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Abstract 

CubeSats, a class of small satellite, offer a unique opportunity for training, technology 

demonstrations, Earth observation, and other space-based research. There has been a recent 

increase in their design and implementation in private industry. Private industries and agencies 

have begun to research and implement larger amounts of small satellites working together, 

referred to as a constellation. CubeSat Constellation missions use multiple satellites to complete 

complex and challenging tasks instead of one larger satellite. One of the keys to mission success 

for CubeSat constellation missions is mission scheduling. When implementing a large network 

of satellites in constellation operation, scheduling becomes a challenge due to the large amount 

of conflicts that need to be resolved. Conflicts occur when more than one satellite and/or ground 

resource can be used to complete a task. The following thesis describes and demonstrates an 

advanced mission scheduling algorithm to schedule Earth observation, data transfer, or relief aid 

missions. Each type of mission is given a test case and results show the algorithm’s weighted-

sum flexibility to solve multiple mission objectives. The weighted-sums optimization algorithm 

is used to test if the effectiveness of the chosen design variables (transfer time, age of data, 

spatial coverage, and temporal coverage) and to test if the blended objective functions are 

effective. This thesis presents the preliminary results of the mission scheduling and selection of 

ideal weighting of different objectives for CubeSat constellation missions. 
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Chapter 1: Introduction 

1.1 Trends in SmallSat Technology 

In the last twenty years there have been vast improvements in microelectronics and 

microsystems technology. These improvements sparked a new interest in miniaturization of 

satellite technology while increasing the functionality of the spacecraft in general. This has then 

made commercial off the shelf (COTS) technology more abundant, useful, and affordable than 

ever before. These COTS solutions are the building blocks of small satellites (also often referred 

to as SmallSat). Therefore, the improvements in COTS have directly supported significant 

advancements in SmallSat Technology and mission objectives [4]. Gone are the days where 

government solely had management over satellites and the compatible ground resources, now the 

space industry is also driven by commercial enterprises and consumer demand [28]. SmallSats 

often follow a “fly-learn-re-fly” approach due to the shorter design cycles, lower costs, and 

smaller design teams necessary for SmallSat development and launch. The CubeSat (a class of 

SmallSat with mass in the range of 1 to 10 kilograms) standard was developed by California 

Polytechnic State University and Stanford University. Their goal was to simplify launch and 

deployment operations by creating a customizable satellite that had a standard shape and mass. A 

CubeSat consists of one or more units. Each unit is 10 cm X 10 cmX10 cm and has a mass of no 

larger than 1.33 kg per unit [4]  

With the increasing popularity of CubeSat-class small satellites in recent years, the 

number of small satellites launched increases year-over-year as seen in the figure below (see 

Figure 1). 
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Figure 1: Global Launches of Small Satellites by Application from NSR [32] 

 

Introduction of CubeSat standards has also substantially reduced costs of launch and operation so 

that it has gained popularity with universities, students, and commercial companies [28, 20]. 

These attributes, added with benefit of more flexible launch accommodations, have made 

CubeSats the most popular choice for the recently designed large constellation missions that 

have been proposed and developed.  

The initial purpose of CubeSat missions was to test new technology or application 

demonstrations for validation purposes, since the satellite community prefers to use technology 

that has space heritage to lessen the probability of mission failure, either complete or partial [4]. 

The driving force behind the use and development of small satellites, after the success of these 

initial technology demonstrations missions, has been Earth observation and remote sensing. The 

data generated by the small satellite missions has been used in the agricultural sector, disaster 

management, forestry, and wildlife industries to name a few [4].  
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Today, CubeSats are becoming an increasingly popular scientific and technological 

endeavor for both academia and industry. Their light weight and low cost allow for technology 

and scientific principles to be demonstrated quickly and efficiently. It is estimated in [20] that the 

joint cost of production and launch of a CubeSat ranges from $100,000 to $200,000 USD. As the 

technologies aboard SmallSats become more complex and advanced, their scientific missions 

have become more involved. In a recent article in Nature [21] the author describes this 

phenomenon as “Mini satellites prove their scientific power – proliferation of ‘CubeSats’ offers 

fresh and fast ways to gather space data.” The advancement of CubeSats requires the 

technological innovation of compatible payloads, as well as innovative and cost-effective ways 

to operate them so as to utilize them commercially. Figure 2 below shows the history of CubeSat 

launches and launch from 2010 to 2020. 
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Figure 2 :Number of small satellites from the last 15 years. Reprinted from A Comprehensive 

Review of Small Satellites Communications and Networks. Wireless Communications and Mobile 

Computing. Burleigh et al. (2019). 

Improvements in SmallSat technology have introduced new functionalities to the industry 

such as using CubeSat constellations missions where simultaneous multi-point mission 

objectives can be achieved [28]. Constellation missions are used to utilize multiple satellites in a 

coordinated operation [4]. Figure 3 summarizes the forecasted trends by application. 
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Figure 3 Market forecast, 8th edition, approved for public release, SpaceWorks Enterprises, Inc. 

(SEI), Reprinted from A Comprehensive Review of Small Satellites Communications and 

Networks. Wireless Communications and Mobile Computing. Burleigh et al. (2019). 

Figure 3 shows that Earth observation and remote sensing will remain as the main 

objective for SmallSat missions, but communication missions will increase from 4% to 22% over 

4 years.  

There is a recent trend of increasing number of CubeSat/SmallSat missions with multiple 

satellites in constellation. In particular, there has been an increase in the number of CubeSat 

constellation missions with several commercial telecommunication missions such as 

broadcasting applications, internet of things and Machine-to-Machine paradigm, as well as more 

advanced EO (Earth Observation) such as Planet Labs’ Dove satellite constellation [4][20]. The 

OneWeb constellation has a planned 720 satellites in its constellation; Boeing has 2,956, and 

Space X has 4,500 satellites and growing.  
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As expected, large satellite constellations have more complex and challenging constraints 

and complications compared to traditional single satellite missions. These constraints and 

complications are dependent on the mission’s objectives, many of which revolve around the 

scheduling of payload operations and data transmission. In an EO satellite constellation, there 

can be constraints on when the image is taken, the coverage of the images taken, as well as the 

storage and battery constraints of the satellite. These constraints are decided by the operator and 

satellite design. When using such large numbers of satellites, complications arise in assigning 

ground communication times and resources. Often more than one satellite can communicate with 

the same ground station and often the ground stations can handle only one communication link at 

a time. The operator must decide which satellite is assigned the communication link. Deciding 

factors could be based on the satellite’s storage capacity, other available ground communication 

options, cost of operation of both the ground station and the satellite and the communication time 

limit of each satellite’s pass over the ground station.  

In data transfer constellations, there are constraints on the battery capacity and storage 

capacity, as in the EO constellation, as well as the added constraints of scheduling data transfers 

within a time constraint to ensure that users receive data transfers within a specific duration and 

maximize the amount of data transferred. There are the same complications with ground 

communication times as well as the added complication associated with multiple users. 

Scheduling and planning for satellite constellation missions has been studied before; however, 

most if not all endeavor is to simply maximize communication times with ground stations via 

more satellites in the same orbits. There are very few studies that deal with the conflicts that arise 

when using large constellations[3][8]. Most of the literature deals with Earth Observation 

satellites only[8]. The objective is to schedule the mission’s payload (such as cameras) while 
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also satisfying the satellite’s cost constraints. According to the literature review in [6], “most 

studies neglect data and energy dynamics” and while scheduling data transfers for larger 

constellations with multi-ground resources has been studied before the authors are unaware of 

any studies that add energy and data dynamics to the problem. 

While the missions mentioned above assume the use of newly designed satellites that are 

launched in sequence to create the constellation matrix, there is also the possibility of 

repurposing and re-tasking resources already in orbit. The International Charter “Space and 

Major Disasters” is an international effort to use current space technology at the service of 

emergency and rescue responders during a major disaster. When the Charter becomes active, the 

member satellites are re-tasked to capture an image of the devasted regions. The data must be 

accurate and rapidly available. Canada’s RADARSAT is part of the Charter [5] to support the 

global disaster monitoring initiative. The Global Educational Network for Satellite Operations 

(GENSO) is another example of re-tasking available space resource. It is a project promoted by 

the International Space Education Board (ISEB). The goal of GENSO is the cooperation on 

educational matters. Its members include ESA (European Space Agency), CSA (Canadian Space 

Agency), JAXA (Japan Aerospace Exploration Agency), NASA (National Aeronautics and 

Space Administration), and CNES (The National Center of Space Studies) [14]. 

1.2 Motivation 

As noted earlier, CubeSats have multiple advantages over larger satellites. The smaller 

size of the CubeSat means less materials are used to construct the satellite and the development 

time is much shorter than traditional satellite programs. CubeSats are therefore more cost-

effective than the traditional larger satellites. The disadvantages of CubeSats are that their 

smaller size often has the consequence of using smaller payload instruments, simpler missions 
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due lack of available volume in the CubeSat for multiple payloads, and active guidance 

mechanism such as thrusters. To counteract these disadvantages, multiple satellites are used in 

formation to complete the tasks. These formations or constellations can range from 3 to over 

1000s. 

With larger constellations, scheduling becomes a challenging problem no matter the 

mission objective due to the increasing amount of data generated during the mission. Satellites in 

these large constellations are often in low earth orbits (LEO) to allow the satellites to share the 

same ground resources. Sharing ground resources has the consequence of scheduling conflicts 

where more than one satellite needs to communication with the same ground resource 

simultaneously. It then becomes an optimization problem to choose which satellite uses the 

conflicted communication time with the ground resource. In traditional scheduling methods, a 

human operator solves scheduling conflicts manually and relay the commands to the satellites. 

With such large (100s or 1000s of satellites) constellations the amount of conflicts quickly 

increases to numbers that would strain human operators. Therefore, an automated scheduling and 

optimization algorithm are required. The current tools available to large constellations are 

inadequate to be used effectively due to the limitations of scaling them to thousands of 

spacecraft, targets and ground stations. 

Mission planning methods for satellite constellations involves multi-objective 

optimization method. In any optimization problem there are key design decisions and the formal 

constraints. For generic mission planning the decision variables and constraints are difficult to 

define quantitatively, as there is no physical link between them and the constraints that can be 

expressed mathematically. The problem is further complicated when the satellites in the 

constellation have different constraints and capabilities. Constraints for mission planning include 
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data storage, attitude and orbit control and maneuvers, thermal, and power constraints. STK 

(Systems Tool Kit) is the traditional method used for mission planning; to use it for large 

constellations the operator would need to build a large constellations planning and management 

tool within STK.. There have also been several publications on optimization techniques, but the 

studies thus far all focus on a specific constellations mission objective and on a single satellite 

platform or a constellation under 10 satellites [8]. These publications treat the constellation as a 

small collection of satellites and therefore do not address the complications that are associated 

with many satellites working on the same parameters [20]. There are limited generic 

constellation planning tools that can be customized to fit a range of constellation structures and 

mission objectives [20]. 

1.3 Research Objectives 

The primary research objective of this thesis is to design a generic constellation 

scheduling algorithm that produces an optimized schedule for a large constellation of CubeSats 

by testing the effectiveness of the chosen design variables and the blending of them. The 

algorithm must be sufficiently flexible for any number of satellites, ground locations and target 

locations, as well as individual satellite constraints and capabilities, such as battery power and 

data storage. The constraints considered are power and data storage. The decision variables (or 

the characteristics to be optimized) includes amount of data, age of data, spatial coverage of 

targets, and temporal coverage of targets.  

1.4 Thesis outline 

The following 6 chapters are structured as follows. In Chapter 2, a brief history of 

scheduling methods is described, as well as an overview of current scheduling tools available 

and a trade study on optimization techniques applicable for the CubeSat constellation scheduling. 
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In Chapter 3, the optimization algorithms are detailed, consisting of the logic flow including the 

input variables and structures, the orbit propagation, the scheduling controls, and the 

optimization calculation and constraints check. In Chapter 4, there is an explanation of the 

scenarios chosen to validate the success of the algorithm. Chapter 5 summarizes the results of the 

test cases from chapter 4. Conclusions and final remarks are provided in Chapter 6. 
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Chapter 2 Background 

2.1 Early Mission Scheduling for Autonomy  

Most of the satellites in orbit today do not possess much intelligence or decision-making 

capabilities. Instead, the current software for satellites measures sensor data, receives and 

completes ground commands usually constructed by human operators, and reboots rather than 

troubleshoot when an error occurs [36]. One of the first attempts at autonomous scheduling for 

satellites was made by NASA’s Deep Space 1 (DS1) mission. It was launched in 1999 but due to 

technical difficulties the scheduling software was removed from the satellite. The patches to the 

software were later uplinked to the satellite and tested in monitored scheduled intervals. DS1 

used an agent architecture that was based on a model-based programming method. DS1 had 

onboard deduction and search algorithms along with goal-directed closed-loop commanding. The 

agent architecture relied on tradition flight software instead of a hierarchy of intelligent agents 

[36]. 

ATLAS was another autonomous scheduling mission test launched by ESA. ATLAS uses 

agent-based software where the schedule of the constellation is calculated by the cooperation 

between different “agents” [3]. An agent is described in [42] as “…a computational entity that 

can be viewed as perceiving and acting upon its own environment and that is autonomous in that 

its behavior at least partially depends on its own experience”. Each satellite in the constellation is 

an agent. The planning of the ATLAS constellation is computed by the cooperation between all 

agents. The agents exchange messages that are guided by criticality and cost. This cooperation 

between agents produces a mission plan that maximizes the number of scheduled requests 

completed while also balancing the load of requests within the constellation. ATLAS agents have 

three main steps; Perceive, decide, act. Perceive is the step where the satellite’s current condition 

and environment is analyzed, decide is the step where ATLAS makes a plan on what actions to 
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take in order to achieve the objective and act is the commands sent to the separate satellite 

systems to achieve the plan. [3].  

DS1 is only one satellite and ATLAS staggered three satellite launches. The autonomy 

for larger satellite constellations is a much different problem. Some of the challenges for 

constellation autonomy are: 

1) Instead of one satellite there will be multiple satellites that may be 

coordinating with each other to complete the same goal or working on 

different goals [36]. 

2) The proximity between multiple satellites creates more control challenges and 

resource allocation challenges [36]. 

3) If the algorithm is space-based, then all satellites must produce the same 

results [36]. 

Agent-based software differs in organization structure and functional distribution 

compared to traditional space software. Agent-based software can be used to test different 

software options as well as architectures where each agent is a virtual satellite. Part of the agent-

based software is the decision-making process when there is a conflict between satellites or 

agents.  

The missions mentioned above all have limited satellites in their constellations and 

therefore could have followed the traditional operation architecture for scheduling that requires 

significant operator involvement. This method of scheduling does not scale up well to larger 

constellation sizes [23]. The complexity of scheduling increases with increasing data amounts, 

increased space resources and limited ground resources. Adding in constraints such as energy 

and storage adds yet another layer of complexity. 
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2.2 Earth Observation and Disaster Aid Mission Planning 

Data rates and customer demand are continuing to grow and consequently  more 

importance is placed on the effectiveness of satellite management and scheduling methods. 

SmallSat constellations are a proposed method to meet the ever-increasing data demand. 

SmallSat constellations also have the measurement advantages of higher temporal resolution, 

multi-point instrument coordination, and low latency data availability [23]. Tropics is a six 3U 

CubeSat constellation that is managed by MIT Lincoln library. It is a low data mission that 

continually scans Earth’s atmosphere to provide data to weather models that is rapidly updated. 

Each satellite transfers approximately 1.5 GB of data per day [23]. An example of a large data 

mission is Planet’s Dove satellite constellation. This constellation transfers 6 terabytes of data a 

day [23]. Hyperspectral images require an even larger data transfer amount [23]. There are also 

large “instantaneous” data packets that need to be downlinked quickly for disaster relief aid [23]. 

Satellites from several nations can be repurposed for relief aid but this supplies a new set of 

complications to the scheduling problem since the satellites will have different capabilities and 

constraints. 

To effectively schedule large data missions, custom objective functions have been 

proposed. Herald et al suggest a hierarchical system with a centralized coordination algorithm. 

The algorithm would interface with sub planners. The schedule is computed using a Mixed 

Integer Programming (MIP) model a solver. The algorithm addresses observation tasking but 

does not effectively consider the data route through the constellation space and ground resources 

[16]. Multi-agent cooperation has been studied and implement successfully outside of space 

applications. Now similar methods are being proposed for space applications. Agents are 
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considered to be satellites, robots, or other decision-making entities. In Wang et al., the 

algorithm uses graph decomposition techniques to simplify the planning complexity and then 

uses a heuristic forward search to compute a schedule [40]. Gombolay et al. used a Mixed 

Integer Linear Programming (MILP) formulation for quick scheduling of tasks to multiple 

factory floor robots. For this situation, temporally evolving spatial constraints were critically 

important [14]. Both Wang et al and Gombolay lack the necessary considerations for delay 

tolerant satellite networks [23]. Choi et al use agents that come to a consensus on task allocation 

by passing messages between each agent. These messages contain information on each agent’s 

decisions. The communication that is needed for this method is not found in delay tolerant 

networks [9]. Amato et al used a decentralized partially observable Markov Decision Process 

(POMDP) to find an optimal decentralized schedule across multiple agents using explicit 

reasoning about uncertainty in the agents' activities [1]. This method is very computationally 

heavy and complex and therefore does not scale up well for large satellite constellation missions. 

On board satellite task allocation discussed in Damiani et al has a system where the centralized 

ground system keeps track of the global tasks that are available and then distributes the tasks to 

the satellites during ground communication times. The satellites then use on board planning 

systems to fulfil task based on their status. This approach also takes into consideration energy, 

memory and, timing constraints [11]. Spangelo separates individual satellite responsibilities 

hierarchically from an analytical model of the constellation network and then constructs a 

simulation environment from the results [37]. This is again too computationally heavy for larger 

satellite constellations. 

Most of the solutions, discussed in Chein et al., for scheduling algorithms maximize 

mission throughputs and resource utilization, and are developed for single or small number of 
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platforms [8]. Constellations are treated as a small collection and the interface and operational 

issues associated with larger numbers of similar satellites in a constellation are not addressed 

[20]. 

 

2.3 Communication Satellite Mission Planning 

Iridium is the canonical constellation example. Iridium has large scale inter-satellite 

networking and four direction communication links. Packet routing is scheduled in discrete time 

steps for the entire constellation network. The goal is for the packets to take the shortest 

“distance” i.e., minimize the number of transfers between satellites and ground stations, to the 

gateway ground station from the customer origins. This is a constellation that operates 

continuously instead of using a delay tolerant network [23]. More specific to small satellite 

constellations with a network of ground stations, Castaing proposes a MILP formation to address 

conflicts and schedule downlink transmission with resource constraints [6]. Parham et al propose 

a mesh network that forwards packets across a small cluster of sensor nodes aboard the satellites 

[33]. Wu et al applies a Tabu search algorithm with a GA (Genetic Algorithm) to minimize 

energy use and route latency [44]. Wang et al discusses a MILP formulation with results that 

guarantee ratios of observation performance and latency requirements for a 6-satellite 

constellation [42]. The algorithm delivers 60 % of the packets within a 120-minute delay 

requirement. Zhou et al proposes the use of two algorithms together, the first is the “Mission 

Aware Contact Plan” that uses MILP formulations to compute optimal throughput. The second is 

the “Algorithm based on conflict graft” which sequentially assigns data route decisions over a 

range of time slots. The results show 90 % of optimal data throughput across the constellation of 

six satellites within 2-hour planning windows [45]. 
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Most of the current research into communication constellations does not account for the 

unique complications that arise when using large numbers of small satellites in LEO. There are 

several companies that are currently designing this type of communication constellation such as 

Kepler Communications, Boeing, and SpaceX. 

2.4 Current Mission Planning Tools 

Currently there are few generic constellation planning products that can be customized to 

fit a range of mission objectives. Planet Labs launched and manages the DOVE constellation and 

offers services to manage other entities’ constellations [20]. Terra Bella is also managed by 

Planet Labs and allows for more human operator interaction and repeated scheduling. CPAW 

from orbit logic is the most advanced option available. It offers spacecraft simulations and 

scheduling algorithms with high fidelity image collection plans, a range of settings in satellite 

model definitions, ranging degrees of automation and graph search heuristic algorithms [20]. 

Orbit logic works as an extension of STK. STK is a graphical interface and high computationally 

heavy with high licensing fees. The satellite schedules are presented graphically and in text file 

format. Sa Voir Swath Planner was developed by Taitus Software. This planner analyzes the 

coverage of EO satellites. It uses a GRASP heuristic to compute coverage in near real time but 

cannot perform more advanced constraint modeling which makes it unsuitable for large 

constellation scheduling. Deimos’ gs4EO software developed the Capacity Analysis and Mission 

Planning Tool. This tool is a greedy scheduler and GA optimization algorithm. It has low fidelity 

for the basic user and medium fidelity for the offline simulator for expert users. It is a collect of 

tools instead of an integrated path that is user friendly [20].  

The four methods mentioned above are currently the most used tools available for 

constellation scheduling. These methods cannot be simply modified to be used for any 
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constellation mission. There are similarly many publications on scheduling algorithms, but these 

algorithms are all very mission specific instead of generic and are not easily customizable[8].  

2.5 Multi-Objective Optimization for Satellite Constellations  

Often in engineering problems there is a desire to optimize more than one objective. This 

is called Multi-objective optimization (MOO). As shown above there are multiple uses for large 

satellite constellations and each use has different objectives to optimize for optimal mission 

results. Multi-objective optimization problems can be expressed as: 

 

 Minimize  𝐅(x) =  [𝐹1(𝑥), 𝐹2(𝑥), … 𝐹𝑘(𝑥)]𝑇 Eq. 1 

Subject to 𝑔𝑗(𝑥) ≤ 0, j = 1, 2…, m, 

ℎ𝑙(𝑥) = 0 l = 1, 2…, e, 

Where k represents the number of objective functions, m represents the number of 

inequality constraints and e represents the number of equality constraints. The vector of design or 

decision variables is represented as 𝑥 ∈ 𝐸𝑛 where n represents the number of independent 

variables xi. 𝐅(x) is a vector that represents the objective functions. In some situations, instead of 

minimizing 𝐅(x), the situation may call for maximizing instead [25]. For telecommunication 

constellations there can be many different decision variables such as maximizing the data amount 

transferred or minimizing the cost of the data transfer. 

Multi-objective optimization was constructed from three main areas: economic equilibrium 

and welfare theories, game theories, and pure mathematics [29]. There are many different methods 

of MOO but many of them are incomplete in comprehensive coverage and algorithm presentation, 

and they are not often to easily applicable to engineering designs because they are either too 

specific or too general [25]. There have been many papers on proposed MOO algorithms such as 
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Marler et al. which suggested a weighted sums method, and Deb et al., which suggested a generic 

algorithm (GA) (this method does not add artificial constraints to the problem equation) [29][10]. 

Linkov et al.  suggested using a max-min method which would avoid the worst-case scenario 

performance while considering minimal preference criteria. This method can only be used when 

the criteria are comparable to one another and therefore can be measured against each other on a 

common scale [4]. Shanian and Savado (2009) suggest ranking the decision variables by how 

similar they are to the ideal solution. To do so the ideal solution mut be known beforehand [35]. 

MOO can be categorized into three different classifications: 

1) Priori articulations of preference – This classification needs to have the preferences 

specified and the preferences are the articulated by their importance to the different 

objectives being considered. Such methods include Weighted min-max method, Goal 

programming, Bounded objective function, Lexicographic method, Weighted product 

method, and Reference Point Method [29][10][25]. 

2)  Posterior articulation of preferences – This classification needs to have an explicated 

approximation of the preference function. This means that the preferences are 

presumed to be embedded into the parameter set. Such methods include Generic 

Algorithms (GA), Physical programming method, and Normal constrain (NC) method 

[25]. 

3)  No articulation of preferences – In many cases the optimal solution or best preference 

scenario must be explicitly known. This means the articulation of preferences is not 

required. Methods in this category are often simplified version of priori articulation 

methods such as Compromise function and Min-max method [25]. 
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GAs are a popular choice for MOO problems. They can be modified to find multiple solutions in 

a single run. This is because GAs can search different regions of the solution space simultaneously. 

This is advantageous for discontinuous, multi-modal, and non-convex solutions spaces. Most GAs 

do not require the preferences to be prioritized, scaled, or weighted which is why GAs are such a 

popular choice. The following table shows the advantages and disadvantages to some commonly 

used GAs: 

Table 1 GA comparisons 

Algorithm Fitness 

assignment 

Diversity 

mechanism 

Advantages Disadvantages 

VEGA [6] Each 

subpopulation is 

evaluated with 

respect to a 

different objective 

No First MOGA 

Straightforward 

implementation 

Tend coverage to 

the extreme of 

each objective 

MOGA 

[5] 

Pareto ranking Fitness sharing 

by niching 

Simple extension of 

single objective GA 

 Usually slow 

convergence 

WBGA 

[[8]] 

Weighted average 

of normalized 

objectives 

Niching 

Predefined 

weights 

Simple extenuation 

of single objective 

GA 

Difficulties in 

nonconvex 

objective function 

space 

NPGA 

[14] 

No fitness 

assignment, 

tournament 

selection 

Niche count as 

tiebreaker in 

tournament 

section 

Very simple selection 

process with 

tournament selection 

Problems related 

to niche size 

parameter. 

Extra parameter 

for tournament 

selection 

RWGA 

[36] 

Weighted average 

of normalized 

objectives 

Randomly 

assigned 

weights 

Efficient and easy 

implementation 

Difficult in 

nonconvex 

function space 

 

PESA 

[[40] 

No fitness 

assignment 

No fitness 

assignment 

Easy to implement  

Computationally 

efficient 

Performance 

depends on cell 

sizes 

Prior information 

needed about 

objective space 

PAES 

[10] 

Pareto dominance 

is used to replace 

a parent if 

Pareto 

dominance is 

used to replace 

Random mutation hill 

climbing strategy 

Easy to implement 

Not a population-

based approach 
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offspring 

dominates 

a parent if 

offspring 

dominates 

Performance 

depends on cell 

sizes 

 

NSGA 

[[42] 

Ranking based on 

non-domination 

sorting 

Fitness sharing 

by niching 

Fast Convergence Problems related 

to niche size 

parameters 

SPEA [3] Raking based on 

the external 

archive of non-

dominated 

solutions 

Clustering to 

truncate 

external 

population 

Well tested 

No parameter for 

clustering 

Complex 

clustering 

algorithm 

SPEA-2 

[23] 

Strength of 

dominators 

Density based 

on the k-th 

nearest 

neighbor 

Improved SPEA 

Make sure extreme 

points are preserved 

Computationally 

expensive fitness 

and density 

calculations 

RDGA 

[[37] 

The problem 

reduced to bi-

objective problem 

with solution rank 

and density as 

objectives 

Forbidden 

region cell-

based density 

Dynamic cell update 

Robust with 

respected to the 

number of objectives 

More difficult to 

implement than 

others 

DMOEA 

[19] 

Cell-based 

ranking 

Adaptive cell-

based density 

Includes efficient 

techniques to update 

cell densities 

Adaptive approaches 

to set GA parameters 

More difficult to 

implement than 

others 

Note: The information in the table is a summary from Konak, Abdullah & Coit, David 

&Smith, Alice. (2006). Multi-objective Optimization using Genetic Algorithms: A Tutorial. 

Reliability Engineering & System Safety. 91. 992-1007. 10.1016/j.ress.2005.11.018. 

 

Another category of algorithms is the greedy algorithm. In a greedy algorithm a decision 

is made at each step for the optimal solution. Once the algorithm moves on to the next step the 

previous options are no longer considered. Therefore, greedy algorithms do not always find the 

optimal solutions because they fail to consider the whole problem when making decisions and 

instead focus only on the information of the current step.  For example, considered the tree 

below: 
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Figure 4 Decision Tree 

 

A greedy algorithm would choose the right path (7) a then the right path (10) again for a 

total of 25. The actual optimal solution would be taking the left path (5) and then the left path 

(24) again for a total of 37. The algorithm discussed in this thesis finds all conflicts with the 

current request. Using the example of the tree above, this means that the algorithm would look at 

all options in each row of the tree. The solution is then calculated based on the cost function 

using the optimization algorithm. Furthermore, the methods of optimization discussed above are 

designed to find an optimal solution for a single mission type with limited constraints and the 

constellation sizes considered for most of the publications are smaller than the forecasted 

constellation sizes to be launched in the next decade. 

Kim and Weck claim the weighted optimization is the, “most widely used method for multi-

objective optimization” [24]. It is often used in structural optimization such as a four-bar space 

truss by Koski and Silvennoien [27] and for maximizing critical buckling sheer stress and 

minimizing deflection by Kassaiman et all. [22]. Proos et all [34] used weighted sums 

optimization in two-dimensional plane stress too minimize compliance and maximizing the first 

mode of the natural frequency. While weighted sums optimization is used extensively it does 

have two faults. First is that weighted sums optimization does not always capture the Paetro 
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optimal points for  the points that lie on non-convex portions of the Pareto optimal curve, as 

stated by in [2], [7], [18], [26], [38] and [39]. The second fault is that with a consistent change of 

weights does not provide an even distribution of points in the Pareto optimal set. The main 

concern with weighted sums optimization is that the method does not provide a complete Pareto 

optimal set but does provide a single solution or a priori articulation of preferences [29]. 

 

Despite these faults weighted sums Marler and Arora states that it is still extensively used to 

provide multiple solutions when the weights are consistently varied and also to provide a single 

solution where the preferences are reflected by the selection of weights[30]. Marler and Arora 

have identified two broad classes of approaches taken when weights are assigned to the objective 

functions [30]. The classes were identified using surveys [13], [17], [19], [40]. The first approach 

is the rating method. The rating method has the decision maker assign weight values that 

represent the relative importance of the objective function. The second method is the 

categorization method which groups objective functions into categories of importance from low 

to high. The first method will be used in the algorithm studied in Chapter 3. 
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Chapter 3:  Mission Scheduling and Optimization Algorithm 

 

The Mission Scheduling and Optimization Algorithm was designed to produce the 

optimal schedule for constellations that utilize many satellites. The optimization algorithm is 

used to compute the optimal schedule for a variety of missions, including Earth observation, 

telecommunication, and disaster aid, by using the chosen design variables in a weighted-sums 

optimization to test the effectiveness of blending the design variables. The  

algorithm uses a “brute-force” method (also referred to as “generate and test approach” where a 

series of potential solutions are generated then systemically evaluated to check if each candidate 

solution meets the criteria; once they are ranked based on pre-determined criteria, the optimum 

solution is selected based on the ranking) for each time window within the schedule. To be 

customizable the algorithm asks for inputs that include the satellite’s Two-Line Element (TLE) 

data, maximum storage, maximum battery power, and power drains. TLE data for satellites 

describes the satellite’s orbit and identification. The algorithm has two modes: pre-scheduling 

and on-demand scheduling. Pre-scheduling is used when the algorithm produces an optimized 

schedule that assumes all targets (defined as ground resources that are not ground stations such 

as customer terminals and areas of interest for EO missions) have data to transfer at every access 

time. This mode of operation is more useful to Earth observation and science missions. The 

second mode operates in real time where customers make requests to transfer data and the 

schedule is re-calculated for every request. The algorithm is designed to operate with a delay 

tolerant network (DTN) and transfers are based on a store-and-forward data link service. Once 

the data are uplinked, they are stored onboard the satellite until they can be downlinked to 

ground stations based on the schedule created by the algorithm. All algorithms have been 

developed in MATLAB™ and consist of four main components: input, orbit propagation, 
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schedule manager, and cost calculation. The output of the scheduling algorithm is a matrix that 

represents the schedule. This matrix format may be easily translated to satellite commands. 

3.1 Input  

The first step of the algorithm is to assign input variables. The algorithm was designed to 

accommodate various mission and constellations sizes. The algorithm is cable of handling a 

changing satellite constellation and ground network. Satellites, ground stations and targets may 

be added or removed from the schedule quickly and easily. To accomplish this, the algorithm 

requires an input file which contains the variable data. The input to the file is a text file, with the 

following information More information can be found in Appendix A. 

Table 2 Input Parameters 

 

The number assigned to each satellite is based on the order in which the TLE data files 

are listed in the input file. The same numbering system is also applied to the ground stations and 

targets. Ground stations are the ground resources that can either store or relay the data to and 

from the satellites. Three types of targets are considered. The first is a (1) user terminal where its 

latitude, longitude and elevation would be of the user terminal’s location. The second is an (2) 

Earth observation target whose coordinates indicate the desired area of observation. Instead of a 

Input Description 

Ground Stations Latitude, longitude, and elevation 

Target Locations Latitude, longitude, and elevation 

TLE TLE data file location 

Start and End Date and Time Start date and End date of the schedule including 

time. 

Satellite Constraints Storage capacity in GB 

Satellite Power Drains Power consumption during data transfers. 

Decision variable weights Weights are from 0 to 1 and their sum must be equal 

to 1. There are 4 design variables: Transfer time, 

age of data, spatial coverage, and temporal 

coverage. 
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data transfer from the target location the satellite would complete a desired mission task using 

the onboard scientific payload for that mission. The third is (3) scientific ground instruments and 

therefore the coordinates indicate the location of the instrument. This is also a data transfer from 

the target location. 

 

3.2 Orbit Propagation 

The next step in the operation of the scheduling algorithm is to integrate the input file 

data with an SPG4 orbit propagator to calculate the satellite orbits and access times. The access 

times consists of two categories: ground access and target access. The target access times are 

treated as requests denoted as R1, R2 R3, … Rn) where n is the number of target access times 

across all satellites. The requests are stored together in chronological order. The information in 

each request is the start time, target ID number, and satellite ID number. All ground access times 

are stored together also in chronological order. The information in each ground access time is the 

start time and ground station ID number. 

3.3 Schedule Manager 

The schedule manager is the algorithm to store and update the schedule and process 

requests. There are two modes for the schedule manager. Mode 1 is used to create a schedule 

before the start time and is used when the targets are known before the scheduled start time. 

Mode 2 is used for on demand scheduling and therefore is continuously updating with each new 

request.  

For Mode 1 it is assumed that all targets have data to transfer for all access times. Mode 1 

accesses the request matrix and processes the requests in order. Starting with R1, the schedule 
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manager then accesses the ground access matrix and finds all ground access times for the 

satellite involved with Rn after the end time of Rn. The schedule manager is then used to find 

and records all conflicts between Rn and the current schedule, and all ground access times for Rn 

and the current schedule. It is assumed that a target, satellite, and ground station has only one 

channel of communication and therefore cannot transmit and receive at the same time or transmit 

or receive multiple signals at a time.  Therefore, a conflict is when there is more than one request 

that uses the same resources (satellite, target, or ground) at the same time. 

For every ground access time, the schedule manager is used to create two temporary 

schedules to compare. The first schedule is the current schedule with no changes. The second 

schedule inputs the current request and a ground access time. If there are any conflicts with the 

second schedule, then the schedule manager removes the request in conflict and the requests 

corresponding ground access time and leaves the current request in the schedule.  

Both schedules are then sent to the optimization algorithm which will be discussed in 

section 3.4. The optimization algorithm is then used to calculate the optimal schedule and passes 

it back to the schedule manager. If the second schedule is chosen, then the schedule manager 

updates the request structure and current schedule. The request structure keeps track of the 

satellite ID, target ID, and ground ID for each request in the current schedule as well as the start 

and end times for the target and ground access durations. This process is repeated for every 

request.  

While the algorithm is currently set up for data transfer missions it is also possible to use 

it for Earth observation missions. The scheduling process remains the same but instead of using 

satellite commands to transfer data during target access times (request times), the commands are 

to operate the scientific payload for the Earth observation mission (camera, spectrometer, etc.).  
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Mode 2 works like Mode 1 except that instead of a list of requests passed to the schedule 

manager, there is only one request is passed in real time. These requests are submitted by the 

users. The target locations are therefore the users’ terminals. The schedule is saved in the 

schedule manager after every request. The requests are handled in 24-hour periods. If a request is 

made but cannot be completed in the current 24-hour schedule it is saved and passed back to the 

schedule manager for the next 24-hour schedule. Mode 2 asks the operator the following 4 

questions: 

1. Target number: This question ascertains the ID of the ground target which is the user’s 

terminal. 

2. Start time: This question ascertains the time that the request is made. The user inputs when 

they want the transfer to begin the following day. The algorithm then finds the nearest 

communication times available to meet the request 

3. Size of the file: This question allows the algorithm to schedule multiple communication 

passes if the file is not transferred completely on the first pass. 

4. Urgency of the request: This question allows the algorithm to schedule using a priority 

protocol if desired. An urgency of 1 takes top priority and 3 the lowest priority. 

3.4 Optimization and Constraints  

Before the temporary schedules are passed to the cost function, the schedules undergo a 

constraint-check. The constraints considered are power and storage limits. The algorithm 

assumes that the satellite recharges the battery using solar panels.  

The constraints code is designed to take in the uplink and downlink schedule for a group 

of satellites, targets, and ground stations to make sure the satellites have the required power and 

storage to complete the scheduled tasks. This is accomplished by first taking the input schedule 
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and breaking it into its components: uplink, downlink, and standby. Each component has a power 

requirement and storage requirement per minute of operation, which includes the solar panels 

that passively recharge the battery. The power and storage requirements are tracked per minute 

to integrate smoothly with the scheduling code. The power and storage rates for each operation 

can be changed and swapped for different modes or different satellites as they are imported in by 

the software. Once all the tasks are known they are split into individual rows for each task 

showing when it is in operation and when it is not. These are then summed together over the 

schedule period to get the overall change in storage and power. The constraints considered are as 

follows:  

• Payload Power Consumption 

•  Payload Storage Consumption 

•  Uplink Power Consumption 

•  Uplink Storage Consumption 

• Downlink Power Consumption 

• Downlink Storage Consumption 

• Data Processing Power Consumption 

• Data Processing Storage Consumption 

• Hibernation Power Consumption 

• Hibernation Storage Consumption 

• Power Regenerated per day. 

The software requires the initial condition of the battery and storage as it uses the change 

in power and storage to find the power and storage across the entire schedule. The software 

creates graphs of the power and storage drain as well as the overall power and storage as shown 
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in Figure 5-7 below. If the power or storage ever drops below a minimum value that is selected 

by the user, the schedule is declared invalid and outputs when and why the schedule failed. The 

following graphs illustrate an example of the constraints. 

 

Figure 5 Data Drain Rate vs Time for a test case. 

In Figure 5, the data  drain rate starts with a 20 Mbpm (megabyte per minute) downlink 

and 0 Mbpm uplink. The data  drain rate remains that way until t = 20 minutes where the data 

drain rate changes to 0 Mbpm downlink and 5 Mbpm uplink . At t = 50 minutes the data drain 

rate for uplink changes to 20 Mbpm while downlink drain rate stays at 0 Mbpm. The data drain 

rate for both uplink and downlink stay at 20 Mbpm and 0 Mbpm until t=90 minutes where the 

uplink data drain rate changes to 5 Mbpm. The total storage drain rate is the same as the uplink 

or downlink drain taking place at any time across the 90-minute window. This is because it is 

assumed that the satellite cannot transmit and receive at the same time. 
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Figure 6 Data Storage vs Time for a test case. 

In Figure 6, the constraints shown are 0 data stored on board and 3500 MB stored on 

board. At t = 0 minutes the satellite has 3000 MB stored on board; it gains data stored until   the 

maximum of 3500 is reached. It  then declines for the rest of the test till it reaches approximately 

2300 MB. This means that between minute 0 and approximately minute 22 there is at least one 

uplink of data to the satellite. There are three distinct slopes that represent the downlink of data 

which represents at least 3 downlinks of data to the ground. 
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Figure 7 Power Consumption vs Time for a test case. 

In Figure 7 the red line is the power regeneration in J/min, the black line and circles 

represents the total power consumption in J/min. The green line is the power drained from 

downlinking and the blue is the power drain from up linking. There is a constant power 

regeneration of 7 J/min as shown by the red line. From minute 0 to minute 20 the satellite is 

downlinking data and using 10 J/min of power as seen by the green line. The blue line 

representing power used during uplink is at 0. The total power consumption is then 10 J/min – 

7J/min which is 3 J/min as shown the black line with the circles. From minute 20 to minute 50 

the power used during downlink goes to zero and the power used during uplink stays at 0. The 

total power consumption is -2 J/min which is the power regenerate minus the power consumption 

for when the satellite is idle. This means that the satellite is gain power at 2 J/min from minute 

20 to minute 50. From minute 50 to minute 90 the satellite is regenerating power at 7 J/min, and 

using 10 J/min to uplink data, this leads to a total use of 3 J/min. 

 

Figure 8 Battery Storage vs Time for a test case.  
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In Figure 8, the battery storage is depicted. Figure 8 shows that the test starts at 50 J and 

the decreases to -10 J at t = 20 minutes. This would mean that the test failed since you cannot 

have negative battery storage. 

The algorithm is designed to be adaptable to different mission objectives such as data 

transfer, Earth observation or disaster relief aid. It is also designed to be flexible and allow for a 

change in ground or space resources and mission objectives. 

The weighted sums method was chosen for optimization algorithm because of its 

flexibility. Different types of mission require different weighting of different decision variables. 

For example, a disaster relief mission is to minimize the time between uplinks and downlinks 

and an Earth observation mission requires images taken throughout the day. With the weighted 

sums method, it is possible for the user to set the weights on the preferences depending on the 

desired outcomes. 

The objective function of the weighted sums method can be expressed as, 

 

 

𝑈(𝑥) =  ∑ 𝑤𝑖𝐹𝑖(𝑥)

𝑘

𝑖=1

 

Eq. 2 

 

Where 𝑤𝑖 is the weight assigned to the design variable 𝐹𝑖(𝑥)   

𝑘 is the number of objective functions or design variables. 

𝑓𝑖(𝑥) is the objective function.  

The weight sums method can be expressed as 

 

Maximize 𝑈 =  ∑ 𝑤𝑖𝐹𝑖(𝑥)𝑘
𝑖=1   Eq. 3 
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And is subject to feasible constraints. [31] 

Four design variables were chosen as schedule characteristics to optimize based on the mission’s 

objectives. The design variables are as follows: 

Transfer time –total transfer time in minutes across all satellites that data is uplinked from 

target to satellite and downlinked from satellite to ground. If the mission was an earth 

observation mission instead of data transfer mission, then the transfer time would also include to 

length of time a satellite has over a target. This design variable is used to increase or express the 

importance of the total data transferred during the schedule. 

Age of data –number of minutes between the end of the uplink and the beginning of the 

downlink. It is measured separately for each request and then averaged across all requests. This 

variable is used to increase the importance of scheduling the data so that the newest information 

is transferred. 

Spatial coverage – This is the variable that designs the schedule so that all targets are 

visited a uniform number of times. This variable is more suited to Earth observation missions 

that include a mission objective that involves multiple Earth targets. 

Temporal coverage – this is the variable that designs the schedule so that a target is 

visited uniformly across the duration of the schedule. This is again a variable more suited to 

Earth observation mission where information about a target is needed at different time stamps of 

the schedule. 

These design variables were chosen because they best represent the objectives of Earth 

Observation and Science Missions, telecommunication missions, and disaster aid missions. In 

Earth Observation missions the spatial and temporal coverage are important to the mission’s 

success. A target may need to be observed at the same time every day to observe long term 
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changes or at varying periods during the same day to observe short term changes. For 

meteorology missions the spatial and temporal coverage is again important to the mission’s 

success as well as minimized age of data so that the user is using the most current data available. 

For telecommunication missions the amount of data should be maximized while the age of data 

remains within a chosen time constraint. Disaster aid missions will want the newest data 

available and an even spatial coverage across the target area.  

The cost function is defined for a weighted sum optimization as shown below: 

∑ 𝑤𝑖𝐶𝑖

𝑘

𝑖=1

 

Eq. 4 

Where 𝑘is the number of decision variables, 𝑤𝑖  is the weight assigned to that decision 

variable and Ci is the design variable scalar quantity. The design variable scalar quantities are 

calculated as follows: 

Link Access: 

𝐶1 =  ∑ ∑ min (
𝑈𝑝𝑙𝑖𝑛𝑘 𝐴𝑐𝑐𝑒𝑠𝑠

𝑀𝑎𝑥 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑈𝑝𝑙𝑖𝑛𝑘 𝐴𝑐𝑐𝑒𝑠𝑠
,

𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘 𝐴𝑐𝑐𝑒𝑠𝑠

𝑀𝑎𝑥 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘 𝐴𝑐𝑐𝑒𝑠𝑠
)

𝑚

1

𝑛

1

 
Eq. 5 

Where 𝑛 is the number of satellites and m is the number of targets. A value of 1 is the 

best option. The max possible data up and down is across all satellites and targets. 

For the design variables to be optimized successfully, the design variables must be of 

similar order of magnitude. Therefore, the sum of data uplinked and downlinked is divided by 

the max data up/down calculated for that schedule. The max data value does not solve schedule 

conflicts and there for the max data value is not possible unless there are no conflicts calculated 

during the orbit propagation. Calculating the design variable amount of data using this method 

will bring all order of magnitude values for the scalar quantity of the design variable called 

amount of data to be between 0 and 1. 
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Age of Data: 

𝐶2 = 𝑚𝑎𝑥 [1 −
[∑ ∑ (𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝑎𝑡𝑎 𝑈𝑝𝑙𝑖𝑛𝑘 𝑎𝑛𝑑 𝐷𝑎𝑡𝑎 𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘)𝑚

1
𝑛
1 ]

1440 ∗ 𝑛 ∗ 𝑚
] 

Eq. 6 

Where n is the number of satellites and m is the number of targets. The max age of data is 

chosen from the list of age of data for each transmission. The max age is then divided by the 

length of the schedule (1 day) in minutes and subtracted from 1 so that the scalar value of Age of 

data is in the same order of magnitude as the other design variables and so that 1 is the best 

possible value 

Spatial Coverage: 

𝑉𝑖𝑠𝑖𝑡𝑠 = [𝑉1, … 𝑉𝑛] 

𝑅𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 

𝐶3 = (1 − (
𝑣𝑎𝑟(𝑉𝑖𝑠𝑖𝑡𝑠)

𝑠𝑢𝑚(𝑉𝑖𝑠𝑖𝑡𝑠)−𝑣𝑎𝑟(𝑉𝑖𝑠𝑖𝑡𝑠)
))*(

𝑠𝑢𝑚(𝑉𝑖𝑠𝑖𝑡𝑠)

𝑠𝑖𝑧𝑒(𝑅𝑇)
) 

Eq. 7 

  

Where [𝑉1, … 𝑉𝑛] are the number of times each target is visited by any satellite, n is the 

number of targets and RT is the number of requests across all targets by all satellites. The Spatial 

Coverage design variable includes the variance because the goal of this design variable is to 

calculate a schedule that approaches uniform spatial coverage. The variance is divided by the 

sum of visits subtracted from the var again to bind the value between 0 and 1. It is then 

subtracted from one to get a maximum value instead of minimum value. It is multiplied by the 

second term because it is desired that the number of visits be considered as well. For example, if 

the Visits vector is [1,1,1,1] and if the second term was not included then the algorithm would 

never choose [1,1,1,2] or any variation of the vector because the variance would be larger.  
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Temporal Coverage: 

𝑇𝑖𝑚𝑒 𝑉𝑖𝑠𝑖𝑡𝑠 𝑝𝑒𝑟 𝑇𝑎𝑟𝑔𝑒𝑡𝑇 = [𝑇𝑉1, … 𝑇𝑉𝑛] 

𝑅𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 

𝐶4 = (1 − (
𝑣𝑎𝑟([𝑇𝑉1,…𝑇𝑉𝑛])

𝑠𝑢𝑚([𝑇𝑉1,…𝑇𝑉𝑛])−𝑣𝑎𝑟([𝑇𝑉1,…𝑇𝑉𝑛])
))*(

𝑠𝑢𝑚([𝑇𝑉1,…𝑇𝑉𝑛])

𝑠𝑖𝑧𝑒(𝑅𝑇)
) 

Eq. 8 

 

Where [𝑇𝑉1, … 𝑇𝑉𝑛] are the number of times TargetT is visited during that time slot n and 

n is the number of time slots (4 slots of 6 hours each therefore n is 1 to 4) and RT is the number 

of requests across all targets by all satellites. Unlike Spatial coverage which considers all 

satellites and targets, temporal coverage only considers that target that is in the request.  

The algorithm is a time-windowing optimization method. This means that for each 

request and ground pair the schedule duration is from the start time of the schedule to the end 

time of ground access time for the request, this is the time window to be optimized. The result is 

a matrix that describes, by the minute, when each satellite is in contact with targets and grounds 

based on the chosen weights for the weighted sums optimization that best suit the mission’s 

objectives. The next step is then, based on the matrix schedule, to send the corresponding 

command and time stamps to each satellite in the constellation. The command structure will 

depend on the chosen method of satellite control software. 

Implementing a weighted sum optimization method is not unique, but the use of data 

latency, spatial coverage, and temporal coverage in a weight sums optimization with data and 

energy constraints is unique. The algorithm uses the pre-defined weights, target locations, 

ground locations, and satellite constraints to create the data set that is then passed onto the cost 

function. The cost function evaluates every scheduling option for every time window. The 
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different options are constructed from the different schedules resulting from conflict resolution. 

The cost function is as follows: 

𝑈𝑖 =  𝑤1𝐶1 + 𝑤2𝐶2 + 𝑤3𝐶3 + 𝑤4𝐶4 Eq. 9 

Where 𝑤1 to 𝑤4 are the predefined weights, 𝐶1 to 𝐶4 are the values calculated for the 

designed variables as described before and 𝑈𝑖 is a solution in the solution space. The solutions 

space is all scheduling options for the current time window that pass the constraints check. The 

time window is the time duration from the start of the schedule to the end time stamp of the 

current request being analyzed. The cost function solution space is the evaluated to find the 

maximum value as shown below: 

𝐔 = 𝑀𝑎𝑥(𝑈𝑖) Eq. 10 

Where 𝐔 is the max value for the whole schedule from start time to the end time stamp of 

the current request. The current accepted schedules 𝐔 value is then compared to the newly 

calculated 𝐔 for the current request. If the current value is larger, then the schedule remains the 

same and the request is added to the end of the redo que. If the newly calculated value is larger, 

then the schedule is changed to the schedule that is associated with the that 𝐔.  

A flow chart for the algorithm is shown below: 
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Figure 9 Flow chart for algorithm 



 

39 

A flow chart representing the cost function is shown below: 

 

Figure 10 Flow chart for cost function 
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Chapter 4 Algorithm Validation 

The algorithm has been designed for large constellation and non-real-time data collection that is 

then sent to limited ground resources. The algorithm can manage constellations that have either 

global coverage or specific target region coverage, with low data latency. To verify that the 

algorithm is successful, the basic functionality is tested with five simulated test cases. The basic 

functionality show that the algorithm produces different results when the weights are 

significantly changed. The second set of tests is to examine more complex scenarios that are 

based on real-life missions.  

There are 4 design cases as follows:   

• Test Case 1 – Algorithm verification with five scenarios 

• Test Case 2 – Large constellation that maximizes link access 

• Test Case 3 – EO mission with uniform coverage 

• Test Case 4 – Disaster Aid rapid data transfer that optimizes age of data. 

• Test Case 5 - Mode 2 algorithm verification 

Test case 1 is to verify the algorithm’s functionality. It is a simple case of 5 target and 5 ground 

stations with a constellation of 10 satellites. In this test case, there are 5 scenarios that aim to 

demonstrate that the algorithm produces different schedules when varying weights are assigned 

to the design values. In the first scenario the weight is distributed evenly between the design 

values. The following four scenarios are where the weight is assigned to one of the design values 

and the rest have a weight of zero. Test case 2 is to validate the algorithm used for a larger 

constellation that has a data transfer mission. There are 100 satellites in this constellation. The 

goal of this test case is to show that a significant amount of the data that is represented as 

requests are transferred from target to ground. Test case 3 is to validate the algorithm in EO 
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missions. The goal of this test case is to demonstrate that the proposed algorithm can produce a 

schedule with as near to equal spatial coverage and temporal coverage and large data transfer 

amounts for each target. Test case 4 is to validate the algorithm for disaster relief mission. The 

goal of this test case is to show that the algorithm can create a schedule where data is transferred 

from target to ground quickly and that the amount of data that is able to be transferred is 

significant enough to encompass all the data needed by relief workers to be kept up to date on the 

situation. Test Case 5 is to test Mode 2 which takes in requests in real time and schedules them 

for the next day. This test is for future work since, at present, the algorithm is not able to be used 

in real-time. 

4.1 Test Case # 1 

Test case # 1 is to demonstrate a data transfer mission and to demonstrate the effect each 

design variable has on the schedule and other design variables. It is assumed all targets always 

have data to transfer. The first test case involves the first 10 satellites of the Iridium next satellite 

constellation, 5 ground stations, and 5 targets with the following coordinates: 

Table 3 Test Case 1 Ground Resource Locations 

ID # Ground (Lat, Lon, Elevation) Target (Lat, Lon, Elevation) 

1 64.86, -147.85, 0 43.7735, -79.5019, 200 

2 26.73, -82.03, 3 49.2827, -123.1207, 100 

3 67.88, 21.07, 341 53.5444, -113.4909, 645 

4 29.00, -81.00, 0 50.4452, -104.6189, 577 

5 42, 13.55, 652 49.8951, -97.1384, 239 

 

The above ground stations are modeled after the stations located around the world and are 

currently in use. The targets are the locations of capital cities across Canada. The Iridium 

constellation was chosen because it is a currently operating telecommunication constellation.  

The orbits and ground resources are shown below. 
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Figure 11 Test Case 1 Orbits 

There are 3 satellites in the orbit furthers left and in the middle. The orbit farthest right 

has 4 satellites. 

 

Figure 12 2D map of ground resources 

The following table illustrates the remaining input variables: 
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Table 4  Test Case 1 Input variables and constraints 

There are five scenarios used for this test case. The weights for the weighted sums 

optimization algorithm for each scenario are as follows: 

Table 5 Test Case 1 Scenario Weighting 

Scenario # C1Transfer Time 

weight 

C2 Age of Data 

weight 

C3 Spatial Coverage 

weight 

C4 Temporal 

Coverage 

weight 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 0.25 0.25 0.25 0.25 

 

The different scenarios were chosen to illustrate the impact the weight assigned to the design 

variables C1 to C4 can have on the final schedule. To validate the use of the weighted sums 

optimization, each scenario is tested to optimize the design variable assigned the weight of 1; 

thus, the resulting schedules should reflect this. If the schedules are similar, then it can be 

Start and End Date and Time May 1, 2019 to May 2, 2019 

Satellite Constraints Initial Storage Capacity – 1000 GB 

Initial Battery Capacity – 100% 

Satellite Power and Storage 

Drains 

Payload Power Consumption – 1% 

Payload Storage Consumption – no payload 

Uplink Power Consumption – 1% 

Uplink Storage Consumption – 1 GB/min 

Downlink Power Consumption – 1% 

Downlink Storage Consumption – 1 GB/min 

Data Processing Power Consumption – 1% 

Data Processing Storage Consumption -1 GB/min 

Hibernation Power Consumption – 0% 

Hibernation Storage Consumption – 0 GB 

Power Regenerated a day – 100% 
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assumed that a weighted sums optimization is superfluous and that the chosen design variables 

have little effect on the final schedule. 

4.2 Test Case # 2 

For test case #2, the constellation consists of 100 satellites, 10 grounds and 8 targets 

whose locations are shown in table 3 below: 

Table 6 Test Case 3 Ground resource locations 

ID # Ground (Lat, Lon, Elevation) Target (Lat, Lon, Elevation) 

1 64.86, -147.85, 0 43.7735, -79.5019, 200 

2 26.73, -82.03, 3 49.2827, -123.1207, 100 

3 67.88, 21.07, 341 53.5444, -113.4909, 645 

4 29.00, -81.00, 0 50.4452, -104.6189, 577 

5 42, 13.55, 652 49.8951, -97.1384, 239 

6 -25.64, 28.08, 1288 46.8139 -71.2080 98 

7 68.80 -133.5 51 45.965 -66.6463 17 

8 -77.81 166.69 183 45.4215 -75.6972 70 

9 64.80 -147.45 145  

10 -63.32 -57.9 26  

 

This test case represents a telecommunication constellation mission. A 3D and 2D 

representation of the test case is shown below: 
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Figure 13 3D representation of space and ground resources for Test Case 2 

 

Figure 14 2D representation of ground resources for Test Case 2 
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 Test case #2 simulates a real-world data transfer mission with limited targets to make 

calculation and verification efficient. It differs from Test Case #1 with more satellites involved in 

the test case. There is a limited number of satellites used in Test Case #1 so that the functionality 

is easier to perceive. In Test Case #2, it is assumed the mission is to download as much data as 

possible from the targets. While the number of satellites in the constellation has been vastly 

increased, the number of ground stations are not. Ground resources are often more limited 

compared to the space resources when dealing with large constellations. This test case could be 

for a data transferring service such as the service provided by Kepler Communications. For this 

Test Case maximum, the weight is placed on the amount of data transfer time to optimize the 

amount of data transferred. It is assumed that all satellites upload and download at the same rate. 

This is an extreme case, as a telecommunication constellation that has multiple users may also be 

interested in spatial coverage to ensure that all users receive similar services. There may also be 

a time constraint for the data to be transferred that would require some weight to be assigned to 

the age of the data. The extreme case was chosen to illustrate the differences between schedules 

produced for the different mission objectives. This test case illustrates the results for only one 

constellation. Changing the orbit of the satellites in the constellation could vastly change the 

results. This test case also has a limited number of targets. Further tests may include larger target 

numbers. 

. 

4.3 Test Case # 3 

For test case #3, an Earth Observation (EO) mission is considered. This test case 

simulates a possible EO mission where it is desired that the spatial and temporal coverage are as 

uniform as possible to compare and study changing phenomenon such as air pollution over time. 
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For this mission it is assumed that the spatial and temporal coverage should be as uniform as 

possible to track the changes throughout the day and across all targets. The temporal coverage 

illustrates the short-term changes while the spatial coverage provides data for long-term changes. 

It is also assumed that the maximum amount of data while considering the desired spatial and 

temporal coverage is a key to mission success. Therefore, temporal coverage, spatial coverage 

and transfer time will each receive an equal weight for the weighted-sums optimization. For 

easier comparison, the power and storage drains are the same as in Test Case #1. The targets and 

grounds are as follows: 

Table 7 Test Case 3 Ground resource locations 

ID # Ground (Lat, Lon, Elevation) Target (Lat, Lon, Elevation) 

1 64.86, -147.85, 0 43.7735, -79.5019, 200 

2 26.73, -82.03, 3 49.2827, -123.1207, 100 

3 67.88, 21.07, 341 53.5444, -113.4909, 645 

4 29.00, -81.00, 0 50.4452, -104.6189, 577 

5 42, 13.55, 652 49.8951, -97.1384, 239 

6 -25.64, 28.08, 1288 46.8139 -71.2080 98 

7 68.80 -133.5 51 45.965 -66.6463 17 

8 -77.81 166.69 183 45.4215 -75.6972 70 

9 64.80 -147.45 145  

10 -63.32 -57.9 26  

 

The satellites used for this test case are five of the BEESAT CubeSats currently in orbit. 

This satellite family was chosen since it is a CubeSat constellation already in orbit and would 

better reflect the test case mission parameters. This test case uses targets in Canada only. The 

ground locations are either ground stations in current use of stations that are in development. 
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Figure 15 3D representation of Test Case 3 and 4 satellite constellation and ground resources 

 

Figure 16 2D representation of ground resources for Test Case3 and 4 

. 
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4.4 Test case # 4 

This test case is designed with disaster aid relief mission in mind. It is assumed that there 

is a natural disaster taking place where the targets and located and that the Earth observation 

satellites from test case #3 have been re-purposed to aid in monitoring the natural disaster. This 

test case simulates the possible re-tasking of space and ground resources to aid in natural disaster 

relief and monitoring as proposed by ESA. In Test Case #4, age of data and amount of data are 

the most critical variables to optimize. To best aid disaster relief workers, the latest data is 

needed and therefore the age of data is minimized. The more data downlinked, the better 

prepared relief agencies can be and therefore the amount of data is also maximized. The weight 

for age of data in the test case is 75% because acquiring the newest data is assumed to be the 

most important objective, and 25% is assigned for amount of data. The current algorithm does 

not yet operate in real-time, therefore this test case is for future reference. 

4.5 Test Case # 5 

Test Case #5 is testing in Mode 2 while the previous 4 test cases have been in Mode 1. In 

Mode 2 the requests are submitted by a user and scheduled for the next day. For this case it is 

assumed that there are multiple users making requests to use a commercial company’s space and 

ground resources to transfer data. The users provide three key information required for Mode 2. 

The ground locations, target locations and initial inputs are the same as in Test Case # 1. There 

were two design variables chosen to the variables: amount of data (transfer time) with a weight 

of 75%, and urgency with a weight of 25%. 50 requests were formulated by using a random 

function to answer the 4 questions and the resulting requests are shown in Appendix B. In this 

test case, it is assumed that all requests will use the same weight. 
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Chapter 5 Results          

The results and analysis of all 5 Test Cases are presented below. For each Test Case the 

key design variables are presented graphically at each target location. For certain Test Cases 

tabular data is also provided to support the analysis. A common depiction for each graph has 

been used as follows: 

  - Transfer time is represented as a solid color bar , and the transfer time scale is in 

total minutes per target per 24hr. A large amount of transfer time is desirable. 

 - Age of data is represented as horizontal stripes patterned bar and the age of data 

scale is in average minutes between uplink and downlink per target per 24 hr. A low age of data 

is desirable. 

 - Spatial coverage is represented as a checkered patterned bar, and the spatial 

coverage scale is in total visits per target per 24hr. A large number visits and/or uniformity in 

visits is desirable. 

 - Temporal coverage is represented as a diagonal striped patterned bar, and the 

temporal coverage scale is in total visits per time slot per target per 24 hr. the 24hr day is broken 

up into 4 time slots. Many visits in each time slot for each target and/or uniformity across time 

slots for each target is desirable. 

5.1 Test Case 1 

Test Case 1 is a data transfer mission where the weights assigned to each design variable 

are varied to test the functionality of blending using weighted sums. There are 10 satellites, 5 
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grounds and 5 targets. There are 5 scenarios that have been analyzed in detail to test functionality 

of the design variables. A further 25 were then generated to produce a surface plot of the 

variation of design variables as a function of the assigned weights. 

The table below shows the details for the 5 scenarios analyzed in detail: 

 

Table 7 Scenario Weights 

Scenario # C1Transfer 

Time 

weight 

C2 Age of Data 

weight 

C3 Spatial Coverage 

weight 

C4Temporal 

Coverage 

weight 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 0.25 0.25 0.25 0.25 

 

The table below shows the weights assigned to the design variables for the additional 25 

scenarios:  

Table 8 Additional Scenario weights 

Scenario W1 W2 W3 W4 

1 0.295096 0.328081 0.045995 0.330828 

2 0.406589 0.062716 0.179066 0.351629 

3 0.313875 0.316295 0.051666 0.318164 

4 0.401377 0.203537 0.335588 0.059498 

5 0.295096 0.328081 0.045995 0.330828 

6 0.406589 0.062716 0.179066 0.351629 

7 0.313875 0.316295 0.051666 0.318164 

8 0.401377 0.203537 0.335588 0.059498 

9 0.136528 0.296432 0.256444 0.310596 

10 0.264991 0.014431 0.343141 0.377436 

11 0.263911 0.29463 0.28895 0.152509 

12 0.418958 0.109416 0.451279 0.020346 

13 0.222663 0.037125 0.0781 0.662112 

14 0.348007 0.15882 0.475921 0.017252 

15 0.184267 0.16025 0.321508 0.333975 
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16 0.105665 0.276932 0.251952 0.365451 

17 0.293153 0.311882 0.11407 0.280894 

18 0.456492 0.113313 0.082921 0.347275 

19 0.295096 0.328081 0.045995 0.330828 

20 0.406589 0.062716 0.179066 0.351629 

21 0.313875 0.316295 0.051666 0.318164 

22 0.401377 0.203537 0.335588 0.059498 

23 0.136528 0.296432 0.256444 0.310596 

24 0.264991 0.014431 0.343141 0.377436 

25 0.263911 0.29463 0.28895 0.152509 

 

Each design variable is now studied across all scenarios starting with transfer time.  

5.1.1 Transfer Time 

The transfer time performance for Test Case 1 is illustrated in the diagram and table 

below. Figure 17 illustrates the transfer time for each scenario and target.  

 

Table 9 Scenario Results 

Scenario  C1 Transfer 

Time (min)* 

C2 Age of 

Data 

(min)** 

C3 Spatial 

(visits)*** 

C4 Temporal 

(visits)**** 

1 659 325 [17,24,25,15,10] [17,25,5,5] 

2 118 1 [1,2,6,3,3] [7,0,1,2] 

3 645 57 [21,22,22,22,21] [20,30,9,5] 

4 451 44 [13,22,10,12,10] [10,20,10,8] 

5 599 40   

*Total minutes of data transfer across all satellites from targets to ground stations. 

** Average (over 24 hours) time between uplink and downlink cross all satellites and 

targets. 

*** Total scheduled visits across all satellites and targets over 24hr. 

**** Total scheduled visits across all satellites and targets in each 6-hour window of the 

24-hr. day.  
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Figure 17 Transfer Time for all scenarios across all targets 

For Test Case 1 the transfer time for each target is shown in figure 17 for each of the 5 

scenarios. The blue bar represents scenario 1 which optimizes for transfer time and we can see 

that for target 1,2, and 3 it has the largest value. For target 4 and 5 scenario 1 has a lower bar 

than scenario 3,4 and 5. However, when totaled across all targets the blue bars for scenario 1 

have the largest transfer time amount. It is 9.1% larger than scenario 5 which has the second 

largest amount of transfer time across all targets.  

A more uniform transfer time across all targets can be seen in the grey bars, which 

represent scenario 3. This is expected since spatial coverage was optimized in scenario 3. The 

orange bars represent scenario 2 where age of data was optimized and therefore the orange bars 

are always the smallest since if the time between uplink and downlink is too large then the 

request would not be scheduled. The yellow bars, which represent scenario 4 where temporal 

coverage is optimized, show a more uniform transfer time across all targets compared to scenario 
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1, and 2 but not compared to scenario 3 or 5. It can be inferred that the satellite configuration is 

not as uniform in temporal coverage as it is in spatial coverage. The green bars represent 

scenario 5 where all design variables were given equal weight for the weighted sums 

optimization.  

The following plot shows how the cost varies for scenario 1, where transfer time was 

optimized, as events are scheduled over the 24hr window. 

 

Figure 18 Cost graph for Scenario 1. Cost 1 is the cost of the approved schedule and Cost 2 cost 

of the next considered schedule. It can be seen that if the Cost 2 value is lower than the current 

Cost 1 value, the approved schedule doesn’t change. 

Figure 18 shows how the brute force algorithm arrives at the optimal schedule for the 

scenario when transfer time is optimized. The blue line represents the cost of the approved 

schedule, the orange x’s is the cost of the schedule in question with the current request added. 

The x-axis shows each of 361 events that were proposed to be scheduled. The y-axis shows the 

transfer time cost function for the scheduled events. When the blue line remains flat over a step-

in request ID this means that scheduling the given request did not increase the transfer time or 
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scheduling the request would decrease the transfer time and therefor would not be scheduled.  

The figure shows the overall trend increasing and then plateauing out this means that at a certain 

point no additional requests improve transfer time. This is because beyond a certain point in the 

day there is no longer access points for downlinking the data to the ground and therefore uplinks 

are not scheduled either. 

5.1.2 Age of Data 

The age of data performances for test case 1 are illustrated in the diagrams below. Figure 

19 illustrates the age of data for each scenario and target.  

 

Figure 19 Age of Data for all scenarios across all Targets 

The blue bar represents scenario 1 and has the highest age of data, as discussed 

previously. The orange bars representing scenario 2, where age of data was optimized, have the 

lowest age of data, much smaller than all the other scenarios. In fact, scenario 2 ensures all 

collected data are transmitted at their nearest downlink, resulting in ages of data of 
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approximately one minute. Scenario 3 correspondingly has an age of data almost 60 times that of 

scenario 2 and scenario 4 almost 45 times as large. Scenario 5 is around 40-times worse than 

Scenario 2, making it second-best overall. In contrast, scenario 1 is almost 10 times worse than 

scenario 2, showing the very large variation in schedule possible for age of data by adjusting the 

parameter weights.  

 

Figure 20 Cost graph for Scenario 2. Cost 1 is the value of the approved schedule and Cost 2 is 

the value for next considered 

Figure 20 shows the cost graph for scenario 2 where age of data was optimized. The blue 

line represents the cost of the approved schedule, the orange line is the cost of the schedule in 

question with the current request added. For Test Case 1 the scenario 2 cost comparison does not 

show significant improvement over the majority of the scheduling window. This is due to low 

number of requests where the time between uplink and downlink is small. They are clustered 

around morning and evening passes because the target and ground are accessible in the same 

orbit. For Test Case 1 Scenario 2 the schedule requests saturate when there is not a more robust 

choice of ground access. In a scenario with a more diverse set of targets and grounds this cost 

function is expected to have a greater variation. 
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5.1.3 Spatial Coverage 

The spatial coverage performances for test case 1 are illustrated in the diagrams below. 

Figure 21 illustrates the spatial coverage for each scenario and target.  

 

Figure 21 Spatial Coverage for all scenarios across all Targets 

The spatial coverage for all scenarios is shown in the figure above. Figure 21shows that 

the grey bars representing scenario 3 has the most uniform coverage across all targets. This is to 

be expected since scenario 3 optimized spatial coverage. It also shows that scenario 5 has the 

most uniform coverage after scenario 3. 
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Figure 22 Cost graph for Scenario 3. Cost 1 is the value for the approved schedule. Cost 2 is the 

value for the next schedule considered. 

Figure 22 shows the cost graph for scenario 3 where spatial coverage was optimized. The 

blue line represents the cost of the approved schedule, the orange line is the cost of the schedule 

in question with the current request added. This cost graph is similar to the cost graph for 

scenario 1. There is an ascending trend until it reaches a plateau where new requests are no 

longer added due to conflicts. 

5.1.4 Temporal Coverage 

The temporal coverage performances for test case 1 are illustrated in the diagrams below. 

Figure 23 illustrates the temporal coverage for each scenario and target.  
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Temporal Coverage 

 

Figure 23 Temporal Coverage for all Scenarios 

It should be noted that the plots shown in Figure 23 do not follow the same colour 

scheme as other plots in this section. Red indicates accesses between 0h and 6h, yellow from 6h-

12h, green from 12h-18h and blue from 18h-24h. Scenario 4 targeted the best uniformity in 
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temporal coverage across all targets. It can be seen that all but 2 targets are seen in each time 

window, which is the same for Scenario 3 (spatial coverage uniformity), but Scenario 3 has less 

uniform numbers of passes per time slot. All other scenarios have at least one target that is not 

seen in at least two of the daily time slots, with Scenario 2 completely bypassing target 2 and 

only collecting in one time slot from targets 1, 3 and 4. 

 

 

Figure 24 Cost Comparison for Scenario 4 Cost values 

Figure 24 shows the cost graph for scenario 4 where temporal coverage was optimized. 

Temporal coverage is calculated by target while the other 3 design variables are calculated across 

all targets. This means that a request from satellite 1 and Target A might require a conflict 

resolution with satellite 1 and target B. If the request between satellite 1 and Target A produces a 

better scheduled, then the conflict resolution would require that the request scheduled between 

satellite 1 and target B be erased so that the request between satellite 1 and target A can be 

scheduled. The next time the cost function is run on target 1 the cost function would be different 

than anticipated due to this conflict resolution. This explains the more scattered trend of the cost 
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comparison graph for scenario 4. Overall, the trend for each target is increasing with each 

request and the absolute value for cost functions for each target are similar. While target 3 had a 

higher cost value at the 52end step, target 1 only increases when target 3 loses some access as we 

see in the 55th step. Therefore, the drop in cost function value at the end for each target is due to 

the algorithm selecting the schedule that produces the highest but also closest cost function value 

for each target.  

Scenario 5 blends the cost functions of the design variables equally. Because scenario 5 

includes time optimization, it is useful to compare cost functions across targets, as discussed for 

scenario 4 above. 

 

 

Figure 25 Cost Comparison for Scenario 5 

Figure 25 shows the cost graph for scenario 5. The trend for all targets is increasing, the 

values for each target remain close, and there is no plateau at the end of the graph. It can be 

inferred that the schedule could take on more requests.  
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The results of test case 1 have shown how varying the weighting of each of design 

variable does result in a significantly different resulting schedule. The variation in transfer time 

between schedules is a minimum of blank for scenario 2 and a maximum of blank for scenario 1. 

The variation in age of data is a minimum of bank in scenario 2 and a maximum of blank in 

scenario 1. The variation in uniformity of spatial coverage has been shown to vary between 

having all targets seen approximately equal amounts to having some targets not being seen at all. 

The variation in uniformity of temporal coverage has been shown to vary between having all 

time slots seen approximately equal amounts for all targets to having multiple targets not seen in 

a given time slot. 

Having demonstrated the utility of targeting each design variable for different mission 

objectives and having looked at a simple equal blending of design variable cost functions, a 

further 25 variations of weighting of cost function were also looked at, to better understand the 

shape of cost function variation by blended weight. 

By blending the design variables with different weights, it is possible to study how the 

schedule design space varies for scenario 1. The following figures illustrates the variation as a 

surface plot. 
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Figure 26 Variation of design variables as a function of each other 

 

 

Figure 26 shows the variation of design variables as a function of each other. The 

Transfer time is on the x–axis, Age of data is on the y-axis, the variance of the spatial coverage 

(across all targets) is on the z-axis, and the colour bar represents the variance of the temporal 

coverage. As can be seen, the spatial and temporal coverage have optimal range of transfer time 

and age of data where they have the best results. Too little transfer time does not result in a 

uniform spatial or temporal coverage and too much transfer time has the same effect. Transfer 

time is correlate with age of data (a large transfer time causes a large age of data as well).  
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Figure 27 Variation of design variables along the x-axis 

In figure 27 we are viewing along the x-axis, it can be seen that there is a strong 

correlation of the variation of the vertical axis (Variance of spatial coverage) and the colour axis 

(variance of temporal data). It has been seen in earlier data that temporal and spatial coverage are 

coupled. 
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Figure 28 Variation of design variables along the z-axis 

Figure 28 is viewing along the z-axis or from above. It can be seen that as transfer time 

increase so does age of data.  

Knowing the form of this surface for a given scenario, we can select weights that will 

place the schedule anywhere on this surface. 

5.2 Test Case 2 

Test Case #2 is an example of a possible telecommunications constellation CubeSat 

mission. Simulation for this test case takes 4 to 6 hours to run the most time-consuming part of 

the algorithm is the sgp4 which is the orbit propagation section, due to the number of satellites 

being simulated. The results are summarized in Table 10: 
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Table 10 Test Case 2 Results 

Target 

ID 

Transfer Time (min) 

Age of Data 

(min) 

Spatial 

Coverage 

(visits) 

Temporal Coverage 

(visits) 

1 624 254.9623 53 [15,14,16,9] 

2 663 325.8571 56 [21,15,13,10] 

3 634 289.4615 52 [16,15,16,8] 

4 760 304.4107 56 [18,16,16,8] 

5 537 266 48 [14,11,15,9] 

6 659 246.386 57 [20,17,13,8] 

7 725 281.6515 66 [20,20,18,20] 

8 503 255.6857 35 [7,10,12,6] 

 

The total transfer time for Test Case 2 is 5105 minutes with an average age of data is 278 

minutes. There are an average of 53 visits to a target. Target 8 is the target visited the least at 35 

visits and target 7 the most at 66 visits. The last time slot in temporal coverage is the least visited 

for all targets expect target 7. Target 7 also has the most uniform temporal coverage.

 

Figure 29 Transfer Time for Test Case 2 
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If each target was to be monitored 24 hours a day, there would be 1440 minutes of 

transfer time per target for a total of 11520 minutes across all 8 targets. The scheduling algorithm 

achieves approximately 44 % of this number. This can be explained when studying the ratio of 

satellites seen by targets and satellites seen by ground stations. In a typical minute of the 

schedule a target can be seen by 4 satellites and a ground station can be seen by 8. There are 

more ground stations than targets (10 vs 8) therefore, if 100% of the ground station time were 

used the maximum target time that could be collected would be  

((4 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠) ∗ (8 𝑇𝑎𝑟𝑔𝑒𝑡𝑠))

(8 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠 ∗ 10 𝐺𝑟𝑜𝑢𝑛𝑑𝑠)
= ~ 44 % 

 

Eq. 110 

 

Therefore, the algorithm is scheduling as much transfer time as the constellation 

configuration allows. 

5.3 Test Case 3 

 

Test Case #3 is an example of an Earth Observation mission, with the results summarized 

in Table 11. 

Table 11 Test Case 4 Results 

Satellite ID # Transfer Time 

(min) 

Age of Data 

(min) Spatial Coverage 

Temporal 

Coverage 

1 59 129.4 [0,4,1,0,2,0,0,0] [3,2,1,1] 

2 62 9.1 [1,0,0,0,1,1,2,2] [2,4,1,0] 

3 62 8.4 [0,0,0,0,0,2,4,1] [3,3,1,0] 

4 62 88.7 [2,1,1,1,2,1,0,1] [3,1,3,2] 

5 55 106.6 [1,0,1,1,0,1,1,3] [0,4,3,1] 

Total/Average 300 68.5 [4,5,3,2,5,5,7,7] [11,14,9,4] 
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As seen in Table 10 above the temporal and spatial coverage has an average of 4.75 visits 

per target. The largest deviation is being 2.75 visits. Temporal coverage has less uniformity than 

spatial coverage with the largest deviation being 10. The number of visits in the first two time 

slots is 25 while there are only 13 visits in the last two time slots. If the Earth Observation 

mission needs more uniformity in temporal coverage than the weight for temporal coverage 

needs to be increased. The following figures illustrate the results. 

 

 

Figure 30 Transfer Time for Test Case 3 

Figure 30 shows the transfer time for test case 3. Whilst transfer time has previously been 

considered as the time available for uploading data from a target that can still be downlinked in a 

subsequent ground station pass within the 24h window, it can also be considered as the time a 

payload (optical imaging camera for example) has available to collect data over a target region 

and still downlink that data within the 24h window. Transfer time was given 1/3 of the weight 

along with temporal and spatial coverage. There are only 5 satellites for test case 3 so the transfer 
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time is less than the transfer times seen in test case 1 and 2.  All targets are seen with target 3 and 

target 4 having the least amount of transfer time and target 8 and 7 having the most amount of 

transfer time. While the variation in transfer time is a factor of 2-3 between targets, all targets 

have access to at least one downlink and uplink in the 24hr window.  

 

Figure 31 Age of Data for Test Case 3 

Figure 31 shows the age of data for test case 3. Age of data was not optimized in test case 

3. Figure 31 shows that targets 7 has the lowest age of data and target 2 has highest age of data. 

The average age of data 68.5 minutes. The larger age of data from target 2 is consistent with 

figure 17 for transfer time; western targets have less access to ground therefore, while target 2 

had x amount of transfer time the age of data suffered as a consequence.  



 

70 

 

Figure 32 Spatial Coverage for Test Case 3 

Figure 32 shows the spatial coverage for test Case 3. Spatial coverage was given 1/3 of 

the weight. All targets were seen and targets in the east have more visits then targets in the west. 

Target 4 has the least amount with 2 visits and target 7 and target 8 have the highest amount with 

7 visits each. While target 4 only had approximately 1/3 of the visits of eastern targets, all targets 

were seen more than once in the 24hr period.  
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Figure 33 Temporal Coverage for Test Case 3 

Figure 33 shows the temporal coverage for test case 3. Temporal coverage was given 1/3 

of the weight. Target 2 and target 8 have visits in all 4 time slots while target 3,5,1,6 and 7 have 

visits in 3 out of the 4 time slots and target 4 has visits in only 1 of the 4 time slots. This figure 

re-enforces the previous plots that showed limitations to western targets with target 4 most 

severely impacted. All other targets had access during 3 of the 4 time slots. 

Test Case 3 was an Earth Observation mission that optimized transfer time, temporal 

coverage, and spatial coverage. Each design variable was given a weight of 1/3. Age of data was 

not optimized in this Test Case since Earth observation missions do not always need the data to 

be rapidly refreshed. Whilst exceptions such as Meteorological Earth observation missions exist, 

the scenario provides relevant performance data for several types of Earth Observation mission.  
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5.4 Test Case 4 

 

Test case 4 is an example of re-tasking existing satellites for disaster aid. The results are 

listed in Table 12. 

Table 12 Test Case 4 Results 

Satellite 

ID # 

Transfer Time 

(min) 

Age of Data 

(min) Spatial Coverage Temporal Coverage 

1 77 11.2857 [0,1,1,0,0,1,4,0] [1,1,2,3] 

2 62 3.166667 [1,0,1,0,1,1,2,0] [2,3,1,0] 

3 40 2.75 [0,0,0,0,0,4,0,0] [2,2,0,0] 

4 34 1 [0,0,0,0,0,4,0,0] [3,0,1,0] 

5 31 1.5 [2,0,0,0,0,0,1,1] [0,0,1,3] 

Total/ 

Average 244 3.9 [3,1,2,0,1,10,7,1] [8,6,5,6] 

 

Table 12 shows that the average age of data is 3.9 minutes, and the transfer time is an 

acceptable value. For this case 75% of the weight was assigned to age of data and 25% of the 

weight was assigned to transfer time. Depending on the type of natural disaster and the aid relief 

requirements, variations of weight distribution would be applicable. If it were not acceptable 

increasing the age of data’s weight for the cost weighted-sums optimization would produce a 

more acceptable schedule. The spatial coverage and temporal coverage are not uniform; but all 

targets are visited which would provide a good coverage of data. The results show that the 

algorithm could be used in a disaster for monitoring and to aid emergency services.  

5.5 Test Case 5 

Test cast #5 is test Mode 2 of the algorithm and the scenario is assumed to be for a 

commercial company that transfers user data from the user terminal to any ground station which 
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then uploads it to a database for the users to access. It is a delay tolerant transfer platform. The 

results are summarized in the table below: 

Table 13 Test Case 5 Results 

Satellite C1 Transfer 

Time(min) 

C2 Age of 

Data(min) 

C3 Spatial 

[T1…T5] 

C4 Temporal 

[T1…T5] 

1 82 495 [3,0,2,1,0] [2,1,2,1] 

2 74 60 [0,1,2,2,1] [1,3,0,2] 

3 82 183 [1,1,2,1,1] [1,3,0,2] 

4 46 64 [2,0,1,0,1] [1,2,0,1] 

5 61 185 [0,2,1,1,1] [1,3,0,1] 

6 48 266 [0,0,1,0,3] [1,1,0,2] 

7 72 287 [1,3,0,1,0] [1,1,1,2] 

8 58 116 [1,1,1,2,0] [0,1,1,3] 

9 19 43 [0,0,0,1,1] [0,0,0,2] 

10 54 160 [1,0,0,1,2] [0,1,1,2] 

Total 596 186 [9,8,10,10,10] [8,16,5,18] 

 

47 out of 50 of the results were scheduled. One of the requests had a start time of minute 

1440 which is at the end of the 24-hour scheduling window and therefore could not be 

scheduled, the other two requests did not fit into the schedule. This means that the two requests 

had conflicts at all transfer times and that the other request had a higher urgency or had more 

data to transfer. Age of data was not a design variable with weight for this test case and therefore 

the average age of data for each satellite has a large discrepancy, with the largest value being 495 

minutes. For this test case there was no restrictions on age of data and therefore the average age 

of data of 186 across all satellites is acceptable. The spatial and temporal coverage was affected 

by the start time and target ID of each request. The spatial coverage is dependent on the requests 

entered and therefore was not assigned a weight for this test case. The temporal coverage was 

affected by both the requests entered and the temporal coverage of the possible transfer times 

and therefore the large difference between temporal time slots is acceptable. 
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Chapter 6 Results Summary 

Having run through the five test cases it is seen that the scheduling algorithm produces a 

constellation schedule that targets and optimizes a combination of the chosen design variables. 

Test Case 1 has given the space to explore how the scheduler reacts to different weights. The two 

schedules that produce the most data through put are scenarios 1 and 5. In scenario 1 all the 

weight is on transfer time and in scenario 5, ¼ of the weight is on transfer time. A constellation 

operated would gain 9.1% more throughput by focusing only on transfer time, which for 

missions with a large data collection and where age of data is less critical to mission success, this 

is a large increase in data throughput. The average age of data increases from 40 min to 272 from 

scenario 5 to scenario 1. This increase would suggest that an operator may choose to trade the 

9.1 % amount of additional transfer time against a much higher average age of data.  

The two schedules with the smallest average age of data are for scenario 2 and 5. For 

applications that require real time data transfer having the full weight on age of data ensures that 

the data is transferred in the same pass as it was uploaded (average age of data of 1 minute). 

Balancing the objectives in scenario 5 results with the data being downlinked with in the same 

orbit as when it was uploaded (average age of data of 40 min). The real time objective of 

scenario 2 limits data transfer to only 20% of scenario 5’s transfer time. 

Scenario 3 provides the most uniform access to all targets with the second highest 

transfer time (645 minutes) and an age of data (57 minutes) that is not significantly higher than 

scenario 5 (40 minutes). For an operator servicing all targets uniformly scenario 3 performs well 

on all metrics other than temporal coverage which has a high variation across time slots. 

Scenario 4 trades transfer time for more uniformity in temporal access. By analyzing a further 24 

values for design variable weights, it was possible to generate a 3D surface plot with a colour bar 
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for the 4th variable, to illustrate how the design variables vary as a function of each other for 

scenario 1. Adjusting the weights allows for there to be a schedule produced that corresponds to 

any point of that surface. The surface will be different for any scenario. With this algorithm an 

operator can generate the surface and select the schedule from the points on that surface. 

In the mission specific test cases the algorithm provides an appropriate scheduling output 

of the given mission objectives. In Test Case #2, which is optimizing the transfer time for a large 

constellation, the average downlink time for a 100-satellite constellation is about an hour per 

satellite per day for satellites in an orbit just below 800 km to ten ground stations. This is 

approximately equivalent to daily access time of any one satellite to one ground station even 

though there is a ten to 1 ratio of satellite to ground station.  

In Test Case #3, which is an EO mission, a blend of transfer time, spatial and temporal 

coverage are shown, with the goal of uniformity of coverage in space and time, but with quantity 

of data also prioritized. In this scenario, the most Easterly Target 7 is prioritized over the nearby 

targets 6 and 8 and target 4 is losing out to target 5 similarly, due to the relative placement of 

targets and ground stations, however all targets are relatively uniformly covered. This scenario 

could illustrate the potential for future work to better optimize ground station locations using this 

algorithm. 

In Test Case #4, which is the disaster relief re-tasking mission, the average age of data is 

20 minutes with target 2 and 3 being prioritized and the first temporal time shift also being 

prioritized. In this mission 25% of the weight was given to transfer time. Since the age of data is 

20 minutes it could be advisable to re-assign the 25% either to age of data or spatial coverage to 

better optimize the schedule for the mission. In this test case there were 10 targets across Canada 
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used in the scenario. It might be more realistic for a disaster recovery situation to have the targets 

centered in a smaller area, which could change the performance of the algorithm. 

 In Test Case #5, 47 out of 50 requests were scheduled. One request started at minute 

1440, which is the end of the schedule, and therefore could not be scheduled. Two others could 

not be scheduled due to conflicts and would be saved to be first scheduled the next day. This 

scenario was intended to illustrate the algorithm flow for real-time requests, which has been 

demonstrated successfully, and for the given requests and target/downlink locations, the scenario 

was not saturated. Future work will look at real-time request prioritization in the case of higher 

saturation of requests.  

It has been shown that the scheduling algorithm is able to generate varying schedules 

depending on the weights assigned to design variables. The variation is the schedules is 

significant to constellation operators. Having a scheduling algorithm that allows the operator to 

re-prioritize at a moments notice allows the operator to address emergency response situations, 

segment failures in the system, and support future growth. 
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Chapter 7 Conclusion 

SmallSats have historically been used by research organizations and universities to test 

theories and new technologies. The industry is now experiencing a trend of increased 

nanosatellite implementation by commercial companies as well as the continued use by 

universities, research organizations, and EO missions. This trend comes from the size and cost 

reduction of COTS parts and a trend towards swarm technology. Instead of using one large 

satellite to complete a mission objective a constellation of smaller satellites will be used. These 

smaller satellites can allow for larger coverage without increases in budget and allow for 

multiple objectives to be accomplished at the same time. 

Scheduling is an important problem for many missions, but its importance increases for 

satellite constellation missions. This is because the amount of access options and conflicts 

increases with the number of satellites using the same ground resources (ground stations and 

targets). Traditional methods of an operator deciding the outcome of every conflict individually 

is no longer feasible. Scheduling becomes key to constellation mission automation. Satellite 

constellation scheduling can be considered a Multi-Objective Optimization problem. Other 

papers discuss the optimization of one or two design variables but the algorithm in this thesis 

considered a range of missions and therefore, allows the algorithm to be considered a more 

generic constellation planning tool rather than an optimization method to solve a specific 

problem. 

In the test cases in chapter 4 it is discussed what types of missions the algorithm has been 

designed to handle. These include earth observation missions, telecommunication mission 

specifically for a delay tolerant network, and disaster aid. In chapter 5 the results from the tests 

cases in chapter 4 are summarized and it is shown that the algorithm produces optimized 
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schedules for the different types of missions mentioned above. The algorithm has demonstrated 

that an operator that is focused on transfer time can achieve an improvement of 9.1% over a 

mixed operation where all are weighted equally. Similarly, a mission objective of minimizing 

age of data can produce a schedule that transfers data in near real time at the cost of a loss of 

80% of transfer time. Operators seeking more uniformity in temporal coverage or spatial 

coverage can achieve this with corresponding degradation in the other design variables. The 

operator’s objective can change at any point during the mission to support contingency situations 

allowing them to target specific service commitments to the users. 

In this thesis the goal was to design an algorithm that can optimize the schedule for a 

larger constellation of satellites with limited ground stations that focused on data latency and 

target coverage.  The goal was to produce an optimization method using a weight sums 

optimization technique to blend the different goals (design variables). The thesis has 

demonstrated the algorithm’s success using test case designed to simulate possible missions 

because the larger CubeSat missions that the algorithm was designed for are not in orbit yet. The 

thesis has verified the algorithm’s success to differentiation between goals, by varying the 

weights assigned to the designed variables, and to blend the goals, by assigning equal weight to 

all design variables in a test case. This algorithm is unique, since the constellations it is designed 

to aid are currently in being designed and researched now. Its design was inspired but the work 

of others, but the algorithm can be used for a wider range of missions due to the weight-sum 

optimization’s ability to blend design values and the algorithm includes the satellites data and 

energy constraints.  

Such an approach is not ideal for all constellation missions.  It would not be appropriate 

for mission data routing for real time communications, nor for other types of data routing-based 
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optimization. For constellations with much more downlink capacity than uplink the weight of 

objectives becomes unnecessary and for missions with more complex onboard constraints the 

onboard constraints may drive the schedule more than the objectives.  
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Chapter 8 Future Work 

The algorithm presented above has some limitations that should be addressed in future 

work. The algorithm currently does not allow for varying uplink and downlink rates and assumes 

all space craft and ground stations are identical.  The algorithm presented in this thesis is meant 

to help implement an autonomous constellation mission but cannot currently be implemented in 

real-time. Future work would entail designed the algorithm to be implement in real-time and 

therefore be designed to be implemented by the satellites in orbit instead of on the ground. This 

would also mean the further testing would be needed to show that every satellite is optimizing its 

own tasking by sharing a minimal set of information with the other satellites. In addition, should 

include satellite mode, slew maneuvers, available resources, and contingency cases. Future work, 

for Mode 1, would be to take the completed schedule and break it down into the necessary 

satellite commands needed to accomplish the schedule. The commands would include satellite 

slew maneuvers so that the satellite is always nadir pointing, payload operation, data 

transmissions, schedule uploading transmissions and satellite status updates. For Mode 2 it 

would be the same as Mode 1 plus working towards onboard computation for same day 

scheduling in real time.  

Currently the algorithm uses brute force and therefore, the algorithm computation time 

has not been optimized. A large amount of the computation time is the orbit propagation. The 

part of the algorithm should be examined to reduce the computation time. If there was a larger 

number of targets the scheduling time would blow up. Future work should include a study on 

ways to decrease the number of requests that go through the brute force method and a 

simplification of conflict resolution. 
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The algorithm could also have additional uses that could be studied. The algorithm could 

be used as a tool to select optimal locations for ground and space resources but would needs 

some restructuring to do so. The algorithm could also be used to identify the right weights for a 

given set of objectives or be used to identify weights so that an inputted minimum value for the 

design variables is reached. The algorithm was designed to test the effectiveness of blending the 

chosen design variables using a weighted sums optimization algorithm and found that blending 

produced schedules that were unique to the weights chosen. The algorithm should now be 

designed to find the optical solution based on mission goals. 
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Chapter 9APPENDIX 

9.1 A 

The following shows the format of the input file: 

[Ground 1 Lat, Ground 1 Lon, Ground 1 Elev., Ground2 2 Lat...] 

[Target 1 Lat, Target 1 Lon, Target 1 Elev., Target 2 Lat...] 

TLESAT (Location of TLE files) 

Example 

C:\Users\admin\Desktop\Testingsept\testingnew\testing2\testing\OrbpropLoop1/100.tle 

. 

. 

. 

TLEEND 

STARTDATE 

DD-MON-YYY 00:00:00 

ENDDATE 

DD-MON-YYYY 00:00:00 

WEIGHTS 

W1 

W2 

W3 

W4 

POWERDRAINS 

Payload Power Consumption value 

Payload Storage Consumption value 

Uplink Power Consumption value 

Uplink Storage Consumption value 

Downlink Power Consumption value 

Downlink Storage Consumption value 

Data Processing Power Consumption value 

Data Processing Storage Consumption value 

Hibernation Power Consumption value 

Hibernation Storage Consumption value 

Power Regenerated a day value 

 

9.2 B 

Q1 – Target ID 

Q2 – Start time (in seconds) 

Q3 – File size (in Gb) 

Q4 - Urgency 
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Q1   Q2      Q3           Q4 

2 17 0.1 1 

3 25 0.6 1 

3 45 0.2 3 

3 64 0.6 1 

1 90 0.2 3 

5 153 1 3 

4 183 0.5 2 

3 202 0.1 2 

2 232 0.5 3 

3 348 1 1 

3 370 0.4 2 

4 375 0.7 1 

3 459 1 2 

3 462 0.2 2 

5 469 0.7 3 

5 502 0.3 2 

4 519 0.3 2 

1 522 0.3 2 

4 566 0.2 3 

4 649 1 1 

1 663 0.7 2 

2 684 0.3 3 

2 694 0.3 1 

1 710 0.2 2 

4 729 0.4 3 

1 789 0.9 3 

1 883 0.6 3 

4 904 0.2 3 

3 925 0.3 3 

5 935 0.7 2 

2 949 0.7 1 

4 1017 0.3 1 

5 1021 0.7 2 

4 1047 0.7 2 

2 1078 0.2 2 

5 1109 0.8 2 

2 1125 0.9 3 

3 1143 0.6 2 

1 1150 0.5 1 

4 1189 0.1 2 

2 1216 0.7 2 

1 1241 0.1 1 
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5 1267 0.9 3 

3 1296 0.8 3 

1 1343 0.8 2 

2 1346 0.1 2 

5 1351 0.5 2 

3 1428 0.7 2 

3 1437 0.6 1 

3 1440 0.3 3 
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