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Abstract 

 
 Iron overload (IO) is a common yet underappreciated observation in metabolic syndrome 

(MetS) patients. With the prevalence of MetS continuing to rise, it is of utmost importance to 

further elucidate mechanisms leading to metabolic dysfunction. IO positively correlates with 

reduced circulating adiponectin levels yet the impact of IO on adiponectin action is unknown. 

Here, we established a model of IO in L6 skeletal muscle cells and found that it induced 

adiponectin resistance, measured by reduced P38 MAPK phosphorylation by the adiponectin 

receptor (AdipoR) agonist AdipoRon. This correlated with reduced mRNA and protein levels of 

AdipoR1 and its facilitative binding partner APPL1. IO caused phosphorylation, nuclear extrusion 

and inhibition of FOXO1, a known transcription factor for AdipoR1. Reactive oxygen species 

production was induced by IO and using N-acetyl cysteine (NAC) to prevent this attenuated the 

effect of IO in FOXO1 phosphorylation, localization and adiponectin resistance. In conclusion, 

our study identifies a ROS/FOXO1/AdipoR1 axis as a cause of skeletal muscle adiponectin 

resistance in response to IO. This new knowledge provides new insight on potential disease 

pathophysiology in MetS patients with IO. 

 

 

 

 

 

 

 

 

 



 III 

Acknowledgements 

 I would like to begin by expressing my deepest gratitude to Dr. Gary Sweeney. It is due 

to his belief in my potential as a researcher that I have made it as far as I have. Special thanks 

to Michelle Prioriello for all her guidance, invaluable advice and support throughout the years. I 

would also like to thank all past and present members of the Sweeney Lab with special 

acknowledgments dedicated to Dr. Hyekyoung (Cindy) Sung, Dr. Erfei Song and James Jhang 

for their continued support. Special thanks to my co-supervisor: Dr. John McDermott for his 

insightful comments and suggestions regarding my progress and evolution as a researcher. I 

would also like to acknowledge my host professor in South Korea, Dr. Jae Bum Kim and 

supervisor, KyungCheul Shin, for expanding my horizons as a researcher, teaching me how to 

ask the right questions and introducing me to a beautiful culture and way of life. 

 I would also like to extend my gratitude to the examining committee: Dr. Peter Backx and 

Dr. Christopher Perry for taking the time out of their busy schedules to facilitate my thesis 

defence. 

 Finally, I would like to thank my family, my father Salam, mother Racha and sister Ghalia, 

for their love and belief in my dedication and pursuit of higher learning. I could not have done it 

without their unwavering support, love and encouragement. Finally, I would like to thank my 

partner in life: Reena Ladak. Her constant support, rigorous questioning of my knowledge and 

data in addition to patience with my weekend work has been instrumental in my growth as a 

researcher and as a person.  

 

 

 

 

 



 IV 

Table of Contents 

Abstract ………………………………………………………………………………………………….. II 
Acknowledgments ……………………………………………………………………………………… III 
Table of contents …………………………………………………………………………….………… IV 
List of figures ……………………………………………………………………………………..………V 
List of abbreviations …………………………………………………………………………………….VI 
Chapter 1: Introduction and research aims ………….…………………………………………….....1 
 1.1: Metabolic syndrome …………..………….…………………………………….………..  2 
 1.2: Type 2 diabetes mellitus …….…………………………………………………………..  4 
 1.3: Iron: Role and significance in metabolic diseases ……………………………….…..  7 
  1.3.1: Importance of iron and iron regulation ……………………………………... 7 
  1.3.2: Iron overload related disorders………………………………………………. 9 
  1.3.3: Significance of iron in Metabolic Syndrome and type 2 diabetes ……….. 10 
  1.3.4: Iron’s role in T2D: Oxidative stress …………………..…………………….. 12 
 1.4: Adiponectin……………………………………………………………………………….. 14 
  1.4.1: Structure and regulation……..……………………………………………….. 14 
  1.4.2: Adiponectin signaling proteins………………………...…………………….. 15 
  1.4.3: Adiponectin function and effector proteins …………………………….….. 17
   1.4.3.1: P38 MAPK ................................................................................. 20 

  1.4.4: Adiponectin receptor regulation via FOXO1………….……………………. 21 
  1.4.5: Adiponectin resistance, type 2 diabetes and iron ……………..……..…... 23 
 1.5: Hypotheses and research goals………………………………………………………... 25 
 
 
Chapter 2: Elucidating the mechanism behind iron overload induced adiponectin resistance in 
L6 skeletal muscle……………………………………………………………………………………... 26 
 2.1: Abstract…………………………………………………………………………………… 27 
 2.2: Introduction……………………………………………………………………………….. 28 
 2.3: Materials and methods………………………………………………………………….. 30 
 2.4: Results…………………………………………………………………………………….. 36 
 2.5 Discussion…………………………………………………………………………………. 50 
 
Chapter 3: Future directions………………………………………………………………………….. 57 
Chapter 4: References and supplementary data…………………………………………………… 61 



 V 

List of figures 
Figure 1.1: Schematic highlighting the effects of obesity and T2D at adipose tissue, pancreas, 
liver and skeletal muscle……………………………………………………………………………… 4 

Figure 1.2: Summary of insulin signaling pathway in skeletal muscle ………………………….. 6 

Figure 1.3: Summary of iron regulation …………………………………………………………….. 9 

Figure 1.4: Overview of adiponectin pleiotropic effects ………………………………………….. 15 

Figure 1.5: Overview of adiponectin signaling pathway ………………………………………….. 19 

 
Figure 2.1: Characterization of intracellular iron……………………………………………………. 36 
Figure 2.2: Effects of IO on adiponectin signalling: P38 MAPK………………………………….. 38 
Figure 2.3: Effects of IO on adiponectin receptors and associated proteins…………………….41 
Figure 2.4: Regulation of FOXO1 by iron……………………………………………………………. 43 
Figure 2.5: Mechanistic role of oxidative stress in FOXO1 regulation and adiponectin signalling 
by iron……………………..……………..……………………………………………………………... 46 
Figure 2.6: Summary schematic detailing IO induced adiponectin resistance: IO-ROS-FOXO1-
AdipoR1 axis …………………………………………………………………………………………... 56 

 

Figure 4.1: Supplementary figure 1: FOXO1 PTM vs total FOXO1, IF data examining IO effect 
on MFF probe …………………………………………………………………………………………. 62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VI 

List of Abbreviations 

ACC Acetyl-CoA (Coenzyme A) carboxylate  

AdipoR1  Adiponectin receptor 1  

AdipoR2  Adiponectin receptor 2  

AdipRon AdipoRon  

Akt Protein kinase B 

AMP Adenosine monophosphate 

AMPK Adenosine monophosphate-activated protein kinase 

APPL1 Leucine zipper motif 

ATP Adenosine TriPhosphate 

BMI Body Mass Index 

BSA Bovine serum albumin 

CaMKK Ca2+/calmodulin-dependent protein kinase kinase  

CBP/p300 CREB Binding Protein 

CDK1/2 Cyclin-dependent kinase 1 

CoA Coenzyme A 

CRP C reactive protein 

DCTB Duodenal cytochrome B 

DIOS Dysmetabolic iron overload syndrome 

DMSO Dymethyl sulfoxide  

DMT1 Divalent metal-ion transporter 1 

DsbA-L disulfide bond A oxidoreductase-like  

ER Endoplasmic reticulum  

Ero-1La ER oxidoreductase -1La 

ETC Electron transport chain 



 VII 

fAd Full length adiponectin 

FBS Fetal bovine serum 

FOXO1 Forkhead box protein O1 

gAd Globular adiponectin 

GLUT4 Glucose transporter type 4  

GPCR G protein coupled receptor 

GTT Glucose tolerance test 

HDL High density lipids 

HJV Hemojuvelin 

HMW High molecular weight 

HRP Secondary horseradish peroxidase  

IDF International diabetes federation 

IL-6 Interleukin 6  

IR Insulin receptor 

IRS1/2 Insulin receptor substrate 1/2 

IO  Iron overload  

IRE-CFP Iron response element - cyan fluorescent protein  

IRP Iron response protein 

JNK c-Jun N-terminal kinases 

kDa Kilodalton  

KO Knockout 

LMW Low molecular weight 

LDL Low density lipids 

LPL Lipoprotein lipase 

MAPK mitogen-activated protein kinases 



 VIII 

MMW Middle molecular weight 

MST 1 mammalian Ste20-like kinase 1 

NADPH Nicotinamide adenine dinucleotide phosphate 

NHNES National Health and Nutrition Education Survey 

NCEP:ATP III National Cholesterol Education Program’s Adult Treatment Panel III 

NEFA Non esterified fatty acids 

NES Nuclear export signal 

NLS Nuclear Localization signal 

NTBI Non-transferrin Bound Iron 

PAI-1 plasminogen activator inhibitor -1 

PCC Pearson's overlap correlation coefficient 

PDK phosphoinositide-dependent protein kinase 

PFA Paraformaldehyde 

PKC Protein kinase C 

PI3K phosphotidylinositol-3-kinase 

PPAR Peroxisome proliferator-activated receptors 

PVDF Polyvinylidene fluoride 

ROS Reactive oxygen species 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ser Serine 

SOCS3 Suppressor of Cytokine Signaling 3 

SOD2 Superoxide dismutase 2 

T2D Type 2 Diabetes mellitus  

TF Transcription factor 

TfR1/2 Transferrin receptor protein 1/2  



 IX 

Thr Threonine 

TNFα Tumor necrosis factor α  

WHO World health organization 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction and Research Aims 

 

 

 

 

 

 

 

 

 



 
 

 2 
 

1.1 Metabolic Syndrome  

 The rapid progression of technology has facilitated the low cost and wide-spread 

production of high caloric foods in addition to the availability of jobs and activities that promote 

a sedentary lifestyle. It is, therefore, no surprise that global rates of metabolic-related diseases 

have been on the dramatic rise. According to a report published by the World Health 

Organization (WHO), of the 41 million deaths attributed to noncommunicable diseases in 2016, 

approximately half (19.5 million) of those were due to a combination of cardiovascular diseases 

and diabetes 1. Cardiovascular diseases, according to the WHO, is considered to be the primary 

cause of death globally representing approximately 31% of all deaths 2. Global obesity cases 

have reportedly tripled since 1975 with over 1.9 billion adults considered overweight and over 

650 million considered obese 3.  

 The term “Metabolic Syndrome” (MetS) also otherwise referred to as “Syndrome X”, “the 

insulin resistance syndrome” and “the deadly quartet” is an umbrella term used to describe a 

collection of diseases that increase the relative risk and contribute towards the development of 

cardiovascular diseases and Type 2 Diabetes Mellitus (T2D) 4. The purpose of this unifying term 

was to aid in the clinical diagnosis of patients as well as to serve as a helpful research tool. MetS 

was coined by three separate bodies; a consultation group from the WHO, the National 

Cholesterol Education Program’s Adult Treatment Panel III (NCEP:ATP III) and the European 

Group for the Study of Insulin Resistance 4. While these three bodies may have subtle differences 

in their criteria for what constitutes MetS, their definitions revolve around the same five collection 

of physiological risk factors. These include: visceral obesity, elevated triglycerides, hypertension, 

high LDL - low HDL and elevated fasting glucose levels 4. According to the International Diabetes 

Federation (IDF), MetS is officially defined as an individual who’s symptoms must include visceral 

obesity and any two of five remaining conditions 5. 
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 The challenge with developing such a definition was its applicability to a worldwide 

population. For instance, obesity can be determined by measuring the Body Mass Index (BMI). 

It was previously established that any value equal or greater than 30kg/m2 was considered obese 

5. However, this value applied mainly to Western and Caribbean populations would not be 

applicable to Asian populations since the cut off values would be lower 5,6. To circumvent this 

issue, visceral obesity was the criteria chosen, which was determined by abdominal waist 

circumference 7,80. This measure was easily quantifiable by clinicians and better accounted for 

ethnic differences when referenced to established population-specific values. The following data 

obtained from a meeting that included several major bodies determined that abdominal obesity 

would be defined as a waist circumference greater or equal to 94 cm and 80 cm in men and 

women respectively 8.   

 Visceral or abdominal obesity is considered a risk factor due to its proclivity to induce a 

state of insulin resistance caused by several factors such as the presence high amounts of non-

esterified fatty acids (NEFA) 7,81. It is has been shown that with the increase in visceral adipose 

tissue, due to adipocyte hypertrophy, a change in the secretory profiles of adipokines is 

observed as summarized in figure 1.1. These include increases in leptin, interleukin 6, tumour 

necrosis factor alpha (TNF-α), C-Reactive Protein (CRP), resistin, angiotensinogen and 

plasminogen activator inhibitor -1 (PAI-1) in addition to decreases in adiponectin 7,9. These 

changes result in increased free fatty acids (FFA) and elevated triglyceride content in adipocytes 

that ultimately induces a series of changes in a variety of organs that all feed into the T2D 

pathology. These include an ectopic accumulation of fat in the liver leading to impaired liver 

function and increased hepatic gluconeogenesis, a compensatory reaction by pancreatic beta 

cells in response to insulin resistance resulting in hyperinsulinaemia and impaired glucose uptake 

in skeletal muscle 7,81. Adiponectin, of particular interest, diverts from the trend of increased levels 

of adipokines and typically functions as an insulin-sensitizing, anti-inflammatory, anti-
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atherogenic hormone 9, 10. Its decrease, therefore, contributes to a hyperglycemic state via 

impaired glucose uptake and further exacerbates elevated triglyceride levels due to impaired 

fatty acid oxidation 9,10.   

 

Figure 1.1: Schematic highlighting the effects of obesity, how insulin resistance and T2D 
arise at sites such as adipose tissue, pancreas, liver and skeletal muscle 9. Image taken 
from Attie, A. D., & Scherer, P. E. (2009). Adipocyte metabolism and obesity. Journal of 

lipid research, 50(Supplement), S395-S399 
 

1.2 Type 2 Diabetes mellitus 
 According to the WHO, the number individuals afflicted with diabetes has grown from 

108 million in 1980 to 422 million in 2014 with 1.6 million deaths attributed directly to diabetes 

in 2016 11. In addition, according to the International Diabetes Federation (IDF), Type 2 Diabetes 

mellitus (T2D) has been shown to affect nearly 8% of the world’s adult population and has been 

projected that a 55% increase in T2D incidence rates will occur within the next 20 years leading 

to a total of 592 million people being afflicted with the disease worldwide 12,13. With T2D’s 

meteoric rise to pandemic levels, much ground needs to be covered with regards to its etiology. 

with systemic insulin resistance. This is surprising in light
of the fact that endoplasmic reticulum stress can trigger ac-
tivation of the jun kinase pathway and NF-kB, while at the
same time, local inflammation in adipose tissue can trigger
the UPR. The connection between the UPR and inflamma-
tion is a reflection of crosstalk at multiple levels, including
the increased production of reactive oxygen species that
are generated as a result of the activation of the UPR. These
questions will need to be further studied, particularly be-
cause a recent article implicated Xbp1, an important down-
stream mediator of the UPR, as a master regulator of
lipogenesis in the liver; deletion of Xbp1 in the liver caused
hypocholesterolemia and reduced triglyceride accumula-
tion as a result of decreased lipogenesis (32). Whether
Xbp1 exerts similar functions on lipogenesis and/or lipid
storage in adipocytes may indicate that the differential ac-
tivation of the UPR in liver and adipose tissue plays a role
in the fuel partitioning of lipids between these two tissues.

MITOCHONDRIAL DYSFUNCTION: ALSO
IMPORTANT FOR THE WHITE ADIPOCYTE?

Mitochondrial function is key for proper maintenance
of energy homeostasis. This also holds true for white adi-
pocytes, where proper mitochondrial function is likely to

be key for systemic insulin sensitivity. Insulin-sensitizing
drugs, such as the PPARg agonists, induce a host of mito-
chondrial proteins and improve mitochondrial function in
adipocytes (33). Impaired mitochondrial respiratory func-
tion triggers a reduction in translocation of Glut4 to the
plasma membrane, but surprisingly, enhances Akt signaling
(34). Even modest changes at the level of mitochondrial
function have a dramatic effect on production and release
of adiponectin (34). Particularly in the hyperglycemic state,
excess intracellular glucose availability causes a dramatic
increase in mitochondrial ROS production and hence in-
creased local inflammation (35). It is therefore very likely
that proper mitochondrial function in white adipocytes is
key for appropriate energy balance between different tis-
sues, particularly during times of excess energy intake.

CONCLUSIONS AND OUTLOOK

Adipose tissue and the liver constitute an interesting or-
gan pair that is in constant communication with each
other via adipokines, lipid factors, and lipoprotein parti-
cles. The adipohepatic axis affects lipid and carbohydrate
usage and flux. Dysregulation in either of the two tissues is
detrimental to the other and ultimately for the entire sys-
tem. One of the first organs to be affected when adipose

Fig. 1. Three links between adipocyte biology and metabolic syndrome. Obesity leads to the recruitment by adipocytes of macrophages. These
macrophages are activated to produce inflammatory cytokines, which blunt insulin signaling. In adipocytes, insulin resistance leads to an im-
paired ability of insulin to suppress lipolysis, leading to an increased flux of free fatty acids from adipocytes to other tissues. In muscle, increased
fatty acid flux leads to impaired glucose uptake, leading to whole-body impaired glucose tolerance. In the liver, the increased flux of free fatty
acid contributes to increased triglyceride synthesis and hepatic steatosis. Insulin resistance causes pancreatic b-cells to compensate with increased
insulin production, leading to hyperinsulinemia. This in turn stimulates de novo lipogenesis in the liver, contributing to the pool of free fatty
acids available for triglyceride production. Obesity also alters the balance of adipokines produced by adipocytes, with an increase in leptin, TNFa,
RBP4, resistin, and IL6, and a decrease in adiponectin. This altered balance contributes to impaired glucose tolerance and insulin resistance.

S398 Journal of Lipid Research April Supplement, 2009
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T2D, also referred to as insulin resistance, is typically characterized by hyperglycemia caused 

by impaired insulin signaling due to a number of reasons. These include a reduction in the 

amount of circulating insulin produced by pancreatic beta cells, a reduction in the number of 

insulin receptors available or an impairment in the downstream signaling 13. Pancreatic beta cell 

hyperplasia and hyperinsulinemia are thought to occur prior to the onset of diabetes in a state 

called “pre-diabetes” 13.  

 T2D is considered to be the central figure in MetS pathology and many of the risk factors 

associated with MetS lead to the development of insulin resistance 10,14. In insulin-sensitive 

individuals, insulin exerts its effect by binding to its insulin receptor (IR), typically found in glucose 

utilizing organs such as skeletal muscle and liver (figure 1.2). Upon binding, the intracellular IR 

beta subunit tyrosine kinase is activated leading to autophosphorylation of the insulin receptor 

and its substrates: insulin receptor substrate 1 and 2 (IRS-1,2) 15,16. Once phosphorylated, IRS-1 

activates the regulatory subunit of phosphotidylinositol-3-kinase (PI3K) which leads to the 

activation of phosphoinositide-dependent protein kinase (PDK) and in turn, either/or Akt and 

protein kinase C (PKC) 16. The activation of Akt and PKC leads to the translocation of a glucose 

transporter, GLUT4 in the case of skeletal muscle, to facilitate glucose uptake as well as the 

suppression of hepatic gluconeogenesis 16,17.  
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Figure 1.2: Summary of the insulin signaling pathway in skeletal muscle 16. Image taken 
from Stump, C. S., Henriksen, E. J., Wei, Y., & Sowers, J. R. (2006). The metabolic 
syndrome: role of skeletal muscle metabolism. Annals of medicine, 38(6), 389-402. 

 

In cases of insulin resistance, a number of mechanisms have been brought forth to 

explain the pathology. One prevailing mechanism which involves the effects of other MetS risk 

factors such as visceral obesity and elevated triglycerides are the effects of inflammatory 

cytokines and accumulation of free fatty acids. In the case of visceral obesity, as previously 

mentioned, several pro-inflammatory cytokines including TNF-α and C Reactive Protein (CRP) 

secreted from adipocytes can activate serine/threonine kinases such as c-Jun N-terminal Kinase 

(JNK) which inhibit insulin action by phosphorylating serine/threonine residues on IRS-1 thus 

inactivating both PI3K and Akt leading to decreased glucose transporter translocation 13,16,18. 

With regards to elevated free fatty acids, these result in increased diacylglycerol, which can result 

in activated alternative isoforms of PKC leading to the activation of both JNK and NF-kB 

pathways 13. Free fatty acids have also been reported to increase hepatic gluconeogenesis 

thereby further promoting a hyperglycemic state 18.    

Although the mechanism is less well understood,
insulin also acts to suppress FA oxidation in skeletal
muscle (12). However, a decrease in lipoprotein
lipase (LPL) activity and increased malonyl coen-
zyme A (malonyl CoA) levels at high physiological
insulin concentrations have been documented and
may contribute to the action of insulin to suppress
FA oxidation (15).

Insulin signaling defects

Reduced skeletal muscle responses to insulin are
manifest at multiple levels in the MS (Figure 2).
Many studies using animal models or humans with
insulin resistance have demonstrated impaired sig-
naling through the IRS-PI3K-Akt pathway (16,17).
However, impaired signaling through atypical PKC
may be of comparable importance (18). Moreover,
muscle content and translocation of GLUT4 trans-
porters are reduced (19,20) which is associated with
diminished glucose transport (19–21). Storage of
glucose in skeletal muscle as glycogen is also effected
as evidenced by decreased glycogen synthase activity
(16), which is the rate-limiting step for non-oxidative
glucose disposal.

Potential mechanisms contributing to impaired
insulin signaling and action include 1) decreased

skeletal muscle perfusion due to increased vasocon-
striction, reduced vascular nitric oxide (NO) pro-
duction, and vascular rarefaction (22–26), and
increased production of reactive oxygen species
(ROS) (21,27); 2) intramuscular accumulation of
lipids and lipid by-products (28); 3) decreased
mitochondrial oxidative capacity (28–31); 4) differ-
ences in muscle fiber-type composition such that the
proportion of less insulin sensitive fibers (type-2,
white) is increased (32); and 5) reduced contractile
activity (physical inactivity). It should be empha-
sized that in addition to improving skeletal muscle
insulin sensitivity, contractile activity benefits glyce-
mic control and metabolic health by stimulating
glucose uptake and metabolism independent of
insulin. This effect appears to be through Ca2+

and adenosine monophosphate (AMP)-dependent
kinase (AMPK) mediated pathways (33).

Reduced mitochondrial oxidative capacity: a
harbinger to intramuscular lipid accumulation
and insulin resistance?

Lipid accumulation in non-adipose tissue (e.g.
skeletal muscle, liver, kidney) has been termed
‘ectopic lipid’, and has been suggested to be a
significant contributor to the MS (34). In skeletal

Figure 1. Skeletal muscle insulin signaling pathways. Healthy skeletal muscle is able to alternate between carbohydrate use in times of

abundance (increased insulin) and lipids in times of caloric scarcity (decreased insulin). The use of carbohydrate and lipid substrate can also

be enhanced during periods of the high metabolic demands of exercise. IR5insulin receptor; IRS5insulin receptor substrate;
PI3K5phosphatidylinositol-3-kinase; PDK5phosphoinositide-dependent protein kinase; aPKC5atypical protein kinase C;

PIP35phosphatidylinositol 3,4,5-trisphosphate; Akt5Protein kinase B; AS1605Akt substrate 160; GLUT45insulin sensitive glucose

transporter; IMTG5intramyocellular triglyceride; LCFA5long-chain fatty acids; AMPK5AMP activated protein kinase.

Skeletal muscle metabolism 391
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1.3 Iron: Role and significance in metabolic diseases 

1.3.1 Importance of iron and iron regulation 
 Iron is a divalent metal that is involved in a wide range of vital cellular processes such as 

oxygen transport in hemoglobin, DNA synthesis, oxidative phosphorylation and cellular immune 

responses 19,20. Iron can exist in either the ferric (Fe3+) or ferrous (Fe2+) form and it is these dual 

forms that facilitate its involvement in oxidation/reduction reactions 20,21. Iron is typically obtained 

through dietary means that can be divided into heme and non-heme sources 22. Heme sources 

comprise of iron found in hemoglobin and myoglobin from animal products such as red meat 

while non-heme sources include fortified cereals, vegetables and beans 22. Other sources of iron 

include parenteral iron, inhaled iron and recycled iron ions from the erythroid pool generated 

from endocytosed erythrocytes 21,22,23.  

 Since mammals do not have a specialized excretory system dedicated to iron, its 

regulation is of utmost importance. In the case of dietary iron, ferric iron is reduced to ferrous 

iron in the small intestine by the ferrireductase duodenal cytochrome B (DCTB) (Figure 1.3). The 

ions proceed to enter the duodenal enterocytes via divalent metal transporter 1 (DMT1). Fe2+ 

exits the enterocytes through iron export channel ferroportin and is oxidized into Fe3+ by 

hephaestin where it immediately binds to transferrin in circulation 20,21. Iron bound transferrin (TBI) 

can be internalized by binding to one of its two receptors: transferrin receptor-1,2(TfR1,2) or can 

remain soluble in the circulation 20,21. Soluble iron bound transferrin-transferrin receptor can be 

used as a biomarker to evaluate functional iron deficiency 20,21. Most cells exhibit TfR1 and upon 

binding of iron bound transferrin to its receptor, the complex is internalized and Fe3+ is released 

from transferrin, reduced by the STEAP family of ferrireductase to Fe2+ and enters the cytosol 

through DMT1 20,21. Another form of iron to consider with regards to entry is non-transferrin bound 

iron (NTBI). Once transferrin levels reach saturation, such as in cases of IO, the excess iron 

circulates as NTBI 100,101. While the precise mechanisms of NTBI internalization are still debated, 
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there several proposed mechanisms behind how this occurs. These mechanisms typically 

involve ferrireductases such as the previously described DCTB that is found bound on the cell 

surface as well as other cellular reductants such as ascorbate, STEAP and cytochrome b561 

101,102. The function of these enzymes is to convert ferric NTBI into the ferrous form, following 

which internalization is facilitated either via DMTs such as DMT1 or ZRT/IRT-like proteins (ZIPs) 

such as ZIP14 or ZIP8 101,102.  

 Once in the cytosol, iron is regulated through the interaction with iron response elements 

(IRE) found on the mRNA of TfR1 and ferritin resulting in the release of iron response proteins 

(IRP). The interaction between iron and IRE on TfR1 mRNA results in decreased stability of TfR1 

mRNA leading to decreased iron uptake. Iron interacting with the IRE on ferritin mRNA results in 

increased translation of ferritin which is most commonly used biomarker for deterring total body 

iron stores 20,21. Iron-bound transferrin can also bind to TfR2, mainly found in the liver, and 

initiates the production of hepcidin 21. Once produced, hepcidin plays a pivotal role in iron 

regulation by inducing the internalization and degradation of intestinal ferroportin thereby 

reducing iron absorption 21.  
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Figure 1.3: Summary of iron regulation 13. Image taken from Simcox, J. A., & McClain, D. 
A. (2013). Iron and diabetes risk. Cell metabolism, 17(3), 329-341. 
 

 

 
1.3.2 Iron overload (IO) and related disorders 

 As described previously, clinicians and researchers typically use ferritin as the biomarker 

for total body iron stores. In healthy individuals, a total circulating iron content of 3-4g is 

observed. With regards to serum ferritin levels, healthy men and women exhibit a range of 12-

300 ng/mL and 10-150 ng/mL respectively 21,22. A state of iron overload (IO) is characterized by 

serum ferritin levels exceeding that of 300 ng/mL in men and 150 ng/mL in women.  

approaches saturation, that is, in conditions of iron overload.
Most of the iron is used in the mitochondrion for heme and
iron-sulfur cluster synthesis, although its trafficking to the
mitochondrion for such utilization is incompletely understood.
Cytosolic iron levels are autoregulated through binding to iron-
regulatory proteins (IRPs). Excess iron releases IRPs from the
iron-responsive element (IRE) on the 30 untranslated region
(UTR) of the TFR1 messenger RNA (mRNA) and the 50 UTR of
the ferritin mRNA, as well as on the UTRs of mRNAs of several
other iron-regulated proteins. This results in decreased stability
of TfR mRNA, decreasing further iron uptake, and in increased
translation of ferritin, sequestering iron inside the cell. Part of
the increased ferritin that is translated is secreted, largely iron
free, and serves as a marker of tissue iron stores.

Transferrin-bound iron also interacts with the hepatocyte TfR2
and the protein HFE on the surface of hepatocytes (D’Alessio
et al., 2012). Through a signaling process that is still incompletely
understood but that also requires hemojuvelin (HJV), bone
morphogenic protein 6 (BMP6) (Andriopoulos et al., 2009;
Meynard et al., 2009), and the SMAD (human homolog of
Drosophila mad) pathway (Wang et al., 2005), the production
of hepcidin is stimulated. The involvement of TfR2, HJV, HFE,
and hepcidin in human iron homeostasis is demonstrated by
human mutations in all that result in iron overload. Hepcidin,
a 25 amino acid peptide, enters the systemic circulation and
induces internalization and degradation of intestinal epithelial
ferroportin, thus acting as a negative feedback regulator of iron
absorption (Nemeth et al., 2004). Hepcidin also regulates efflux

Figure 1. Overview of Iron Trafficking
Intestinal free ferric (Fe3+) iron is reduced to Fe2+

by DCTB and enters the cell through the divalent
metal-ion transporter 1 (DMT1) and possibly other
carriers. Dietary heme is directly absorbed and
iron is released by heme oxygenase (HMOX). Iron
exits the enterocyte through the iron export
channel ferroportin (FPN). After oxidization by
hephaestin (HEPH), iron binds in the bloodstream
to transferrin (Tf), which binds to transferrin
receptors 1 and 2 (TfR1 and TfR2) on the surface of
target cells. Inmost cells, after endocytosis of TfR1
and acidification of the endosome, iron is released,
reduced by STEAP, and through DMT1 enters the
cytosol, where it is used (e.g., for heme or Fe-S-
cluster synthesis in the mitochondrion) or, if in
excess, sequestered by ferritin. Ferritin secreted
into the blood serves as a marker for tissue iron
stores. In the liver, Tf binds TfR2 and the protein
HFE, and, in concert with signaling via GPI-
anchored protein hemojuvelin (HJV), bone
morphogenic proteins (BMP) and the SMAD signal
transduction pathway, production of hepcidin is
signaled. Hepcidin induces internalization and
degradation of FPN, thus completing a negative
feedback regulatory loop.

of iron from other cells that express high
levels of ferroportin, including macro-
phages. Although iron egress from the
enterocyte is the major control point for
entry of iron into the body, DMT1 is also
regulated by iron- and possibly hepci-
din-dependent mechanisms and by the
hypoxia-inducible transcription factor

HIF-2a (Mastrogiannaki et al., 2009; Shah et al., 2009). Dietary
heme is also directly absorbed by the enterocyte through less
defined pathways (Shayeghi et al., 2005). Release of iron from
heme is accomplished by heme oxygenase (HMOX).
An important fact to consider in evaluating the effects of iron

on metabolism is the very wide range of ‘‘normal’’ serum ferritin
in humans, 30–300 ng/ml in men and 15–200 ng/ml in women
(Fleming et al., 2001; Nelson et al., 1978). The levels of very
few human blood constituents have such a 10-fold normal vari-
ation, suggesting the possibility that ‘‘normal’’ may not be ideal.
Despite the extensive regulation of iron uptake, it is possible with
dietary iron excess to achieve levels of tissue iron higher than are
necessary to maintain normal erythropoiesis and metabolic
function. Commercial ‘‘normal’’ rodent chows vary by a factor
greater than ten in iron content. More important than the abso-
lute levels of iron is its bioavailability, but when all factors are
considered, many normal chows deliver significantly higher
amounts of iron than are consumed by mice living in the wild
or are necessary to maintain normal breeding and blood
hemoglobin concentrations. The same is true of the diets of
many humans, particularly in affluent western cultures. Thus,
the results to be presented below suggest that within the bound-
aries of tissue iron levels defined by overt iron deficiency and
pathologic overload, the broad range of ‘‘normal’’ iron may, in
fact, include levels that confer health risks of which we are
currently unaware.
Iron homeostatic pathways are tightly linked to inflammatory

stressors. Inflammation causes significant upregulation of

330 Cell Metabolism 17, March 5, 2013 ª2013 Elsevier Inc.
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 Some of the more common pathological manifestations of IO include the genetic disorder 

Hereditary Hemochromatosis (HH) and beta thalassemia. HH is an autosomal recessive disorder 

that is found to occur in approximately 0.5% of Caucasian populations 21,22,23. HH is characterized 

by a missense mutation that occurs on loci C282Y and H63D. These loci code for IRPs such as 

HFE protein which is required for hepcidin stimulation 19,21. Other rarer mutations that occur on 

IRP but are still associated with HH include TfR2, hemojuvelin (HJV), hepcidin and ferroportin 

mutations 19,21. The effects of these mutations collectively lead to the same outcome: increased 

iron absorption from the gut and into circulation due to impacted hepcidin levels resulting in IO. 

Beta thalassemia is a disorder characterized by an impairment in in the beta globulin subunit of 

hemoglobin 21,23. This leads to the inability to produce functioning erythrocytes resulting in 

anemia. Thalassemic patients, therefore, are treated with regular blood transfusions which 

greatly overloads them with iron due to the increased labile plasma iron pool 21,23. This is 

attributed to the fact that one unit of blood approximately 0.2 g of iron, or almost 100 times the 

amount of iron that is absorbed through the gut daily 21,23.  

 

1.3.3 Significance of iron in MetS and T2D 

 In a survey conducted by the National Health and Nutrition Education Survey (NHANES) 

in the US, an increased risk of developing diabetes was observed in both men and women 

exhibiting elevated serum ferritin levels 21,25. In addition to this finding, a later survey by the same 

group (NHANES III) revealed that the risk of developing MetS approximately doubled with 

increasing ferritin levels 21,26.  In one study where premenopausal woman (n=1645), 

postmenopausal women (n=1424) and men (n=2880) were examined (iron levels were lower than 

predefined IO levels) it was determined that the prevalence of elevated blood pressure, elevated 

plasma glucose, elevated triglycerides and visceral adiposity were all greatest in individuals at 

the highest quartile of circulating ferritin levels 26. These findings were corroborated by several 
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other cross-sectional studies which confirmed the same association between elevated ferritin 

levels and several MetS risk factors including: hypertension 27, dyslipidemia 28, elevated fasting 

insulin and blood glucose 29 as well as visceral obesity 30. Insulin resistance was additionally 

observed in postmenopausal women and men at higher ferritin levels as indicated by elevated 

fasting insulin and triglycerides 26. Finally, an investigation conducted by the Epidemiological 

Study on the Insulin Resistance Syndrome (DESIR) revealed that high levels of both ferritin and 

transferrin were associated with increased prevalence of MetS at both the commencement of 

the study as well as after a 6 year follow up 22.  

 With regards to IO-based pathological conditions in relation to T2D, there have been 

numerous studies highlighting iron’s causal role. In HH, ferritin levels are typically in the range of 

1,000 to 10,000 ng/mL and approximately 25-65% of those afflicted exhibit symptoms of 

secondary T2D such as insulin resistance and glucose intolerance 22. However, these symptoms 

have also been attributed to beta cell failure 22. It is also worth noting that a significant majority 

of individuals afflicted with HH whom exhibited T2D were also classified as obese 21. When 

considering individuals afflicted with beta thalassemia, incidence rates of T2D were observed at 

6%-14% and typically displayed symptoms of insulin resistance rather than insulin deficiency 21. 

This was thought to be due to the organs targeted by iron accumulation due to the differential 

hepcidin expression profile between HH and beta thalassemia 21. When iron chelation therapy 

was administered, such as Deferoxamine or phlebotomy therapy, individuals exhibited 

significantly improved glucose tolerance and insulin sensitivity thus further substantiating iron’s 

causal role in the development of T2D and other MetS morbidities 21,22. 

 Another important pathology when considering iron overload is Dysmetabolic Iron 

Overload Syndrome (DIOS). While individuals afflicted with DIOS do not exhibit the same high 

degree of circulating ferritin levels seen with HH or thalassemic patients, DIOS patients exhibit 

what is known as hyperferritnemia 32. This state is characterized by a mild increase in hepatic 
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and body iron stores (indicated by either serum ferritin or transferrin) in addition to either a single 

or collection of MetS symptoms such as dyslipidemia, glucose intolerance, hypertension and 

steatohepatitis 32. Individuals afflicted with DIOS have displayed increased iron localization in 

visceral adipose tissue as evidenced by increased hepcidin mRNA and decreased TfR1 

expression 32. It has also been reported that DIOS patients are at greater risk for developing MetS 

due to a differential secretory profile of adipokines due to iron loading. Studies performed on 

C57Bl/6 mice using iron supplemented diets to induce IO revealed increased hepatic and 

adipocyte iron accumulation, a fivefold increase in serum hepcidin levels, increased resistin, 

decreased serum adiponectin and leptin levels 32. In addition to these findings, the study revealed 

a 40% increase in fasting glucose levels, which the researchers attributed to insulin resistance 

due to decreased insulin signaling and a threefold elevation in triglycerides 32,33. 

 

1.3.4 Iron’s role in T2D: Oxidative stress 

 The precise mechanism with which iron exerts its effect is a topic that is still currently 

debated. The general consensus is that iron exerts a multifactorial effect by targeting a collection 

of different processes at different sites that ultimately contribute to insulin resistance. Examples 

include increased hepatic iron stores which have been shown to induce insulin resistance by 

impeding suppression of hepatic gluconeogenesis via reduced insulin clearance 24. Adipocyte 

iron loading, as previously discussed, has been shown to increase circulating resistin levels 

which has been reported to induce Suppressor of Cytokine Signaling 3 (SOCS3), an insulin 

signaling inhibitor 33,34. Another example is pancreatic beta cell dysfunction due to iron loading. 

Pancreatic beta cells express divalent metal transporters that predisposes them to overloading 

with iron leading to decreased insulin synthesis and secretion 24.  

 The mechanistic theory that has gained most traction, mainly due to the abundance of 

evidence presented, is iron’s proclivity to induce a state of oxidative stress. Iron is a pro-oxidant 
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and has been shown to induce the production of ROS through two main processes. The first 

involves iron acting as a catalyst in the Haber - Weiss/Fenton reaction where ferric iron is 

reduced, converting a superoxide radical (•O2
−) into O2. The Fenton portion of the reaction occurs 

when ferrous iron reacts with hydrogen peroxide to produce a hydroxyl radical (•OH) 35. The 

generation of the hydroxyl radical is a primary source of oxidative stress that typically causes 

DNA, lipid, protein and cellular organelle damage 35. The second process is irons involvement as 

a cofactor in electron transport chain (ETC) to generate ATP in the mitochondria 22,36. Iron 

transfers electrons to oxygen at Complexes I,II and III of the ETC leading to the generation of the 

previously mentioned superoxide 35.   

 Instances of IO have been linked to decreases in antioxidant defence enzymes such as 

superoxide dismutase 2 (SOD2) and catalase indicating elevated oxidative stress 21. When 

examining beta thalassemic patients, it was reported that elevated serum ferritin levels were 

linked to F2-isoprostanes, a marker for oxidative stress, as well decreased SOD 24. Another 

contributing factor to pancreatic beta cell failure is the lack of antioxidant defenses present. 

Since pancreatic beta cells experience increased iron loading due to the presence of divalent 

ion channels, it has been reported that the lack of antioxidant enzymes further predisposes them 

to damage due to oxidative stress 21. In addition, there have been findings suggesting that 

pancreatic beta cell dysfunction due to ROS could be attributed to a decrease in the transcription 

factors required for beta cell differentiation, proliferation and insulin gene transcription 21. In other 

cases, ROS has been attributed to impaired insulin binding sensitivity due to hydroxylation of 

phenylalanine resides on insulin 21. Finally, ROS have been shown to activate inflammatory 

specific kinases such as JNK, which as previously mentioned, has the capacity to activate PKC 

isoforms and result in the impairment of insulin signaling 13,35. 
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1.4 Adiponectin 

1.4.1 Structure and regulation 

 Adiponectin is a 30 kDa adipokine from the complement 1q (c1q) family and is secreted 

by adipocytes who's main site of action include adipose tissue, skeletal muscle and the liver 36,38. 

Adiponectin is encoded by AdipoQ that is found on chromosome 3q27, a loci of chromosomes 

shown to be particularly susceptible in instances of diabetes and cardiovascular diseases 38. 

Gene expression of adiponectin is regulated by a variety of transcription factors including 

peroxisome proliferator activator receptor γ (PPAR-γ), C/EBPa, CREB and Forkhead 

transcription factor 1 (FOXO1) 38.  

 Adiponectin’s structure is comprised of a carboxyl-terminal globular domain and an N-

terminal collagen domain that resembles the c1q family of proteins that form multimers 37. The 

formation of the multimer complexes is facilitated via a cysteine residue on the N-terminal 

collagen domain 37,40. Adiponectin exists in 3 forms found in circulation: the trimeric low molecular 

weight form (LMW) which represents the most basic unit, a hexamer form deemed as the middle 

molecular weight (MMW) and the high molecular weight (HMW) also referred to as full length 

adiponectin (fAd) which is comprised of several hexamer subunits 37. Post translational 

modifications (PTM) of adiponectin are crucial to its multimerization 41. These PTMs include 

hydroxylation and glycosylation of lysine resides found on its N-terminal domain 41. fAd can be 

cleaved to generate a 17 kDa globular adiponectin (gAd), albeit circulating levels are very low 

compared to fAd (2-30μg/mL) 38,39. Studies have demonstrated that the HMW form of fAd has 

been shown to exerts its pleiotropic effects. These include, but are not limited to anti-diabetic, 

anti-atherogenic, anti-inflammatory and anti-fibrotic effects 36,37,38.  

 Finally, secretion of adiponectin is regulated by chaperones originating in the 

endoplasmic reticulum (ER) including ERp44, ER oxidoreductase -1La (Ero-1La) and disulfide 

bond A oxidoreductase-like protein (DsbA-L) 41. ERp44 plays an inhibitory role by limiting the 
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release of adiponectin from the ER via the formation of a disulfide bond with its variable region. 

Ero-1La functions to release adiponectin from the ER by displacing adiponectin from its 

interaction with ERp44. DsbA-L has been shown to act as a disulfide isomerase that regulates 

the formation of disulfide bonds between adiponectin monomers during multimerization 40,41. 

 
Figure 1.4: Overview of the broad range of effects adiponectin has in variety of target organs/tissues 82. 
Image taken from Straub, L. G., & Scherer, P. E. (2019). Metabolic Messengers: adiponectin. Nature 
Metabolism, 1(3), 334 
 

 

 

1.4.2 Adiponectin signaling proteins 

 Adiponectin exerts its effects by binding to one of its primary receptors: Adiponectin 

receptors 1 or 2 (AdipoR1/2). AdipoR1/R2 are encoded by genes found on chromosomal regions 

1p36.13-q41 and 12p13.31 respectively 41. These proteins are members of the PAQR family of 

receptors and are structurally similar to GPCRs but functionally distinct 42. They are made up of 

METABOLIC MESSENGERS NATURE METABOLISM

cells, such as in cardiomyocytes and pancreatic β-cells31. An impor-
tant question is whether adiponectin could possibly trigger the 
formation of cancer lesions. This possibility is unlikely, because adi-
ponectin is the only adipose-tissue-secreted factor with an inverse 
correlation with obesity, whereas obesity significantly elevates can-
cer risk70,71. In breast cancer, the anti-metastatic effects of adiponec-
tin have been attributed to the inhibition of adhesion, invasion and 
migration of cancer cells, processes regulated through the AMPK–
S6K cell signalling axis72. Adiponectin’s pro-angiogenic effects can, 
however, lead to enhanced tumour growth, but this effect is limited 
to already established tumors73,74. As a member of the C1q/TNF 
superfamily, adiponectin not only shows structural homology to the 
cytokine TNFα but also acts on the immune system and the bone 
marrow75. Unlike TNFα, adiponectin antagonizes inflammation by 
reprogramming immune cells8. For example, adiponectin can shift 
Kupffer cells and other macrophages towards an anti-inflammatory 
phenotype76,77.

The actions of adiponectin as an anti-fibrotic factor are seen in 
many tissues, particularly in the liver, kidney and adipose tissue 
itself. Elevated adiponectin levels protect against hepatic and kid-
ney fibrosis78. Furthermore, skin fibrosis decreases as a consequence 
of increased adiponectin levels, whereas the absence of adiponec-
tin exaggerates dermal fibrosis79. Tissue regeneration is another 
key role that adiponectin exerts systemically3. Podocytes are key 
functional constituents in the kidney. Whereas podocyte ablation 
in adiponectin-deficient mice causes irreversible renal failure, the 

overexpression of adiponectin leads to a rapid recovery of kidney 
function. These regenerative effects extend to several other tissues, 
including pancreatic β-cells, in which adiponectin supports β-cell 
reconstitution after apoptotic insult4.

Insights into AdipoR signalling explain how adiponectin can 
maintain this broad range of effects (Fig. 3). Effects on ceramide 
turnover constitute the most receptor-proximal signalling events 
of the AdipoRs30,31,80. AdipoRs have been co-crystalized with a 
ceramide moiety. The receptor’s structure has a strong similarity to 
the seven-transmembrane alkaline ceramidases81. In ceramidase-
deficient yeast, the human AdipoR promotes ceramidase activity82. 
Ceramidases deacetylate ceramide to sphingosine, which in turn can 
be phosphorylated by sphingosine kinase to sphingosine-1-phos-
phate (S1P)83. An increased S1P/ceramide ratio potently inhibits 
apoptosis and even induces proliferation. Treatment with S1P or its 
pharmacological mimetic FTY720 rescues apoptosis-prone cells31. 
The actions of the AdipoRs lead to an increase in S1P, thereby 
activating the S1P receptors (S1PRs). Downstream of S1PRs, the 
heterotrimeric G protein Gαq mediates AdipoR-triggered calcium 
signalling by inducing phospholipase C (PLC) function. One of the 
products of PLC is inositol (1,4,5)-trisphosphate (IP3), the ligand 
of the IP3 receptor. This signal elicits Ca2+ release from the endo-
plasmic reticulum. Insulin-resistant livers display a dysregulated 
lipogenesis that eventually leads to lipotoxicity. Insulin sensitivity 
is affected by hepatic AdipoR signaling1. Because high ceramide 
concentrations can inhibit insulin signaling84, the decreased hepatic 

Adiponectin
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Fig. 2 | Target tissues and biological activity of adiponectin. Both adiponectin and its receptors are highly conserved between mice and humans. Most 
observations have been made in rodents but are supported by strong clinical correlational data. The physiological effects of adiponectin are therefore 
strongly preserved between rodents and humans. Adiponectin forms higher-order structures through multimerization. The high-molecular-weight 
multimer of adiponectin is the most biologically active form, targeting a diverse set of tissues and cell types and regulating important metabolic processes. 
Adiponectin’s effects range from anti-inflammatory and anti-apoptotic to insulin sensitizing. GSIS, glucose-stimulated insulin secretion.
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a seven transmembrane domain with inverted topology where the C terminus (approximately 25 

amino acids) is found on the extracellular surface and the N terminus on interior 38,41,42. It has 

been reported that AdipoR1 is ubiquitously expressed in all tissues, however, a larger portion is 

typically found in skeletal muscle while AdipoR2 is mostly found in the liver 41. Furthermore, 

studies have reported that the two adiponectin receptors express different affinities to specific 

forms of adiponectin with AdipoR1 favouring gAd and AdipoR2 favouring fAd 41.  

 T-Cadherin, a glycolsylphosphatidylinositol-anchored protein, is a third receptor that 

adiponectin has been shown to interact with 42. T-cadherin has been reported to have affinities 

to the MMW and HMW forms of adiponectin and is primarily located in the heart, smooth muscle 

and endothelium 38,40. T-cadherin is required for adiponectin to exert its cardioprotective effects, 

however, it is not a typical receptor due to the absence of any intracellular signalling or 

cytoplasmic components 40. The mechanism behind how T-cadherin facilitates adiponectin 

action requires further study.  

 Upon successful binding of adiponectin to one of its primary receptors 

(AdipoR1/AdipoR2), an adaptor protein known as the adaptor protein containing pleckstrin 

homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) is 

activated 43. As its name suggests, APPL1 is made up of different regions each with vital roles in 

facilitating adiponectin signaling. The leucine domain, also referred to by some as the BAR (NH2-

terminal Bin 1/ ampliphysin / rvs167) domain, is responsible for membrane curvature induction, 

small GTPase binding, transcriptional repression, apoptosis, and secretory vesicle fusion 41. The 

pleckstrin homology (PH) directs proteins to specific membrane compartments by increasing 

lipid specificity of the BAR region 41. The phosphotyrosine binding domain (PTB) is responsible 

for scaffolding proteins destined to interact with APPL1 41. Another adaptor protein (APPL2) is 

also found to interact with AdipoR1/AdipoR2. APPL2 exhibits approximately 54% homology to 
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APPL1 41,42. It has been reported that that APPL2 can bind to APPL1, via the BAR region, 

preventing any interaction with AdipoR1, thus impairing adiponectin signaling 42.   

 

1.4.3 Adiponectin function and effector proteins  

 As mentioned previously, adiponectin has been shown to act as an anti-diabetic, anti-

atherogenic, anti-inflammatory and anti-fibrotic compound 36,37,38. These effects are facilitated via 

activation of adiponectin’s effector proteins. These include: AMP-activated protein kinase 

(AMPK), acetyl-CoA carboxylase (ACC), peroxisome-proliferator-activated receptor alpha 

(PPAR- α), and P38 Mitogen Activated Protein Kinase (P38 MAPK) 43. APPL1 has been 

demonstrated to play a vital role in mediating adiponectin function via overexpression and 

knockout approaches. Overexpression of APPL1 in skeletal muscle cells resulted in increased 

phosphorylation and activation of AMPK and P38 MAPK while APPL1 knockout resulted in 

decreased adiponectin stimulated phosphorylation of AMPK, P38 MAPK, ACC and decreased 

fatty acid oxidation 43,44. With regards to adiponectin’s insulin sensitizing effect, studies have 

emerged uncovering a cross-talk occurring between APPL1 and IRS-1/2 43. Initially, it was 

determined that upon APPL1 KO in C2C12 myotubes, insulin stimulated Akt phosphorylation 

was significantly impaired 43,44. Overexpression of APPL1 resulted in enhanced insulin stimulated 

Akt activation 43,44. It is also worth noting that administration of adiponectin alone had no effect 

on Akt phosphorylation and that the observed activation of Akt was only detected upon co-

administration of adiponectin and insulin 43,44. APPL1 Is thought to facilitate this cross-talk with 

AdipoR1 through a number of mechanisms. One such mechanism is the ability of APPL1 to form 

complexes with IRS1/2 under basal conditions 83. Upon insulin or adiponectin stimulation, this 

complex is recruited to IRs and potentiates insulin signaling thus explaining adiponectin’s 

synergistic effect on Akt phosphorylation 83. Other suggested mechanisms include APPL1 

interacting with the p110 catalytic subunit of PI3K and Akt 43,44. 



 
 

 18 
 

 It had been previously reported that gAd is the predominant form of adiponectin found 

to interact with AdipoR1 in skeletal muscle 43. Several studies have demonstrated that 

adiponectin stimulated activation of AMPK results in increased glucose uptake and lactate 

production in skeletal muscle while also reducing expression of enzymes involved in 

gluconeogenesis such as phosphoenolpyruvate carboxykinase (PERK) and glucose-6-

phosphotase (G6Pase) in the liver 40,44,45. AMPK is typically phosphorylated by LKB1 as well as 

Ca2+/calmodulin dependent protein kinase kinase (CaMKK) 42,46. Adiponectin had been 

demonstrated to stimulate the translocation of LKB1 from the nucleus to the cytosol via APPL1 

activation, resulting in the phosphorylation of AMPK 46. In addition, adiponectin triggers the 

release of Ca2+ ions from the ER which stimulates the phosphorylation of AMPK via CaMKK 42. 

Kadawaki et al showed that upon adiponectin mediated activation of AMPK, ACC is 

phosphorylated via AMPK and an increase in fatty acid oxidation is observed 40,44. ACC is thought 

to increase fatty acid oxidation by facilitating the reduction of malonyl-CoA levels leading to 

decreased carnitine palmitoyltransferase 1 activity resulting in increased fatty acid oxidation 44. 

Adiponectin stimulated activation of AMPK has also been reported to increase insulin sensitivity 

43,44. This effect involves two major players in the insulin signaling pathway: p70 S6 Kinase (S6K) 

and IRS-1. Activation of AMPK has been linked to increased tuberous sclerosis complex 2 

(TSC2) activity resulting in decreased S6K activation 44. Increased S6K activity is associated with 

decreased IRS-1 tyrosine phosphorylation, therefore, reduced activity S6K was found to 

increase insulin sensitivity 44. Adiponectin mediated AMPK activation was additionally reported 

to decrease phosphorylation of IRS-1 at sites Ser302 and Ser636/639 which are known to be 

inhibitory sites of insulin signalling 44.Peroxisome proliferator-activated receptor γ coactivator -

1α (PGC-1α) has also been shown to be activated via adiponectin stimulated AMPK 

phosphorylation resulting in increased mitochondrial biogenesis 42. 
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 Binding of adiponectin to AdipoR2 results in the activation of PPAR-α 36. This 

transcription factor results in the elevated transcription of gene targets responsible for proteins 

such as acetyl CoA oxidase (ACO), uncoupling proteins (UCPs). The increase in expression of 

ACO and UCP results in elevated fatty acid oxidation, energy expenditure and decreased skeletal 

muscle triglyceride content 47,48. 

 Finally, adiponectin can also exert its function by manipulating circulating ceramide 

levels. Adiponectin has been shown to activate cellular ceramidase thereby lowering ceramide 

levels and increasing sphingosine-1-phosphate which results in improved insulin sensitivity 40,48. 

 

 

Figure 1.5: Overview of adiponectin signaling via AdipoR1/R2 and resulting effects 41. 
Image taken from Achari, A., & Jain, S. (2017). Adiponectin, a therapeutic target for 
obesity, diabetes, and endothelial dysfunction. International journal of molecular 

sciences, 18(6), 1321 
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1.4.3.1 P38 MAPK 

 P38 MAPK is an effector protein that is activated upon binding of adiponectin to AdipoR1 

in skeletal muscle 37,45. P38 MAPK is a member of the mitogen activated protein kinases (MAPK) 

that regulates several cellular functions including inflammation, cell differentiation, cell growth 

and cell death 43. The MAPK family is known to function as an intracellular signaling pathway that 

responds to extracellular stimuli. Four subgroups exist in the MAPK family which include the 

Extracellular signal-regulated Kinases (ERK), c-jun-N terminal or stress activated protein kinases 

(JNK/SAPK), ERK/big MAP kinase1 (BMK1) and the P38 MAPKs 49. P38 MAPK is characterized 

as a Thr-Gly-Tyr (TGY) dual phosphorylation motif and exists as four isoforms that share up to 

60% homology among each other but only 40-45% homology with the other MAPKs 50,51. The 

four isoforms are: P38α that is found ubiquitously expressed in all cell types, P38β in the brain, 

P38γ in skeletal muscle and P38δ in endocrine glands 50,51. P38 MAPK has been reported to be 

activated and play a role in response to extracellular stimuli such as UV light, heat, osmotic 

shock, inflammatory cytokines such as TNF-α and Interleukin 1, as well as growth factors 49,50. 

P38 MAPKs are also involved in apoptosis, where caspase (integral proteins involved in 

apoptosis) inhibitors have been reported to inhibit P38 MAPK activation 50. This effect, however, 

has been shown to be cell and P38 isoform specific since other forms of P38 have been reported 

to activate cell survival, growth and differentiation processes 50. It is therefore apparent that the 

multitude of different scenarios that activate P38s, localization in addition to the availability of 

four isoforms that react differently to each stimulus accurately reflects the sheer complexity of 

understanding this class of kinases.  

With regards to adiponectin, it had been previously established that adiponectin 

stimulated activation of P38 MAPK results in increased glucose uptake and fatty acid oxidation 

47,51,52. Adiponectin mediated increase in fatty acid oxidation in C2C12 cells was shown to be 

facilitated via a sequential activation of AMPK followed by P38 MAPK which results in 
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phosphorylating and activating PPAR-α 47. Furthermore, 5-aminoimidazole-4 caboxamide 

ribonucleoside (AICAR) stimulated cells exhibited increased glucose uptake via Glut4 and Glut1 

as a result of both AMPK and P38 MAPK activation 52. The primary kinases responsible for 

activating P38 MAPK include transforming growth factor-β-activated kinase 1 (TAK1), mitogen 

activated protein kinase kinase 3 (MKK3) and MKK6 50,51. However, it was determined that 

adiponectin stimulated APPL1 acts as a scaffold that facilitates P38 MAPK phosphorylation via 

activation of TAK1 and MKK3 only 52. 

 

 

1.4.4 FOXO1: Role in adiponectin receptor expression 

 The Forkhead Box “Other” family of transcription factors (TFs) have been implicated in 

many vital cellular processes. These include, but not limited to, cell cycle arrest, DNA repair, 

apoptosis, glucose metabolism, aging and autophagy 54. The FOXO family consists of FOXO1, 

FOXO3a, FOXO4 and FOXO6 54. These TFs have been detected in skeletal muscle and are 

reported to be involved in processes such as regulation of muscle mass, muscle fiber type 

specificity and metabolic flexibility 55. Since the FOXO family is involved in such a wide range of 

functions, its regulation is of utmost importance. FOXO TFs are regulated via post translational 

modifications (PTMs) that include phosphorylation, acetylation, ubiquitination, methylation and 

glycosylation 54.  The effect of these PTMs can manifest itself by either altering FOXO localization 

(nuclear vs cytosolic), modifying half-life and DNA binding capabilities 54.  

 Phosphorylation of FOXO has been reportedly facilitated by variety of kinases, most 

notable of which include: Akt/Protein Kinase B, mammalian Ste20-like kinase (MST1) and JNK, 

P38 MAPK, cyclin dependent kinases (CDKs), AMPK, and Ikappa B kinase (IkK) 54. In general, 

phosphorylation of FOXO initiates the nuclear extrusion of FOXO resulting in decreased 

transcriptional activity 54. This can be attributed to a number of mechanisms such as binding of 

the chaperone protein 14-3-3 which alters the structure of the nuclear localization signal (NLS) 
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on FOXO enhancing its extrusion as well as the induction of a mutation in the nuclear export 

signal (NES) 54. However, phosphorylation can also result in the increase of FOXO transcriptional 

activity, as evident by situations involving oxidative stress 54. During instances of oxidative stress, 

MST1 is activated, leading to enhanced phosphorylation of the forkhead domain (FHD) on the 

FOXO TFs resulting in reduced interaction with 14-3-3 and increased nuclear localization 54,55. 

JNK also plays role in phosphorylating FOXO4 under oxidative stress resulting in increased 

nuclear translocation and transcriptional activity 54,55. It is therefore important to note that FOXO 

proteins can have contradictory effects, and these effects are heavily based on conditions and 

cell type.  

 In the case of acetylation, CBP/p300 has been reported to interact directly with FOXOs, 

increasing acetylation and resulting in attenuated transcriptional activity attributed to cytosolic 

translocation as well as impaired DNA binding capabilities 54. Once acetylated, or 

phosphorylated, FOXO TFs are mono or polyubiquinated and destined for degradation via the 

ubiquitin proteasome pathway 56,57.  

 Finally, with regards to adiponectin receptor regulation, numerous studies have reported 

that FOXO1 plays a role in the expression of both adiponectin and AdipoR1/R2. It was initially 

determined that the expression of AdipoR1/R2 was downregulated in cases of increased insulin 

signaling 58,59. Upon the use of a PI3K inhibitor, an integral protein in the insulin signaling pathway, 

the decrease in AdipoR1/R2 mRNA initially observed was reversed 58. It therefore determined 

that PI3K activation of Akt, a known FOXO1 interacting kinase and downstream effector of PI3K, 

was responsible for phosphorylating FOXO1 and attenuating its transcription of AdipoR1/R2 

genes 58. 
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1.4.5 Adiponectin resistance, T2D and oxidative stress 

There are cases where a state of adiponectin resistance is observed in obese and diabetic 

individuals in spite of lowered circulating adiponectin levels.  As mentioned previously, a hallmark 

symptom of obesity and T2D is increased visceral adiposity which has been shown to negatively 

correlate with circulating adiponectin levels 18. The reduction in adiponectin resulting in 

decreased fatty acid oxidation and glucose uptake, in addition to the ectopic accumulation of 

fat in skeletal muscle leads to impaired insulin signaling resulting in insulin resistance and T2D 

65.  In a landmark study conducted on isolated human skeletal muscle, researchers demonstrated 

that treatment of gAd resulted in an additive effect regarding insulin stimulated glucose uptake 

and fatty acid oxidation in both obese and lean subjects 67. However, the researchers also 

inadvertently showed that this additive effect was blunted in obese individuals versus their 

control counterparts 67. This suggests a phenomena of adiponectin resistance present in obesity. 

This finding was corroborated by the Kadawaki group that observed decreases in AdipoR1/R2 

mRNA levels in the skeletal muscle and adipose tissue of insulin resistant, obese mice 37. 

Kadawaki suggested that obesity was shown to decrease both circulating adiponectin and its 

receptors, reducing adiponectin signaling resulting in insulin resistance which is shown to induce 

hyperinsulinaemia 37. The increase in circulating insulin could potentially be another mechanism 

to decrease adiponectin receptor expression via reduced FOXO1 transcriptional activity. It is 

important to note that adiponectin resistance has been shown to precede insulin resistance in a 

high fat diet (HFD) mouse model 65. Adiponectin was shown to stimulate fatty acid oxidation and 

ACC phosphorylation in the control group but was significantly impaired in the HFD group in as 

early as 3 days 65. Hallmark observations of insulin resistance including increased fatty acid 

transporters and increased DAG content resulting in impaired insulin signaling were observed 

approximately two weeks post HFD 65. 
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With regards to iron, as previously discussed, observations of increased serum ferritin 

levels correlated with decreased circulating adiponectin levels 63. Furthermore, the McClain 

group additionally showed that AdipoR1/R2 mRNA levels in adipocytes was decreased by 30% 

in mice feeding on an iron supplemented diet 63. This effect was attributed to increased 

deacetyation of FOXO1 which was shown to increased binding to PPAR response elements in 

conjunction with PPAR-γ resulting in repressed transcriptional activity 63. While this explanation 

is rather convoluted, it is worth noting that iron’s proclivity to induce a state of oxidative stress 

could potentially alter both kinase and acetylase activity responsible for FOXO PTMs. FOXO TFs 

are considered to be critical mediators of oxidative stress with several alterations in their PTM 

status occurring 57. Examples include increased JNK and MST1 activity under oxidative stress 

resulting in increased nuclear translocation of FOXO4 and FOXO3 respectively 57. Furthermore, 

increased transcriptional activity of FOXO3 under oxidative stress has been shown to increase 

expression of the anti-oxidant enzyme manganese superoxide dismutase (MnSOD) 57. In 

conclusion, it is viable that iron induced oxidative stress could be a potential mechanism to 

explain the changes in FOXO1 transcriptional activity resulting in decreased expression of 

AdipoRs. 
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1.5: Hypotheses and research goals 

1.5.1 Research goal 1: Establishing IO model in L6 skeletal muscle cells 

An IO model was first established by conducting a series of experiments to determine 

the optimum dosage and time of IO exposure. To ensure the selected parameters induced a 

state of IO, the biomarker for total iron stores, ferritin, was investigated at both mRNA and protein 

level.  

1.5.2 Hypothesis 1: IO induced adiponectin resistance  

 Once the experimental model was confirmed to be functional, adiponectin signaling was 

examined via P38 MAPK readout. Adiponectin receptors (AdipoR1/R2) as well as associated 

adiponectin proteins (APPL1/APPL2) were examined. The hypothesis was: 

Treatment of L6 skeletal muscle cell with IO will result in adiponectin resistance. 

1.5.3 Research goal 2: Monitor effect of IO on AdipoR transcription factor FOXO1 

 With AdipoR1 mRNA levels determined to decrease under IO, the next goal was to 

examine if IO had any effect on FOXO1. This would include PTMs as well as cellular localization. 

1.5.4 Research goal 3: Characterize IO induced ROS production 

 To establish a mechanism pertaining to IO’s effects on adiponectin signaling and FOXO1, 

iron’s tendency to instil a state of oxidative stress was explored. To do so, IO induced ROS 

production was investigated. 

1.5.5 Hypothesis 2: Mechanistic role of IO induced ROS production on adiponectin 

signaling and FOXO1 PTM localization 
 After characterizing IO induced ROS production, oxidative stress was investigated to 

determine its role, if any, in inducing adiponectin resistance. The hypothesis was: IO induced 

ROS production leads to increased cytosolic localization and reduced transcriptional activity of 

FOXO1, resulting in adiponectin resistance. 

 



 
 

 26 
 

 

 

 

 

 

 

 

 

 

Chapter 2: Iron overload reduces adiponectin 
receptor-1 expression via a ROS/FOXO1-dependent 

mechanism leading to adiponectin resistance in 
skeletal muscle cells 

 
 
 
 
 

 

 

 

 

 

 

 

 
 



 
 

 27 
 

2.1 Abstract 
 
 Iron overload (IO) is a common yet underappreciated observation in metabolic syndrome 

(MetS) patients. With the prevalence of MetS continuing to rise, it is of utmost importance to 

further elucidate mechanisms leading to metabolic dysfunction. IO positively correlates with 

reduced circulating adiponectin levels yet the impact of IO on adiponectin action is unknown. 

Here, we established a model of IO in L6 skeletal muscle cells and found that it induced 

adiponectin resistance, measured by reduced P38 MAPK phosphorylation by the adiponectin 

receptor (AdipoR) agonist AdipoRon. This correlated with reduced mRNA and protein levels of 

AdipoR1 and its facilitative binding partner APPL1. IO caused phosphorylation, nuclear extrusion 

and inhibition of FOXO1, a known transcription factor for AdipoR1. Reactive oxygen species 

production was induced by IO and using NAC to prevent this attenuated the effect of IO in 

FOXO1 phosphorylation, localization and adiponectin resistance. In conclusion, our study 

identifies a ROS/FOXO1/AdipoR1 axis as a cause of skeletal muscle adiponectin resistance in 

response to IO. This new knowledge provides new insight on potential disease pathophysiology 

in MetS patients with IO. 
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2.2 Introduction 
 
 The metabolic syndrome (MetS) has a reported worldwide prevalence of up to 84% of 

the general population 4,80. MetS is characterized by a collection of physiological risk factors that 

include visceral obesity, insulin resistance, hypertension and dyslipidemia 4,6,84. These factors 

contribute to elevated risk of chronic metabolic disorders such as cardiovascular disease and 

type 2 diabetes (T2D). With the high global prevalence of MetS, new knowledge is continually 

needed to improve understanding of its etiology.  

A recurring yet underappreciated research theme is the role of iron in MetS. In the majority 

of MetS cases elevated levels of iron have been consistently observed 20,60. This has been 

demonstrated in numerous studies where increased serum ferritin levels, a biomarker for iron 

body stores, has positively correlated to increased incidence of T2D 20,60,85,86. Indeed, iron 

chelation therapies, such as deferoxamine, have been shown to improve glucose tolerance thus, 

substantiating causal role of iron in metabolic disease 21. Iron is involved in a wide range of vital 

cellular processes such as oxygen transport via haemoglobin and mitochondrial function 23. Iron 

is also considered a pro-oxidant and serves as a co-factor for enzymes involved in redox 

reactions 20,23,87. Iron overload (IO) leads to the generation of reactive oxygen species (ROS) which 

has been shown to have detrimental effects on tissues and cellular organelles 19. Elevated levels 

of ROS have also been shown to negatively impact glucose uptake in muscle and fat as well as 

insulin secretion in pancreatic beta cells 21,61. Thus, elevated oxidative stress is an established 

mechanism whereby iron induced cellular dysfunction.  

Adiponectin exerts a range of beneficial therapeutic responses such as insulin sensitizing, 

anti-atherogenic, anti-inflammatory and anti-fibrotic effects 38,82. Adiponectin-stimulated 

signaling pathways include P38 Mitogen Activated Protein Kinase (MAPK), AMP-activated 

protein kinase (AMPK) and peroxisome-proliferator-activated receptor alpha (PPAR-α) 47,62. 

Studies have reported that adiponectin mediated activation of P38 MAPK results in glucose 
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transporter (GLUT)4 translocation to the plasma membrane in L6 myotubes, as well as activation 

of PPAR-α, resulting in increased fatty acid oxidation 47. Interestingly, in T2D patients circulating 

adiponectin levels were inversely correlated to serum ferritin levels 63,88. Adiponectin mRNA levels 

from adipocytes were also significantly decreased when mice were subjected to IO 63. Thus, 

decreased adiponectin levels or reduced adiponectin signaling result in impaired insulin 

signalling and glucose intolerance in T2D. 

FOXO1 is a transcription factor from the family of Forkhead box ‘Other’ proteins. This 

family of proteins is involved in multiple processes such as cell cycle arrest, DNA repair, 

apoptosis, glucose metabolism, aging and autophagy 55,89. The FOXO family of transcription 

factors have been reported to exert their effects on gene expression via direct binding to DNA 

targets as well as through protein-protein interactions with other transcription factors 55. These 

transcription factors are mainly regulated through post translational modifications (PTMs), most 

important of which include phosphorylation and acetylation 64,89. Upon phosphorylation of 

FOXO1, the transcription factor is shuttled out of the nucleus and into the cytoplasm, effectively 

reducing its transcriptional capabilities 64. Importantly, FOXO1 has been shown to stimulate the 

expression of the adiponectin receptor AdipoR164,90.  

The purpose of this study was to examine the impact of IO upon adiponectin sensitivity. 

We established an IO model in L6 skeletal muscle cells and observed that these cells became 

adiponectin resistant. We also examined the mechanisms via which IO regulated alterations in 

adiponectin sensitivity and focused on ROS production, regulation of FOXO localization and 

activity and consequently AdipoR1 expression levels. The observations made are likely of great 

significance in adding to our knowledge of disease pathogenesis in MetS and in identifying when 

adiponectin-based therapeutics would be beneficial. 
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2.3 Materials and Methods 
 
2.3.1 Cell Culture: Growth and maintenance of L6 skeletal muscle cell line 

L6 skeletal muscle cells from Rattus norvegicus were used for all in vitro cell work. Cells were 

incubated at 37°C - 5% CO2. L6 cells were grown in AMEM media containing 10% Fetal Bovine 

Serum (FBS) (Wisent Inc. #310-010-CL) and 1% antibiotic-antimycotic (Gibco Life technologies 

#15240-602). Cells were grown in 75cm2 flasks (Falcon via VWR #353136) and were split at 70% 

confluency. To detach cells, 3ml of trypsin (Wisent Inc. #325-043) was added to the flasks which 

were placed in a 37°C-5% CO2 incubator for 2 minutes. Flasks were gently tapped, and floating 

cells were collected and neutralized with 3ml of 10% FBS AMEM in a 15ml conical tube. Cells 

were spun down for 5 minutes at 2000 RPM and resuspended in 10ml of 10% FBS AMEM. 10% 

of total suspension was used for further culturing and plating. 0.5% FBS media was used to 

induce starvation prior to experimental treatment. IO treatment was previously optimized and 

established at 250μM- FeCl3 (Sigma-Aldrich #451649). Increased adiponectin mediated signaling 

was achieved by treating cells with AdipoRon (AdipoGen® Life Sciences #AG-CR1-0156-M050), 

an adiponectin agonist, at 35μM for 30 minutes. Inhibition of ROS production was facilitated 

using the general ROS inhibitor N-Acetyl Cystine (NAC) (Sigma-Aldrich #A7250) at 500nM, 30 

minutes prior to IO treatment.  

2.3.2 Western Blot: Protein expression/phosphorylation profile determination of  
adiponectin receptors, associated proteins and FOXO1 
 
Upon completion of treatment conditions, cells were collected from 6 well plates (Falcon 

#353046) using a stock Laemmli lysis buffer made up of Tris-HCl (pH 6.8, 0.5M) (BioRad 

#1610798), 10% SDS (ThermoFisher Scietific #15525017) , 7.5 mL glycerol (Sigma-Aldrich 

#G9012) and ddH2O. Working Laemmli buffer solution made up of 90% stock Laemmli lysis 

buffer and 10% beta-mercaptoethanol with the addition of a Pierce Protease/Phosphatase 

cocktail inhibitor (ThermoScientific #A32961). Samples were collected and centrifuged at 10,000 
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RPM for 10 minutes then denatured at 95°C for 5 minutes. Samples were either stored at -20°C 

or run on appropriately sized SDS-PAGE gel depending on target protein. Gel electrophoresis 

was conducted at ~105 V for 2h, followed by transfer to a nitro-cellulose membrane (BioRad 

#162-0177) at the same voltage for 1h. Membranes were blocked in 3% BSA (Bovine Serum 

Albumin) (Bioshop #ALB001.1) blocking solution for 1h, followed by incubation in primary 

antibody overnight. Primary antibody concentration used was generally a 1:1000 dilution unless 

specified otherwise in the results section. Secondary antibody used was an anti-rabbit igG 

horseradish peroxidase (HRP) conjugated antibody (Cell Signalling #7074) at 1:5000 dilution. 

Membranes were activated using Clarity Western ECL Substrate solution (Bio-RAD: #1705061) 

and visualized using X-ray film development techniques (GE Health Care via VWR #28906837). 

WB band intensity was quantified using ImageJ software, normalized to GAPDH (37kDa), βactin 

(45kDa) or α/β tubulin (52kDa) and compared to control. 

 

AdipoR1 and AdipoR2 primary antibodies were kindly gifted from AstraZeneca (Sweden). APPL1 

antibody was purchased from Antibody Immunoassay Services (AIS, Hong Kong). APPL2 

antibody (#H00055 198-B01P) was obtained from Abnova. Ferritin Heavy chain primary antibody 

was obtained from Santa Cruz (#sc-376594), pFOXO1 (Ser256) primary antibody from cell 

signaling (#9461). pP38 MAPK (Thr180/Tyr182) and P38 MAPK were purchased from cell 

signaling (#9211 and #9212) respectively. GAPDH, βactin, α/β tubulin were obtained from cell 

signaling (#2118, #4970, #2144) respectively. 

 

2.3.3 Analysis of intracellular iron levels using ferrozine assay 

To determine iron content L6 cells were lysed with 200μl of a solution containing equal volumes 

of 1.4 M HCl and 4.5% (w/v) KMnO4 in H2O. Plates were sealed in aluminum foil and incubated 

at 60°C for 2h then 60μl of detection reagent (2.5 M ammonium acetate + 1 M ascorbic acid + 
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6.5 mM ferrozine + 6.5 mM Neocuproine) was added to each well followed by a further 30 

minutes incubation at room temperature (RT). 280μl of mixture from each well was then 

transferred to a 96 well plate and the absorbance of each well measured at a wavelength of 

550nm. 

 

2.3.4 qPCR: Examining the effects of IO on mRNA expression of adiponectin receptors 
and associated proteins 
 

In order to quantify relative mRNA values of proteins of interest, RT-PCR was conducted. mRNA 

sequences of interest were blasted on NCBI Primer BLAST and primers of interested were 

designed based on specifications best suited for maximal binding with SYBR Green. Primers 

tested are listed as follows: 

Primers were designed to span exon-exon junctions and all possible transcript variants of the 

desired protein. 18S rRNA was used as the housekeeping gene required for data normalization.  

After treatment, cells were lysed and collected using TRIzol reagent (Thermofisher Scientific 

#15596026). Following collection of the lysates, phase separation was performed using a 5:1 

TRIzol:Chloroform ratio. Samples were centrifuged at 12,000 RPM for 20 minutes at 4°C. 

Aqueous phase was removed and RNA isolation procedure was followed. 100% isopropanol 

(Sigma-Aldrich #I9516) was added in a 1:1 ratio and incubated at room temperature for 10 

 Forward (5’ -> 3’) Reverse (3’ -> 5’) 
AdR1: ATATAAGGTCTGGGAGGGGC CCAGTCAGGAAGCACATCGT 
AdR2: CAGAGCAGGAGTGTTCGTGG ATTCCACTCAGACCCAAGCC 
APPL1: GAGTCCAACAATGAGGGGGA CCCTACGATCCAGTTCAGCA 
APPL2: TGGTTCAGAGCATTCAGGTGG TCCTGTTGATCTGCGGTGTG 
FOXO1: AGTTAGTGAGCAGGCAACAT GGTGAAGGGCATCTTTGGAC 
Ferritin (Light): CCTACCTCTCTCTGGGCTTCTT CGCTTCTCCTCGGCCAATTC 
Ferritin (Heavy): ATCATGACCACCGCGTCTC AACAAGACATGGACAGATAGACGTA 
18S:  CGTTGATTAAGTCCCTGCCCT AGTCAAGTTCGACCGTCTTCT 
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minutes. Samples were then centrifuged at 12,000 RPM for 15 minutes at 4°C. Samples 

proceeded to undergo RNA washing using 75% ethanol. Isolated RNA was quantified using 

Nanodrop. Reverse Transcription was performed with the use of a master mix comprising of: 

Reverse Transcriptase Buffer, Reverse Transcriptase, dNTP, Target Primer, RNAse Inhibitor, 

RNA and Nuclease Free water.  Samples were heated at 42°C for 1h in a water bath, followed 

by 70°C for 5 minutes on a heat block. Samples were run on a thermal-cycler.  

Data was quantified and analyzed using the delta delta Ct method. 
 
2.3.5 ImmunoFluorescence: Analysis of effects of IO on P38 MAPK activation, pFOXO1 
translocation and intracellular ROS production 
 
Upon completion of the experimental treatment, multi-well containing coverslips were washed 

with PBS++ (1% Ca2+ and 1% Mg2+ fortified) buffer and fixed using a 4% paraformaldehyde (PFA) 

solution (Sigma-Aldrich #HT501128). If cell permeation was required, 0.1% TritonX100 was used 

as the permeating solution. Blocking was achieved using 3% BSA in PBS++. Primary antibody 

concentration used was 1:500 unless otherwise specified. Alexa 546 goat anti-rabbit (# A-11035) 

was used as the secondary antibody at 1:1000. In order to stain the nuclei, a 3:1 ratio Prolong 

Antifade (Invitrogen #P36930) to Vectashield containing DAPI (Vectashield #H-1200) was used. 

Slides were visualized on a Nikon Confocal microscope. Nuclei were visualized on the DAPI 

channel while Alexa 546 was visualized on its namesake channel. In the case of CellROX Green 

(Molecular Probes by Life Technologies #C10422), 2.5μM was used for 30 minutes prior to 

fixation. CellROX Green was visualized via the FITC channel. Mean fluorescence intensities were 

detected and recorded for all cells in field of view via Nikon Elements Analyst software. Data was 

normalized relative to control. ImageJ plugin JACop was used to obtain Person Correlation 

Coefficient values of nuclear overlap of pFOXO1. 
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2.3.6 Plasmid Transfection/Dual Luciferase Reporter Assay: Assessment of AdipoR1 
promoter and FOXO1 transcriptional activity  
 
Adiponectin Receptor 1(AdR1)-Luciferase (generously provided by Dr. Myeong Ho Jung, Pusan 

National University 79), FOXO-Luciferase, pGL3-Luciferase and Renilla reporter constructs 

(Generously donated by Dr. Tara Haas 91) were used in a Dual Luciferase Reporter assays. 

Constructs were amplified and purified using the QIAGEN Plasmid Midi DNA Purification Kit 

(QIAGEN: Cat No: 12145). Constructs were sequenced following purification and used 

accordingly. AdR1-Luc/FOXO-Luc and Renilla -Luc construct were co-transfected into L6 cells 

using Lipofectamine 3000 (ThermoFisher Scientific: L300015). pGL3-Luc and Renilla constructs 

were used as controls for the transfection procedure. Cells were scraped and collected using 

the Promega Dual Luciferase Assay Kit (Promega: E1910) provided lysis buffer. Luciferase 

activity was measured using a luminometer with two injectors: the first containing the kit provided 

Luciferase substrate and the second containing the Stop-Glo substrate. Data was analyzed to 

account for background Renilla fluorescence activity. Data values were then normalized and 

compared to control.   

2.3.7 Iron Response Element-Cyano Fluorescent Protein (IRE-CFP): Visual analysis of 
intracellular iron content  
 

Iron Response Element - Cyan Fluorescent Protein (IRE-CFP) plasmid was kindly provided by 

Dr. James R. Connor at Penn State Hershey Medical Centre 78. Transfection of IRE- CFP into 

L6 skeletal muscle cells was completed according to manufacturer's protocol (Lipofectamine 

3000® [Invitrogen #L3000015]), directly onto glass cover slips (Fisher Scientific #12-546) in a 

12 well plate (Falcon via VWR # 353043). After 2 days of incubation in a CO2 incubator at 37°C, 

cells were starved in 0.5% FBS DMEM and treated with 250μm of FeCl3 for 24h. Cells were 

washed 3X with PBS++ (supplemented with 1% Ca2+ and 1% Mg2+), and fixed with 4% 

paraformaldehyde (PFA) (Sigma-Aldrich #HT501128) for 20 minutes. Cells were incubated in 
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1% glycine (Bioshop #GLN001.5) dissolved in PBS++ for 10 minutes and mounted onto glass 

slides with mounting medium (mixture of Prolong Anti Fade [Invitrogen #P36930] to Mounting 

Medium for Fluorescence with DAPI [Vectasheild/Vector Labs #H-1200] in a 3 to 1 ratio). Slides 

were observed with an LSM 700 confocal microscope with DAPI and FITC channels. Pixel 

intensity per cell was quantified using ImageJ software. IMARIS software was used to create 

representative 3D images.  

 
2.3.8 DCF-DA: Characterization of IO induced intracellular ROS production 
 
A plate-based assay used to confirm IO induced ROS production. DCF-DA is a fluorgenic dye 

that is oxidized by ROS to produce DCF which is the fluorescent component of the dye. The 

fluorescence is detected as an area scan at an excitation/emission spectra of 495/529nm. Data 

values normalized and compared to control.  

 

2.3.9 Statistical analysis  
 
Unpaired Student’s T-test was conducted for determining statistical significance using GraphPad 

Prism. Data was presented as mean ± SEM. Statistical significance between treatment groups 

were calculated using the unpaired Student t test when comparing 2 groups. P value < 0.05 was 

considered statistically significant. 
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2.4 Results 
 

 
Figure 2.1 – Validation of cellular model for intracellular iron overload 

(A) Dose response showing intracellular iron content in L6 skeletal muscle cells, detected 
using Ferrozine assay. Cells were treated with FeCl3 at 50, 100 and 250 μM for 24h (n=3). 

(B) Time course using ferrozine assay in cells treated with 100μM and 250 μM FeCl3 for 

1,2,4,6,12 and 24h (n=3) (C) Relative mRNA levels of ferritin heavy and light chains 

determined by qPCR in untreated (Con) or cells treated with FeCl3 - 250μM, 24h, (n=3) (IO). 

(D) Western Blot analysis of ferritin (~25 kDa) expression ± IO (n=3). (E) Cells expressing an 

IRE-driven CFP reporter were treated ± IO (n=3) and then 2-dimensional (2D) 

representative images were taken (scale bar: 2μM) or 3D representative images created 

from serial optical sections using IMARIS software (scale bar: 10μM). For quantitation, 

mean fluorescent intensity per cell was calculated. All graphs show mean ± SEM and * = 

P<0.05, ** = P<0.01, *** = P<0.001 versus Con. 
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2.4.1 Characterizing IO in L6 skeletal muscle cells 
 

Figure 1 exhibits a series of experiments designed to optimize the IO dose and time 

course required for establishing the IO model. Fig.1(A) displays dose-response data obtained 

from a ferrozin colorimetric assay using 50μM, 100μM and 250μM of FeCl3 for 24 hours. Data 

shows steady and proportionate increase in intracellular iron with 250μM displaying the greatest 

amount of intracellular iron. Fig.1(B) displays data obtained from a time course based Ferrozin 

colorimetric assay (0,1,2,4,6,12 and 24h) using 100μM and 250μM of FeCl3. Results show that 

at 250μM, total intracellular iron content remained relatively constant along the time course, 

hovering around 200μM. There was a slight increase observed at the 12h and 24h timepoint 

upon exposure to 100μM of FeCl3. Ferritin levels were examined at both the mRNA level and 

protein level with results displayed in figure 1, panels C and D respectively. Relative mRNA levels 

of both Ferritin Heavy chain (H) and Ferritin Light chain (L) exhibited a significant increase relative 

to untreated samples. Ferritin H showed a highly significant increase in protein expression under 

IO treatment, fig.1(D), relative to control cells. Fig.1(E) exhibits images obtained via confocal 

microscopy displaying the effects of treating Iron Response Element-CyanoFluorescent Protein 

(IRE-CFP) transfected L6 cells with IO. The images and accompanying quantitation display a 

significant increase in mean fluorescence intensity relative to control.  
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Figure 2.2 - Effects of IO on Adiponectin Signaling: P38 MAPK  

(A-B) Western Blot data detailing the effects of IO (FeCl3-250μM, 24h) and AdRon (35μM, 

30min) treatment on phosphorylation of P38 MAPK and total P38 MAPK expression (~38 

kDa) (n=4) (C) Immunofluorescence data from Nikon Confocal displaying effects of IO 
(FeCl3-250 μM, 24h) and AdRon (35μM, 30min) treatment on phosphorylation of P38 MAPK 

(n=3) (Scale bar: 10 μM). For quantitation, mean fluorescent intensity for all cells in field of 

view was calculated via Nikon Elements Analyst software. (D) Immunofluorescence data 
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obtained from ThermoFisher Scientific’s CX7 instrument. Data displays the effects of IO 

(FeCl3-250μM, 24h) and AdRon (35μM, 30min) treatment on phosphorylation of P38 MAPK 

(n=4).  All graphs show mean ± SEM and * = P<0.05, ** = P<0.01 versus Con, # = P<0.05 

versus AdRon. 
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2.4.2 Adiponectin resistance in L6 skeletal muscle cells 
 
 Figure 2 displays the effects of IO (FeCl3 250μM, 24h) on adiponectin signaling via readout 

of P38 MAPK. Panel A and B displays the effects of IO treatment on phosphorylation of P38 

MAPK and total P38 MAPK expression respectively. IO treatment resulted in a dramatic decrease 

in phosphorylation of P38 MAPK relative to control, while treatment with AdipoRon, an 

adiponectin agonist, displayed a significant increase in phosphorylation of P38 MAPK relative to 

control. Co-treatment of IO and AdipoRon resulted in a relatively higher degree of 

phosphorylation of P38 MAPK relative to IO, but lower than AdipoRon treatment alone. Panel B 

shows no change in total P38 MAPK protein expression post-IO treatment. The same 

phenomenon was observed when an Immunofluorescence (IF) assay was conducted with the 

same conditions (Panel C). There was an observed decrease in fluorescence under IO treatment 

relative to control, while AdipoRon treatment resulted in a significant increase in fluorescence 

relative to control. Co-treatment of IO and AdipoRon displayed a reduced intensity in 

fluorescence relative to AdipoRon alone and increased fluorescence relative to IO. Panel D 

exhibits the high throughput data obtained from the ThermoFisher CX7 system, showing an 

identical trend observed in Panel C with AdipoRon treatment resulting in increased fluorescence 

and IO treatment resulting in decreased fluorescence relative to control.  
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Figure 2.3 - Effects of IO on adiponectin receptors (AdipoR1/2) and associated proteins 

(APPL1/2) 

(A) qPCR relative mRNA values of primary adiponectin receptors (AdipoR1/2) and 

adaptor proteins APPL1/2 post IO treatment (FeCl3-250μM, 24h). Values were normalized 

to 18S housekeeping gene (n=4). (B) Dual Luciferase Reporter assay data using L6 cells 

transfected with AdipoR1_Luc reporter construct post IO treatment (FeCl3-250μM, 24h) 

(n=4) (C) Western Blot data detailing the effects of IO treatment (FeCl3-250μM, 24h) on 

protein expression levels of AdipoR1/2 (~50kDa) and APPL1/2 (~82kDa) (n=4). All graphs 

show mean ± SEM and * = P<0.05, ** = P<0.01 versus Con. 
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2.4.3 Adiponectin receptor expression and associated proteins 

Adiponectin receptor levels were monitored at the mRNA level via qPCR. Fig.3(A) shows that 

upon IO treatment, relative mRNA levels of AdipoR1 and APPL1 were significantly decreased 

compared to control while mRNA levels of AdipoR2 and APPL2 showed no change. This trend 

was also observed at the protein level via Western Blot (WB) in Fig.3(C). To determine 

transcriptional activation of the AdipoR1 promoter, a Dual Luciferase Reporter Assay was 

performed (Panel B) which showed that upon IO treatment, a significant decrease in 

luminescence was detected relative to control conditions. 
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Figure 2.4: Regulation of FOXO1 by IO 

(A) Western Blot results demonstrate the effects of IO (FeCl3 - 250 μM) on 

phosphorylation of the transcription factor FOXO1 (~80kDa) at 15min, 30min, 1h, 4h and 

24h (n=4). (B) ImmunoFluorescence of pFOXO1 post IO treatment (FeCl3-250μM, 1h) from 

Nikon Confocal microscope (n=3). Mean Fluorescence Intensities were detected and 
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recorded for all cells in field of view via Nikon Elements Analyst software. ImageJ plugin 

JACop was used to obtain Person Correlation Coefficient values of nuclear overlap of 

pFOXO1 (Scale bar: 10 μM) (C) CX7 quantification data of Immunofluorescence based 

molecular translocation assay for pFOXO1 (Primary antibody: 1:50) post IO treatment 

(FeCl3-250μM, 1h) (n=4). Parameters measured was mean CircRingAvgIntensityDifference 

which correspond to the average intensity difference of fluorescence emitted by the 

secondary antibody (Alexa546 - 1:200) between the designated Circ (nuclear area - green 

in schematic) and Ring (cytosolic area - red in schematic). A “negative” or decrease in 

value corresponds to greater fluorescence detected from the cytosol. (D) Dual Luciferase 
Reporter assay data using L6 cells transfected with FOXO_Luc reporter construct post 

IO treatment (FeCl3-250μM, 24h) (n=3). All graphs show mean ± SEM and * = P<0.05, ** = 

P<0.01, *** = P<0.001 versus Con. 
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2.4.4 Regulation of FOXO by Iron 
 
Post translational modification (PTM) of FOXO1 due to IO treatment was examined initially via 

WB. As shown in Fig.4(A), upon a time course assessment of the phosphorylation status of 

FOXO1, the results displayed a significant increase in phosphorylation of FOXO1 at the 1h time 

point. An IF based approach was used to examine potential changes in localization of FOXO1 

due to its PTM. Fig.4(B) shows an increase in fluorescence of pFOXO1 under IO treatment. A 

Pearson’s Correlation analysis was performed to determine the degree of colocalization of 

pFOXO1 with regards to cytosol vs nucleus. The analysis revealed a decrease in value of 

Pearson’s Correlation upon IO treatment with regards to pFOXO1. ThermoFisher Scientific’s CX7 

instrument was used to further assess pFOXO1 localization. Fig.4(C) shows a significant 

decrease in the mean CircRingAvgIntensity difference of pFOXO1 under IO conditions. FOXO1 

transcriptional activity (Fig.4(D)) was determined using a Dual Luciferase Reporter Assay 

whereby upon IO treatment, a significant decrease in fluorescence was detected relative to 

control.   
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Figure 2.5: Mechanistic role of Oxidative Stress in FOXO regulation and adiponectin 

signaling by iron 

(A) DCF-DA assay used to determine the total amount of ROS produced post IO 

treatment of L6 cells (FeCl3-250 μM, 1h). NAC (N-Acetyl Cysteine-500nM, 30 minutes) 

used as a ROS inhibitor prior to iron treatment (n=3). (B) CellROX Green (2.5 μM, 

30minutes) fluorescence-based assay displaying the effects of IO treatment (FeCl3-250 

μM, 1h) on the production of ROS. NAC (N-Acetyl Cysteine-500nM, 30 minutes) used as a 

ROS inhibitor prior to iron treatment. Mean Fluorescence Intensity was detected and 
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analyzed for all cells in field of view using the Nikon Elements Analyst software (Scale 

bar: 10 μM) (n=4). (C) Western Blot data displaying the effect of IO (FeCl3-250 μM, 1h) 

induced ROS production on the phosphorylation status of FOXO1 (~80 kDa). Positive 

control H2O2 used at 200 μM for 30min. NAC (N-Acetyl Cysteine-500nM, 30 minutes) used 

as a ROS inhibitor prior to iron treatment (n=9). (D) ImmunoFluorescence of pFOXO1 post 

IO treatment (FeCl3-250 μM, 1h). NAC (N-Acetyl Cysteine-500nM, 30 minutes) used as a 

ROS inhibitor prior to iron treatment. Mean Fluorescence Intensity was detected and 

analyzed for all cells in field of view using the Nikon Elements Analyst software. ImageJ 

plugin JACop was used to obtain Person Correlation Coefficient values of nuclear 
overlap of pFOXO1 (Scale bar: 10 μM) (n=3) (E) CX7 quantification data of 

ImmunoFluorescence based molecular translocation assay for pFOXO1 post-IO 

treatment (FeCl3-250μM, 1h). NAC (N-Acetyl Cysteine-500nM, 30 minutes) used as a ROS 

inhibitor prior to iron treatment. Parameters measured was mean 

CircRingAvgIntensityDifference which correspond to the average intensity difference of 

fluorescence emitted by the secondary antibody (Alexa546 - 1:200) between the 

designated Circ and Ring area. A “negative” or decrease in value corresponds to greater 

fluorescence detected from the cytosol (n=4) (F) Western Blot data displaying the effects 

of IO induced (FeCl3-250 μM, 24h) ROS production on the phosphorylation status of 

P38MAPK. P38MAPK activation was induced with adiponectin receptor agonist, AdRon, 

at 35 μM for 30min. NAC (N-Acetyl Cysteine-500nM, 30 minutes) used as a ROS inhibitor 

prior to iron treatment (n=9). All graphs show mean ± SEM and * = P<0.05, ** = P<0.01 

versus control, #=P<0.05, ##=P<0.001 versus IO and $=P<0.05 relative to AdRon. 
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2.4.5 Mechanistic Role of Oxidative stress in FOXO regulation 

IO induced oxidative stress was assessed with two separate experiments. The first, a DCF-DA 

plate based assay, (Fig.5(A)), revealed that upon IO treatment, a significant increase in relative 

fluorescence was observed relative to control. The treatment of NAC in conjunction with IO 

reversed this effect. Fig.5(B) showed the results obtained through the use of confocal 

microscopy to determine the degree of IO induced oxidative stress using CellROX Green. The 

same experimental conditions were used and under IO, there was a significantly greater 

fluorescence detected compared to control. This effect was, again, reversed upon co-treatment 

of the L6 cells with both NAC and iron. To determine the effect of IO induced ROS on the PTM 

status of FOXO1, a WB and IF approach were used (Fig.5(C) and (D) respectively). Fig.5(C) shows 

that upon IO treatment, there is a significant increase in phosphorylation of FOXO1 relative to 

control while administration of NAC with IO reverses this effect. With regards to Fig.5(D), 

treatment of L6 cells with IO exhibited a significant increase in fluorescence of pFOXO1. 

Treatment of NAC in conjunction with iron significantly decreased the mean fluorescence 

intensity compared to iron alone. In terms of localization, the Pearson’s Correlation was analyzed 

and it was determined that upon IO treatment, there was a reduction in Pearsons Correlation of 

pFOXO1. This effect was reversed upon co-treatment with both NAC and iron. Upon examination 

of the data generated by ThermoFisher Scientific’s CX7 (Fig.5(E)) with regards to pFOXO1 under 

IO treatment, there was a significant decrease in the CircRingAvgIntensity difference relative 

control. This effect was reversed upon co-treatment of NAC with iron. The effects of IO induced 

ROS production on adiponectin signaling was examined via pP38 MAPK. Fig.5(F) shows that 

upon treatment of iron, there was a significant decrease in the phosphorylation of P38 MAPK 

relative to control, while the administration of AdipoRon significantly increased the degree of 

phosphorylation of P38 MAPK relative to control. Co-treatment of AdipoRon and iron resulted in 

a greater degree of phosphorylation of P38 MAPK relative to IO, but lower than that of AdipoRon 
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alone. Treatment of NAC in the presence of iron reversed the effect of IO alone with an observed 

greater degree of phosphorylation.  
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2.5 Discussion 
 

Numerous groups have focused their efforts on elucidating the precise mechanisms that 

govern the basis of which metabolic diseases occur. The complexity of the matter presents a 

unique set of challenges which explains why understanding metabolic disorders, such as T2D, 

remains a difficult, yet fertile ground for research. With regards to T2D, several studies were 

conducted and a consistent trend has been observed with regards to iron’s role. By monitoring 

serum ferritin levels in prospective studies, at least 5 studies that examined a wide range of 

otherwise healthy men and women of different backgrounds, aged 40 - 60, showed that those 

with higher iron stores were on average 2.4 times more likely to develop T2D when compared to 

those with lower iron stores 22,24,92,93,94,95,.  Further observational studies, in addition to clinical 

trials, were conducted to assess the effects of iron depletion on insulin sensitivity and glucose 

tolerance. The results, summarized from one observational study and 3 clinical trials, found that 

regardless of iron depletion method (increased blood donations or phlebotomy therapy) 

individuals exhibited lower ferritin levels, improved insulin sensitivity and an overall reduction in 

insulin resistance 69,70,71,72. There are several theories behind how iron exerts this effect. One 

theory, shown in a Hereditary Hemochromatosis mouse model, is that increased iron stores in 

skeletal muscle was found to cause a shift in fuel utilization from glucose to free fatty acids 73. 

This shift was shown to increase hepatic glucose production and release, thereby contributing to 

the hyperglycaemic condition pertaining to T2D 73. Another contributing factor is the susceptibility 

of pancreatic beta cells to become overloaded with iron due to presence of promiscuous divalent 

metal ion channels which directly contribute to the decrease in insulin production and secretion 

24,88.  

 However, the theory with the most traction with regards to iron’s effect, is it’s ability to 

induce a state of increased oxidative stress. This is due its pro-oxidant properties, which drives 

reactions, such as the electron transport chain (ETC) in the mitochondria, to generate high 

amounts of ROS. In the case of pancreatic beta cells, their heavy reliance on the mitochondria 
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makes them highly susceptible to damage due to oxidative stress and thus impairs their ability to 

produce insulin 22,23,87.  

Considering adiponectin’s insulin sensitizing properties, as well as the decrease observed 

in serum adiponectin levels in the presence of high levels of ferritin, it was of vital importance to 

elucidate the mechanism by which iron induces this effect. Adiponectin action is facilitated by 

binding of the adipokine to one of it’s two primary receptors Adiponectin Receptors: AdipoR1 and 

AdipoR2 42,82. It is well established that both receptors are ubiquitously expressed in all tissues, 

however, some studies report a greater abundance of AdipoR1 in skeletal muscle while AdipoR2 

is more commonly found in the liver 40. Upon binding of adiponectin to its receptor, the adaptor 

protein APPL1 proceeds to activate a series of kinases that in turn mediate adiponectin’s effect 

through a variety of signaling pathways, most notably AMPK, P38 MAPK and PPAR-α 44,82. We 

have successfully demonstrated that upon inducing a state of IO, a decrease in the mRNA and 

protein expression of AdipoR1 and APPL1 was observed. The lack of change seen in AdipoR2 

and APPL2 levels could be attributed to the relative abundance of these proteins in liver cells, as 

previously described. AdipoR1 promoter activity was examined via a luciferase reporter assay 

and it was determined that upon IO treatment, a clear and significant decrease in the 

luminescence was detected. This suggests that the AdipoR1 promoter activity decreases as a 

result of IO treatment, which is consistent with the observed decrease in AdipoR1 mRNA levels 

and protein levels observed previously.  

 As mentioned previously, one of the effector proteins that mediates adiponectin action is 

P38 MAPK. Upon binding of adiponectin to AdipoR1, APPL1 activates two different protein 

kinases, TAK1 and MKK3, which then proceed to phosphorylate and activate P38 MAPK 52. 

Activation of P38 MAPK has been linked to direct stimulation of PPAR-α transcriptional activity, 

which is essential for fatty acid oxidation, reduction in triglycerides and improved insulin sensitivity 

in both liver and skeletal muscle 48,96. P38 MAPK activation has also been linked to increased 

plasma translocation of glucose transporter GLUT4 prompting increased glucose uptake 50,53,96. 
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In order to assess whether IO results in adiponectin resistance, P38 MAPK protein expression 

levels were examined via Western Blot (WB) and immunofluorescence means. Activation of P38 

MAPK was mediated through AdipoRon, a synthetic small molecule that acts as a potent AdipoR 

agonist. We have shown that AdipoRon greatly increased phosphorylation of P38 MAPK while IO 

treatment resulted in impaired phosphorylation of P38 MAPK relative to control. Co-treatment of 

both AdipoRon and iron resulted in a decrease in phosphorylation of P38 MAPK relative to 

AdipoRon alone thus suggesting adiponectin signaling impairment. This data suggests that the 

treatment of L6 cells with IO induces a state of adiponectin resistance. 

 Since AdipoR1 was impacted at the transcriptional level, as evident by the decrease in 

promoter activity, it was only logical to explore the primary transcription factor responsible for a 

potential mechanism behind how iron enforces its effect. Several studies have highlighted the 

importance of FOXO1 in the field of metabolism. Its role in insulin signaling via PI3K activation 

has long been established and numerous papers have shown its proclivity to act as a transcription 

factor responsible for transcribing adiponectin and its receptors 64. Therefore, the next step in 

elucidating a possible mechanism behind IO induced adiponectin resistance was to examine 

iron’s effects on FOXO1. It is widely understood that transcription factor activity is largely dictated 

by its post translational modifications (PTM). Once FOXO1 is phosphorylated, the TF translocates 

to the cytoplasm effectively reducing its function as a TF 55,89. Upon examining the phosphorylation 

status of FOXO1 from a time course approach, it was evident that maximal phosphorylation of 

FOXO1 occurred at 1h post-IO treatment. Through IF means, we have shown that upon IO 

treatment, there was an observed increase in cytoplasmic localized pFOXO1 relative to control 

as indicated by the increased cytoplasmic fluorescence observed. In terms of total FOXO1, we 

see a high degree of nuclear fluorescence being emitted under control conditions that is 

diminished upon IO treatment. These observations confirm the notion that IO results in increased 

phosphorylation of FOXO1 resulting in cytosolic localization. 
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To determine whether the theory of iron induced oxidative stress applies to the case of IO 

induced adiponectin resistance, we have successfully demonstrated that upon use of synthetic 

ROS inhibitor, N-acetyl-L-Cysteine (NAC), the observed effects of iron on FOXO1 

phosphorylation and adiponectin signaling via P38 MAPK were reversed. NAC is a synthetic 

precursor to naturally occurring antioxidant defence systems. It exerts its function by either 

activating the redox potential of thiols or by increasing glutathione levels which when combined 

acts as a free-radical scavenging system 74. The phosphorylation status of FOXO1 was 

investigated via WB and immunofluorescence in order to determine relative localization. As 

expected, Phosphorylation of FOXO1 increased with IO treatment and this effect was reversed 

upon treatment of NAC. The same trend was observed, figure 5(D), via immunofluorescence 

where IO treatment increased cytosolic fluorescence of pFOXO1 relative to control and that NAC 

reversed this effect resulting in decreased cytosolic localization of pFOXO1. Collectively, this data 

suggests that IO induced oxidative stress results in an increase in the phosphorylation of FOXO1, 

localizing it to the cytosol and possibly reducing its capacity to act as a transcription factor.  

 The same approach was used to determine whether IO induced oxidative stress could be 

attributed to the decrease in adiponectin signaling observed. Phosphorylation of P38 MAPK was 

examined under IO conditions which resulted in the expected decrease in activation of P38 

MAPK. Treatment with AdipoRon resulted in increased phosphorylation of P38 MAPK relative to 

control, suggesting P38 MAPK activation. Co-treatment of AdipoRon and IO resulted in a lowered 

the degree of phosphorylation of P38 MAPK suggesting impaired AdipoRon activation of P38 

MAPK. Upon treatment of NAC in the presence of IO, the effects of IO were reversed. This 

suggests that the ROS produced by IO is responsible for the decreased activation of P38 MAPK 

which results in impaired adiponectin signaling. 

It is clear that iron’s effects are multivariate and that there is no parsimonious explanation 

that can be attributed to its role in T2D. The IO-ROS-FOXO1-AdipoR1 axis is only one possible 

explanation to this phenomena. This axis still requires further study to uncover the finer details 
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such as irons effect on TAK1 and MKK3 which would explain how the reduction in P38MAPK 

phosphorylation occurs. Oxidative stress has been shown to influence FOXO activity which is why 

this family of transcription factors is instrumental in facilitating a response. Examples include 

increased phosphorylation of FOXO3 and FOXO4 by MST1 and JNK respectively 57. 

Phosphorylation of FOXO3 by MST1 has been shown to increase transcription of the antioxidant 

defence protein MnSOD 57. An important point to note is that cell type and FOXO isoform can 

have seemingly conflicting functions. Under IO conditions in adipocytes, FOXO1 is reportedly 

deacetlyated, leading to increased binding to PPAR-RE resulting in decreased AdipoR1 

transcription 63. It is therefore within the realm of possibility that IO induced oxidative stress can 

result in increased kinase activity in skeletal muscle. This mechanism would require further 

investigation. Iron’s effects, as previously described, have far reaches and can severely impair 

mitochondrial and ER function. Another avenue worth exploring is what role, if any, mitochondrial 

dysfunction has in the development of iron induced adiponectin resistance. The outer-

mitochondrial membrane protein MitoNEET, for example, regulates the amount of iron entering 

the mitochondria and in cases of IO, MitoNEET levels have been observed to be decreased 

resulting in mitochondrial iron loading and mitochondrial dysfunction 75. Studies have shown that 

mitochondrial dysfunction results in the accumulation of triacylglycerides which in turn activate a 

series of protein kinases, such as protein kinase C, that in turn impair insulin signaling 76. Could 

there be a link between mitochondrial dysfunction and adiponectin resistance as well? IO induced 

ER stress has been reported to result in decreased expression of ERp46, a protein that has been 

documented to interact with AdipoRs and is responsible for chaperone folding and 

retrograde/anterograde shuttling of the receptor to the PM 77. This could be another potential 

mechanism as to why there is an observed decrease in AdipoR1/2.  

 In conclusion, one mechanism has been thus far uncovered with regards to IO induced 

adiponectin resistance in L6 skeletal muscle cells. IO was found to induce the production of ROS 

which in turn played an effector role in increased phosphorylation and cytosolic localization of 
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FOXO1. This change in localization of FOXO1 resulted in decreased adiponectin receptor 

promoter activity and protein expression of AdipoR1. The IO induced oxidative stress also 

resulted in impaired adiponectin signalling, as indicated by the decrease in phosphorylation and 

activation of the adiponectin signalling molecule, P38 MAPK. Treatment of NAC, a non-specific 

ROS inhibitor, reversed IO’s effects on both FOXO1 phosphorylation, localization and P38 MAPK 

inactivation further confirming that adiponectin resistance can be attributed to IO induced ROS 

production. 
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Figure 2.6: Summary schematic detailing IO induced adiponectin resistance via an 
oxidative stress mechanism whereby IO ROS produced leads to increased FOXO1 

phosphorylation and cytosolic translocation propogates decreased transcription of 

AdipoR1 and reduced APPL1 activation resulting in impaired adiponectin signaling as 

evident by decreased phosphorylation of P38 MAPK.  
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 With regards to future directions, there are many avenues worth exploring that could 

potentially propagate the impact of this work. Several of these are briefly mentioned in the 

discussion section of the previous chapter but will be discussed in more detail below.  

 Firstly, with the current proposed mechanism of IO induced adiponectin resistance, 

additional details can be further elucidated. Most important of which involve FOXO1 regulation. 

The current mechanism suggests phosphorylation as the PTM responsible for FOXO1 cytosolic 

localization. However, our data (figure 4.1B) indicates that IO additionally increases FOXO1 

acetylation, which has also been attributed to increased cytosolic localization 90. Acetylation and 

phosphorylation could present a dual mechanistic explanation regarding iron’s effect. The 

players that facilitate these PTMs, acetylases such as CBP/p300 and kinases such as Akt, MST1, 

CDK1/2 and AMPK have all been shown to react to states of oxidative stress resulting in varied 

cell-specific FOXO1 effects 90. It is therefore crucial to understand which kinases or acetylases 

are responsible for the observed IO induced FOXO1 PTMs to fully complete the picture regarding 

this proposed mechanism. 

 Secondly, mitochondrial dysfunction has been a prominent mechanistic candidate 

regarding the etiology of T2D. An observed decrease in mitochondrial content, in addition to 

reduced beta oxidation activity results in the increase of diaceyl glycerol and fatty acids 97. This 

facilitates the activation of isoforms of PKC, as previously suggested, leading to the 

phosphorylation of IRS-1 on Ser307 resulting in decreased PI3K and Akt activation and thus 

impairing glucose uptake 97. A similar mechanism regarding mitochondrial dysfunction could also 

be prevalent in the case of IO induced adiponectin resistance. Since the mitochondria is one of 

the main sites of ROS production due to the ETC 87, and with iron being a cofactor in this reaction, 

it is plausible that this mechanism could perhaps play a role in development of adiponectin 

resistance. The leakage of electrons from complexes I and III result in the production of 

superoxide, which ferric iron can react with producing highly reactive hydroxyl radicals 87. With 
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that said, it is important to determine if IO results in increased mitochondrial ROS production 

and whether this plays a role in the development of adiponectin resistance. This can be 

investigated with the use of mitochondrial complex I inhibitors such as rotenone 98.    

MitoNEET, an outer mitochondrial membrane protein responsible for regulating iron entry, has 

been shown to be impaired under IO conditions, resulting in the overloading of the mitochondria 

with iron 75. Preliminary work has been conducted with regards to investigating this mechanism 

via the use of mitoferrofluor (MFF). MFF is a mitochondrial specific probe that is designed to be 

quenched in the presence of iron 97. Figure 4.2(C-D) display a clear decrease in fluorescence 

detected from the probe under IO conditions in addition to exhibiting a high degree of co-

localization with the mitochondrial marker TOM20. Furthermore, there is also an observed 

decrease in TOM20 signal that could indicate a compromised mitochondrial health and 

decreased biogenesis, all features of mitochondrial dysfunction which may play a role in 

adiponectin resistance. These findings could provide further insight into mechanisms that 

potentially explain how/where IO induced ROS is generated in parallel to the role oxidative stress 

plays in adiponectin resistance.  

An important avenue to note and further explore are the other possible routes IO can induce 

oxidative stress. While it is well established that iron can increase the production of reactive 

hydroxyl radicals through the Haber-Weis/Fenton reaction, there are other possible candidates 

at play 21,35. Studies have reported, as previously described, impaired antioxidant defence 

mechanisms such as reduced SOD proteins under IO conditions 21. This begs the question of 

whether IO indeed results in elevated ROS, or was the observed increase in oxidative stress due 

to impaired antioxidant defences rather than ROS emission? SOD inhibitors, such as 

diethyldithiocarbamate, can be employed here to confirm the effects of IO and whether elevated 

oxidative stress is a result of a dual effect 99. These findings could provide further insight into 
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mechanisms that potentially explain how/where IO induced ROS is generated in parallel to the 

role oxidative stress plays in adiponectin resistance.  

 Thirdly, in cases of adiponectin resistance observed in heart failure cases, adiponectin 

receptor phosphorylation has been suggested to potentially play a role via the internalization of 

the receptors and impairment of adiponectin signaling 47. Phosphorylation of AdipoR1 in a post-

myocardial infarction (post-MI) model was observed at Ser7, Thr24 and Thr53 by the kinase GRK2 

47. This mechanism could be worth exploring in a skeletal muscle model under IO since GRK2 

has been showing to physically interact with AdipoR1. ERp46 is another protein responsible for 

the retro/anterograde transport of AdipoR1/2 to/from the endoplasmic reticulum 77. The levels of 

ERp46 could potentially be altered under IO, which has been linked to ER stress, and could 

possibly provide another mechanistic rationale behind the decrease in observed AdipoR1 protein 

levels and impaired adiponectin signaling.  

 Finally, to cement the findings described in this work, the ultimate goal would be to 

replicate these findings in an in vivo model. The challenge with this objective, as in any in vivo 

model, is to account for iron’s multifactorial effect that could potentially alter various systems 

already in place in addition to the broad role of TFs such as FOXO1 plays. This disturbs the 

delicate dynamic present which would make attributing IO induced adiponectin resistance to the 

proposed mechanism a great challenge.  

 

 

 

 

 

 

 



 
 

 61 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: References and supplementary data 

 

 

 

 

 

 

 



 
 

 62 
 

  

Figure 4.1: (A-B) WB exhibiting FOXO1 PTM (phosphorylation n=3 and acetylation n=2 
respectively) versus total FOXO1 (~80 kDa) under IO conditions (FeCl3 - 250 μM, 24h). (C-
D) IF data using MitoFerrofluor (MFF, 1 μM), a mitochondrial specific iron probe that is 
quenched in the presence of iron. Conditions tested were FeCl3 - 250 μM, 24h (n=3). 
Panel D (n=1) shows same conditions with the addition of TOM20 (1:200), a primary 
antibody that binds to the outer membrane of the mitochondria.   
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