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Abstract 

Global climate models (GCMs) are widely used to study climate change. Due to their coarse 

resolutions, GCMs cannot resolve some microscale and mesoscale processes such as 

topographical effects. Dynamic downscaling simulations using Regional Climate Models (RCMs) 

are often required to provide higher spatial- and temporal-resolution climate variabilities in 

specific regions. Uncertainties in dynamic downscaling simulations due to errors in the 

atmospheric state and models need to be understood first in the present climate simulations. Then 

the reliability for future projections can be inferred. 

This research contains three parts. The first part gives an assessment of temperature and 

precipitation over Ontario based on the North American Regional Climate Change Assessment 

Program (NARCCAP) RCM simulation data. In part two, five 8-year downscaling simulations 

using the Weather Research and Forecasting (WRF) model driven by five NARCCAP model 

data over Ontario are studied. Each of these simulation results and their mean are analyzed to 

address the dynamic downscaling effect on temperature and precipitation and their variabilities. 

Lastly in the third part, a 14-member perturbed ensemble simulation using the WRF model was 

conducted. The ensemble means of temperature and precipitation are evaluated and the 

uncertainties in regional climate modeling are discussed. 

The temperature and precipitation in seven NARCCAP RCM simulations from 1979 to 2004 are 

compared to the observations over Ontario. The observed annual area mean temperature has a 

remarkable rising trend in the late 1990s after decades of fluctuation. It is mainly due to a 

significant rise of winter area mean temperature during that period. This rising trend has been 
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revealed in all seven models. For the annual area mean precipitation, the observed values 

fluctuate during this period, and the NARCCAP RCM model simulations show larger 

discrepancies. 

One focus of this thesis is to assess the impact of increased model resolution on regional climate 

simulations. Five NARCCAP RCM (MM51, RCM3, HRM3, CRCM 31nd WRFG) simulation data 

with 50-km horizontal resolution are downscaled to 10-km horizontal grid over Ontario to 

provide initial and boundary conditions for the WRF downscaling simulations in the period from 

1991 to 1998. The model results show that the high resolution has great impact on regional 

climate simulations. 

Three sets of ensembles, the seven-member NARCCAP RCM simulations, the five-member 

WRF downscaling simulations, and a 14-member perturbed ensemble simulations using WRF 

model with the stochastic kinetic energy backscatter scheme are analyzed to assess the 

performance of the ensemble approach in regional climate simulations. The ensemble mean 

temperature and precipitation are compared to reanalysis data and the observations. The root 

mean square errors (RMSE) and the correlations are calculated. The results show that the 

ensemble method improves the accuracy of simulations, for both temperature and precipitation. 
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Chapter 1: Introduction 

1.1 Climate Change 

Climate change is a change in average weather conditions over periods ranging from decades to 

millions of years. A lot of factors contribute to climate change, including solar radiation, 

continental drift, volcano eruptions, changes in Earth's orbit, oceanic circulations and human 

activities. Climate change is one of the greatest concerns in the 21st c.entury. The insured losses 

from extreme weather and climate events have increased greatly during recent decades (Munich 

Re, 2002). More and more people now believe that anthropogenic greenhouse gas emissions 

have caused the global warming (IPCC, 2007). In recent decades, our climate has been changing 

much more rapidly than any other period in history. Extreme weather phenomena, such as storms, 

blizzards, floods, droughts and heat waves, appeared more frequently during recent decades. The 

increasing frequency and intensity of extreme weather and climate events are great threats to 

humans and other components of the ecosystems. The decline in Arctic and Antarctic sea ice, 

both in its extent and thickness, is also the evidence of global warming. The global land 

precipitation (excluding Antarctica) has increased by about 9mm over the 20th century, which is 

thought to be related to the El Nino-Southern Oscillation (ENSO), the Arctic and Antarctic 

oscillation (AO and AAO) (New et al., 200 I). Global warming accelerates the vegetation growth, 

which results in vegetation stress, loss of plants and desertification ;in some regions. It also 

- 1 -



devastates some of the rainforests in tropical areas, affecting the local ecosystems. Under global 

warming, the northern hemisphere is warmer in recent decades than any other period during the 

last 1000 years. In addition, the World Health Organization estimated that many human diseases 

are related to climate fluctuations in temperature and precipitation. The warming trend over 

recent decades led to more morbidity and mortality in many areas around the world (Patz et al., 

2005). Therefore, these facts in climate change indeed have great impacts on humans' living 

conditions and qualities, and affect our ecosystems. 

In Canada, the climate is also changing significantly during recent decades. Zhang et al. (2000) 

and Cao et al. (2009) found that the climate in southern Canada including Ontario turned into a 

wetter and warmer pattern during the 20th century. From 1900 to 2003, the numbers of cold 

nights, cold days and frost days decreased, while warm nights, warm days and summer days 

occurred more frequently across the country. Canada also has more precipitating days, however 

with reduced intensity. The annual amount of snowfalls declined significantly during the second 

half of the 20th century due to the warming (Vincent and Mekis, 2010). 

1.2 Regional Climate Simulations 

Given its great impacts, the climate change deserves thorough studies. The characteristics of 

global climate changes in historic, current and future periods have been studied extensively. 

General circulation models(GCMs), describing physical processes among the oceans, the 

atmosphere and the land surface, are practical and advanced in simulating global climate systems. 

They are capable of simulating global scale climate change and variabilities. A GCM usually has 
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a horizontal resolution of 200 to 600 km, which is too coarse to resolve many subgrid scale 

physical processes, such as cloud-related processes. Instead, these unresolved processes are 

parameterized. Parameterization is one source of uncertainties in GCM simulations of climate 

change. In addition, uncertainties in various mechanisms in models concerning, for example, 

water vapor, radiation, clouds, ocean circulation, ice, and snow · albedo, also deviate the 

simulation results. For these reasons, different GCMs may generate different responses to the 

same forcing. Since the mesoscale processes are not explicitly represented in GCMs, one remedy 

is to choose regional climate modeling approach with higher resolution. 

A regional climate model is to some extent similar to a global climate model, except it has higher 

resolutions than a global climate model. Hence regional climate models usually resolve more 

details than global climate models. In particular, a high-resolution regional climate model can 

describe regional topography, land-sea contrasts and vegetation characteristics with more 

accuracy than global climate models (Giorgi and Marinucci, 1996; Stahl et al., 2011). It can also 

describe more accurately the upscale influence of regional forcings on large scale climate change 

(McCarthy et al., 2011). Regional climate models are primarily and widely used tools to provide 

detailed descriptions of different processes in climate change at high resolutions (Pal et al., 2007; 

Rougier et al., 2009). Typically, GCM simulation results with coarser ,resolution provide initial 

and lateral boundary conditions (I Cs and BCs) to drive RCMs, including wind, temperature, 

water vapor, and surface pressure. Although there are still deficiencies in RCMs, they have been 

shown to improve the climate simulations in specific regions. 

To investigate climate characteristics in historic, current and future periods, regional climate 
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models are developed for simulating climate change in specific regions around the world, 

including North America, Asia, Africa and some other areas (e.g., Qian and Leung, 2007; 

Alexandru et al., 2007; Jenkins, 1997). In the 4th IPCC Assessment Report (IPCC, 2007), some 

results at regional-scale via downscaling of large-scale GCMs, and results of RCM simulations at 

higher resolution (30 to 100 km) are presented. In particular, one of the climate-study programs, 

the North American Regional Climate Change Assessment Program (NARCCAP), has produced 

relatively high-resolution climate change simulations over North America. It ran a set of regional 

climate models at a spatial resolution of 50 km driven by reanalysis data and multiple 

atmosphere-ocean general circulation models (AOGCMs) over North America. This project, 

endorsed by the World Climate Research Program (WCRP), is a part of COordinated Regional 

Downscaling EXperiment (CORDEX). The multi-model approach can address the uncertainties 

in future climate projections on the regional scale. It can help us understand RCM behaviours 

better and identify issues that need to be improved in future model development. 

1.3 Downscaling 

The purpose of downscaling is to obtain high-resolution details in dimate as accurately as 

possible over a region of interest. Various downscaling methods , had been developed to 

downscale global climate model results, such as dynamic downscaling, statistical downscaling, 

physically based subgrid modelling (e.g., Ghan et al., 2002; Leung et al., 2003; Qian et al., 2010). 

Dynamic downscaling is expected to have the largest impact on simulating precipitation and 

surface hydrology in regions with complex orography (Leung et al., 2004). This is because that 

the improved representation of topographic effects in climate models may lead to improvements 
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in detailed seasonal climate simulations (Roads, 2004). Dynamic downscaling using RCMs has 

become a popular approach in regional climate simulations. 

Relatively fewer observational and modeling studies of regional climate change over Ontario 

have been done. Zhang et al. (2000) found that the climate in southern Canada has been 

continuously becoming wetter and warmer during the 201
h century. From 1900-1998, the annual 

mean temperature has increased by 0.5 to l .5K in southern Canada. Cao and Ma (2009) found an 

upward trend of the occurrence frequency of summer severe-rainfall events over Ontario. In 

collaboration with the Ontario Ministry of the Environment, Huang et al. (2010, 2011, 2012) 

used the Providing REgional Climates for Impact Studies (PRECIS) model to conduct multiple 

climate downscaling studies over Ontario at a horizontal resolution from 10-km to 25-km , 

including probabilistic projections. Qiu and Zhu (2012) developed 45-km-resolution probabilistic 

climate projections for mean conditions over Ontario from multiple regional and global climate 

models. Gula and Peltier (2011) tried to improve regional climate modeling over Ontario by 

including a lake model for the Great Lakes. They used the Weather Research and Forecasting 

(WRF) model with a high-resolution of 10 km driven by the National Center for Atmospheric 

Research (NCAR) Community Climate System Model (CCSM) outputs. 

1.4 Regional climate simulations using WRF 

The WRF model was originally designed as a multiscale numerical weather prediction system 

for high resolution applications in both atmospheric research and operational forecasting, 

collaborated among the National Center for Atmospheric Research (NCAR), the National 

Oceanic and Atmospheric Administration (represented by the National Centers for 
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Environmental Prediction (NCEP) and the former Forecast Systems Laboratory (FSL)), the Air 

Force Weather Agency (AFWA), the Naval Research Laboratory, the University of Oklahoma, 

and the Federal Aviation Administration (FAA) in the United States. The WRF model is now 

widely used for simulations across scales from meters to thousands of kilometers. With regional 

climate simulation becoming more prevalent, the WRF model has been adapted and used 

extensively in recent years for high-resolution regional climate simulations (Leung et al., 2006). 

It is a non-hydrostatic model with multiple choices for physics schemes, including microphysics, 

convective parameterization, planetary boundary layer (PBL), land surface models (LSM), and 

longwave and shortwave radiation. Some of above physics schemes are crucial for climate 

simulations. For example, WRF contains advanced representations of cloud microphysics and 

land-surface processes so that it is capable of simulating complex interactions between 

precipitation and land surface characteristics (such as the snow cover and the soil moisture). 

Different parameterizations, dynamics, boundary and initial conditions, domains and some 

nesting options in the WRF model have been tested in the context of regional climate modeling, 

making the WRF model a reliable and useful tool for regional climate study. For example, Leung 

et al. (2009) used WRF to conduct a regional climate simulation over the western US to study the 

heavy precipitation and flooding induced by the atmospheric rivers in the western United States. 

Bukovsky et al. (2009) used WRF as a nested regional climate model to study the sensitivity of 

U.S. warm-season precipitation to variations in model setup. Downscaling RCM experiments 

using WRF have suggested that grid nudging can improve the accuracy of generating regional 

climate information (Lo et al., 2008; Bowden et. al., 2012). 
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1.5 Ensembles 

Evaluating regional climate model uncertainties has received more attentions in recent years. 

One way to estimate the uncertainties is to use ensemble simulations. Statistically, the mean of a 

set of ensembles, has a smaller error than the average error of any individual ensemble member 

(Murphy, 1988). When the ensemble systems capture the true uncertainties, the sample statistics 

can provide useful information in climate simulation uncertainties. 

Two kinds of ensemble generation techniques have been widely used, i.e., the multimodel 

ensemble (e.g., Meehl et al., 2007) and perturbed initial condition and boundary condition 

ensemble (e.g., Kjellstrom et al., 2011). Specifically, the multimodel ensemMe employs several 

different models or a single model with different settings of physics schemes to conduct 

ensemble simulations. Dobias-Reyes et al. (2000) demonstrated that the multimodel ensemble 

approach has higher forecast skills than a single model ensemble. Kharin and Zwiers (2001) 

mentioned that in the Tropics, the ensemble mean produced the most skillful forecasts. Chien et 

al. (2006) showed the ensemble mean has smaller errors than any single ensemble member in 

simulating several meteorological variables, such as temperature, precipitation and wind. On the 

other hand, the perturbed initial condition and boundary condition ensemble uses one RCM, with 

different initial and boundary conditions downscaled from different GCM or RCM simulations 

or reanalysis data. In principle, nonlinearities in the climate system may amplify small 

perturbations in initial and boundary conditions to different final climate states. 
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The ensemble spread represented by the sample standard deviation (Std) is to measure the 

differences among the ensemble members. It can provide an estimate of the uncertainties in the 

forecasts. Large ensemble spreads indicate large ensemble uncertainties, while small ensemble 

spreads correspond to small uncertainties. The ensemble spread can also give a reliable 

estimation of the ensemble mean, by quantifying the correlation between the ensemble spread 

and the deterministic simulation error (e.g., Grimit and Mass, 2007; Murphy, 1988; Baker, 1991; 

Buizza, 1997). Whitaker and Loughe (1998) mentioned that the ensemble spread is probably the 

most useful predictor when the studied climatological variables are significantly larger or smaller 

compared with their climatological mean values. 

This research used the WRF model at 10-km resolution to simulate the climate change over 

Ontario from 1991 to 1998. The results, particularly 2-m temperature and precipitation were 

compared with the NCEP Climate Forecast System Reanalysis (CFSR) data, station observations, 

and NARCCAP RCM simulations for the same period. The dynamic downscaling effects in 

regional climate simulations are discussed. The ensemble simulations using WRF were 

conducted. The ensemble mean and ensemble spread were analyzed and compared with the 

driving NARCCAP model, reanalysis data and the observations. 
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Chapter2: Methodology 

2.1 Data and analysis methods 

The data used in this research include seven regional climate model results from NARCCAP 

shown below in Table 2.1. All of these data are gridded model outputs. These simulations were 

driven by the National Center for Environmental Prediction and Department of Energy (NCEP­

DOE) reanalysis II data in the time period from 1979 to 2004. The model results have a 50-km 

horizontal resolution, except WRFG (45-km resolution). 
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Table 2. 1: Brief description of seven regional climate model data~ets used in this research 

Regional Climate Boundary 
Full Name :Group 

Model condition 

CRCM Canadian Regional Climate Model OURANOS 

Experimental Climate Prediction Center 
UC San 

ECP2 Regional Spectral Model, updated 
Diego/Scripps 

configuration 

Experimental Climate Prediction Center 
UC San 

ECPC Regional Spectral Model, original NCEP-

Diego/Scripps 
configuration DOE 

Hadley Regional Model 3/ Providing Reanalysis 

HRM3 (PRECIS) Hadley Centre 
REgional Climates for Impact Studies II 

Iowa State 
MM51 MM5-PSU/NCAR mesoscale model 

University 

RCM3 Regional Climate Model version 3 UC Santa Cruz 

Weather Research & Forecasting model, Pacific :Northwest 
WRFG 

updated Grell configuration Nat'l Lab 

The global monthly surface air temperature and precipitation in the NCEP-DOE Reanalysis II is 

used for doing EOF analysis and analyzing the extreme winters. The data have a resolution of 

2.5° X 2.5°. 

The station observations of 2-m temperature (including daily maximum and minimum 

temperature) and precipitation are obtained from the Environment Canada 

(http://www.weatheroffice.gc.ca/canada_e.html). In this study, eight stations were chosen across 

Ontario from west to east (Ottawa, Toronto, Windsor, Sudbury, Timmins, Wawa, Sioux Lookout 
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and Kenora), as shown in Figure 2.1. 

Maflltotl.1 

un~teo st.itiis 
OfAm£i1C3 

Qoobet: 

Figure 2.1: Distribution of selected 8 meteorological stations 

The NCEP Climate Forecast System Reanalysis (CFSR) monthly surface air temperature and 

precipitation products from January 1979 to December 2004, with a 38km resolution covering 

the entire globe, were used for verification. The CFSR data was interpolated onto the 8 chosen 

station locations and compared with the station observations to validate the consistency of two 

datasets. Thus, the WRF simulation results can be compared with the gridded CFSR data. 

Comparisons of temperature and precipitation were made between model interpolated data and 

corresponding station observations, using monthly, seasonally and annually averaged data. The 

maximum and minimum temperatures were compared with both observations and CFSR data. 
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Standardization (normalization) was applied to the observations and model data in the discussion 

of climate variations. Specifically, to obtain the standardized time series s(t), the time-mean 

value sis subtracted from the original time series S(t). It is then divided by its standard deviation 

CJs (Zhang et al., 2008; Chu et al., 2008). 

S(t) = s(t)-s. 
as 

(2.1.1) 

Hence the standardized data is nondimentional. It can depict the high and low values more 

clearly. Nine-point moving average (using least square method) was applied to filter out high-

frequency variations (Gorry 1990; Mobley and Preisendorfer, 1985). The least square method 

was also used to obtain the trend of all time series. 

In addition, the periodicities of the temperature and precipitation anomalies were detected using 

spectral analysis methods. After calculating the power spectra of a time series, Hanning filter was 

used to filter out high frequency signals. It was also necessary to determine the corresponding 

noise level using a noise significance test. According to Torrence and Compo (1998) and Wei 

(1999), the critical value of autocorrelation coefficient at the 95% confidence level is 

-1+1.64Svfn=2 
To= n-1 

(2.1.2) 

where n is the sample size. 

The time series is persistent, if the lag-I autocorrelation coefficient r(l )>0.1. In this case, the red 

noise test is used to test its significance. Otherwise, when the series is not persistent (i.e. 
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r(l )~0.1 ), the white noise test will be applied. In this research, the lag- I autocorrelation 

coefficients of the temperature and the precipitation data are all smaller than 0.1, thus white 

noise test is used. If a peak in the power spectrum is higher than its white noise level, the peak is 

significant and it can be assumed to be a true feature with a certain percent confidence (95% in 

this case). Otherwise, the peak signal is not acceptable and it should be neglected. 

The empirical orthogonal function analysis (EOF) was applied to find the spatial distributions 

and temporal variation of the temperature and precipitation anomalies. The EOF analysis 

attempts to find a relatively small number of independent variables that describe as much 

original information as possible. Compared with other representation methods used to 

decompose signals including Fourier transforms, wavelets, and Laplace transforms, the EOF 

analysis does not require a predetermined form. It decomposes a set of regional data into a series 

of orthogonal basis functions. These functions have correlations with the regional characteristics 

and reveal whether these characteristics have any influence on the spatial and temporal 

tendencies of the data. The EOF method converges very fast, so that the main information of the 

studied variables can be depicted in several modes. The EOF method has been widely applied to 

analyze meteorological and climatological data since 1950s (e.g., Storch and Zwiers, 2002; 

Hannachi et al., 2009; Zeng et al., 2006). 

Let us assume that matrix S is a time evolving anomaly field, each row of S represents a spatial 

pattern at a fix time. The covariance matrix is R =st* S, the eigenvalues and eigenvectors of R 

can be obtained: 

RC= CA. (2.1.3) 
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Here A is a diagonal matrix containing the eigenvalues Ai of Rina descending order (Ai> Ai+J). 

The eigenvalue Ai corresponds to one eigenvector Ci (i.e., the ith column of C), every eigenvector 

can be considered as a map. The eigenvectors are called the EOFs. EOFl, for example, is the 

eigenvector with the largest eigenvalue. EOF2 is the one with the second largest eigenvalue, and 

so on. 

The eigenvector matrix C has one property that ct C = C ct = I, where I is the identity matrix. 

So all the EOFs are uncorrelated over space. To see how EOFs evolve over time, the time series 

F is projected on each EOF basis to obtain the principal component time series a1 = Fc1.The 

principal component time series are also orthogonal (uncorrelated over time). Therefore, the 

spatial distribution and temporal variation of each EOF can be found. 

2.2 Dynamic downscaling using the WRF model 

Dynamic downscaling simulations over an 8-year period (1991-1998) using the WRF model 

version 3 were conducted. The WRF model domain covered Ontario and the adjacent area (Fig. 

2.2). The model domain had a 1 Okm resolution with dimensions of 300 x300 grid points 

horizontally and 28 vertical levels. Five NARCCAP RCM data (WRFG, MM51, HRM3, RCM3 

and CRCM) were interpolated to provide ICs and BCs to the WRF model. Since the WRF model 

does not predict the sea-surface temperature (SST) and the sea ice, these two variables are 

updated every 6 hours using the data from the Atmospheric Model Intercomparison Project 

(AMIP) conducted by the Program for Climate Model Diagnosis and Intercomparison (PCMDI). 

- 14 -



AMIP SST and sea ice data are used by the NARCCAP RCMs for their simulations as well. The 

soil temperature and soil moisture in two layers (0-IOcm and 10-200 cm) were extracted from 

the NCEP-DOE reanalysis II. The domain lateral boundaries had 15 points, gradually 

transitioning from the driving NARCCAP RCM data to the WRF interior values. The model 

simulation results are saved every 6h for the whole domain. Some variables such as the daily 

maximum and minimum temperatures were diagnosed at every time step but saved every 24h. 

0 500 1000 1500 

unit:m 

Figure 2. 2: The WRF model domain with 10-km resolution in this study. The topography is 
contoured and shaded (Unit: m). 

In this study, the microphysics and convection parameterization schemes used were the WRF 

Single-Moment (WSM) 5-class scheme (Hong et al., 2004) and Grell-Devenyi ensemble scheme 

(Grell and Devenyi, 2002). The WSM5 microphysics scheme explicitly simulates rain, snow, 
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water vapor, cloud water and cloud ice. The Grell-Devenyi scheme is a multi-closure, multi-

parameter, ensemble method with typically 144 sub-grid members. The land-surface model used 

was the Noah (NCEP, Oregon State University, Air Force, and Hydrologic Research Lab) Land-

surface model. It is a four-layer model with fractional snow cover and frozen soilphysics.The 

planetary boundary layer (PBL) parameterization scheme used was the YSU (Yonsei University) 

scheme (Hong and Pan, 1996). This scheme includes counter gradient terms to represent heat and 

moisture fluxes. Atmospheric shortwave and longwave radiations are computed by the 

Community Atmospheric Model (CAM) shortwave and longwave schemes (Collins et al., 2004). 

Since NARCCAP MM51 did not provide the sea level pressure and the surface pressure which 

are required for initializing the WRF model, they were calculated using the hypsometric equation 

(Eq. 2.2.1 ): 

(2.2.1) 

where Z is the geopotential height, indices 1 and 2 represent two levels, Rd is the dry air gas 

constant, g0 is the globally average gravity, Tv is average virtual temperature between these two 

levels, p is the pressure corresponding to Z. Thus, 

The sea level pressure is: 

Z10oohPa*Bo 

Pslp = P1oOOhPa * e Rd•Tv 

And the surface pressure is: 

Zs•Bo 
-Rd•Tv 

Ps = Pszp * e 
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NARCCAP RCMs only provide geopotential height, specific humidity, temperature, zonal (U) 

and meridional (V) components of wind at pressure levels above the ground. To initialize the 

WRF model, vertical interpolations and extrapolations were carri1ed out to fill the data at 

underground grid points, following the NCEP scheme. The Shuell pressure reduction method 

was applied to extrapolate the temperature and height under the ground. The principle for the 

extrapolation is to assume a moist lapse rate under the ground and to use the hypsometric 

equation to get the temperature and height underground. More details can be found in Collins' 

(1983). In addition, the specific humidity, and horizontal winds are assumed to be uniform below 

the first model pressure level above the ground. 

When all the simulations were completed, similar analyses of temperature and precipitation were 

performed and compared to previous NARCCAP results. The correlations and root mean square 

errors between the model data and the CFSR data were calculated. 

The significance test for the RMSE followed Wei (1999). If the total variance is unknown, the 

significance test taken into usage is the F-test, where the test statistite coefficient is defined as 

below: 

(2.2.4) 

Here, (s1,n1) and (s2,n2) are the sample RMSEs and sample sizes. 

The test statistic F follows the F distribution, with the degrees of freedom that y1=n 1-1, y2=n2-I. 

Suppose that the null hypothesis is given that the two RMSEs are not significantly different 
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(s1=s2). Then for a given confidence level a and the calculated F following Eq. 2.2.4, the 

hypothesis is rejected if F 2'.: F 012 , so that the two RMS Es are significantly different. 

The significant test for the correlations given below followed Wei (1999): 

t=r.J§, 
where t is the significance value, n is the number of elements, r is the correlation. 

(2.2.5) 

After stating the hypotheses, we need to find the critical values in the Pearson's table. Then we 

compute the test value using Eq. 2.2.5 and compare this value with the critical value. The last 

step is to make conclusions. If the t value is greater than the critical value, the correlation is 

considered to be significant. 

2.3 Ensemble simulations 

Three sets of ensembles were analyzed to explore the benefits of ~he ensemble approach in 

regional climate simulations. Specifically, the first ensemble was the existing NARCCAP RCM 

multimodel ensemble, consisted of seven models as listed in Table 2. l (WRFG, RCM3, HRM3, 

MM51, CRCM, ECPC and ECP2). The second ensemble was the 10-km resolution WRF 

downscaling simulations driven by five NARCCAP RCM datasets (WRFG, RCM3, HRM3, 

MM51 and CRCM), hence it has 5 members. The third ensemble was the so-called stochastic 

WRF ensemble. In addition to the five members in the second ensemble, nine members were 

added by employing the stochastic kinetic energy backscatter (SK.EB) scheme (Shutts, 2005) in 

the WRF model to form the 14-member ensemble. The SKEB scheme adds temporally and 
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spatially correlated perturbations to the rotational wind components and the potential 

I 

temperature. Bemer et al. (2011) showed that the ensemble with SK.EB scheme performs better 

in improving the ensemble weather forecast than the multiple physi1cs scheme ensemble. The 

effect of the SK.EB scheme is most remarkable in the low-level wind :ffields (Charron et al. 2010; 

Bemer et al., 2011). Since the SK.EB scheme is very promising in producing a good ensemble, it 

is tested here for ensemble regional climate simulations. The time: periods of the first two 

ensemble simulations were both from 1991to1998, while the last one was from 1997 to 1998. 

The ensemble mean and spread of the temperature and precipitation were computed and 

compared to observations and the CFSR data. The uncertainties in regional climate simulations 

are discussed. 
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Chapter 3: Assessment of NARCCAP data and the observations 

This chapter shows the analyses of the NARCCAP RCM simulations, NCEP-CFSR reanalysis 

data and some of the station observations. The NARCCAP data contains 7 RCM model 

simulations over North America for 26 years from 1979 to 2004. 

3.1 Temperature analysis 

3.1.1 Time series 

In this thesis, we focused on evaluating surface (2-m) air temperature. To compare with the 

observations from the chosen 8 stations (Fig. 2.1 ), the gridded model clata was interpolated onto 

the station locations. In this research, the natural neighbour interpola~ion was chosen to obtain 

the model data at 8 stations. The basic equation in 2D natural neighbour interpolation is 

G(x,y) = I:f=1 wJ(xi,Yi), where G(x,y) is the value at the interpolation point (x,y). f(xi,ya 

is gridded model data at (xi, Yi), and wi are the corresponding weights. The weights wi is 

computed using the Thiessen polygon network of neighboring points. Finally, the interpolated 

data and the observations at 8 stations were averaged to represent the area-mean value over 

Ontario. 

The data was divided into four seasons defined in Table 3 .1. 
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Table 3. 1: The distributions of the four seasons. 

Spring Summer FaH Winter 

March, June, September, December, 

Months April, July, October, January, 

May August November February 

Because the simulations started in January 1st 1979, the winter season in 1979 only includes 

January and February. 

Figure 3-1 shows the time series of the annual average and seasonal average temperature in 

seven models and observations over Ontario. For the observations, it is obvious to see that the 

annual temperature fluctuates from the late 1970s to the late 1990s followed by a sudden rise 

(shown later in the standardization time series in Fig. 3.2). Co11;1parisons of the average 

temperature in four seasons show that the sudden increase of the annual average temperature in 

the late 201
h century is mainly due to a sudden rise of winter and spring average temperature (Fig. 

3.1 b,e and Fig.3.2 b,e). Although all of the four seasons show an increasing trend during the 

chosen period, the increase of the temperature in summer is not as big as that in winter. In fall, 

the temperature in 2004 becomes the highest during this period. 

The temperatures in seven model simulations follow the observations reasonably well. For the 

annual average temperature, HRM3 and ECPC have constantly higher temperature than the 

observations, while RCM3, CRCM and MM51 are lower. WRFG gives the least error. RCM3 has 
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the coldest bias especially due to its cold bias mainly in spring and summer. HRM3 has the 

warmest bias, especially because of its greatest warm bias in winter. 

10 (a) 

I 

Ontario area mean annual temperature (1979-2004) 

year 

Ontario area mean spring temperature (1979-2004) 

1979 1984 1989 1994 1999 
year 
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Ontario area mean winter temperature (1979-2004) 
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Figure 3. 1: Ontario 8-station mean temperature time series of obseryations (in red) and seven 
model data (°C). (a) Annual average temperature, (b) spring averageitemperature, (c) summer 

• I 

average temperature, ( d) fall average temperature, and ( e) wmter average temperature. 

After standardization (Eq. 2.1.1), an increasing trend of annual observed temperature was 

identified (Fig. 3.2 a). The trend also in the four seasons (Fig.3.2 b-e). The low frequency 

variations of annual temperature in Ontario can be divided into 4 periods: cold period 1979-1985, 

warm period 1985-1991, cold period 1991-1997 and warm period 1998-2004. In the late 1980s 

and the early 1990s there is a warm period, but not as significant as the one occurred from the 

end of the 20th century. The temperature in Ontario begins to rise remarkably from 1998. This 

tendency is revealed in spring, fall and winter. In summer, this tendency starts several years 

earlier. All the four seasons contribute to the significant temperature increase from the late 1990s, 

and winter contributes the most. In spring, the temperature trend stays almost constant, while the 

other three seasons all show an increasing trend during the whole studied period. 
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(d) 1979-2004 Ontario fall temperature(observation,after standardization) 
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Figure 3. 2: Standardized time series of the 8-station mean temperature observation in Ontario. (a) 
Annual temperature, (b) spring temperature, ( c) summer temperature, ( d) fall temperature, ( e) 

winter temperature. The linear trend is in green dash line. The low frequency variation is in red. 
The standard deviation (0 C) is labeled in each pa~el. 

Since WRFG has the least error, we chose WRFG as one example for comparison after 

standardization. In Fig. 3.3, the annual, summer, fall and winter temperatures have similar peaks 

and valleys corresponding to the observed temperatures. These three seasons contribute to the 
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late 1990s temperature upward tendency, and the biggest contribution is from winter. In spring, 

the WRFG simulation does not perform well since it shows a decreasing trend opposite to the 

observations. Both the observation and the WRFG annual temperatures show two peaks in the 

late 1980s and the late 1990s (Fig. 3.2 a and Fig. 3.3 a). The increasing summer, fall and winter 

temperature in the late 1990s can also be captured in both standardization series (Fig.3.2 c-e and 

Fig. 3.3 c-e). 

(a)1980-2004 Ontario annual temperature(WRFG-NCEP,after standardization) 
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(b)1979-2004 Ontario spring temperature(WRFG-NCEP,after standardization) 
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(d) 1979-2004 Ontario fall temperature(WRFG-NCEP,after standardization) 
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(e)1979-2004 Ontario winter temperature(WRFG-NCEP,after standardization) 
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Figure 3. 3: Standardized time series of the 8-station mean WRFG temperature in Ontario. (a) 
Annual temperature, (b) spring temperature, ( c) summer temperature~ ( d) fall temperature, ( e) 

winter temperature. The linear trend is in green dash line. The low frequency variation is in red. 
The standard deviation (°C) is labeled in each panel. 

For the observations, the standardization curves show some extremely warm and cold years and 

seasons. In order to study the circulation characteristics and the mechanisms leading to these 

extreme temperature periods, we defined an anomalous low/high temperature year as 'its 

standardized temperature value is smaller/greater than -1 or 1. 

Table 3. 2: Extremely warm and cold summer and winter as defined as temperature anomalies in 
excess of± 1. 

Extremely cold (Tstd<-1) Extremely warm (Tstd> 1) 

Years (summer) 1982, 1985, 1986, 1992,2004 1983;1988,1991,1995,2002 
Years( winter) 1979' 1982, 1994 1983,1987,1998 ,2002 

To some extent, the winter temperature variation follows the annual temperature variation during 

the entire period. The low frequency variations of winter temperature can also be divided into a 
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similar 4 periods: cold period 1979-1985, warm period 1985-1991, cold period 1991-1997 and 

warm period 1998-2004. It can be seen that cold winter events usually occur in cold periods 

while warm winters usually occur in warm periods. 

The summer temperature variation can be divided into 5 periods as well: cold period 1979-1987, 

warm period 1987-1991, cold period 1991-1994, warm period 1994-2003 and one cold year 

2004. The figure and the table reveal that cold summer events usually occur in cold periods 

while warm summers usually occur in warm periods (except 1983). For these 26 years, summer 

temperature in Ontario has a slight increasing trend, compared with ~he winter variation during 

the same period. 

Using the NCEP-DOE reanalysis II data, several factors contributing to the extremely cold and 

warm winters were discussed in Appendix A. The circulations which favor extremely cold 

winters include: stronger North American High, stronger North American Trough, stronger jet 

stream south to the average location and negative temperature advection. The circulations which 

favor extremely warm winters tum to be opposite: weaker North American High, weaker North 

American Trough, weaker jet stream north to the average location and positive temperature 

advection (Fig. A. 1-4). 

3.1.2 Spectral analysis 

The purpose of conducting spectral analysis for the time series is to find climate variability at all 

possible frequencies. The periodicity of temperature (and precipitation) is very important to 

climate studies. 
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For annual observed temperature over Ontario, the two peaks are clearly shown in Fig. 3.4 a. The 

most significant period is 3. 7 years and the second most significant period is 13 years. The 

similar 3.7-year period appears in WRFG, CRCM, ECP2, ECPC and HRM3 annual temperature 

data. Among these 5 models, the power spectra of CRCM and ECP2 are closer to the 

observations. Compared with other models and observed data, MMSI and RCM3 simulate the 

3.7-year period as well, but they miss some other significant periods. The 8.7-year (frequency 

3/26 year-1
) power spectra are similar for most of the NARCCAP models, except MM5I and 

RCM3. For summer seasons and winter seasons, there are agreements and disagreements among 

the power spectra of these seven models and the observations. In winter (Fig. 3.6 a), a 3.7-year 

period is seen in the power spectra of all the models and the observations, which is the most 

significant variation period (in some of the models it is the second most significant period). 

However, the observations and ECPC show their most significant period of 2.1-year period. 

Some of the models and the observations have peaks at the 13-year period and 8.7-year period, 

but not as significant as 2.1-year and 3.7-year periods. For summer case (Fig.3.5), two main 

periods are 3.7 years (the most significant period) and 6.5 years (the second most significant 

period) are shown obviously. In summary, all the seven models and observations show a 3.7-year 

period of temperature variation. Except MM5I and RCM3, the other five models simulate the 

period of 13 years in annual and winter temperature variations, and the 6.5-year period in 

summer variations very well. Interestingly, HRM3 annual temperature variation power spectrum 

indicates that its most significant period is 13 years and the second most significant period is 3.7 

years, which are in the opposite order as those in the observation. 
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Figure 3. 4: Power spectra of annual average temperatures in Ontario in observations and seven 
NARCCAP simulations. (a) Observation, (b) WRFG, (c) CRCM, (d) ECP2, (e) ECPC, (f) 

HRM3, (g) MM51, (h) RCM3. The red lines are power spectrum crit~rion (The x-axis is 
frequency (1/26 yeaf1

) and the y-axis is the power spectrum (K.2 year)). 
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Figure 3. 5: Power spectra of summer average temperatures in Ontario im observations and seven 
NARCCAP simulations. (a) Observation, (b) WRFG, (c) CRCM, (d) ECP2, (e) ECPC, (f) 

HRM3, (g) MM51, (h) RCM3. The red lines are power spectrum criterion (The x-axis is 
frequency (1/26 year-1

) and the y-axis is the power spectrum (K2 year)). 
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Figure 3. 6: Power spectra of winter average temperatures in Ontario in observations and seven 
NARCCAP simulations. (a) Observation, (b) WRFG, (c) CRCM, (d)'ECP2, (e) ECPC, (f) 

HRM3, (g) MM5I, (h) RCM3. The red lines are power spectrum crit¢rion (The x-axis is 
frequency (1/26 year-1

) and the y-axis is the power spectrum (K2 year)). 
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3.1.3 EOF analysis 

Empirical Orthogonal Functions (EOF) technique has become one of the most widely used 

methods to study both the spatial distribution and temporal variation of climatological variables 

(Hannachi et al., 2009; Zeng et al., 2006). In this research, the EOF analysis was applied to 

NCEP-DOE reanalysis II data and each NARCCAP model data over Ontario to identify the 

capability of the models in capturing the climate variability. Because the results from all the 

models and the reanalysis data give similar EOF patterns, only the EOF analysis results for the 

WRFG data and the NCEP-DOE reanalysis II data are shown here. 

(a) The 1st mode (b) The 2"d mode (c) The 3rd mode 
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·2 

Figure 3. 7: The spatial distributions (a-c) and temporal variations (d-f) of the first 3 leading EOF 
modes for WRFG annual temperature (a,d: I st mode, b,e: 2nd mode, c,f: 3rd mode). 

- 35 -



0.0351. 

0.03~ 
0.025(" 

0.02 .. 

0.01 

(a) The 1st mode 

(d) time series(variance=72.88%) 

(b) The 2"d mode 

0.06 

0.04 

-0.04 

(e) time series(variance=I0.50%) 

0.061 

0.04~ 
0.02~ ~ 

! ·I 

o~ ; 

(c) The 3rd mode 

(f) time series(variance=6.98%) 
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Figure 3. 9: The spatial distributions (a-c) and temporal variations (d-f) of the first 3 leading EOF 

modes for WRFG winter temperature (a,d: 1st mode, b,e: 2nd mode, c,f: 3rd mode). 
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Firstly the annual temperature variation is discussed. The first mode variance contribution 

accounts for 82.64%, which is definitely dominant among all the modes. From Fig. 3.7 (a), it can 

be clearly seen that the correlation coefficients in Ontario are all positive, which means that the 

annual temperature throughout Ontario changes in the same phase. The annual temperature 

variations in both west and east Ontario show great accordance. The area of large variability is in 

the middle of Ontario north to the Great Lakes. Interestingly, the values over water surface such 

as the Hudson Bay and the Great Lakes are obviously lower than surrounding areas over land. It 

is probably because of the different heat capacities between land and water. Figure 3.7 d is the 

time coefficient series of the first mode. Positive values represent that annual temperature of the 

whole region rises while negative values stand for a decreasing trend of temperature in the 

corresponding years. When comparing this time coefficient series with the observed data time 

series (Fig. 3 .10 d), it shows a similar feature that from 1998 the annual temperature rises 

remarkably after decades of fluctuations. 

The second mode variance contribution accounts for only 8.04%, much smaller than the first 

mode. It shows a great difference in temperature variation between north (negative value) and 

south (positive value) Ontario. A positive time coefficient means that annual temperature in 

north Ontario rises while temperature in south Ontario drops, and vise versa. The third mode has 

3.96% of the variance contribution, and the patterns are opposite in west (positive value) and east 

(negative value) Ontario. 
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In total, the leading three modes, with more than 90% accumulated variance contribution, are 

sufficient to describe the spatial and temporal distribution of the annual temperature variation. 

In summer (Fig. 3.8), the variance contribution of the first mode only accounts for 72.88%, 

which is relatively smaller than that of annual and winter (86.98% ). The correlation coefficients 

in Ontario are positive in both summer and winter, and the high center is in the middle part of 

Ontario. In summer, Lake Superior and the south part of the Hudson Bay share low coefficients, 

but still positive. The coefficients do not have great differences in the first mode of winter. At 

this time of year, the low coefficients of temperature only appear at the top right comer and the 

bottom right comer of the domain. Overall, from the first modes of summer and winter, the 

temperature variations show good accordance. Moreover, the time series of the first mode in 

winter explains 86.98% of the covariance that in the late 1990s, the temperature is rising. 

It is noticeable that the patterns of the 2nd and the 3rd modes in summer and winter are similar. 

The coefficients of both summer and winter 2nd modes have a northwest-southeast increasing 

trend. So the differences of temperature variations are shown that the northwest and southeast 

parts do not share the same phase. The third mode accounts much less than the leading 2 modes. 

The summer and winter 3rd modes both show a pattern that the northeast (negative) and the 

southwest (positive) are in different phases. Not surprisingly, the differences between summer 

and winter EOF patterns are over the lakes. This is because that in winter, the lakes are covered 

with freezing ice and the temperature over the lakes is considered to be similar to the adjacent 

land area. In summer, when the ice over the lakes melts, due to the different heat capacity of land 

and water, the coefficients over the lakes are different from the coefficients over the land. 
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EOF analyses of all other six models result in similar conclusions. The first mode takes up the 

largest percentage of variance contribution at around 80%-90%, and has similar spatial 

distribution to that of WRFG model. For the temporal patterns, there are some differences in 

fluctuations before 1998 among the models. All time coefficient series of the seven models show 

a remarkable temperature rise in 1998. 

The EOF analyses of the NCEP-DOE reanalysis II data shows similar spatial and temporal 

patterns displayed below in Fig. 3.10 to Fig. 3.12. The first modes of annual, summer and winter 

temperature variations are all positive and take up around 70% of their total variance. Although 

there are some differences in the 2nd and the 3rd modes between model and the NCEP-DOE data, 

the variance of these two modes accounts for much smaller percentage than the first mode. Thus, 

the first mode is the predominant one which can depict the temperature variations, to some extent. 

It can be seen from the first modes of annual and winter NCEP-DOE temperature (Fig.3.10 d and 

Fig. 3.12 d) that the significant temperature increase occurs in the late 1990s. 

The EOF analyses of the model data and the NCEP-DOE data suggested that all models are 

capable of simulating the main annual, summer and winter temperature variation in Ontario. 
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Figure 3. 10: The spatial distributions (a-c) and temporal variations (d-f) of the first 3 leading 
EOF modes for the observed annual temperature (a,d: 1st mode, b,e: 2"d mode, c,f: 3rd mode). 
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Figure 3. 11: The spatial distributions (a-c) and temporal variations (d-f) of the first 3 leading 
EOF modes for the observed summer temperature (a,d: 1st mode, b,e: 2nd mode, c,f: 3rd mode). 
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Figure 3. 12: The spatial distributions (a-c) and temporal variations (d-f) of the first 3 leading 
EOF modes for the observed winter temperature (a,d: I st mode, b,e: 2nd mode, c,f: 3rd mode). 

3.2 Maximum and minimum temperature analysis 

To obtain the averaged maximum temperature (TMAX) and minimum temperature (TMIN) 

defined in this section, the annual or seasonal averaged daily maximum and minimum 

temperatures were interpolated onto 8 stations and then averaged. The maximum and minimum 

temperatures discussed in later sections were also obtained by this method. Figure 3.13 and 3.14 

show Ontario 8-station mean maximum and minimum temperature time series. Since the 

maximum and minimum temperatures are not provided in ECPC, ECP2 and MMSI, only four out 

of seven models are plotted, and some of them do not cover the entire period. 

- 41 -



For the annual mean of the daily maximum and minimum temperature during the entire period, a 

remarkable rising trend is shown in 1998 in both time series. CRCM has a warm bias in fall and 

winter for both maximum and minimum temperature, which leads to its warm bias in annual 

maximum and minimum temperature. RCM3 has a cold bias in spring, summer and fall 

maximum temperature time series, and this contributes to its cold bias of annual maximum 

temperature. HRM3 has the lowest annual minimum temperature. This is mainly due to its cold 

bias in winter and spring minimum temperature. All the three models (WRFG, RCM3 and 

HRM3) have colder minimum temperature than the observations in summer. 
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Figure 3. 13: Ontario 8-station mean maximum temperature time series of observations and four 
model data (unit: degC). The red line represents observation data. (a) Ontario annual area mean 

maximum temperature, (b) Ontario spring area mean maximum temperature, ( c) Ontario summer 
area mean maximum temperature, ( d) Ontario fall area mean maximum tempe1rature, ( e) Ontario 

winter area mean maximum temperature. 
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Figure 3. 14: Ontario 8-station mean minimum temperature time series of observations and four 
model data (unit: degC). The red line represents observation data. (a) Ontario annual area mean 
minimum temperature, (b) Ontario spring area mean minimum temperature, ( c) Ontario summer 
area mean minimum temperature, ( d) Ontario fall area mean minimum tempecature, ( e) Ontario 

winter area mean minimum temperature. 

3.3 Precipitation analysis 

3.3.1 Time series 

The time series of 8-station mean precipitation is shown below in Fig. 3.15, for (a) annual, (b) 

spring, (c) summer, (d) fall and (e) winter. Some models including ECPC, ECP2, RCM3 reveal 

an obviously higher precipitation amount during this period. The high biases in ECPC and ECP2 

appear in both winter and summer seasons, while the winter precipitation of RCM3 remains 

close to the observations. The annual precipitation amounts of the rest models stay close to the 
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observations. Summer precipitation processes, in particular convective precipitation, cannot be 

well resolved by the models. However, winter precipitation is mainly caused by synoptic systems 

and less by convection. In later sections, winter precipitation (dry and wet years) will be 

discussed. Compared with the temperature series, the precipitation discrepancies between the 

observations and the model results are much greater than those of the temperature. 
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Figure 3. 15: Observed and model simulated time series of 8-station mean precipitation in 
Ontario (mm month-1

). For (a) annual precipitation, (b) spring precipitation, (c) summer 
precipitation, ( d) fall precipitation, ( e) winter precipitation. The red lime represents observation 

data. 

The 9-point temporal smoothing average was used to identify precipitation anomalies (Fig. 3.16). 

The annual precipitation remains at a stable level during the chosen period. The dry period is 
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from middle 1980s to early 1990s, while some moist years are in late 1970s and middle 1990s. 

But with a sudden rise from 2000, the precipitation increases to its peak in 2004, which is mostly 

related to the increase in spring and summer (Fig. 3.16 band c). 

For the smoothed precipitation trend, there are similarities in the peaks and valleys of the model 

data and the observations. The precipitation variations are more stable than those of temperature. 

WRFG and ECPC reveal different peaks from the observations at 1995 and different valleys at 

around 2001 and 2002, according to the annual precipitation (Fig. 3.16 a). In spring, WRFG and 

ECPC have a high precipitation period in the mid 1990s, while the observations and other 

models do not show this wet period. For the summer case, the valleys of the model data match 

the observations in late 1980s but with different precipitation amounts. The fall observed 

precipitation always has smaller quantity than the model precipitation, except ECPC and RCM3. 

For the winter case, all the models show an obvious peak in middle 1990s and match the 

observations. In the last year (2004), the only two models which show the similar decreasing 

precipitation tendency to the observations are ECPC and ECP2. 

The standardization analysis of the observed precipitation is show in Fig. 3.17. This figure shows 

the linear trend of the observed precipitation using the least-square method. It can be seen clearly 

that the area mean precipitation indeed varies at a very stable level, since that the linear trend of 

the annual precipitation is almost a horizontal line. There is a slight decreasing tendency in 

summer precipitation amount and a moderate increasing trend in precipitation amounts in the 

other three seasons. In the mid 1990s, the annual precipitation depicts a wet period and this is 

mainly due to the high precipitation in summer. Dry years occur in the late l 9'80s and the late 

1990s. Spring contributes the most to the 1980s dry years. Although in the late 1990s, the 
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precipitation in winter is relatively high, the other three seasons contribute more negatively 

leading to a dry period of the annual precipitation. 
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(e) Ontario area mean winter smoothed precipitation (1979-2004) 
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Figure 3. 16: Observed and model simulated time series of 8-station mean precipitation in 
Ontario (after 9-point smooth average) (mm month-1

). For (a) annual precipitation, (b) spring 
precipitation, ( c) summer precipitation, ( d) fall precipitation, ( e) winter precipitation. The red 

line represents observation data. 
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(b) 1979-2004 Ontario spring precipitation(observation,after standardization) 
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(d) 1979-2004 Ontario fall precipitation(observation,after standard'i,zation) 
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Figure 3. 17: Standardized time series of the 8-station mean precipitation observation in Ontario 
(unitless). For (a) annual precipitation, (b) spring precipitation, (c) summer precipitation, (d) fall 

precipitation, (e) winter precipitation. (Linear trend is in green dash·, tine. Low frequency 
variation is in red). 
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Table 3. 3: Extremely dry and wet summer and winter as defined as precipitation anomalies in 
excess of± 1. 

Extremely dry(P std<-1) Extremely wet (P std> 1) 

Years( summer) 1992,2000 
Years( winter) 1994,2003 1985,1997 

Similarly, we can define extremely dry and wet year/season if its anomaly exceeds one standard 

deviation. Compared with extremely cold and warm events, the number of extremely dry and wet 

events is smaller. Altogether there are only 6 years reaching the standard (Table 3.3), which 

reveals that the precipitation variation during this period is more stable than that of temperature. 

Although the precipitation variability is not as significant as temperature variability, there are 

still some extremely dry and wet winters which are shown in Fig. 3.17 (e). Since the summer 

precipitation processes are mainly due to unresolved convections, the analysis to discuss the 

reason why there are dry or wet seasons are applied to winters. In winter, there is a positive 

precipitation anomaly in middle 1980s and late 1990s, while a negative anomaly during late 

1970s, early 1980s, late 1980s and early 1990s. 

The NCEP-DOE reanalysis II data were used to study the factors contributing to the extremely 

dry and wet winters in Appendix B. The favorable conditions to form a wet winter include 

anomalous southerly wind, sufficient moisture and a large scale upward motion lifting moisture 

to high levels. 

- 57 -



3.3.2 Spectral analysis 

The periodicities of annual, summer and winter precipitation during 1980 to 2004 were analyzed 

similarly as those for the temperature. For annual mean precipitation (Fig. 3.18), the most 

significant period is 2.1-year and the second most significant one is 4.3 years. Unlike the 

temperature periodicity, different models show quite different precipitation periodicities, which 

also suggested the predictability of precipitation is low. WRFG, CRCM and RCM3 reflect a 

dominant 13-year period in their annual precipitation. ECPC, HRM3 and MM5I all show a 6.5-

year period. Compared to the observations, the same 2.1-year period 'is shown only in WRFG, 

CRCM and MM5I. The 4.3-year period only presents in RCM3. 

In summer (Fig. 3.19), the observed data has its most significant period of 6.5 years, with the 

second most significant period of 3.7 years. CRCM, ECPC2, HRM3 and MM5I all have this 

period as their most significant period in their summer precipitation variations. Some different 

periods appear in WRFG (13 years), ECPC (5.2 years) and RCM3 (4.3 years). 

In winter (Fig. 3.20), discrepancies still exist among the observations and the model data. The 

observations show a 2.1-year period as its most significant period, which is the same as the 

annual precipitation variation. But in fact, none of the seven models precipitation variations 

show such period. The discrepancies among the periodicities of winter precipitation of seven 

model data are much greater than those of summer and annual precipitation. The only two 

similar periods is a 13-year period in WRFG and CRCM, and 6.5-year period in ECPC and 

ECP2. HRM3 and MM5I both show a 2.8-year period, but with different weights. 
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Figure 3. 18: Power spectra of annual precipitation in Ontario in observations and seven 
NARCCAP simulations. (a) Observation, (b) WRFG, (c) CRCM, (d) ECP2, (e) ECPC, (f) 

HRM3, (g) MM51, (h) RCM3 (The x-axis is frequency (1/26 yea(1
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Figure 3. 19: Power spectra of summer precipitation in Ontario in observations and seven 
NARCCAP simulations. (a) observation, (b) WRFG, (c) CRCM, (d) ECP2, (e) ECPC, (f) 
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Figure 3. 20: Power spectra of winter precipitation in Ontario in observations and seven 
NARCCAP simulations. (a) observation, (b) WRFG, (c) CRCM, (d) ECP2, (e) ECPC, (f) 
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3.4 Trend validation 

Since the 25-year period (1980-2004) is relatively short to have reliable climatological trend 

analysis, it is necessary to validate the trends of both temperature and precipitation during 1980 

and 2004. As described in OURANOS' report (Bourdages and Huard, 20 l 0), la~t 5 years of the 

entire period is removed to get a subsample to validate the trends. 

Fig. 3 .21 portrays the time series of mean annual temperature, summer temperature and winter 

temperature, taken from the 8-station mean time series. Figure 3.22 shows the time series of the 

mean annual precipitation, summer precipitation and winter precipitation. 

All the time series are indicated in 2 different colors: the red lines represent the 1980-2004 time 

period, whereas the black dash-dot lines cover the 1980-1999 period. Table 3 .4 summarizes the 

comparison of the mean and trends of temperature and precipitation, calculatedfirst with the 

1980-2004 dataset and the subsample without the last 5 years (1980 to 1999). In this particular 

case, removing the last 5 years of dataset results in all most identical increasing or decreasing 

trend of both temperature and precipitation. 
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Figure 3. 21: The time series of the 8-station mean temperature. (a) Annual temperature, (b) 
summer temperature and (c) winter temperature. Two periods are shown in the figures: 1980-

2004 in red and 1980-1999 in black dash-dot line. 
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Figure 3. 22: The time series of the 8-station mean precipitation. (a) Annual precipitation, (b) 
summer precipitation and ( c) winter precipitation. Two periods are shown in the figures: 1980-

2004 in red and 1980-1999 in black dash-dot line. 
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Table 3. 4: Comparison of mean and trends of annual, summer and winter mean temperature 
(and precipitation), for the domain area mean, using a dataset covering the l 9l80-2004 and 1980-

1999 periods (shown in Figure and Figure ). Differences are presented with respect to the 25-
year period (1980-2004). 

Annual: 1980-1999 Annual: 1980-2004 %difference 

MeanT 4.79°C 4.94°C 3.04% 

Trend T 4.37°C (100year)"1 5.06°C(l 00yeary1 13.64% 

MeanP 68.65mm month-1 69.26 mm month-' 0.88% 

Trend P 3.36mm month- 1 (100yearr1 13. mm month- 1 (100yearr1 74.87% 

Winter: 1980-1999 Winter: 1980-2004 %difference 

MeanT -10.11°C -9.97°C 1.40% 

Trend T 6.91°C(l 00year)" 1 6.01°C(l00yearr1 -14.98% 

MeanP 48.86 mm month-1 48.46 mm month- 1 -0.83% 

Trend P 39.56 mm month- 1 11.63 mm month- 1 -240.15% 

(100year)"1 (100year)"1 

Summer: 1980-1999 Summer: 1980-2004 %difference 

MeanT 18.65°C 18.67°C 0.11% 

Trend T 4.81°C(l00year)"1 2.64°C(l 00yearr1 -82.20% 

MeanP 86.32 mm month-' 86.41 mm month- 1 0.10% 

Trend P -26.25 mm month- 1 -13.62 mm month- 1 -92.73% 

(lOOyear)"1 
(lOOyearr' 
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3.5 Verification of CFSR data 

Since the observations (only eight stations) did not cover the entire region of the WRF domain, 

CFSR data was selected to be compared with the WRF simulations which would be shown in the 

next chapter. CFSR is chosen because of its fine resolution (38kmx38km) compared with NCEP­

DOE (2.5°x2.5°). Before conducting the comparison between the WRF simulations and CFSR 

data, it is necessary to verify CFSR data. In this section, a brief comparison between CFSR data 

and the 8-station observations are shown. 

The gridded CFSR data were first interpolated onto the eight stations. Then the mean 

temperature and precipitation over these eight stations were calculated and compared to the mean 

observed values. For the temperature, the winter mean series of the CiFSR data is 3.17 degrees 

higher than the mean observation, while the summer mean series of the CFSR data is similar in 

magnitudes but with different slope of the linear trend. Overall, the annual temperature in CFSR 

is 1.52 degrees higher than the observations, mainly due to the warm bias in winter. Both of 

these series reveal an increasing trend from 1980 to 2004. 
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Figure 3. 23: Verification of CFSR temperature data, compared to the observations, of 8-station 
mean. (a) Annual temperature, (b) summer temperature, and (c) winter temperature. Unit: °C. 
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Table 3. 5: The 8-station mean temperature between 1980 and 2004. Unit: °C. 

CFSR Station data 
Annual mean temperature 6.24 4.712 
Summer mean temperature 18.2 18.67 
Winter mean temperature -6.79 -9.96 

For precipitation, there is neither significant increasing nor decreasing trend during this period of 

1980 and 2004. There is a +20.68 mm month-I discrepancy between the CFSR and the observed 

winter precipitation, which contributes mostly to the differences iin the annual precipitation 

(13.05 mm month-I higher in CFSR). The amounts of summer precipitation in both the CFSR 

data and the observations are similar during the chosen period. 

Moreover, there is a similarity in the correlations between the CFSR data and the observations of 

temperature and precipitation. The correlations of the temperature and precipitation in summer 

(0.77 and 0.67, respectively) are smaller than those in winter (0.91 and 0.92 respectively). For 

annual temperature and precipitation time series, the correlations are 0.85 and 0.82 respectively, 

whose values are between their summer and winter correlation values. All the correlations are at 

90% confidence level. 

Table 3. 6: The 8-station mean precipitation between 1980 and 2004. Unit: mm month-I. 

CFSR Station data 
Annual mean precipitation 83.27 70.22 
Summer mean precipitation 84.38 86.66 
Winter mean precipitation 69.14 48.46 
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Chapter 4 Evaluation of the WRF Simulations 

In this chapter, high-resolution simulations from January 1991 to December 1998 using the WRF 

model was conducted to see how well the downscaling simulation could improve the 

representation of the regional climate over Ontario. As in previous chapter, this chapter is 

divided into 2 main parts, the analyses of the temperature and the precipitation. When comparing 

the domain-averaged values, the domain average was obtained by averaging the values over the 

entire WRF model domain excluding the outer 15 points along each side of the lateral boundaries. 

The NARCCAP and CFSR data were first interpolated onto the same WRF model grid before 

the domain average were computed. 

Instead of discussing individual downscaling simulations, we focused more on the discussions of 

two sets of ensembles. One is the 7-member NARCCAP ensemble, which consists 7 NARCCAP 

model data (CRCM, ECPC, ECP2, HRM3, RCM3, MM5I and WRFG). The other ensemble 

constitutes 5 members, which were the WRF downscaling simulations driven by 5 NARCCAP 

model data (CRCM, HRM~, RCM3, MM5I and WRFG). Incomplete datasets have prevented us 

to conduct simulations with the WRF model driven by ECPC and ECP2. 

4.1 Temperature in the WRF simulations 
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The temperature variation in the WRF mode domain is analyzed in this section. 

4.1.1 Time series 

While containing a high degree of variability, the simulated annually averaged temperature show 

a warming trend with some slight fluctuates across the simulated 8 years between 1991 and 1998. 

Figure 4.1 shows the time series of the annual (Fig. 4.1 a) and the seasonal (Fig. 4.1 b-e) domain 

mean temperature from 1991 to 1998. In each panel, thick cyan, green and red lines represent the 

7-member NARCCAP ensemble mean temperature, the CFSR temperature and the 5-member 

WRF simulation ensemble mean temperature, respectively. Each WRF simulation result and its 

corresponding driving NARCCAP data are plotted in the same color but the former is in solid 

line and the latter in dashed line. All annual temperatures reveal a significant increasing trend in 

the last two years. All the five WRF simulations with different initial and boundary conditions 

show relatively colder temperatures compared with their correspondinig NARCCAP simulations. 

In general, the warmer the driving NARCCAP model is, the warmer the WRF downscaling 

simulation is. HRM3 produced the warmest area mean temperature, similar to its warmest 8-

station mean temperature shown in previous chapter. 

In winter, the NARCCAP ensemble mean has a warm bias while the WRF ensemble mean has a 

cold bias, compared to the CFSR data. Spring also portrays a similar bias, except the year 1992 

and 1994. In summer, most of the WRF simulations reveal a temperature minimum in 1992, 

except the one driven by HRM3, which shows the temperature valley in 1993. The differences 

between model data (both NARCCAP ensemble mean and WRF ensemble mean) and the CFSR 

data are the smallest in summer among the four seasons. In fall, both NARCCAP ensemble and 
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the WRF simulation ensemble show a cold bias between 1991 and 1998. This is the only season 

in which both ensembles show a cold bias. 

Among all the 4 seasons, spring and winter have the two most significant upward trends in the 

last two years of the period, i.e., 1997 and 1998, compared with the moderate increase in summer 

and fall. It is because that in high latitude areas, cold periods often last till March or April. And 

in this thesis, spring includes these two cold months by definition. So the trend of spring 

temperature follows the tendency of the winter temperature in the same year. 

The mean of the annual and the four-season temperature from 1991 to 1998 are calculated in 

Table 4.1 to Table 4.5. According to the tables, the differences between the WRF ensemble mean 

and the CFSR data are greater than the differences between the NARCCAP ensemble mean and 

the CFSR data in fall and winter, the former becomes smaller in the other two seasons. However, 

it has been shown in the previous chapter, that the 8-station interpolated CFSR data is 

approximately 1~2 °C warmer than the station data in this period (c.f. Fig. 3.23). Due to this fact, 

it is believed that the differences between the WRF ensemble mean and the observations are 

smaller than the differences between the NARCCAP ensemble mean and the observations in 

general. We will verify it again shortly (c.f. Table 4.7). 

Table 4.6 depicts the correlations and the root mean square errors (RMSE) between CFSR and 

each ensemble mean. The correlations are all significant at the 90% confidence level. According 

to the table, the correlation between CFSR and the WRF ensemble mean is greater than that 

between CFSR and the NARCCAP ensemble mean in spring, fall and in the annually averaged 

sense. Only in summer it has the opposite situation. Most of the RMSE between CFSR and the 
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WRF ensemble mean are smaller than those between CFSR and the NARCCAP ensemble mean. 

The only exception is the winter temperature. Overall, the WRF emsemble mean shows slight 

increase in correlations and reduction in RMSEs. Although the differences do not pass the 90% 

confidence test, it suggests the dynamic downscaling and ensemblle simulations are at least 

promising in improving the temperature prediction in regional climate study. 

Area mean annual temperature trend(1991-1998) 

-+-HRM3-WRF 
-+-CRCM-WRF 

' --RCM3-WRF 
•••••H»t~H<•i·~·· .. ••»>Ot-•<<U•<•••>l»l•>••t<< ... .<•"''»t110.o•<<<;o••••>Hto•li•••<<<•••"''H••I< ''''"lfUl•tt••<h•••> 'l~t•>>f+ «<••••>"'''''~H•<U•••••••1,•>•••• <·<<•• »I~ • '' ~ • >••t +••--:;.• ...... -+-MM51-WRF 

-WRFG-WRF 

• •••••~•••••••••••••• ••••• ••••••:• .,,.,,.,,,,,,, ••••,.n•• ·•~••• ·•=••••••••» »••••'.' ••••••••-'•••••- « '"" •• •••• .. •-• """' """''""":"••• 

1991 1992 1993 1994 1995 1996 
year 

- 73 -

1997 

-•-HRM3-NARCCAP 
-•-CRCM-NARCCAP 
·•· RCM3-NARCCAP 
-•· MM51-NARCCAP 
-•·WRFG-NARCCAP 
+EM-NARCCAP 
+CFSR 
+EM-WRF 

1998 



0 
tn 
Q) 

"C 

! 
:J .. 
l! 
Q) 

.. : 
-4 ............................ ; ...... . 

l 

1 

~ -2E ......... -................. T ..... . 

1~91 19~92-----1-919_3 _____ 1_9~94 _____ 1_9~95 _____ 1_9~96 _____ 1_9~97 _____ 1 ...... 998 
year 

Area mean summer temperature trend(1991-1998) 

i 
·············<··· ·······-················· ·l······· 

·····················~·············-···· ..... ·······~····· ..........•............. 

1§1~91~~-19~9-2~~1-9~93~~-19~9-4~~1~9~95~·~9-6~~-19~~-7~~1~998 
year 

- 74 -



Area mean fall temperature trend(1991-1998) 
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Figure 4. I: Area mean temperature (T2 in each model data). (a) Annual temperature, (b) spring 
temperature, (c) summer temperature, (d) fall temperature, (e) winter temperature. Unit: °C. 

Each thin solid or dashed curve represents a model data. For example, HRM3-NARCCAP is the 

HRM3 data in NARC CAP, and HRM3-WRF indicates a WRF simulation driven by HRM3-

NARCCAP data. EM-NARCCAP and EM-WRF represent for the 7-member NARCCAP 
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....,,,--,. I I 

ensemble mean and the 5-member WRF ensemble mean. This is also appHed in later-section 

figures. 

Table 4. 1: Annual mean temperature of different models between 1991 and 1998 

Mean (°C) 
NARCCAP WRF 

HRM3 5.05 2.55 
CRCM 1.27 0.23 
RCM3 2.57 1.02 
MM51 1.54 0.01 
WRFG 2.94 0.46 
ENSEMBLE MEAN 2.67 0.86 
CFSR 1.96 

Table 4. 2: Spring area mean temperature of different models between 1991 and 1998 

Mean (°C) 
NARC CAP WRF 

HRM3 4.05 1.26 
CRCM -0.36 -1.61 
RCM3 1.30 -0.60 
MM51 0.24 -1.67 
WRFG 2.11 -0.53 

ENSEMBLE MEAN 1.87 -0.63 
CFSR 0.01 

Table 4. 3: Summer area mean temperature of different models between 1991 and 1998 

Mean (°C) 
NARCCAP WRF 

HRM3 16.45 ~6.14 
CRCM 15.12 15.59 
RCM3 15.17 15.41 
MM51 15.04 ]4.32 
WRFG 16.78 15.69 

ENSEMBLE MEAN 15.71 15.43 
CFSR 15.45 
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Table 4. 4: Fall area mean temperature of different models between 1991 and 1998 

Mean (°C) 
NARCCAP WRF 

HRM3 6.66 4.91 
CRCM 3.56 3.48 
RCM3 4.13 4.22 
MM51 2.40 2.11 
WRFG 3.80 2.67 

ENSEMBLE MEAN 4.77 3.47 
CFSR 4.89 

Table 4. 5: Winter area mean temperature of different models between 1991 and 1998 

Mean (°C) 
NARCCAP WRF 

HRM3 -7.08 -12.29 
CRCM -13.52 -16.89 
RCM3 -10.50 -15.26 
MM51 -11.72 -15.07 
WRFG -13.10 -16.26 

ENSEMBLE MEAN -11.18 -15.1-6 
CFSR -12.80 

Table 4. 6: Correlation (COR) coefficient and RMSE (units: °C) between CFSR and each 
ensem bl e mean temperature. 

Spring Summer Fall Winter Annual 

~ NARC CAP 0.76 0.95 0.85 0.93 0.86 
0 ENSEMBLE MEAN ·~ 

Q) 
WRF ENSEMBLE 0.80 0.93 0.89 0.93 0.89 t:: 

0 
MEAN u 

NARCCAP 2.03 0.45 1.50 1.91 1.41 
µ..:) ENSEMBLE MEAN rJJ 

~ WRF ENSEMBLE 1.15 0.39 0.97 2.26 1.16 
MEAN 

Figure 4.2 and table 4.7 show comparisons between the 8-station mean observations and the 

ensemble mean. The same comparisons will be used to analyze precipitation in the next section. 

The annual WRF ensemble mean is colder than CFSR by about l .3°C, but it is closer to the 

observations. In fact, either for the annual, summer or winter temperature, the WRF ensemble 
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mean is always the closest to the observations. The two ensemble means, as well as the 

observations and the CFSR, all depict a remarkable rising tendency from winter 1997. The 

annual temperature also increases from 1997 to 1998. The WRF ensemble mean also shows the 

best correlation wi.th the observations, compared to the NARCCAF ensemble mean and the 

CFSR data. The mean annual temperature bias is reduced from more than 1°C in the NARCCAP 

ensemble mean to less than 0.1°C in the WRF ensemble mean. The bias is also reduced in 

summer or winter in the WRF downscaling ensemble simulations. Thus, it can be concluded that 

the WRF ensemble mean performs better than the NARCCAP ensemble mean in simulating 

temperatures for this 8-year period. So increasing the horizontal resolution improve the model 

results. 
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Figure 4. 2: 8-station mean temperature time series between 1991 and 1998. (a) Annual 
temperature, (b) summer temperature, (c) winter temperature. Unit: °C. 

Table 4. 7: The annual, summer, winter temperature of CFSR data, NARCCAP ensemble mean 
and WRF ensemble mean and their correlation and RMSE with the observations. 

NARCCAP- WRF-
OBS CFSR ENSEMBLE ENSEMBLE 

MEAN MEAN 
Temperature 4.73°C 5.95°C 5.75°C 4.65°C 

Annual 
RMSE 

l.27°C l.14°C 0.64°C 
with OBS 

mean 
Correlation 
with OBS 

0.95 0.90 0.86 

Temperature 18.71°C 18.ll°C l 7.49°C 18.38°C 

Summer 
RMSE 

0.97°C l.34°C 0.63°C with OBS 
mean 

Correlation 
with OBS 

0.87 0.89 0.91 

Temperature -10.03°C -6.87°C -8.82°C -10.51°C 

Winter 
RMSE 

3.43°C 1.51°C l.l 7°C with OBS 
mean 

Correlation 
with OBS 

0.85 0.91 0.93 
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4.1.2 Temperature horizontal distributions 

The horizontal distributions of the annually averaged temperature of the WRF simulations driven 

by different models and the ensemble means are depicted in Fig. 4.3. The north to south 

temperature gradient is obviously observed in all of the model results and the CFSR data. It can 

be seen clearly from the figure that among the five models, the isotherms are more or less along 

the zonal direction, except in HRM3-WRF, where the isotherms have a :sharper slope to the south 

of the Hudson Bay. MM51 is the coldest member, since the area with t~mperature above 0 °C is 

the smallest among the five ensemble members. There are apparently cold biases in the 

southwest part of the domain, compared with the CFSR data. Ontario is located in the middle of 

the domain. All the 5 WRF simulations simulate around 5 °C in southern Ontario and 0°C in 

northern Ontario and the temperature over the Hudson Bay gradually chang,es to below 0°C. 

Some details are captured in the west part of the domain, which is :located southwest to the 

Hudson Bay. And the cold tongue associated with the Appalachian Mountains in the southeast 

part of the domain is captured by all of the WRF simulations and the CFSR data. 

Comparing Fig. 4.3 a, f and h, the WRF ensemble mean temperature is colder than CFSR in the 

southern part of the domain, where NARCCAP ensemble mean seems resemble the CFSR data. 

The WRF ensemble mean produces more details related to the local topographic effects. For 

example, the cold tongue over the Appalachian Mountains is colder in the WRF ensemble mean 

than in the NARCCAP ensemble mean. Near or over the Appalachian Mountains, it shows 

several cold centers in the WRF ensemble mean, but not in the NARCCAP ensemble mean. The 

isotherms are not smooth in the WRF ensemble mean. There are many small cold spots over the 

entire domain, which are corresponding to small shallow lakes. These small lakes cannot be 
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resolved in NARCCAP RCM simulations, yet they partly contribute to the colder temperature in 

the WRFN ensemble mean temperature field in that area. It can be seen that the colder 

temperature in the WRF ensemble mean is also around the Great Lakes, Lake Winnipeg and the 

Hudson Bay. It is noticeable that the high-resolution WRF ensemble mean can capture low 

temperature over the small lakes in the west and east parts of the domain, while the coarse­

resolution NARCCAP ensemble mean and CFSR do not show such details. The WRF ensemble 

mean can also describe the low temperature over the top right comer more specifically. Since it 

has been mentioned that the annual CFSR temperature maybe a few degrees higher than the 

station data. If 2 degrees are subtracted from the CFSR data, the WRF ensemble mean performs 

quite well in the temperature simulation. 

CFSR 
(b) 

WRF-CRCM 
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Figure 4. 3: Time mean (1991-1998) temperature patterns (T2 in each model data and the CFSR 
data) in (a) CFSR, (b) CRCM-WRF, (c) MM5I-WRF, (d) RCM3-WRF, (e) HRM3-WRF, (t) 

WRFG-WRF, (g) WRF ensemble mean, (h) NARCCAP ensemble mean (Unit: °C). 

4.2 Maximum and minimum temperature analysis 

The maximum and minimum temperatures in the WRF simulations are discussed in this section. 

Figures 4.4 and 4.5 present the 8-station mean maximum and minimum temperature from 1991 

to 1998 in winter and summer, respectively. Each point in the figures presents the seasonal 

(winter or summer) mean and 8-station mean maximum or minimum temperature. Since the 

maximum and minimum temperatures are not included in the NARCCAP MM5I data, 

simulations from this model are not discussed here. 

In winter, WRF predicts lower maximum and minimum temperatures than their corresponding 

NARCCAP models. The significant upward tendency of the winter 8-station mean maximum 

and minimum temperatures in 1997 and 1998 is shown in all model time series. Exclude the 
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initialization stage in the first winter (January and February, 1991), the maximum and minimum 

temperatures reach a top in 1992 and 1995, and a bottom in 1994, which correspond well to the 

observations. 

In summer, the maximum and minimum temperatures vary more smoothly than that in winter. 

All 4 WRF simulations show a warmer maximum temperature and a colder minimum 

temperature, compared to their driving NARCCAP data. It suggests that the temperature diurnal 

variability over Ontario becomes larger in the WRF downscaling simufations. 

Table 4.8 presents the 8-station summer and winter maximum and minimum temperatures of 

NARCCAP ensemble mean and WRF ensemble mean and their correlations and RMSEs with 

the observations. The WRF ensemble mean only shows higher correlation and smaller RMSE 

with the observations than the NARCCAP ensemble mean in winter maximum temperature. In 

summer, the NARCCAP ensemble mean maximum and minimum temperature are closer to the 

observations, and. so does the NARCCAP ensemble mean minimum temperature in winter. The 

correlations between the two ensemble means and the observaticms are similar. All the 

correlations are significant at 90% confidence level. 

In summary, the WRF model simulated a relatively cold maximum and minimwm temperature in 

winter, compared with the NARCCAP data. The maximum temperature is higher while the 

minimum temperature becomes lower than the observations in summer. It suggests that more 

extreme temperature events may occur in summer. Compared with the observed maximum and 
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minimum temperature, the WRF ensemble mean does not perform better than the NARCCAP 

ensemble mean. 

f ___ _ 

8-city mean summer TMAX(1991-1998) 

1993 1995 1997 
year 

8-city mean winter TMAX(1991-1998) 

l _ _J.----------, 
....... , .. ~,~~:;:r~~..:~~:.:: ... ··•" ··~-................... l .. ~'"h··· ---cRCM .. WRF 

,,,' ----------- I ,,,,, -HRM3-WRF 
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Figure 4. 4: 1991-1998 8-station mean maximum temperature in (a) summer, and (b) winter. 
(Unit: °C). 
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8-city mean summer TMIN(1991-1998) 
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Figure 4. 5: 1991-1998 8-station mean minimum temperature in (a) summer, and (b) winter 
(Unit: °C). 

- 87 -



Table 4. 8: The 8-station summer and winter maximum and minimum temperature of 
NARCCAP ensemble mean and WRF ensemble mean and their correlation and RMSE with the 

observations. 

NARCCAP- WRF-
OBS ENSEMBLE ENSEMBLE 

MEAN MEAN 

T 
Mean 24.23 23.26 27.67 
RMSE 

M 
with OBS 

1.41 4.61 
A 

Correlation 
Summer x 

with OBS 
0.65 0.57 

mean Mean 13.16 11.60 8.60 
T 

RMSE 
M 

with OBS 
1.89 4.62 

I 
Correlation N 
with OBS 

0.62 0.61 

T 
Mean -5.39 -4.48 -5.10 
RMSE 

M 
with OBS 

1.52 1.51 
A 

Correlation 
. Winter 

x 
with OBS 

0.76 0.82 

mean 
T 

Mean -14.63 -13.57 -18.00 
RMSE 

M with OBS 
2.07 4.46 

I 
Correlation N 
with OBS 

0.72 0.71 

4.3 Precipitation in the WRF simulations 

The precipitation variation in the chosen area is analyzed in this section. 

4.3.1 Time series 

The area mean annual precipitation rate and seasonal precipitation are discussed below. In 

Fig.4.6, the same color scheme as in Fig. 4.1 is used. The thick green, cyan, and red lines 
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represent the CFSR data, the 7-member NARCCAP ensemble meaq and the 5-member WRF 

ensemble mean, respectively. 

As shown in Fig.4.6, the annual precipitation amounts of NARC CAP models, WRF downscaling 

simulations and the ensemble means vary between 50 mm month-1 and 100 mm month-1
• The 

highest one is the WRF simulation driven by NARCCAP MMSI model data, which is 

approximately 20 mm month-1 more than the CFSR data. The annual precipitation amounts of 

both the WRF ensemble mean and NARCCAP ensemble mean are lower than CFSR data. The 

former is about 10 mm month-1 higher than the latter, thus the WRF emsemble mean is closer to 

the CFSR data. 

From the four-season domain area mean monthly precipitation figures, this chosen region has the 

largest amount of precipitation in summer and the smallest amount in winter. The WRF 

simulation driven by NARCCAP MM51 model data produces an obviously large precipitation 

amount throughout the year. 

Table 4.9 to 4.13 compare the time mean of the precipitation rate. The annual and seasonal mean 

precipitation rates for all the models, two ensemble means and the CFSR data are listed in Table 

4.9 to 4.13. Most of the models produce precipitations in the amount between 50 mm month-1 to 

80 mm month-1
, except MM51 (more than 90mm month-1). 

The annual averaged monthly precipitation amount depicted by CFSR is 80.19 mm month-1
• The 

WRF ensemble mean produces higher precipitation (71.77 mm month-1
) than the 

NARCCAPensemble mean (63.85 mm month-1
). Even though both ensemble means show a dry 
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bias, the WRF ensemble mean is closer to the CFSR data. This behavior appears in all four 

seasons. 

Table 4.14 provides the correlation and the RMSE between CFSR and the ensemble mean 

precipitation. Similar to Table 4.6, all the correlations are significant at the 90% confidence level. 

The annual and all seasonal precipitation (except winter) have higher correlations between CFSR 

and the WRF ensemble mean than the NARCCAP ensemble mean. Moreover, all the RMSEs 

between CFSR and the WRF ensemble mean are obviously smaller than that between CFSR and 

the NARCCAP ensemble mean, which means that the WRF ensemble mean is closer to the 

CFSR data in all four seasons. Partly due to the small sample size, the RMSE improvement is 

only statistically significant (at 90% confidence level) in the winter season. 
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(e) Area mean winter precipitation (1991-1998) 
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Figure 4. 6: Area mean precipitation. (a) Annual precipitation, (b) spring precipitation, (c) 
summer precipitation, (d) fall precipitation, (e) winter precipitation. Unit: mm month-1

• 

Table 4. 9: Annual mean precipitation of different models between 1991 and 1998 

Mean (mm mon~h- 1 ) 
NARC CAP WRF 

HRM3 61.52 (}7.36 
CRCM 62.21 61.46 
RCM3 75.14 64.34 
MM51 61.70 93.88 
WRFG 55.60 71.80 
ENSEMBLE MEAN 63.85 71.77 
CFSR 80.19 

Table 4. 10: Spring area mean precipitation of different models between 1991 and 1998 

Mean (mm month- 1
) 

NARCCAP WRF 
HRM3 66.80 68.55 
CRCM 60.79 61.03 
RCM3 79.88 69.77 
MM51 68.86 98.16 
WRFG 60.15 75.77 
ENSEMBLE MEAN 68.07 74.65 
CFSR 83.28 
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Table 4. 11: Summer area mean precipitation of different models between 1991 and 1998 

Mean (mm month-1
) 

NARC CAP WRF 
HRM3 75.01 74.66 
CRCM 83.84 85.03 
RCM3 97.44 75.61 
MM51 72.77 116.28 
WRFG 73.67 85.81 
ENSEMBLE MEAN 81.98 ·87.48 
CFSR 89.57 

Table 4. 12: Fall area mean precipitation of different models between 1991 and 1998 

Mean (mm month-') 
NARC CAP WRF 

HRM3 60.28 72.68 
CRCM 62.45 60.33 
RCM3 72.96 63.32 
MM51 56.80 93.92 
WRFG 53.44 03.52 
ENSEMBLE MEAN 61.75 70.76 
CFSR 88.16 

Table 4. 13: Winter area mean precipitation of different models between 1991 and 1998 

Mean (mm month-1
) 

NARCCAP WRF 
HRM3 43.75 52.52 
CRCM 41.51 39.22 
RCM3 49.79 48.28 
MM51 48.47 66.92 
WRFG 35.28 60.92 
ENSEMBLE MEAN 43.41 54.34 
CFSR 59.20 
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Table 4. 14: Correlation (COR) coefficient and RMSE (units: mm month-1
) between CFSR and 

simulated seasonal precipitation by WRF. 

Spring Summer Fall Winter Annual 
NARCCAP 

= ENSEMBLE 0.49 0.70 0.76 0.83 0.68 0 
·~ MEAN v 

WRF i-. 
i-. 
0 ENSEMBLE 0.67 0.72 0.79 0.80 0.75 u 

MEAN 
NARCCAP 

ENSEMBLE 16.00 10.28 26.56 16.27 15.23 
~ MEAN f/J 

~ WRF 
ENSEMBLE 10.00 9.11 17.81 7.12 10.72 

MEAN 

It is noticed that in the previous chapter, the CFSR mean precipitation interpolated onto the 

selected 8 stations is higher than the mean observed precipitation. Thus, it is not clear whether 

the WRF ensemble mean being closer to CFSR indeed improves the precipitation simulations. 

Therefore, we compared the WRF simulations interpolated onto the 8 stations and the observed 

values. 

The annual, summer and winter Ontario 8-station mean precipitations are calculated, and the 

comparisons with the observations are shown in Fig. 4. 7. The annual, summer and winter mean 

precipitations of the WRF ensemble mean are all smaller than those of the NARC CAP ensemble 

mean. Both the ensemble means have discrepancies comparing to the observations. The two 

ensemble means of the annual precipitation show the same peaks in 1993, 1996 and 1998 and the 

same valleys in 1994 and 1997. However, the observations and CFSR show different summits in 

1992 and 1996. The valleys and peaks of the four curves are also different in summer and winter. 

But the two ensemble means always share their peaks and valleys in the same year. Some are 
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different from the observations and CFSR, and some are not. Moreover, the annual curve shows 

that the two ensemble means have a significant increase from 1997 to 1998, which does not 

occur in the observations and CFSR data. The two ensembles show a more significant upwards 

tendency in the last two years in summer and a less obvious decreasing trend in the last two years 

in winter. 

Table 4.15 reveals the 8-year mean precipitations, the RMSEs and correlations between the 

observations and either the CFSR or the ensemble means. The WRF ensemble mean is the one 

closest to the observations. The correlation of the precipitation between the observations and the 

ensemble means is much smaller than that of the temperature, which indicates that the 

precipitation is relatively more difficult to be simulated well. Most of the correlations are 

significant at 90% level, except the correlations between the observations and the two ensemble 

means in summer. It is expected that the summer precipitation cannot be simulated well. 

Nevertheless, the reduced RMSE suggests the WRF ensemble mean performs better than the 

coarser-resolution NARCCAP RCM ensemble mean. 
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8-city mean winter precipitation (1991-1998) 
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Figure 4. 7: 8-station mean precipitation time series between 1991and1998. (a) Annual 
precipitation, (b) summer precipitation, (c) winter precipitation. Unit: mm month-1

• 

Table 4. 15: The annual, summer, winter precipitation rate of CFSR data, NARCCAP ensemble 
mean and WRF ensemble mean and their correlation and RMSE with the observations. 

NARCCAP- WRF-
OBS CFSR ENSEMBLE ENSEMBLE 

MEAN MEAN 

Precipitati?n 
69.11 85.45 78.22 74.13 

mm month-' mm month·' mm month'' mm month·' 
Annual RMSE 17.07 10.52 9.83 
mean with OBS mm month·' mm month·' mm month·' 

Correlation 
0.61 0.55 0.54 

with OBS 

Precipitation 
85.40 89.34 97.42 83.77 

mm month·' mm month·' mm month·' mm month·' 
Summer RMSE 16.11 18.80 14.73 

mean with OBS mm month·' mm month·' mm month·' 
Correlation 

0.61 0.46 0.49 
with OBS 

Precipitation 
50.48 72.22 61.29 56.11 

mm month·' mm month'1 mm month·' mm month-' 
Winter RMSE 

21.98 12.95 10.23 
mean with OBS 

Correlation 
0.97 0.64 0.66 

with OBS 
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4.2.2 Horizontal precipitation distributions 

The precipitation patterns in the WRF model domain from five WRF simulations, the CFSR 

precipitation and the two ensemble means are shown in Fig. 4.8. As shown in section 4.2.1, 

MM51-WRF generates the greatest amount of precipitation among all the 5 WRF simulations, 

while CRCM-WRF generates the least. All five models have the largest precipitation amount in 

the east and southeast of the domain. 

Within Ontario, the precipitation decreases from southeast to northwest. All models describe this 

distribution properly. Both the NARCCAP ensemble mean and the WRF ensemble mean have a 

dry bias in the northwest part of the domain. The WRF ensemble mean produces a wet bias in 

the southeast, and the NARCCAP ensemble mean agrees with CFSR quite well. The high 

precipitation amount on the southeast boundaries of the domain in the WRF ensemble mean is 

mainly contributed by the MM51 and HRM3 simulations. The WRF ensemble mean shows some 

precipitation differences from the NARCCAP ensemble mean, since it has a higher resolution. 

For example, in the southeast part of the domain, the NARCCAP ensemble mean does not show 

a very high precipitation near the coastline, but the WRF ensemble mean does. The precipitation 

over the Great Lakes is also higher in the WRF ensemble mean than in the NARCCAP ensemble 

mean. Interestingly, the WRF ensemble mean shows high precipitation bands in the top right 

comer of the domain, which is the northeast part of the Labrador Peninsula stretched into the 

Labrador Sea. Although the relatively high precipitation can also be seen in the NARCCAP 

ensemble mean and CFSR precipitation, the WRF ensemble mean depicts a finer and more 

concentrated linear structure. Further analyses (figures not shown) suggest that the enhanced 

- 99 -



precipitation over the Labrador Peninsula is induced by the moist air from the Hudson Strait 

being forced to ascend along the Tomgat Mountains. The lake effect also plays important role in 

enhancing the precipitation downstream of the Great Lakes and southern Hudson Bay along their 

east shorelines. Overall, both the ensembles showed good agreements with the CFSR data in the 

horizontal distribution of precipitation. The 5-member WRF ensemble mean will be discussed 

further in the next chapter. 
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60 60 
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Figure 4. 8: Time mean (1991-1998) precipitation patterns in (a) CFSR, (b) CRCM, (c) MM51, 
(d) RCM3, (e) HRM3, (t) WRFG, (g) WRF ensemble mean, (h): NARCCAP ensemble mean. 

Unit: mm month-1
• 
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Chapter 5 Analysis of stochastic ensemble simulations 

Although WRF downscaling is promising in improving the climate simulation, the ensemble size 

of five is too small to address the climate uncertainties. As stated in Chapter 2, the stochastic 

kinetic energy backscatter (SKEB) scheme was used to create more ensemble members 

(Frederiksen and Davies 1997; Shutts 2005; Bemer et al. 2009, 2011). The SKEB scheme 

represents model uncertainties resulting from unresolved scales of motions by adding small 

random perturbations in wind components and potential temperature at every time step during 

the simulation. The perturbations may accumulate and grow non-linearly, which lead to different 

atmospheric states. The SKEB scheme has been shown to improve the probabilistic weather 

forecast skills (Tennant et. al., 2011). Bemer et al. (2011) demonstrated that the ensemble 

forecast with SKEB schemes outperformed the multi-physics ensemble in weather forecast. 

There is little work has been done in using SKEB scheme in regional climate simulations. Here 

we would like to explore whether the advantages of SKEB in ensemble weather forecast can be 

extended to climate scales. 

The simulations with the SKEB scheme started from 30th November 1996, and ran until the last 

day of 1998. The simulation results can also be used to study the mechanisms of the significant 

warming as shown in Chapter 3. The WRF restart files on 30th November 1996 of the 5-member 

WRF simulations discussed in Chapter 4 were resumed but with the SKEB scheme turned on. By 

assigning different random seeds, the SKEB scheme can generate different perturbations. The 

WRF simulations driven by WRFG, RCM3, HRM3, CRCM BC's were perturbed twice with 

different random seeds, while the simulation driven by MM5I BC's was perturbed once. Thus, 

altogether there were 9 members in this stochastic ensemble experiment. Together with the 
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previous WRF simulations for the last two years, a 14-member enseroble was built up and was 

studied in this chapter. 

5.1 Temperature analysis 

Figures 5.1 to 5.4 depict the winter and summer mean temperature in 1997 and 1998. According 

to Fig. 5.1 (winter 1997) and 5.2 (winter 1998), the 0 °C isotherm in the 5-member ensemble 

mean, 14-member ensemble mean and the CFSR data all move northwards (Fig. 5.1-a, c, e and 

Fig. 5 .2-a, c, e ), which indicates that the temperature is rising from winter 1997 to winter 1998. 

In winter 1997, the 0°C isotherm is located at the bottom of the domain, south to the Great Lakes, 

while it crosses the Great Lakes in winter 1998. The 14-member ensemble mean shows the 

northernmost location of the 0°C isotherm. When compared with CFSR, both ensemble means 

perform similarly. In both winters, the ensemble means have a cold bias over large areas 

compared with the CFSR. The simulations do not perform well over the north part of the domain, 

especially over the Hudson Bay and its surroundings. 

In winter 1997, 0°C temperature difference between ensemble means and CFSR is located at the 

southern part of the domain. Figures 5.1 b and d show the differences !between both ensemble 

means and CFSR range from 0°C to -10 °C over Ontario. The difference between the two 

ensemble means was also plotted in Fig. 5.lf. The 14-member ensembde mean is about 0.5°C 

colder over the Great Lakes and more than 2°C warmer in the surrounding areas of the Hudson 

Bay. In Ontario, the 14-member ensemble mean shows a 1-2°C warmer than the 5-member 

ensemble mean. In winter 1998, as seen in Fig. 5.2 b and d, the temperature differences between 
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the ensemble means and the CFSR become smaller, in particular the 14-member ensemble mean, 

although the patterns of the differences between the two WRF ensemble means in winter 1998 

are similar to that in winter 1997. 
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Figure 5. 1: 1997 winter mean temperature (T2, unit: 0 C). (a) WRF 5member ensemble mean, (b) 
WRF Sm ember ensemble mean - CFSR, ( c) WRF 14member ensemble mean, ( d) WRF 

14member ensemble mean - CFSR, (e) CFSR data, (f) WRF 14member ensemble mean- WRF 
5member ensemble mean. 
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Figure 5. 2: 1998 winter mean temperature (T2, unit: °C). (a) WRF Smember ensemble mean, (b) 
WRF Sm ember ensemble mean - CFSR, ( c) WRF 14member ensemble mean, ( d) WRF 

14member ensemble mean - CFSR, ( e) CFSR data, (f) WRF 14member ensemble mean - WRF 
Smember ensemble mean. 
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In summers of I 997 and I 998, the difference between the I 4-member ensemble mean and the S­

member ensemble mean becomes smaller than that in winter. Both ensemble means are 

approximately I °C warmer than the CFSR over Ontario in I 997 and I 998 (Fig. S.3 and S.4). In 

the northwest region of Ontario, the difference is larger than the southern region. For the rest of 

the domain, the differences between the ensembles and the CFSR vary from 2°C to 4 °C. The 

greatest temperature differences are located in the area west to the Hudson Bay (around 8°C). 

The model generates stronger temperature gradient along the west coast of the Hudson Bay than 

CFSR. It also produces colder surface temperature along the Appalachian Mountains. Comparing 

the two ensemble means (Fig. S.3f and Fig. S.4f), the temperature differences vary between -

I .S°C to I .S°C, which is milder than the differences in winters. In summer, the 14-member 

ensemble mean is warmer in the vicinity of the Hudson Bay. 

To evaluate the performance of each ensemble mean, the monthly mean domain-averaged 

temperature were computed, and the correlations and RMSEs between each ensemble mean and 

the CFSR averaged temperature were calculated. Table S. I shows the correlations and the 

RMSEs between the ensemble means and the CFSR data in different s~asons. From this table, it 

can be seen that, the 14-member ensemble mean generally has smaller RMSEs and higher 

correlations than the S-member ensemble mean. The exceptions are summer RMSE and the fall 

correlation, but the differences are small. 
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Figure 5. 3: 1998 summer mean temperature (T2, unit: °C). (a) WRF 5member ensemble mean, 
(b) WRF 5member ensemble mean- CFSR (c) WRF 14member ensemble mean, (d) WRF 

l 4member ensemble mean - CFSR, ( e) CFSR data, (f) WRF l 4member ensemble mean - WRF 
5member ensemble mean. 
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Figure 5. 4: 1998 summer mean temperature (T2, unit: °C). (a) WRF Smember ensemble mean, 
(b) WRF Sm ember ensemble mean - CFSR, ( c) WRF 14member ensemble mean, ( d) WRF 

14member ensemble mean -CFSR, (e) CFSR data, (f) WRF 14member ensemble mean - WRF 
Smember ensemble mean. 
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Table 5. 1: Correlation (COR) coefficient and root mean square ernor (RMSE) (units: 0 C) 
between CFSR and simulated seasonal temperature using WRFfor 1997 and 1998. 

Spring Summer Fall Winter Annual 
COR-5member 0.82 0.88 0.85 0.82 0.84 

COR-
0.84 0.89 0.84 0.83 0.86 

14member 
RMSE-

2.58 1.66 4.67 3.36 3.51 
5member 
RMSE-

2.01 1.70 4.22 2.86 3.01 
14member 

5.2 Maximum and minimum temperature 

The 14-member ensemble mean maximum and minimum temperatures are interpolated onto the 

8 stations first. The 8-station mean values in winter and summer are plotted as dashed red lines in 

Fig. 5.5. Note that Fig. 5.5 is the same as Fig. 4.5 except the 14-member ensemble mean (only 

covers 1997 and 1998) is added. 

As discussed in the previous chapter, the 5-member WRF ensemble mean is too warm in the 

summer and too cold in the winter ( c.f. Figs. 4.4 and 4.5). The 14-member WRF ensemble is 

able to dramatically reduce the summer maximum temperature and increase the winter minimum 

temperature by about 3°C. In fact, the improvements of the maximum and minimum 

temperatures in both winter and summer can be seen. They are much closer to the observations. 

It suggests the 14-member ensemble mean can represent well the diurnal variability of the 

temperature. 
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(c) 8-city mean summer TMAX(1991-1998) 
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Figure 5. 5: The 8-station mean maximum and minimum temperature ~seasona1 mean) of the 
observations, simulations and the ensemble means from 1991to1998. (a~ Maximum temperature 
in winter,(b) minimum temperature in winter,(c) maximum temperature in summer,(d) minimum 

temperature in summer. 
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5.3 precipitation analysis 

In winter, the precipitation of CFSR aggregates in the southeast part of the domain (Figs. 5.6 e, 

5.7 e). The precipitation in Ontario varies from 70 mm month-1 in the northwest to 250 mm 

month-1 in the southeast. The winter precipitation in 1998 is obviously smaller than that in 1997. 

In summer, the large precipitation shifts northward to east Canada, while a secondary high 

precipitation band emerges in the west of the Great Lakes (Figs. 5.8 e and 5.9 e). Two ensemble 

means show similar precipitation distribution patterns to the CFSR data. The improvement in 14-

member ensemble can be seen in both summer and winter seasons. For example, both ensemble 

means are drier than CFSR in winter 1997, yet, the 14-member ensemble mean produces more 

precipitation (Fig. 5.6). In winter 1998, the 5-member ensemble mean over-predicts the 

precipitation in a wide area from the west of Great Lakes to east Canada as well as along the east 

coast, while the 14-member ensemble mean is able to reduce such eXJcessive precipitation (Fig. 

5.7). Altough both ensembles are good at resolving summer precipitations, in particular in the 

west part of the domain over the continent, they both correctly capture the northward shift of the 

large precipitation band in east Canada (Figs. 5.8, 5.9). 

Table 5.2 summarizes the domain averaged precipitation amount in winter and summer of 1997 

and 1998. The averaged CFSR precipitation is 63.22 mm month-1 'in winter 1997. The 14-

member ensemble mean generates 63.22 mm month-1
, while the 5-member ensemble mean only 

produces 57.66 mm month-1
• which indicates that it is closer to the CFSR (domain averaged 

76.18 mm month-1
) than the 5-member ensemble mean (domain averaged 57.66 mm month-1

) 

(Fig. 5.6 a, c). The similar trend in differences has been observed for ensemble means and the 
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CFSR (Fig. 5.6 b and d). In 1998, the ensemble means and the CFSR indicate a decreasing trend 

of monthly precipitation compared to winter 1997, as shown in Fig. 5.7 a, c and e. The high 

precipitation center is right in the southeast region of the domain. The precipitation in Ontario 

drops to a very low level in 1998. According to Fig. 5.7 band d, the difference between the 14-

member ensemble mean (domain averaged 62.03 mm month-1
) and the CFSR (domain averaged 

63.29 mm month-1
) is apparently smaller than the difference between the 5-member ensemble 

mean (domain averaged 56.71 mm month-1
) and CFSR. 
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Figure 5. 6: 1997 winter mean monthly precipitation (unit: mm month-1
). (a) WRF 5member 

ensemble mean, (b) WRF 5member ensemble mean - CFSR (c) WRF 14member ensemble mean, 
(d) WRF 14member ensemble mean-CFSR, (e) CFSR data, (f) WRF 14member ensemble 

mean - WRF 5member ensemble mean. 
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Figure 5. 7: 1998 winter mean monthly precipitation (unit: mm month-1
). (a) WRF 5member 

ensemble mean, (b) WRF 5member ensemble mean - CFSR ( c) WRF l 4member ensemble mean, 
(d) WRF 14member ensemble mean-CFSR, (e) CFSR data, (f) WRF 14member ensemble 

mean - WRF 5member ensemble mean. 
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Figure 5. 8: 1997 summer mean monthly precipitation (unit: mm month-1
). (a) WRF 5member 

ensemble mean, (b) WRF 5member ensemble mean - CFSR (c) WRF 14member ensemble mean, 
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Figure 5. 9: 1998 summer mean monthly precipitation (unit: mm month-1
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Table 5 .2 summarizes the domain averaged precipitation amount in winter and summer of 1997 

and 1998. The 14-member ensemble mean always reduce the differences between the model and 

the CFSR values. The improvements are more significant in the winter seasons as expected. 

Table 5. 2: domain averaged precipitation (mm month-1
) in winter and summer of 1997 and 1998 

(brackets show the difference between ensemble means and the CFSR) 

CFSR 5-member ensemble mean 14-inember ensemble mean 
Winter 1997 76.18 57.66 (-18.52) 63.~2 (-12.96) 
Winter 1998 63.29 56.71 (-6.58) 62.~3 (-1.26) 
Summer 1997 89.49 76.68 (-12.81) 77.68 (-11.81) 
Summer 1998 89.71 87.55 (-2.16) 90.12 (0.41) 

Table 5.3 compares the correlations and the RMSEs of the seasonal domain-averaged 

precipitation rate with the CFSR data. The precipitation correlations are not as high as the 

temperature correlations. Only one value is greater or equal to 0.7. Compared to the CFSR 

precipitation, there are moderate improvements of 14-member ensemble mean over 5-member 

ensemble mean. The 14-member ensemble RMSE has a larger RMSE in fall, which is the only 

worse RMSE in the four seasons. The differences are also small, which is similar to the 

temperature differences. 

Table 5. 3: Correlation (COR) coefficient and RMSE (Units: mm month-1
) between CFSR and 

simulated seasonal precipitation rate using WRF for 1997 and 1998. 

Spring Summer Fall Winter Annual 
COR-5member 0.67 0.65 0.61 0.60 0.63 

COR-
0.70 0.68 0.65 0.66 0.68 14member 

RMSE-
16.74 17.86 16.88 15.24 16.80 5member 

RMSE-
15.25 17.12 17.01 15.20 16.21 14member 
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5.4 The spread of the WRF ensembles 

Previous analyses have shown one main advantage of using the ensemble technique in regional 

climate simulations, that is the ensemble mean is very likely closer to the true atmospheric state. 

Another major advantage of the ensemble method is that the ensemble spread can be utilized to 

infer climate uncertainties. The ensemble spread represented by the sample standard deviation 

(Std) is to measure the differences among the ensemble members. In thiis section, we only briefly 

discuss the ensemble spread obtained in our simulations and their possible relationship with the 

uncertainty. 

Figures 5.10 and 5.11 portray the ensemble spreads of the 2-m temperature, while Figs. 5.12 and 

5.13 depict the ensemble spreads of the precipitation. Overall, increasing ensemble size by 9 

does not change the spread patterns. The horizontal distributions of the ensemble spread in 

temperature vary from one season to another. 

In winter, the ensemble spread of temperature is significantly larger im the northern part of the 

domain than in the southern part. In summer, the ensemble spread pattern shows that the 

maximum spread is now located along the west to southwest of the domain. We suspect that the 

large ensemble spread is caused partly by the spread in the driving NARCCAP models and partly 

by the model physics in the interior domain. The maximum ensemble spread corresponds to 

strong temperature gradient in the ensemble mean field (c.f. Figs. 5.1 - 5.4). In these regions, 

any deviation in wind or temperature field will result in larger uncertainties. It can also be noted 
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that the spread over the open water (Atlantic Ocean and the Hudson Bay in summer) is small 

owing to its large heat capacity and stable sea surface temperature which modulate the near 

surface air temperature. 

T2-14member spread in 97winter T2-5member spread in 97winter 
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Figure 5. 10: The T2 ensemble spreads of 14-member and 5-member ensemble mean in winter. 
(a) 14-member spread in 1997, (b) 5-member spread in 1997, (c) 14-member spread in 1998, (d) 

5-member spread in 1998 (unit: °C). 
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T2-14member spread in 97summer T2-5member spread in 97summer 
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·Figure 5. 11: The T2 ensemble spreads of 14-member and 5-member ensemble mean in summer. 
(a) 14-member spread in 1997, (b) 5-member spread in 1997, (c) 14-member spread in 1998, (d) 

5-member spread in 1998 (unit: °C) 

The ensemble spread of precipitation has less organized patterns in the interior domain (Figs. 

5.12, 5.13). The largest spread are all located along the east boundary, close to regions of the 

maximum ensemble mean precipitation. The summer precipitation ensemble spread is larger than 

the winter one once again indicates large uncertainties in predicting summer convections. 
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Interestingly, adding random perturbations in the model fields by the SKEB scheme does not 

increase the spread of the precipitation in the interior domain, instead the spread is reduced. 

Another noticable feature is the large spread southwest of the Great Lakes which is 

corresponding to the large precipiation band in the summer mean ·precipitation. It indicates the 

model, at least some ensemble members, is able to capture the precipitable processes in that 

region. Using the ensemble members, we will be able to identify the physical processes leading 

to that precipitation band. 

Based on the ensemble spreads of temperature and precipitation, we can quantify the reliability 

of the regional climate predictions depicted by the ensemble mean. Smaller (larger) ensemble 

spread represents smaller (larger) model errors and smaller (larger) uncertainties, which indicates 

that the ensemble results are more (less) reliable. For example, the winter temperature prediction 

in southeast Ontario is more reliable than that in the northwest due to not only its smaller errors 

(c.f. Fig. 5.1 d), but also smaller ensemble spread (c.f. Fig. 5.10 a). Using the ensemble products 

to study climate uncertainty will be a subject for the future study. 
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Figure 5. 12: The monthly precipitation ensemble spreads of 14-member and 5-member 
ensemble mean in winter. (a) 14-member spread in 1997, (b) 5-member spread in 1997, (c) 14-

member spread in 1998, (d) 5-member spread in 1998 (unit: mm month-1
) 
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Figure 5. 13: The monthly precipitation ensemble spreads of 14-member and 5-member 
ensemble mean in summer. (a) 14-member spread in 1997, (b) 5-member spread in 1997, (c) 14-

member spread in 1998, ( d) 5-member spread in 1998 (unit: mm month-1
) 
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Chapter 6 Discussions and Conclusions 

This chapter provides a synopsis of the objectives of this thesis and summarizes the major 

conclusions from the results and findings obtained from the research. 

6.1 Review of the thesis and objectives 

This thesis set out a number of objectives related to regional climate simulations over Ontario. 

Chapter 1 introduced the climate changes during recent decades. It explained how the regional 

climate models worked and developed, and how ensemble simulations may help to improve the 

regional climate simulations. Chapter 2 discussed the methodologies used in this thesis, 

including some statistical methods, the WRF model downscaling and the SKEB scheme for 

generating ensembles. The studied domain was centered in Ontario amd covered its surrounding 

area, including the Great Lakes, the Hudson Bay, and some adjacent provinces in Canada and 

states in the United States. Chapter 3 analyzed the climate data provided by NARCCAP from 

1979 to 2004, for both temperature and precipitation. The possible reasons why the extremely 

warm, cold, dry and wet seasons form were discussed in Appendix A and B. Chapter 4 discussed 

the results of the WRF downscaling simulations driven by five NARCCAP regional climate 

model data. Chapter 5 presented the results of the perturbed ensemble simulations using the 

SKEB scheme in 1997 and 1998. 
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6.2 Research outcomes and conclusions 

In this study, the NARCCAP regional climate simulations and the observations were analyzed 

and compared. The ensemble regional climate downscaling simulation over Ontario using the 

WRF model was the most predominant part of this thesis. The results were evaluated against 

station observations and NCEP CFSR reanalysis data. The benefits of using the ensemble mean 

to represent climatological mean state were revealed using 3 sets of ensembles. The potential 

advantages of using the ensemble spread to study climate uncertainties were also suggested. 

6.2.1 The analysis of the observations and NARCCAP temperature and precipitation data 

An assessment of the 8-station observations and seven NARCCAP model data was conducted. 

All the models follow the observed patterns reasonable well. Some models have constantly high 

biases (HRM3 and ECPC) and others have low biases (RCM3 and CRCM). The high and low 

biases also appear accordingly. in the annual or seasonal mean daily maximum and minimum 

temperatures. The observed annual area mean temperature has a remarkable rising trend in the 

late 1990s, which is mainly due to the significant rises of the spring and winter area mean 

temperatures. All seven NARCCAP model simulations show this trend. 

Annual average and winter average temperature variation over Ontario both have two significant 

periods: 3.7 years (the most significant period) and 13 years (the second most significant), while 

summer average temperature has 3.7-year (the most significant) and 6.5-year (the second most 
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significant) periods. CRCM, ECP2, ECPC, WRFG and HRM3 indicate the same periods as the 

observations, while the variation periods in MM5I and RCM3 are different. 

The EOF analysis shows that the dominant temperature variation modes, depicted by the first 

EOF mode accounting for more than 80% of the total variance, has a good spatial accordance 

over Ontario. The time coefficient of the first EOF mode in all the NARCCAP models reveal the 

same remarkable rising trend at the end of the 20th century. 

The observed annual area mean precipitation stays nearly steady during 1979-2004. The 

NARCCAP model simulations show large discrepancies both in amount and trend. The variation 

in the precipitation observations revealed by the spectral analysis show the most significant 

oscillation periods are 2.1-year and 4.3-year. Fewer NARCCAP models share the same 

significant modes, but most of them show peaks in other frequencies. It also suggests that the 

precipitation is less predictable than the temperature in climate simulations, partly due to the 

unresolved warm season convections. 

6.2.2 The analysis of the WRF simulations driven by the NARCCAP data 

Five NARCCAP RCM model results (MM5I, RCM3, HRM3, CRCM and WRFG) from 1991 to 

1998 were used to provide initial and boundary conditions for the downscaling simulations using 

the WRF model. The WRF model domain has 300x300 horizoqtal grid points with a 10-km grid 

resolution centered in Ontario. The results showed that improving the representations of surface 
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topography, land use, .convections, and other local physical processes via high resolutions has 

great impact on the climate simulations. 

All the five WRF simulations with different NARCCAP initial and boundary conditions show 

colder temperatures than their corresponding NARCCAP model simulations. From 1991 to 1998, 

the domain averaged temperature in the NCEP CFSR data lies mostly between the 7-member 

NARCCAP ensemble mean temperature and the 5-member WRF ensemble mean temperature. 

When interpolated onto the 8 stations in Ontario and compared to the station observations, the 

WRF ensemble mean outperforms the NARCCAP ensemble meam. But the range of the 

temperature extreme, measured ·by the maximum and minimum temperatures, in this 5-member 

WRF ensemble mean appears larger than in the observations or in the NARCCAP ensemble 

mean. 

Increasing resolutions do not always increase the domain-averaged precipitation amount. Among 

the five downscaling simulations, the annual mean precipitation is enhanced only in HRM3, 

WRFG, and in particular MMSI driven WRF simulations. Both the NARCCAP ensemble mean 

and the WRF ensemble mean produce less precipitation than the CFSR data. The WRF ensemble 

mean precipitation is closer to not only the CFSR precipitation data but also the station 

observations. 

For the time mean horizontal temperature and precipitation over the entire period, the high 

resolution WRF ensemble mean shows some finer-scale details which otherwise cannot be 

resolved by the NARCCAP ensemble mean. In particular, the cold temperature related to small 
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lakes and enhanced precipitation bands related to water body and mountains are captured in the 

high-resolution WRF ensemble mean. 

6.2.3 The analysis of the stochastic WRF ensemble simulations 

In the last chapter, the SKEB scheme was used to generate more ensemble members by adding 

small perturbations to the model fields at every time step. Nine SK.EB scheme members were 

combined with the five WRF simulations to form a 14-member ensemble. The results showed 

that the new ensemble mean performs better than the original 5 WRF model ensemble mean in 

temperature and precipitation simulation. The new ensemble also dramatically reduced the 

excessive temperature extremes, i.e., the maximum and minimum temperatures. The simulations 

of temperature all show the temperature rise from 1997 to 1998. The 14-member ensemble mean 

has smaller spreads in most part of the domain. 

Based on the ensemble spreads of temperature and precipitation, the reliability of the regional 

climate predictions depicted by the ensemble mean can be quantified. Using the ensemble 

products to study climate uncertainty will be a subject for the future study. 

6.3 Limitations 

It is worth noting that the periods for the WRF simulation (1991 -1998) and the stochastic 

ensembles (1997-1998) are very short. The ensemble size is also too small in the practical 

standard in the weather and climate modeling community. The improvements in climate 
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simulations using the ensemble downscaling method are noticeable, but they are often not very 

statistically significant. This research serves as our first attempt in this relatively new field. 

Based on the experiences gained, a better ensemble RCM system will be designed and longer 

simulations will be conducted for both the current and future climate. 
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Appendices 

Appendix A: Circulations in extremely cold and warm winters 

Using the NCEP-DOE reanalysis II data, several factors contributing to the extremely cold and 

warm winters were discussed here. Figure A. I shows the sea level pressure averaged over all 

winter seasons from 1979 to 2004. It is noticeable that a high centre is located over the continent 

of North America. This prominent high pressure system can drive cold air mass southward from 

the Arctic region into the mid-latitude region. Over the Atlantic Ocean, Icelandic Low and 

Azores High are stronger in winter than in summer. 

Figure A. I: Average winter sea level pressure (unit: hPa) from 1979 to 2004. 
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In extremely cold winters, the North American High is stronger than the average by l-2hPa (Fig. 

A.2-a). Stronger southward winds over Ontario and regions to its north advect more cold air 

southward, leading to the low temperature in Ontario. In the warm winters, the North American 

High is weaker than average by 2-3hPa (Fig. A.2-b). The surface temperature advection fields 

clearly demonstrated the consequence the North American High being stronger or weaker. In 

cold winters, Ontario and its surrounding area are dominated by the cold air advection (Fig. A.3-

a). The magnitude can exceed -3 x I 0-5 °C s-1 (-2.6 °C per day) in most areas of Ontario. 

Considering the wind and temperature fields can be separated into an average state and an 

anomaly part, the temperature advection (-V · VT) can also be decomposed into 4 parts, i.e., the 

mean temperature advection (-V ·VT), two first order terms (-V ·'VT') and (-V' ·'VT), and one 

second order term (-V' · 'VT'). The magnitude of the mean advection term is in the order of I 0-

5 °C s- 1
• The magnitudes of the two first order terms are both I 0-6 °C s- 1

, but their total is in the 

same order of the mean. This indicates that the mean advection and the first order terms are both 

very important to the temperature change. Therefore, the wind and temperature anomalies 

associated with the sea-level pressure anomaly in the North American High contribute 

significantly to the cold or warm winter temperatures. In warm winters, the northerly wind 

anomaly is not obvious. The temperature advection is positive over most areas of Ontario (Fig. 

A.3-b). 

The cross sections of the horizontal wind speed across Ontario (280° longitude) in extremely 

cold and warm winters are plotted in Fig. A.4. Both cross sections show jets reach their highest 

wind speed at 200hPa (a little lower in warm winters). But the jet core in the warm winters is 

weaker, it is also shifted several degrees northward. The location and the strength of the jet 
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stream may control the occurrence of the baroclinic weather systems, which in tum influences 

the temperature variation in winter seasons over Ontario. 

To accurately diagnose the temperature change, we will also need to consider adiabatic and 

diabatic heatings, which are not discussed in this thesis. 

(a) (b) 

Figure A. 2: Anomaly fields of sea level pressure (unit:hPa) of (a) 3 coldest winters and (b) 4 
warmest winters in Ontario. 

(a) (b) 

Figure A. 3: Surface temperature advection (unit: °C s-1
) in (a) 3 coldest winters and (b) 4 

warmest winters in Ontario. 
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(a) (b) 

Figure A. 4: cross sections of composite wind (unit: m s·1
) at 280° longitude of (a) 3 coldest 

winters and (b) 4 warmest winters in Ontario. 
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Appendix B: Circulations in extremely dry and wet winters 

As shown in Fig. A. I, the North American High at the sea level controls a large area over North 

America. Another system at the sea level that can affect Ontario is the low pressure center over 

the North Atlantic Ocean. Between these two big systems, cold and dry northerly wind is 

relatively easy to reach to Ontario in winter. Thus, winter does not have as much precipitation as 

the other three seasons. 

When Ontario has positive precipitation anomaly, North American High has a negative anomaly 

centre (-2hPa), while there is a positive pressure anomaly center over West Atlantic. This 

pressure anomaly gyre switches signs when Ontario is drier than average (Fig. B.1 ). 

According to geostrophic balance theory, the pressure anomaly gyre is associated with northerly 

and southerly wind anomalies in the drier and wetter winters, respectively. The wind anomalies 

can be also seen on 850hPa (Fig. B.2). In dry winters, the northeasterly to northerly wind 

anomalies tend to bring cold and dry air to Ontario (Fig. B.2-a). The wind anomalies also diverge 

over Ontario. In the wet winters, both the facts that the the 850hPa wind anomalies reverse in the 

their directions to southwesterly and the wind anomalies converge especially in east Ontario are 

all favourable for more precipitation over Ontario. 

Meanwhile, Fig. B.3 indicates that for dry winters, the North American trough is deeper than 

average (-40gpm). Deep North American trough brings more cold air southward to Ontario. But 

for wet winters, the trough is weaker by 20gpm than average and a negative geopotential height 

anomaly occurs at high-latitude (not shown). Such distributions of the geopotential height 
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correspond to the fact that Ontario or even east of North America has an anomalous northward 

wind component in the mid-level, as well as in the low-level (850hPa). 

Moreover, the North American high level jet stream is stronger than average when m dry 

winters, while weaker jet in wet winters (Fig. B.4). 

The necessary conditions for winter stratiform precipitation contain intersections of the cold and 

warm air, the large-scale ascent and sufficient moisture. Figure B.5 portrays the vertical­

latitudinal cross sections of the mean specific humidity anomaly between 270°E and 290°E. 

Ontario is between 41°N and 57°N. It is noticeable that in wet winters, the corresponding 

specific humidity field has a large-scale positive anomaly from the surface to around 400hPa, 

while there is a wide range of dry anomaly in the dry winter. Moreover, the upward motion over 

Ontario in wet winters is significant. Although there is also upward motion in dry winters, it is 

much weaker. 

Figure B.6 depicts the vertically integrated horizontal water vapor flux anomaly and its 

divergence. Although the magnitude of moisture flux anomaly in Ontario is comparatively 

smaller than those in the low-latitude region, it can be clearly seen that in wet winter (Fig. B.6-

b ), the moisture flux anomaly in Ontario maintains a direction from southwest to northeast, with 

a negative moisture flux divergence, which means that moisture is converging in this area and 

may lead to more precipitation. The main moisture source is the Gulf of Mexico and the Atlantic 

Ocean. When a negative precipitation anomaly occurs, anomalous moisture fluxes point to 

southwest and diverge in Ontario. 
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In total, the favorable conditions to form a wet winter include anomalous southerly wind, 

excessive low-level moisture and large-scale upward motions lifting moisture to high levels. 

(a) (b) 

Figure B. 1: Anomaly fields of sea level pressure (unit:hPa) of(a) 2 driest winters and (b) 2 
wettest winters in Ontario. 

(a) (b) 

Figure B. 2: Anomaly fields of 850hPa horizontal winds (vectors, m s- 1
) and geopotential heights 

(gpm) of (a) 2 driest winters and (b) 2 wettest winters in Ontario. 
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(a) (b) 

~-0 '~ 

Figure B. 3: Anomaly fields of 500hPa geopotential heights (gpm) of (a) 2 driest winters and (b) 
2 wettest winters in Ontario. 

(a) (b) 

Figure B. 4: Anomaly field of 200hPa jet stream (m s-1
) of (a) 2 driest winters and (b) 2 wettest 

winters in Ontario. 
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(a) (b) 

Figure B. 5: Vertical and latitudinal cross sections (averaged between 270°E and 290°E) of the 
vertical velocity (contours, unit:Pa s-1

) and specific humidity (SH) an~malies (shaded, unit:g kg- 1
) 

in (a) the driest winters and (b) the wettest winters (shading: left: SH negati\'fe anomaly smaller 
than -0.02g kg-1

, right: SH positive anomaly greater than 0.02g kg-1
). 

(a) (b) 

lo 
_, 

-2 

-.1 

Figure B. 6: Vertically integrated anomaly moisture flux (vectors, kg (m·s)"1
) and anomaly 

moisture flux divergence (shaded parts, 10-6 g (cm2·hPa·sr1
) from 1000 hPa to 300 hPa for (a) 

rain-abundant and (b) rain-scarce winters in Ontario. 
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