare/unknown

words problem during training and test steps for the NQG problem. We investigate

the impact of transfer learning where the current NQG approaches suffer from the

lack of a large amount of labelled training data in a specific domain. We also explore

the effects of transferring different layers of the network for low-resource question

generation. The results further highlights the use of model initialization for the

NQG problem. As an another investigation, we evaluate our models trained on dif-

ferent subsets of the source training data using similarity measures. Sentence-level

and word-level representations of the text are

The concept-aware model is introduced to solve the problem with rare/unseen
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words. It integrates semantic relationships defined in the WordNet lexical database,

which is a type of general knowledge external to the training data, into the input

representation of our NQG system. Our results indicate the effects of using the

parameter initialization method as well as using external knowledge into our QG

model, and achieve a better performance across various automatic evaluation metrics,

such as BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR and ROUGE-L.

6.2 Future Work

The results achieved by our experiments demonstrate the effectiveness of our

methods in the question generation problem. However, it would be interesting to

explore the effect of various directions:

• Deriving the sentence embedding in the proposed concept-aware model using

LSTMs instead of obtaining average over the word feature vectors.

• Utilizing conceptual word representation, such as BERT, ELMo, GPT-2 in the

input layer so that word representation is based on its context.

• Demonstrate the effectiveness of our models on paragraph level question gen-

eration approaches.

• Investigate the impact of using other available lexical databases, such as Con-

ceptNet (Speer, Chin, and Havasi, 2016) and Freebase (Bollacker et al., 2008)

and incorporate the conceptual word representations defined in these knowl-

edge bases into the NQG task.
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Appendix One

Supplementary Material

This appendix provides list of top words extracted from our target domain (i.e.,

car manuals) using the LDA topic modeling:

• switch

• position

• ignition

• engine

• button

• start

• stop

• push

• key

• turn

• Odometer

• fob

• lever

• gear

• enter-n-go

• addition

• acc

• installing

• keyless

• pushed

• return

• wheel

• indicator

• active

• driven

• tcs

• activation

• malfunction

• wheels

• spin

• partial

• feature

• acceleration

• limited

• throttle

• spinning
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• sway

• remains

• torque

• starts

• pressure

• low

• service

• monitoring

• evic

• tpm

• tpms

• compact

• place

• telltale

• fault

• graphic

• inflate

• chime

• minimum

• sound

• sensors

• road

• emergency

• power

• automatically

• dashes

• identified

• monitor

• abnormal

• components

• present

• additives

• content

• stuck

• brake

• pedal

• anti-lock

• braking

• assist

• applied

• abs

• parking

• brakes

• bas

• foot

• hill

• short

• amount

• function

• fully

• avoid

• park

• shift

• transmission

• gear

• cluster

• lever

• drive

• range

• neutral

• econ

• interlock

• selector

• reverse

• miles

• instrument

• shifts

• gears
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• improve

• gasoline

• performance

• provide

• mmt

• reformulated

• manufacturer

• reduce

• blended

• octane

• emissions

• quality

• spark

• fall

• motor

• light

• warning

• located

• required

• driving

• turned

• oils

• repair

• functioning

• ease

• adjust

• interference

• comfort

• important

• counteracting

• sequence

• serviced

• monitors

• conditions

• steering

• control

• reduced

• stability

• ride

• increase

• intended

• path

• maintain

• functions

• power

• designation

• slow

• stopping

• sand

• understeer

• oversteer

• over/under

• tires

• tread

• wear

• snow

• safety

• replacement

• season

• life

• sidewall

• summer

• handling

• ice

• affect

• symbol

• adversely

• failure
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• winter

• maintenance

• sets

• engine

• normal

• release

• accelerator

• pedal

• heater

• block

• press

• disengage

• starter

• hold

• weather

• flooded

• fails

• temperatures

• cord

• integrated

• front

• side

• rear

• label

• axle

• rating

• weight

• driver’s

• door

• tin

• gawr

• full

• found

• capacity

• gross

• gvwr

• exceed

• certification

• states

• higher

• tire

• pressure

• inflation

• cold

• recommended

• loading

• pressures

• placard

• maximum

• b-pillar

• code

• check

• high

• audible

• levels

• kpa

• description

• activated

• speeds

• speed

• operation

• economy

• km/h

• mph

• traction

• section

• operate

• equivalent
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• driving

• increased

• lower

• mounted

• make

• additional

• reasons

• detected

• power

• standard

• fuel

• ethanol

• unleaded

• flexible

• properly

• compatible

• refueling

• towing

• standing

• required

• ffv

• deterioration

• underinflated

• results

• shallow

• decrease

• idle

• liter

• mopar

• tire

• spare

• size

• original

• equipment

• capability

• indicators

• replace

• service

• temporary

• replaced

• limited-use

• reinstall

• worn

• type

• match

• firmly

• precautions

• load

• water

• designed

• damage

• safe

• powered

• hesitations

• referred

• uphill

• met

• sufficient

• fuels

• world-wide

• update

• premium

• designs

• electronic

• cap

• instrument

• center

• filler
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• panel

• warnings

• surfaces

• left

• install

• actual

• evic

• loose

• gas

• run

• traction

• rotation

• trailer

• stop

• flat

• subsection

• driving

• device

• proper

• tsc

• wet

• swaying

• loss

• rapid

• limited

• pattern

• patterns

• hsa

• driver

• operating

• activation

• greater

• running

• improper

• criteria

• malfunction

• slippery

• module

• seat

• non-flex

• oxygenates

• receiver

• limits

• consumption

• molded

• activate

• tire

• pressure

• spare

• tire

• ignition

• switch

• shift

• lever

• Tire

• Pressure

• Monitoring

• TelltaleLight

• lbs

• kg

• brake

• pedal

• ENGINE

• STARt

• front

• rear

• tiresize

• parking
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• brake

• original

• equipment

• Indicator

• Light

• cold

• tire

• inflation

• pressure

• mph

• km

• trailer

• towing

• apply

• parking

• brake

• towing

• trailer

• shift

• transmission

• Transmission

• Shift

• inflation

• pressure

• cold

• tire

• compact

• spare

• tire

• inflation

• pressure

• parking

• brake

• applied

• inflation

• pressure

• Inflate

• Monitoring

• spare

• pedal

• electronic

• distance

• reduce

• position

• emissions

• covered

• ahead

• reformulated

• parts

• inflated

• stationary

• season

• loading

• exploited

• children

• key

• panel

• complete

• wheel

• spare

• limited

• equipped

• compact

• temporary

• emergency

• valve

• designed

• filling
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• receive

• spin

• monitor

• mounted

• require

• traction

• aftermarket

• travel

• tire

• pressure

• inflation

• cold

• low

• monitoring

• telltale

• placard

• kpa

• psi

• increased

• limit

• hours

• update

• activated

• recommended

• module

• updated

• extinguish

• control

• result

• cruise

• adaptive

• loss

• resulting

• injury

• normal

• lose

• gear

• detect

• install

• death

• lbs

• pump

• repaired

• foot

• electronic

• situations

• front

• rear

• wheels

• safety

• maintain

• axle

• important

• installed

• short

• shift

• area

• user

• bas

• range

• ready

• regularly

• tire

• tpms

• pressures

• original

• equipment

• sensors
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• condition

• replace

• center

• stem

• reinstall

• devices

• ride

• improper

• sidewall

• molded

• contact

• ratings

• trailers

• gasoline

• driver

• side

• door

• located

• components

• ethanol

• label

• pillar

• occur

• axles

• requirements

• warranty

• unleaded

• handling

• listed

• symbol

• surfaces

• function

• fuel

• failure

• cap

• gap

• provide

• filler

• performance

• left

• tank

• longer

• roads

• gas

• unequal

• blended

• quality

• closed

• passengers

• displays

• gauge

• weight

• load

• maximum

• exceed

• loading

• cargo

• gawr

• capacity

• loaded

• gvwr

• total

• occupants

• certification

• combined

• carrying

• distribute

• winter
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• kg

• tires

• tread

• snow

• wear

• run

• life

• ice

• select

• replaced

• handling

• indicators

• summer

• part

• sidewall

• designation

• higher

• improve

• repair

• damage

• steering

• size

• power

• required

• transmission

• operation

• starting

• section

• increase

• fluid

• rating

• acceleration

• chains

• performance

• occurs

• normal

• evenly

• replacing

• trailer

• brakes

• towing

• tow

• hitch

• follow

• tongue

• sway

• dangerous

• avoid

• heavier

• stop

• found

• swaying

• manual

• appears

• ambient

• harness

• device

• braking

• lock

• anti

• manufacturer

• replacement

• abs

• order

• lead

• move

• compatible

• setting
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• scale

• hydraulic

• noise

• chart

• completely

• drivetrain

• driving

• conditions

• road

• traction

• drive

• water

• standing

• operate

• stopping

• rotation

• additional

• lane

• path

• due

• lower

• correct

• miles

• limits

• engine

• switch

• ignition

• temperature

• turn

• high

• check

• turned

• start

• automatically

• heavy

• running

• grade

• period

• octane

• damaged

• stopped

• immediately

• recommended

• refer

• proper

• make

• speeds

• stop

• operating

• maintenance

• affect

• checked

• safe

• full

• sensor

• properly

• capability

• continue

• tpms

• brake

• parking

• warning

• collision

• apply

• assist

• park

• applied

• hill
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• hsa

• tsc

• fully

• slow

• automatic

• lamps

• received

• sounds

• interference

• speed

• km

• set

• mph

• pedal

• driven

• press

• release

• approximately

• minutes

• change

• accelerator

• device

• greater

• res

• loads

• turns

• index

• hydroplaning

• esc

• indicator

• malfunction

• prevent

• stability

• tcs

• level

• flat

• partial

• reduced

• including

• excessive

• feature

• laws

• condition

• disabled

• momentarily

• light

• display

• service

• message

• seconds

• fault

• active

• warning

• chime

• evic

• activation

• sound

• graphic

• remain

• remains

• instrument

• place

• tpm

115


	Title Page
	Abstract
	Abstract

	Acknowledgment
	Acknowledgments

	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Abbreviation
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Overview of the thesis

	2 Background
	2.1 Word Embedding
	2.1.1 One-hot Encoding
	2.1.2 Embedding matrix
	2.1.3 Language Model
	2.1.4 Word2vec
	2.1.5 GloVe
	2.1.6 Contextual Representation

	2.2 Recurrent Neural Network (RNN)
	2.2.1 Long Short Term Memory
	2.2.2 Gated Recurrent Unit
	2.2.3 Bi directional RNN
	2.2.4 Encoder-Decoder Architecture
	2.2.5 Attention
	2.2.6 Coverage Mechanism

	2.3 Transformer Models
	2.3.1 Transformer Encoder
	2.3.2 Transformer Decoder

	2.4 Sequence Model Decoders
	2.4.1 Greedy Decoding
	2.4.2 Beam Search


	3 Related Work
	3.1 Question Generation
	3.1.1 Rule-based Question Generation
	3.1.2 Neural Question Generation
	3.1.3 Dealing With Rare and Unseen Words
	3.1.4 Human Evaluation
	3.1.5 Automatic Question Generation Evaluation

	3.2 Transfer Learning in Natural Language Processing
	3.2.1 Definition of Transfer Learning
	3.2.2 Transfer Learning Scenarios
	3.2.3 Transfer Learning for NLP


	4 Improving NQG with Transfer Learning and Concept-Aware Word Embeddings
	4.1 Baseline (Maxout Pointer and Gated Self-attention Networks)
	4.2 Transfer Learning for Neural Question Generation
	4.2.1 Transfer Learning of the Whole Model with All Data
	4.2.2 Partial Model Transfer
	4.2.3 Data Selection for Transfer Learning

	4.3 Concept-aware Model for Neural Question Generation
	4.3.1 WordNet Lexical Database
	4.3.2 Integrating WordNet relation into neural question generation system

	4.4 Summary

	5 Empirical Evaluation
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Baseline Systems
	5.4 Experiments and Results on Whole Model Transfer and Concept-aware Generation
	5.5 Comparison of Results between Partial and Full Model Transfer
	5.6 Results on In-domain Instance Selection
	5.7 Discussion on Results for Concept-aware Model
	5.8 Examples
	5.9 Summary

	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work


	References
	Appendix
	A Supplementary Material


