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ABSTRACT  

Glucocorticoids	(GCs)	play	a	key	role	in	regulating	lipid	metabolism.	

However,	various	studies	have	found	conflicting	results	on	whether	they	are	

predominantly	lipolytic	or	lipogenic,	likely	due	to	differences	in	models,	exposure	

times	and	which	tissues	were	being	examined[1].	While	GCs	are	produced	

endogenously	in	response	to	stress,	they	are	also	potent	anti-inflammatory	agents	

and	often	consumed	exogenously	as	a	treatment	for	inflammatory	conditions[2].	For	

this	reason,	it	is	necessary	that	we	have	a	clear	understanding	of	their	physiological	

role	in	the	regulation	of	metabolism.	Despite	this,	little	is	known	about	their	

immediate	response,	especially	in	conjunction	with	exercise.	For	this	study,	Wistar	

rats	were	randomly	divided	into	four	groups:	sedentary	+	vehicle	(SV),	sedentary	+	

corticosterone	(SC),	exercise	+	vehicle	(EV),	and	exercise	+	corticosterone	(EC).	All	

animals	received	an	i.p.	injection	of	their	treatment	(t	=	-15	min)	and	exercisers	

performed	a	45-minute	exercise	on	metabolic	treadmills.	All	tissue	collection	

occurred	at	t	=	+45	min.	SC	animals	had	more	fluctuation	in	their	respiratory	

exchange	ratio	(RER)	over	time	compared	to	SV.	In	exercise	groups,	no	differences	

in	RER	were	observed.	Non-esterified	fatty	acid	(NEFA)	levels	were	not	significantly	

different	between	groups	after	one	hour	and	lipolytic	enzyme	activity	analyses	

indicated	that	SC	animals	had	enhanced	enzyme	activity	compared	to	EC,	but	were	

not	different	from	SV	(p	=	0.047).	Analyses	indicate	that	GCs	may	acutely	induce	

lipolysis	when	sedentary,	but	not	in	an	exercise	state. 	



	

	 iii	

ACKNOWLEDGMENTS  

I	 would	 like	 to	 thank	my	 supervisor,	 Dr.	Michael	 Riddell	 for	 providing	me	

with	 the	 opportunity	 to	 carry	 out	 this	 project.	 Thank	 you	 for	 your	 support	 and	

guidance	 through	 this	 journey	 and	 for	 always	 offering	 a	 positive	 outlook	 when	

things	were	not	going	as	planned.	Your	passion	for	not	only	this	project,	but	all	of	

the	research	that	you	are	involved	in	is	inspiring	and	always	kept	me	motivated	to	

try	and	excel	at	everything	I	am	doing.		

To	my	 committee	members,	Dr.	Heather	 Edgell,	 Dr.	 Gary	 Sweeney,	 and	Dr.	

Jennifer	Kuk,	thank	you	for	your	academic	support	and	for	taking	the	time	to	review	

this	document.	

Emily	 Dunford,	 for	 patiently	 teaching	 me	 various	 lab	 techniques,	 assisting	

with	my	research	and	always	being	a	supportive	mentor	in	the	lab.	Knowing	that	I	

could	come	 to	you	with	any	difficulties	with	my	project	and	you	would	always	be	

more	 than	happy	 to	offer	your	 insight	has	been	very	helpful	 and	 important	 to	me	

and.	This	project	would	not	have	evolved	as	it	did	without	you.	You	have	helped	me	

grow	as	a	researcher,	more	than	I	ever	would	have	expected	and	I	am	very	thankful	

for	that.		

To	my	lab	mates	and	friends	who	have	been	here	through	the	whole	journey,	

Trevor	Teich,	Dessi	Zaharieva,	Deanna	Porras,	Erwan	Leclair,	as	well	as	our	newest	

members,	 Ariella	Mandel,	 Caylee	 Greenberg,	 Mahsa	 Jahangiriesmaili,	 Jinessa	 Lane	

and	Rubin	Pooni,	I	thank	you	for	helping	me	along	the	way	with	my	data	collection,	

as	well	as	for	your	continuous	encouragement	and	support.	You	have	made	coming	

to	school	everyday	so	enjoyable.		



	

	 iv	

To	Dr.	Rolando	Ceddia	and	his	student,	Diane	Sepa-Kishi,	 thank	you	 for	not	

only	offering	the	use	of	your	equipment,	also	taking	the	time	to	work	with	me.	You	

have	both	being	a	great	 source	of	knowledge	and	assistance	and	 I	 appreciate	 that	

you	make	the	time	discuss	any	of	my	results	with	you;	you	were	both	a	great	source	

of	insight.		

I	thank	my	family	and	friends,	who	have	encouraged	me	to	keep	going	when	I	

was	feeling	overwhelmed.	To	my	parents	and	sister,	who	have	made	every	effort	to	

try	and	understand	my	research,	I	am	so	appreciative	of	your	never-ending	belief	in	

my	abilities.	You	are	all	are	so	hardworking	and	passionate	in	your	own	areas	and	

having	you	as	examples	has	pushed	me	to	do	my	best	with	my	work.			

Lastly,	to	my	boyfriend	Bram,	thank	you	for	always	being	a	solid	support	for	

me.	Whenever	I	felt	overwhelmed	or	discouraged	I	could	always	turn	to	you	and	you	

would	always	help	me	see	things	in	a	positive	like	and	encourage	me	to	persevere.	

Thank	you	to	all	that	have	helped	me	along	the	way;	this	thesis	is	dedicated	to	you	

all.	 

  



	

	 v	

TABLE OF CONTENTS  

Abstract………………………………………………………………………………….ii 
Acknowledgments………………………………………………………………………iii 
Table of Contents……………………………………………………………………......v 
List of Figures…………………………………………………………………………..vii 
List of Abbreviations…………………………………………………………………..viii 
 
 
1.0 Introduction……………………………………………………………………….….1 
2.0 Literature Review........................................................................................................3 

2.1 Energy Substrate Metabolism……………………………………………………..3 
i.   Overview of Energy Substrate Metabolism.………………………….………..3 
ii.   Carbohydrate Metabolism…………………………………………………….3 
iii.  Lipid Metabolism……………………………………………………………..4 
iv.  The Lipolytic Pathway………………………………………………………..5 
v.   Anti-Lipolytic Pathway……………………………………………………….9 
vi.  Measures of Substrate Metabolism…………………………………..………12 

2.2 Hormonal Influence on Energy Metabolism………………………..……………13 
i.   Overview of GC Metabolism in Normal Physiology………………..……….13 
ii.  GCs and fuels (CHO, Protein, Lipids)………………………………..………15 
iii. Dual Roles of Glucocorticoids in Lipid metabolism…………………………17 

2.3	Models	of	GC	Manipulation	and	Lipid	metabolism………………………………....……17 
i.		Adrenalectomized	Models.……………………………………………………………………17	
ii.	Cell	Culture	Models………………………………………………………………………………18	
iii.	Human	and	In	Vivo	Rodent	Models………………………………………………………20	

2.4 GCs in the Subcutaneous versus Omental/Visceral Depots……………………..21 
2.5 GC Association with Dysregulation and metabolic disease……………………..23 
2.6 Lifestyle Influences on metabolism………………………………...…………….25 

i. Diet……………………………………………………………………………..25 
ii. Exercise………………………………………………………………………..26 
iii. Aerobic Exercise and Hormonal Regulation…………………………………27 
iv. Role of GCs in Aerobic Exercise…………………………….……………….28 

2.7 Clinical Relevance/Gaps in the literature………………………….…………….29 
3.0 Rationale and Objectives...........................................................................................31 
 3.1 Background and Rationale………………………………….………………..31 
 3.2 Purpose…………………………………………………….…………………32 
 3.3 Hypothesis………………………………………..............…………………..32 
4.0 Manuscript……………………………………………………………………….….33 
 Introduction………………………………………………………………………33 
 Methods………………………………..…………………………………………34 
 Results……………………………………………………………………………41 
 Discussion………………………………………………………………………..44 
 Figures……………………………………………………………………………49 
5.0 Summary, Limitations and Future Directions……………………………………57 
6.0 References..………………………………………………………………………….60 



	

	 vi	

7.0 Appendix..…………………………………………………………………………...83 
  



	

	 vii	

LIST OF FIGURES  

Figure 1.0. Lipolysis 
1.1 The lipolytic pathway…………………………………………………………7 
1.2 Triacylglycerol breakdown within the lipid droplet…………………………..8 

Figure 2.0. The Anti-lipolytic pathway………………………………………………….11 
Figure 3.0. Glucocorticoid Physiology with chronic exposure………………………….16 
 
MANUSCRIPT 
Figure 1.0. Project design 

1.1 Animal treatment groups……………………………………………………..39 
1.2 Acclimation protocol design…………………………………………………39 
1.3 Experimental protocol design………………………………………………..40 

Figure 2.0. Plasma corticosterone content………………………………………………49 
Figure 3.0. Respiratory exchange ratio …...…………………………………………….50 
Figure 4.0. Plasma non-esterified fatty acid content……………………….……………51 
Figure 5.0. Lipolytic Enzyme measures 
 5.1 Hormone sensitive lipase activity……………………………………………52 

5.2 Perilipin activity……………………………………………………….……..53 
Figure 6.0. Measures of Glycaemia 
 6.1 Blood glucose data………………………………………………….………..54 
 6.2 Plasma insulin data……………………………………………………….….55 
 6.3 Plasma glucagon data……………………………………………….…….….56 
 
APPENDIX 
Figure S1.0 Body Weight...………………………………………………………..…….83 
Figure S2.0 Metabolic data for all animals in which RER data was collected. .……..…84 
Figure S3.0 RER data for exercising animals at all time points.…..……………………85 

 

 

 

 

 

 

 



	

	 viii	

LIST OF ABBREVIATIONS  

5’ AMP 5’ adenosine monophosphate 
11β-HSD 11 beta-hydroxysteroid dehydrogenase 
AC Adenylyl cyclase 
AFABP Adipocyte fatty acid binding protein 
ANS Autonomic nervous system 
AQP7 Aquaporin-7 
α -AR Alpha adrenergic receptor 
ACTH Adrenocorticotropic hormone 
ATGL Adipose triglyceride lipase 
β-AR Beta adrenergic receptor 
BG Blood glucose 
cAMP Cyclic adenosine monophosphate 
CBG Corticosteroid-binding protein 
CGI-58 Comparative gene identification-58 
CLAMS Comprehensive Lab Animal Monitoring System 
CO2 Carbon dioxide 
CS Cushing’s syndrome 
DAG Diacylglycerol 
DEX Dexamethasone 
EC Exercise corticosterone (treatment group) 
EV Exercise vehicle (treatment group) 
G6Pase Glucose 6-phosphatase 
GC Glucocorticoid 
GH Growth hormone 
Gi G-inhibitory 
GR Glucocorticoid receptor 
Gs G-stimulatory 
HFD High fat diet 
HPA Hypothalamus-pituitary-adrenal 
HSL Hormone sensitive lipase 
I Insulin 
IL Interleukin 
IMCL Intramuscular lipid content 
IR Insulin receptor 
IRS Insulin receptor substrate 
LPL Lipoprotein Lipase 
MAG Monoacylglycerol 
MetS Metabolic Syndrome 
MGL Monoacylglycerol lipase 
MR Mineralocorticoid receptor 
NEFA Non-esterified fatty acid 
O2 Oxygen 
PDE-3B Phosphodiesterase 3B 
PDK-1 Phosphoinositide-dependent kinase-1 



	

	 ix	

PEPCK Phosphoenolpyruvate carboxykinase 
pHSL Phosphorylated HSL 
Pi-3K Phosphatidylinositol-3 kinase 
POMC Pro-opiomelanocortin 
PKA Protein kinase A 
PKB Protein Kinase B 
PLIN Perilipin 
PP-1 Protein phosphatase-1 
RER Respiratory exchange ratio 
SC Sedentary corticosterone (treatment group) 
SV Sedentary vehicle (treatment group) 
TAG Triacylglycerol 
VCO2 Volume of carbon dioxide  
VO2 Volume of oxygen 
VO2Max Maximum volume of oxygen uptake 
WAT White adipose tissue 

 



	

	 1	

1.0 INTRODUCTION  

 Glucocorticoids (GCs) are hormones released from the adrenal glands and one of 

their predominant roles is to provide fuels to be used as energy in a state of stress[3]. 

Their release is regulated by the hypothalamic-adrenal-pituitary (HPA) axis and rises 

significantly with a stress response, although, they are also released at a low 

concentration throughout the day in a diurnal pattern where they are highest before 

waking up and lowest going to bed[4]. In addition to their endogenous release, they are 

also potent anti-inflammatory agents and are often supplemented to treat various 

conditions. Since the 1950s, GCs have been a predominant treatment for inflammation, 

either for an acute injury, or for chronic conditions including arthritis or asthma[5]. 

However, the rise in their use has shed light on some of their less desirable metabolic 

consequences, specifically when used over a chronic period. Various rodent models have 

also revealed that hypercortisolemia results in adiposity and associated comorbidities, 

including fatty liver, hepatic steatosis, elevated fasting glycaemia and insulin 

resistance[6,7]. These effects are also seen in Cushing’s syndrome (CS), a condition of 

chronic hypercortisolism, often caused by enhanced stimulation of the HPA axis[8,9]. 

Despite their ability to induce adiposity, GCs enhance lipolysis, the breakdown of TAGs 

to NEFAs and glycerol, through increasing the transcription of various lipolytic enzymes 

(ATGL and HSL), as observed in various cell culture and rodent models[10,11]. Most of 

these studies have examined the chronic adaptations, but their immediate actions have not 

been studied extensively in vivo. Interestingly, cell culture models using 3T3-L1 cells 

have found that a very acute exposure (1 hour) to GCs exerts the opposite effects on lipid 
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metabolism, impairing lipolytic actions[12]. This impairment was further increased as 

concentration of GCs was increased. 

Aerobic exercise is also considered a pro-lipolytic trigger, and being a 

physiological stressor, it induces a rise in catecholamines, immediately followed by an 

increase in GCs. It is often assumed that during exercise, GCs are involved in increasing 

the mobilization of fuels, specifically glucose and non-esterified fatty acids (NEFAs)[13], 

yet the acute interaction between elevated GCs and aerobic exercise on metabolism has 

yet to be thoroughly examined. In order to gain a better understanding of the immediate 

actions of GC on metabolism in vivo, and a better understanding of the physiological 

lipid response with exercise, we designed a model that examines the acute (1 hour) 

effects of GCs on lipid metabolism in both a resting and exercising state to get a better 

understanding of the specific actions that would occur with a stress response or a one 

time treatment with glucocorticoids. 
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2.0 LITERATURE REVIEW  

2.1	ENERGY	SUBSTRATE	METABOLISM	

i. Overview of Energy Substrate Metabolism 

Metabolism comprises all of the chemical processes within a cell, tissue or 

organism that are required to sustain life. These processes are tightly controlled with 

various regulators and feedback signals in order to maintain cellular homeostasis[14]. 

Additionally, cells have the ability to respond to ever-changing environments and adapt 

to a number of factors including lifestyle (diet, physical activity, stress), environmental 

(temperature, altitude), age, gender and genetic components[15–21]. 

Although there are many aspects to consider when studying metabolism, energy 

substrate metabolism focuses on utilizing fuels for energy, specifically looking at the 3 

major macronutrients: carbohydrates (CHOs), lipids and proteins. It is important to note 

that in normal physiological conditions, proteins contribute a negligible amount to 

cellular energy. For this reason, this review will be predominantly focused on glucose 

and lipid metabolism, with special attention being placed on lipids. All tissues in the body 

require energy to function, but the three major tissues that influence fuel oxidation are: 

skeletal muscle (which has the greatest influence on fuel selection), liver, and adipose 

tissue. Dysregulation in any of these tissues results in significant metabolic 

consequences. 

ii. Carbohydrate Metabolism 

Due to the increasing prevalence of insulin resistance and type 2 diabetes, a lot of 

research has been focused on glucose metabolism and regulatory factors. Glucose 

metabolism is predominantly regulated through insulin signalling, which increases 
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glucose uptake into tissues[22]. It does this through inducing the translocation of the 

glucose transporter, GLUT4, to the cell membrane to allow an influx of glucose into the 

cell[23]. Additionally, GLUT4 translocation may occur through an insulin-independent 

pathway when stimulated by muscle contraction, such as with exercise[24]. Once glucose 

enters the cell, it may be stored as glycogen; otherwise, it may undergo glycolysis and be 

converted to pyruvate. From here, it may be oxidized and used as a fuel for energy, either 

through aerobic respiration in the mitochondria, or anaerobically in the cytosol. Unlike 

the other major macronutrients, the body does not have a very large storage capacity for 

CHOs and its metabolism is regulated in a tissue-specific manner[25]. If systemic levels 

are elevated, the pancreas will release insulin to facilitate glucose uptake in tissues and 

the liver will convert excess glucose into glycogen until it needs to be utilized again[26]. 

Conversely, if circulating levels are low, the pancreas will release glucagon to signal the 

liver to convert glycogen into glucose. 

iii. Lipid Metabolism 

Adipose tissue is a functional metabolic tissue that affects thermogenesis, energy 

storage, metabolic regulation, mitochondrial biogenesis and immune system stimulation 

through the release of cytokines[27,28]. It is influenced by nutrition, satiety level, 

neuroendocrine factors and the circadian rhythm[29,30]. There are two types of adipose 

tissue, brown and white. Brown adipose tissue’s primary function is to convert energy 

into heat[27,31]. White adipose tissue (WAT) is more abundant in adults and serves as a 

major energy reserve in mammals[32]. WAT is maintained through a balance between 

two processes, lipogenesis and lipolysis. Lipogenesis is the process of fatty acid synthesis 

in which triacylglycerol (TAG) is stored to be utilized later[33]. This process is favoured 
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when there is a positive energy balance, such as in a post-prandial state when insulin (a 

potent lipogenic agent) is high, or in a resting state when energy expenditure is low[34]. 

One way in which insulin influences lipogenesis is by increasing lipoprotein lipase 

(LPL), an enzyme involved in up-taking NEFAs into the cell to either be stored or 

oxidized. At the same time, insulin also inhibits lipolysis by reducing the activity of 

various lipolytic enzymes within the adipocytes themselves.   

Lipolysis is the contrary process; it involves the hydrolysis of TAG to allow them to 

be mobilized and released into the blood as NEFAs[32]. In addition to glucose, NEFAs 

are a major fuel source that may be oxidized and used for energy via mitochondrial 

oxidative metabolism[34]. For this reason, lipolysis is dominant when there is a deficit in 

energy, such as in a fasted state or during exercise, when the body requires additional 

fuel.   

Healthy individuals are able to balance these processes and maintain a healthy 

amount of body fat. However, for various reasons, metabolic deregulation sometimes 

occurs and may cause excessive accumulation of adipose tissue and an increases risk of 

metabolic aberrations and associated comorbidities[29]. 

iv. The Lipolytic Pathway 

Lipolysis is regulated through many factors, but the greatest known moderators of 

the process are catecholamines[35] (Fig. 1.1). Circulating catecholamines, epinephrine 

(Epi) and norepinephrine (NE), bind to the β-adrenergic receptors (β-ARs) of adipocytes; 

this leads to the activation of adenylyl cyclase (AC) through interacting with the G-

stimulatory (Gs) coupled protein[36]. AC increases cyclic adenosine monophosphate 

(cAMP) production, which leads to protein kinase A (PKA) activation[36]. PKA has two 
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roles in promoting the lipolytic pathway, while simultaneously blocking the anti-lipolytic 

pathway. PKA activation inhibits insulin action by blocking phosphatidylinositol-3	

kinase	(PI-3K)	activity,	which	ultimately	inhibits	the	anti-lipolytic	effects	of	 insulin	

to	reduce	intracellular	cAMP	content[37]. In addition, PKA activation has two modes 

of action to directly promote lipolysis; it triggers the phosphorylation of both perilipin 

(PLINs) and hormone sensitive lipase (HSL)[38]. PLINs are a family of enzymes that 

suppress lipolysis in a basal state, yet facilitate PKA stimulated lipolysis[39,40]. PLINs 

are structural proteins that coat the lipid droplet and once phosphorylated, assist in 

translocating phosphorylated HSL from the cytosol to lipid droplets, where 

phosphorylated HSL can facilitate lipolysis[41]. Additionally, it has been suggested that 

PLIN may be involved in positive feedback of PKA to increase the activation and further 

stimulate lipolysis[40]. In addition to assisting in the translocation of phosphorylated 

HSL (pHSL), the phosphorylation of perilipin also frees comparative gene identification 

58 (CGI-58), a protein bound to perilipin. Once free, CGI-58 is able to activate adipose 

triglyceride lipase (ATGL) on the lipid droplet. ATGL, HSL, as well as 

monoacylglycerol lipase (MGL), are the primary lipases responsible for the breakdown of 

TAG to NEFAs in the lipid droplet (Fig. 1.2). The first step in the process involves 

ATGL, the rate-limiting enzyme, which converts TAG to diacylglycerol (DAG), 

releasing one NEFA in the process. From here, phosphorylated HSL converts DAG to 

monoacylglycerol (MAG), releasing an additional NEFA. Lastly, MGL cleaves MAG to 

be broken down into glycerol and one last NEFA[32]. The NEFAs and glycerol are then 

returned to the cytosol and are released back into circulation. Adipocyte fatty acid 
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binding protein (AFABP) shuttles the NEFAs out of the adipocyte and Aquaporin-7 

(AQP7) facilitates the release of glycerol into circulation.   

 

Figure 1.1, The lipolytic pathway within the adipocyte. Catecholamines 

(epinephrine or norepinephrine) act at the beta-adrenergic receptor (β-AR) to stimulate 

adenylyl cyclase (AC), which converts adenosine triphosphate (ATP) into cyclic 

adenosine monophosphate (cAMP). cAMP phosphorylates protein kinase A (PKA), 

which phosphorylates hormonse sensitive lipase (HSL) and perilipin (PLIN). PLIN 

translocates HSL to the lipid droplet. Within the lipid droplet, triacylglycerols (TAGs) are 

broken down into 3 Non-esterified fatty acids (NEFAs) + 1 glycerol. NEFAs leave the 

cell with the assistance of adipocyte fatty acid binding protein (AFABP) and glycerol is 

released by aquaporin-7 (AQP7).   
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Figure 1.2, Triacylglycerol breakdown within the lipid droplet. 

Triacylglycerol (TAG) is broken down into diacylglycerol (DAG) by adipose triglyceride 

lipase (ATGL). In this step, one non-esterified fatty acid (NEFA) is released. 

Phosphorylated-hormone sensitive lipase (pHSL) breaks down DAG into 

monoacylglycerol (MAG), releasing one NEFA in the process. Monoacylglycerol lipase 

(MGL) breaks down MAG to one NEFA + one glycerol.  

  



	

	 9	

v. Anti-Lipolytic Pathway 

The lipolytic pathway may also be inhibited by various hormones, most notably, 

insulin. When insulin binds to the insulin receptor (IR), it activates tyrosine kinases, 

which causes an interaction with insulin receptor substrates 1 and 2 (IRS-1, IRS-2). This 

leads to the phosphorylation of Pi-3K[42]. Pi-3K goes on to activate of phosphodiesterase 

3B (PDE-3B), an enzyme that catalyzes cAMP breakdown to 5' adenosine 

monophosphate (5’ AMP), limiting the amount of PKA phosphorylation, thereby 

inhibiting all the downstream actions in the lipolytic pathway. In addition, insulin is 

involved in the phosphorylation of protein phosphatase-1 (PP-1), an enzyme that 

dephosphorylates HSL, preventing its action[42,43]. For a visual understanding of this 

pathway, refer to Fig. 2.  

Catecholamines (Epi and NE), the greatest known stimulators of lipolysis, may 

also inhibit the pathway if it binds to the alpha-adrenergic receptor (α-AR) of the 

adipocyte. While the β-AR stimulates lipolysis, the α-AR initiates the opposite action and 

phosphorylates Protein Kinase B (PKB), a downstream target of Pi-3K[37]. The binding 

of catecholamines to one isoform of these receptors over the other is determined by the 

affinity and abundance of each receptor at the tissue level. For example, in humans, α-

ARs	outnumber	β-ARs	 in	the	subcutaneous	fat	and	therefore	these	tissues	have	an	

impaired	lipolytic	response[44,45].	The ratio of α-AR:β-AR is adaptable, for instance, 

the ratio is increased with a high fat diet and causes obesity in rats via hyperplasia[45,46]. 

The anti-lipolytic effects of this receptor are clear when their actions are blocked in 

adipocytes. Treatment with either isoproterenol, or epinephrine elicited a spike in 

glycerol release[47]. Treatment with yohimbine, an α-AR antagonist, elicited a similar 
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response in stimulating glycerol release, comparable to the β-AR agonist treatments, 

indicating that a blockade of these receptors enhances lipolysis [47].   
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Figure 2. The anti-lipolytic pathway Insulin acts at the insulin receptor to interact with 

insulin receptor substrate-1 (IRS-1). IRS-1 phosphorylates phosphatidylinositol-3 kinase 

(Pi3K), which activates phosphoinositide-dependent kinase-1 (PDK1). PDK1 

phosphorylates protein kinase B (PKB), which activates phosphodiesterase 3B (PDE-3B), 

which breaks down cyclic adenosine monophosphate (cAMP) to inactive 5’AMP. 

Epinephrine may stimulate the α-AR to also increase PKB phosphorylation, leading to 

enhanced PKB phosphorylation and increased activation of PDE-3B. 
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vi. Measures of Substrate Metabolism 

Determining the oxidation of substrates is beneficial in studying metabolic 

responses. In normal conditions, proteins contribute a negligible amount to energy 

metabolism, especially during exercise, and for this reason, most research focuses on the 

balance between CHO and lipid use. In animals, radio-tracers have been used to 

determine tissue utilization of various substrates[48–50] and in humans; stable isotopes 

have been used[49,51,52]. Additionally, substrate metabolism at the specific tissue level 

has been measured by examining the arterio-venous difference in substrates and their 

markers, such as glucose, glycerol or NEFAs, to determine the utilization of an individual 

tissue[53]. A major limitation of these methods is their invasiveness. For this reason, the 

respiratory exchange ratio (RER), (VCO2/VO2), is the most commonly used method to 

estimate the contribution of CHOs and lipids during a steady state (either during resting 

state, or a steady submaximal exercise)[13]. The ratio uses indirect calorimetry to 

determine substance type and oxidation rate by measuring of oxygen (O2) consumption 

and carbon dioxide (CO2) production[54].  

The basis of this relationship is that lipids and CHOs differ in their O2 production 

when being metabolized. The range for RER values is from 0.7 – 1.0, with the highest 

percentage of fat oxidation giving a value of 0.7, whereas a greatest percent of CHOs 

being oxidized is indicated by a value close to 1.0[54]. For an average resting individual 

that consumes a mixed diet, the RER would be in the range of 0.82-0.86. Substrate 

utilization at rest is determined predominantly by fuel availability. Elevated NEFAs 

enhance fatty acid oxidation while simultaneously impairing glucose utilization through 
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impairing insulin signalling[55], whereas a diet high in CHOs favours CHO 

oxidation[25,56]. 

2.2 Hormonal Influence on Energy Metabolism 

i. Overview of GC Metabolism in Normal Physiology 

Glucocorticoids (GCs) are naturally occurring hormones released from the adrenal 

cortex under the influence of the hypothalamus-pituitary-adrenal (HPA) axis[57]. Along 

with catecholamines, GCs are released as part of the fight-or-flight response during 

stress. The HPA axis is activated by the secretion of corticotropin-releasing hormone 

(CRH) from the hypothalamus which activates pituitary pro-opiomelanocortin 

(POMC)[58] gene transcription to increase adenocotropin hormone (ACTH) in the 

anterior pituitary gland. ACTH signals the adrenal glands to release GCs from the adrenal 

cortex[58]. In healthy individuals, release fluctuates throughout the day in a diurnal 

pattern, with secretion being highest upon awakening (morning) and lowest in the 

evening, although there is also a constant low concentration basal release [1]. This pattern 

is reversed in nocturnal animals (e.g. rodents). Release may also fluctuate in response to 

environmental stressors and food intake[59].  In addition to their endogenous release, 

cortisol and the various derivatives (e.g. dexamethasone, prednisolone, hydrocortisone) 

may also be consumed exogenously for their known anti-inflammatory properties to treat 

inflammation or autoimmune diseases[60].   

Once in circulation, they may exist in two forms in humans: firstly, inactive and 

bound to corticosteroid-binding protein (CBG) and otherwise, they may be active and 

circulate unbound[61]. In humans, cortisol is the active form (in rodents, corticosterone) 

and cortisone is inactive (in rodents, 11-dehydrocortcicosterone)[1]. If active, GCs may 
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readily cross the plasma membrane and may bind to the intracellular glucocorticoid 

receptor (GR)[61], a steroid nuclear receptor that is found in abundance throughout the 

body. The mineralocorticoid receptor (MR) may also be activated by GCs in some 

tissues, specifically found in the distal nephron, colon and sweat glands[34]. Activation 

of these receptors may be amplified by the pre-receptor 11 beta- hydroxysteroid 

dehydrogenase type 1 (11β-HSD-1)[34], an oxo-reductase enzyme that catalyzes the 

conversion of inactive cortisone into active cortisol[62]. 11β-HSD-1 is predominantly 

expressed in liver, adipose, bones, nervous system, muscles and lungs[63,64]. 

Conversely, GR activation may be down-regulated via the activation of 11β-HSD-2, a 

dehydrogenase pre-receptor that converts cortisol back into cortisone[65]. Through GR 

activation, GCs play a role in regulating metabolism[66], influencing growth, and 

impacting the immune system[67]. The implications of excess GCs have been extensively 

studied, although it is not entirely clear whether some of their actions are a result of direct 

genomic changes or are the indirect consequence of influencing other hormones, 

including epinephrine, insulin or glucagon. In addition to interacting with the GR, they 

are also believed to influence other hormones that may elicit a number of responses[66]. 

Hypercortisolemic models have demonstrated that elevated GCs result in insulin 

resistance, increased protein catabolism, elevated plasma glucose and lipolysis[34,60]. In 

a short-term stressed state, these responses are quite adaptive, increasing substrate 

availability for energy via the mobilization of glucose, lipids and amino acids. However, 

these responses are also seen with a chronic exposure to GCs and if sustained over a long 

period become maladaptive and are associated with insulin resistance and obesity[68]. 

For this reason, various signalling pathways tightly control GC regulation to meet the 
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demands of the body and provide feedback in order to adapt to changing 

environments[69].  

ii. GCs and fuels (CHO, Protein, Lipids) 

GCs play a role in influencing all of the major fuel sources. They are potent 

inducers of hyperglycaemia through specific actions within the various major metabolic 

tissues. They influence various counter-regulatory hormones including, insulin, 

catecholamines and glucagon, to alter fuel metabolism [70–72].  

GCs decrease insulin signalling and therefore reduce glucose uptake in the 

muscle, which is one of the most influential tissues on glucose metabolism[73–75]. In the 

liver, GCs also induce insulin resistance. This in turn results in increases in 

gluconeogenesis via the increased expression of PEPCK and G6Pase, thereby enhancing 

hepatic glucose output[72,76,77].  In the pancreas, GC overexposure results in 

impairments in insulin secretion[78,79]. Lastly, in adipose tissue, GCs reduce the 

responsiveness to insulin through decreasing IRS-1 phosphorylation and reducing PKB 

activity[80]. Studies examining the short term effects of GCs on adipose cells using 3T3-

L1 cells (30 min Dexamethasone (DEX)) have shown that GCs induce immediate effects 

on adipose by inhibiting the insulin response[81]. They do this by impairing receptor 

signalling, although they do not change receptor expression[81]. Insulin receptor 

expression is altered, however, with a long term exposure to GCs (24-hr DEX) through 

GR-mediated reductions in IRS-1 and PKB concentrations in rat adipocytes[82]. In 

tissues with decreased expression of GR and thereby reduced GC actions, there is an 

association with increased insulin sensitivity in humans[83]. 
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Figure 3.0. Metabolic effects of chronic GC exposure at the various metabolic 

tissues. HPA stimulation results in glucocorticoid (GC) release from the adrenal glands. 

Once in circulation, GCs increase blood glucose (BG) through increasing 

gluconeogenesis (GNG) in the liver via increasing GNG enzyme activity 

(Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase), 

while impairing insulin release and insulin sensitivity at the various tissues. In adipose, 

insulin signalling is reduced through impaired insulin-receptor substrate (IRS-1) and 

protein kinase B (PKB) activity. In muscle, glucose uptake is reduced due to impaired 

insulin signalling. The pancreas has reduced beta cell function and decrases the amount 

of insulin output. GCs increase fatty acid release (lipolysis) and promote lipid storage in 

the adipose depot itself, as well as in liver (triglyceride (TG)) and muscle 

(intramyocellular lipid content (IMCL)).  
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 iii. Dual Roles of Glucocorticoids in Lipid metabolism 
 

The	 actions	 of	 GCs	 on	 lipid	 metabolism	 have	 been	 extensively	 studied	

through	various	models	 and	 species.	 Several	 early	 studies	used	 an	 adrenalectomy	

model	 on	 rodents	 supplemented	with	 GCs	 exogenously,	 either	 to	 physiological	 or	

supraphysiological	 levels.	 From	 here,	 various	 in	 vitro	 models	 using	 isolated	

adipocytes	have	been	used	to	try	and	examine	specific	mechanisms.	In	vivo	murine	

models,	 as	 well	 as	 human	 studies	 have	 been	 used	 to	 examine	 GC	 overexposure.	

Studies	 have	 utilized	 both	 exogenous	 GC	 treatments,	 as	well	 as	 examined	 disease	

states	 where	 there	 is	 a	 chronic	 elevation	 in	 GC	 release,	 such	 as	 in	 Cushing’s	

syndrome.	Conversely,	the	effects	of	impaired	GCs	have	been	studied	by	examining	

conditions	 with	 impaired	 GC	 release,	 such	 as	 Addison’s	 disease,	 or	 by	 using	 GR	

blockers,	such	as	RU-486	[84,85].	

The lipolytic actions of GCs have been confirmed in various studies, both in vivo 

and in vitro, by increasing the rate of lipolysis through increases in lipolytic enzymes and 

receptor changes [10,86]. However, in certain circumstances, such as with very acute cell 

culture models, glucocorticoids are found to be anti-lipolytic and potentially even 

lipogenic, making their role in lipid metabolism quite perplexing[12,87]. Some of the 

differences in lipid metabolism response are related to variation between models (i.e., in 

vivo versus in vitro), concentration and duration of exposure, differences between species 

or depots, as well as some confounding effects due to the presence or absence of other 

regulatory hormones (e.g. Epi, insulin, growth hormone (GH) etc.). 	

2.3	Models	of	GC	Manipulation	and	Lipid	metabolism	

i.	Adrenalectomy	Models		
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Many	 of	 the	 early	 studies	 examining	 the	 role	 of	 glucocorticoids	 on	 lipid	

metabolism	used	adrenalectomized	rodents.	The	main	benefit	of	this	model	is	that	it	

eliminates	the	endogenous	release	of	both	GCs	and	epinephrine,	either	of	which	may	

be	supplemented	back	with	exogenous treatment. Adrenalectomized rats had impaired 

lipolysis due to reduced β-AR concentration, as well as by reduced coupling with AC. 

This impairment was found to be corrected with short-term Dexamethasone (DEX) 

treatment (5mg/kg, 24-48hr) through increases in β-AR concentration [88]. However, 

once again some studies did not find this effect. In an adrenalectomized rat model, 

treatment with GCs did not have any enhancements in lipolysis unless treated in 

combination with  growth hormone (GH)[77]. When treated with both, the enhancement 

in lipolysis was believed to be due to an increased sensitivity to epinephrine (either by 

increased β-AR concentration or enhanced AC coupling), as measured by an increase in 

cAMP[77]. 

ii.	Cell	Culture	Models	

Cell	culture	models	using	isolated	adipocytes	from	animal	or	humans,	or	3T3-L1	

cells,	an	established	pre-adipocyte	cell	line	that	is	derived	from	mice,	have	been	very	

useful	in	studies	examining	the	regulation	of	enzymes	with	GCs.	They	have	also	been	

useful	 in	 determining	 the	 specific	 effects	 of	 GCs	 without	 the	 interaction	 of	 other	

hormones[89]. Many of these models have demonstrated that GC treatment enhances 

lipolytic capacity. Isolated 3T3-L1 cells exposed to DEX for 24 hours had increased 

expression of both ATGL and HSL, key lipolytic enzymes[10,90], as well as enhanced 

PKA activity[11]. Additionally, DEX treatment (30-100 nM, 24 hours) on primary rat 

adipocytes down-regulated the expression of PDE-3B (mRNA and content), thereby 
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impairing the antilipolytic actions of insulin and further enhancing cAMP production to 

thereby promote lipolysis[11]. This was accompanied with an increase in glycerol 

release, indicating enhanced lipolysis had occurred. A study examining the cumulative 

effects of DEX (0.016ug/ml) in combination with GH (1.0 ug/mL) in isolated rat 

adipocytes, found that there was increased glycerol and fatty acid release 2 hours 

following treatment (4 hour treatment in a 2 mL volume)[91]. Interestingly, neither GH 

nor DEX alone produced a significant effect on NEFA release in isolated adipocytes, 

however, DEX did increase lipolysis in isolated rat fat pads[91]. These effects on 

lipolysis were countered when isolated adipocytes were treated with insulin in 

combination with either DEX, or DEX + GH[91]. Xu and colleagues found that 4-hour 

treatment with DEX was sufficient enough to note a slight increase in NEFA release, but 

not glycerol, a by-product of lipolysis in isolated adipocytes (10-100nM). Following 16-

24 hours, release of both glycerol and NEFAs was significantly increased in a time 

dependent manner in this model[11]. It has previously been reported that GC responses 

are not notable until approximately 4-8 hours [11,42], likely the time required to see 

responses of stimulating the GR. When treated with GR-antagonist RU-486, glycerol 

release was suppressed, further indicating that these were genomic, receptor mediated 

adaptations[11].  

There is reason to believe that GCs exhibit very different immediate, non-genomic 

immediate actions. Interestingly, 3T3-L1 cells acutely exposed to corticosterone (1 hour), 

have a decreased rate of glycerol release compared to controls[12]. At this exposure time, 

increasing the concentration of corticosterone resulted in further decreases in glycerol 
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release, indicating anti-lipolytic actions in an acute setting[10]. Further investigation of 

these potential non-genomic actions is required in an in vivo model. 

iii.	Human	and	In	Vivo	Rodent	Models	

Alterations in GC concentrations in vivo have been extensively studied in both in 

vivo animal models and in humans, but similarly to cell culture studies, most research has 

focused on the chronic adaptations. In vivo models have been beneficial for examining 

the interaction between GCs and various regulatory hormones, most notably, insulin.  

In rodents, implantation of a corticosterone pellet (300 mg) resulted in an increase 

in lipolysis when measured after 10 days, despite an increase in visceral adiposity[10]. 

Studies examining short-term GC over-exposure (~6 hours) in humans also elicited a 

lipolytic response[92]. Healthy men that received an infusion of hydrocortisone had 

increased glycerol in the interstitial and femoral adipose tissue, as well as systemic 

glycerol when measured up to 6 hours after infusion[92], comparable to the expected 

time of genomic effects to occur in cell culture models. Interestingly, in a study using 

healthy subjects that had hydrocortisone infused to achieve plasma cortisol 

concentrations of 1500–1700nmol/L, it was observed that  4-5 hours following treatment 

there was an increase in lipolysis in the subcutaneous adipose tissue of the limbs. 

However, in the abdominal subcutaneous adipose, there was a decrease in NEFA release 

and HSL activity, suggesting a potential anti-lipolytic mechanism in this depot [93]. This 

study provided insight to the potential depot specific differences in GC responses, as 

observed in the phenotype of individuals with chronic hypercortisolemia (i.e.; Cushing’s 

syndrome (CS)). This condition results in increased abdominal adiposity, while muscle 

and adipose is wasted in the limbs. Studies on CS patients have demonstrated that they 
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have reduced lipolytic activity, as indicated by impaired NEFA turnover[94,95]. 

Additionally, obese individuals have local elevations in GC activity through increased 

GR and 11β-HSD-1 content in adipose tissue, indicating that GCs are involved in 

promoting adipose storage[96].  

As mentioned earlier, although some short-term exposure studies (6-48 hours) 

have been performed, the immediate, non-genomic actions have not been as extensively 

studied in an acute in vivo model. In rodents, a handling-stress model has been used as an 

effective way to induce a stress response and it has been found that 165 minutes 

following stress results in an efflux in NEFA release[97]. However, these studies are 

limited because it is difficult to determine if these changes are the result of GC 

elevations, or the more immediate actions of Epi and NE that are also released in a stress 

response. Additional investigation is required to further understand the immediate actions 

of GC.  

2.4 GCs in the Subcutaneous versus Omental/Visceral Depots 

Excessive accumulation of body fat is known to increase the risks of metabolic 

abnormalities and the distribution and type of fat are also important factors that 

contribute to potential complications. Excessive android adiposity (abdominal 

accumulation), in combination with increased visceral fat poses an increased risk for 

associated metabolic complications, such as hyperglycaemia, insulin resistance and 

elevated triglycerides[93,94]. Individuals with a gynoid distribution (increased lipid 

accumulation in gluteo-femoral region) have a larger proportion of subcutaneous fat and 

increased accumulation of this type of fat is not associated with metabolic aberrations.  
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As discussed, the phenotype of individuals with hypercortisolemia is unusual. GCs 

induce adiposity through stimulating adipogenesis, as well as enhancing adipocyte 

hypertrophy[100]. Microarray studies have determined that GCs have a powerful effect 

on influencing gene networks that regulate human adipose tissue, promoting lipid 

accumulation in abdominal adipose tissue (both omental and subcutaneous)[101]. 

Looking at the phenotype of these individuals with chronically elevated GCs, it is clear 

there is some altered regulation of adipose tissue and that different adipose depots elicit 

difference responses. Increases in omental (i.e. visceral) adipose tissue are associated 

with elevated cortisol, androgens and reduced GH [102]. As stated, subcutaneous adipose 

of the extremities is diminished in these individuals. Various studies have examined the 

potential mechanisms for these differences [8,96,101–103]. Considering that in 

conditions such as metabolic syndrome or obesity, systemic GC levels may remain in the 

normal range, one of the major hypotheses is that the specific depots are susceptible to 

tissue-specific enhanced activation of GCs through increased GR or 11β-HSD-1 

expressions [104,105]. 

11β -HSD1 content has been established as an important predictor of adiposity[103]. 

Higher levels of 11β-HSD-1 and cortisol content have been found in omental compared 

to subcutaneous adipose tissue in women with excess abdominal adiposity[96]. Both 

omental and subcutaneous adipose tissue were extracted from healthy individuals and 

exposed to elevated DEX (20 nmol/l in 1mL) and insulin, which was chosen to replicate a 

stress response. 11β-HSD-1 mRNA content and activity was enhanced in the omental 

adipose tissue, indicating a role in which GCs contribute to visceral obesity[106]. This 

visceral-specific up-regulation of 11β-HSD-1 activity is also seen in Zucker rats, a 



	

	 23	

diabetic rodent model[107]. In the visceral versus subcutaneous adipose of obese 

patients, there is increased 11β-HSD-1 and cortisol content[103]. Additionally, this depot 

had an increased expression of enzymes involved in fatty acid metabolism when 

compared to the subcutaneous depot in both obese and healthy subjects[103]. Increased 

local activation of GCs is accompanied by increased GR density in omental compared to 

subcutaneous human adipose tissue and more GC binding occurs in intra-abdominal 

adipose[83,108]. When examining RNA sequencing on abdominal subcutaneous adipose 

from patients with Cushing’s disease, it was found that GCs also play a role in up-

regulating lipogenic genes[109].  

Adipocytes treated with DEX have an enhanced capacity to uptake free fatty acids via 

DEX-induced increases in LPL activity, a known lipogenic protein. The increase in LPL 

activity more pronounced in omental compared to subcutaneous adipocytes, further 

contributing to a potential mechanism for GCs to promote central adipocyte 

hypertrophy[110].  

Contrary to the impaired insulin sensitivity that GC administration causes in visceral 

adipose tissue and muscle, short-term GC administration (14 hour hydrocortisone 

infusion of 0.2mg/kg*hr) enhances insulin sensitivity in subcutaneous adipose tissue[8]. 

This is also seen in subcutaneous adipocytes treated with DEX[111]. Considering that 

GCs induce insulin resistance, it is plausible that the enhanced lipolytic activity in this 

depot may be an indirect effect of GCs through impairing insulin signalling. 

2.5 GC Association with Dysregulation and Metabolic Disease 

Despite the benefits being a potent anti-inflammatory agent, chronic overexposure 

of GCs results in CS—a clinical condition associated with metabolic complications, 
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including central adiposity, muscle wasting, insulin resistance, hepatic steatosis, and 

dyslipidemia. The most common etiologies of CS are pituitary adenomas (most 

frequently), which increase the endogenous production of ACTH, but adrenal hyperplasia 

or adrenocortical tumours also account for many cases [112,113]. The excess production 

impairs the feedback to the HPA axis. Additionally, CS may result from excess exposure 

to exogenous corticosteroids or synthetic GCs, usually from oral administration, but also, 

less frequently, may occur from topical exposure[114].  

Metabolic syndrome (MetS) is a multifactorial condition characterized by a 

cluster of risk factors including, increased waist circumference, hyperglycaemia, 

dyslipidemia, hypertension and obesity[115–117]. Many phenotypical and symptomatic 

similarities have been observed between MetS and CS, leading many to hypothesize that 

cortisol may be involved in the pathophysiology of MetS[68,118]. The physical 

Cushingoid features are distinct, with excessive android obesity and very thin extremities. 

While the wasting at the extremities is a feature that is unique to Cushing’s, the excessive 

abdominal obesity is similar to that of a MetS patient. In the liver, patients with adrenal 

cortical incidentalomas and CS have reduced HDL and cholesterol levels accompanied 

with elevated triglycerides, resulting in dyslipidemia[119]. Additionally, elevated cortisol 

is consistently associated with insulin resistance [120]. It has also been found that type 2 

diabetes is associated with variations in 11β-HSD-1 gene expression, indicating increased 

local activation of GCs in the tissues[121]. 

In addition to the metabolic consequences, there is also an association between 

psychological symptoms of depression and anxiety, and central obesity, insulin resistance 

and cardiovascular morbidities[120,122]. In obese children, symptoms of anxiety and 
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depression correlate with elevated salivary cortisol levels throughout the day[123]. In 

men, cortisol metabolites were increased with depression and central obesity[124]. 

The reduced muscle mass in CS patients impairs their exercise capacity and even 

if exercise is performed, there is an impaired ability to lose weight. Fortunately, the 

negative metabolic effects of this condition are countered when treated with RU-486, a 

GR antagonist. It was found that with RU-486, CS patients have significant 

improvements in metabolic outcomes, such as decreased HbA1c and reduced waist 

circumference[125]. 

2.6 Lifestyle Influences on metabolism 

Although there are genetic components that contribute to metabolism, environmental 

factors significantly influence metabolic health and regulation. There are a number of 

environmental factors that influence this relationship; including, sleep patterns (altered 

circadian rhythm), temperature, diet and activity.  Metabolic homeostasis is achieved 

through a balance of energy input being met with fuel utilization, so for this reason two 

of the most influential factors of energy balance are diet (energy input) and physical 

activity (energy output).  

i. Diet 

In addition to the basic input versus output requirements, macronutrient intake 

must also balance oxidation[25]; for this reason, dietary choices, in addition to the overall 

calories, have a significant impact on energy metabolism. Unbalanced diets with 

significant elevations of a particular macronutrient leads to metabolic aberrations and 

dysregulation[126]. For example, high fat diets (HFDs) significantly increase adiposity 

and are a main factor in inducing the development of type 2 diabetes, as seen in various 
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human and rodent studies[127–129]. Increases in adipose accumulation not only affects 

adipose metabolism, but also impacts how the body processes other substrates. HFDs 

impair insulin sensitivity via impairing GLUT4 mRNA and protein content in adipocytes, 

leading to less glucose uptake and oxidation[130].   

Additionally, diets relying predominantly on protein may provide insufficient levels 

of CHOs, and protein must be converted to glucose in a process termed protein sparing 

[131,132]. Eating a balanced diet rich in nutrients is recommended to maintain a healthy 

metabolism.  

ii. Exercise 

Exercise has a major influence on energy substrate metabolism. Changes occur 

during exercise, but the body also adapts to influence metabolism following the 

completion of the activity. During exercise, there is an increased metabolic demand for 

energy to sustain muscle activity, which places the body in a state of energy deficit and 

stress.  

Depending on the type and duration of the activity, the body adjusts its fuel 

utilization to meet the workload demand. Various studies have examined how fuel 

selection is manipulated by exercise type and intensity though assessing changes in RER 

[54,133]. At the onset of a moderate intensity (40-60% VO2Max) endurance exercise, an 

immediate rise can be seen in RER, but as the exercise continues and exceeds 

approximately 30 minutes, RER decreases, indicating an increase in the reliance on lipid 

oxidation[54]. While high intensity exercise favours CHO oxidation from blood glucose 

and muscle glycogen stores, as CHOs yield the most energy (in the form of adenosine 

triphosphate) per each molecule that is oxidized, the optimal type of exercise to utilize 
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lipids as the predominant fuel is low-intensity endurance exercise, below 50% of 

VO2Max[49]. In addition to the type of exercise, other factors influence fuel selection 

with physical activity. For instance, trained athletes have a shift in RER to utilize lipids 

more readily than non-trained individuals, even at rest [134].  

iii. Aerobic Exercise and Hormonal Regulation 

It is well known that exercise has numerous benefits in improving metabolism, 

reducing adiposity and increasing muscle mass. These changes are the result of 

physiological adaptations that occur with activity. Acutely, a bout of exercise is a stressor 

to the body. Activating the stress response as an adaptable response in order to maintain 

homeostasis and meet the increased metabolic demand. The stress response triggers the 

immediate activation of the Autonomic Nervous System (ANS) in what is known as the 

“fight-or flight” response[135] and a signal is sent down the spinal cord to trigger the 

release of NE and adrenal glands to release a flux of Epi. The hypothalamus also induces 

the cascade of signals to also promote the release of GCs from the adrenals[135]. 

Although there are two major types of exercise, resistance and continuous (aerobic) or a 

combination of the two, this review will only be focusing on the physiological response 

for continuous/aerobic forms of exercise.  

Both catecholamines and GCs influence metabolism directly, as well as by 

altering the regulation of other neuroendocrine hormones. Epinephrine, a major 

catecholamine, has been shown to trigger glycogenolysis in muscle to allow glucose to be 

used as a fuel[136]. While epinephrine inhibits insulin, it enhances the ability of the 

muscle to take up plasma glucose through contraction mediated glucose uptake, (insulin-

independent)[137]. Following an exercise bout, however, there is also an enhanced 
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sensitivity to insulin that lasts up to 48 hours. This further mediates glucose uptake 

(insulin-dependent) [138–141]. In addition to these effects, interleukin-6 (IL-6) is 

increased during exercise from working muscles, partly under the influence of 

epinephrine. IL-6 is involved in increasing GLUT4 protein content in white adipose 

tissue following exercise to enhance glucose uptake[142].  

Epinephrine is the major hormone involved in initiating the mobilization of free 

fatty acids to be available to be used as a fuel. During exercise, epinephrine acts on the β-

AR to trigger the lipolytic pathway to release NEFAs to the plasma where working 

muscles are then able to use them as fuel to be oxidized[44]. Contrary to their lipolytic 

role, epinephrine is also the preferred amine to the α2-AR, which promotes anti-lipolytic 

actions[143]. Additionally, IL-6 indirectly increases lipolysis in glycolytic muscles and 

various studies have demonstrated that a single bout of continuous exercise reduces 

intramyocellular lipid content (IMCL) [144].  

iv. Role of GCs in Aerobic Exercise 

In a state of exercise, GCs have typically been shown to be quite beneficial in 

improving exercise performance and assisting in maintaining homeostatic regulation. 

During exercise, it has been found that rats that received corticosterone took significantly 

longer to reach exhaustion than those that did not, demonstrating that the corticosterone 

enhanced the endurance capacity of the rats by increasing the amount of time it took to 

reach exhaustion[145].  

Exercise induces a rise in GCs most significantly when working at high 

intensities[146]; however, in a resting state, chronically trained individuals have reduced 

GC levels[147,148]. In addition to the amount of GCs in circulation increasing during 
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exercise, tissues also increase their sensitivity to GCs [149]. In muscles, this may be done 

to help reduce the inflammatory reaction caused during exercise by reducing cytokine 

synthesis, thereby limiting the amount of damage at the muscle during exercise[149]. 

Twenty-four hours following exercise, tissue sensitivity to GCs has been shown to 

decrease[149–151], which may help in preventing excessive catabolism to muscle that 

may otherwise be observed with an overload of GCs.  

In terms of their role in metabolism with exercise, GCs cause a rise in circulating 

glucose by increasing glycogenolysis at the liver, while reducing the muscular sensitivity 

to glucose[152]. These adaptations may be used as a mechanism to prevent 

hypoglycaemia with exercise from occurring. The presumed role of GCs in lipid 

metabolism, as cited in various textbooks, is that they are lipolytic to allow NEFAs to be 

used as a fuel[152,153]. Considering their role in impairing insulin signalling, however, 

this has not actually been studied in vivo during exercise and further research is required 

to determine if they have alternative acute actions. 

2.7 Clinical Relevance/Gaps in the literature  

GCs have been prescribed for many years as a potent anti-inflammatory agent, 

both for acute injuries as well as chronic conditions, such as rheumatoid arthritis and 

some forms of cancer. Considering the detrimental effects of chronic hypercortisolism, 

examining the immediate effects further would be useful in helping to understand their 

specific actions and implications on metabolism. The most curious uncertainty about GCs 

is the perplexing role they play on lipid metabolism and further investigation is required 

to better understand their function. Acutely, they are believed to enhance systemic 

lipolysis as well as NEFA uptake, although this may be due to the associated rise in 
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catecholamines with a stress response. The need to examine the interaction of GCs and 

exercise is also intriguing.  GCs fluctuate during exercise and influence various other 

hormones, leading to serious alterations in metabolism. This information would be of 

interest to many athletes that use GCs for injuries, providing insight on their potential 

influence on athletic performance. 
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3.0 RATIONALE AND OBJECTIVES  

3.1 Background and Rationale 

Glucocorticoids are naturally occurring steroid hormones that rise in 

concentration during situations of stress, starvation and exercise. GCs promote insulin 

resistance and induce epinephrine release from the adrenal medulla[154]. They play a 

perplexing role in lipid metabolism and may exert pleotropic effects. They are typically 

stated to be “lipolytic” by most physiological textbooks [153] but the mechanism of 

action for this effect is somewhat unknown. Elevations in GCs have been shown to be 

associated with epinephrine and norepinephrine secretion and lower insulin sensitivity, 

both of which may help facilitate lipolysis [38,155]. Previous research from our lab 

supports the lipolytic actions of GCs, but only when GCs are elevated long enough to 

increase the gene transcription of ATGL and/or HSL[10]. It is also apparent in 3T3-L1 

cell culture models that GCs induce acute antilipolytic actions, particularly at higher 

dosages of exposure[12].  This latter point supports the clinical observation that 

hypercortisolemia is strongly associated with central obesity [156]. Although several 

studies have examined the chronic effects of glucocorticoids on body adiposity and 

insulin sensitivity[60,62,81], less is known about their immediate action on adipose tissue 

metabolism. For this reason, we designed a rodent exercise model to examine the acute 

role of glucocorticoids in relation to lipid metabolism once activated by a stress response, 

in this case, exercise. The model will assess molecular and in vivo markers of adipose 

tissue lipolysis as well as catecholamine and insulin levels following acute GC treatment 

and hopefully gain insight as to which mechanism plays a more dominant role in lipid 

regulation.  
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3.2 Purpose 

The purpose of this study is to gain insight into the role of glucocorticoids in lipid 

metabolism and to determine if an acute dose will induce a lipolytic response once 

activated by exercise. Additionally, this study will examine the extent to which 

glucocorticoids influence insulin concentration and the phosphorylation of lipolytic 

enzymes, as well as determining if these relationships are influenced by exercise. The 

acute effects of glucocorticoids have previously been examined in our lab in vitro, this 

model will assess the role in an in vivo setting. 

3.3 Hypothesis 

We hypothesize that acutely elevated levels of GCs (corticosterone) will attenuate 

the lipolytic responses seen at rest and with moderate exercise.  
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4.0 MANUSCRIPT  

THE ACUTE ROLE OF GLUCOCORTICOIDS DURING EXERCISE ON LIPID 
METABOLISM1	

INTRODUCTION 

Glucocorticoids (GCs) are hormones that are released from the adrenal medulla at 

low levels throughout the day and their concentration significantly increases with a stress 

response[154]. However, in cases with increased stimulation of the adrenal response, 

circulating levels of GCs are elevated and they disrupt metabolic homeostasis. Despite 

their known benefits as potent anti-inflammatory agents, they have been proven to cause 

detrimental effects when chronically elevated, resulting in obesity, hyperglycaemia and 

insulin resistance. This has been observed in various rodent models in which 

glucocorticoids are increased exogenously, or in human studies of hypercortisolemia, 

where GCs were either given as treatment, or were naturally elevated, such as in the 

medical condition, Cushing’s syndrome.  

With regard to lipid metabolism, GCs are typically stated to be “lipolytic” in most 

physiological textbooks [153], in that they are believed to increase the flux of substrates, 

yet the mechanism of action for this supposed effect is unknown. Elevations in GCs have 

been shown to be associated with increased catecholamine secretion and reduced insulin 

sensitivity, which are potential mechanisms in which they may facilitate lipolysis 

[38,155]. Cell culture studies using 3T3-L1 cells support the lipolytic actions of GCs, but 
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this is only the case when elevated long enough to increase the gene transcription of 

ATGL and/or HSL[157]. It is, however, also apparent in these models that GCs induce 

acute antilipolytic actions, particularly at higher dosages of exposure[12].  This latter 

finding is more supportive of the clinical manifestations of chronic hypercortisolemia and 

its association with central obesity[156]. Several studies have demonstrated that 

chronically elevated glucocorticoids have profound effects on increasing body adiposity 

while impairing insulin sensitivity[158], However, their immediate actions on lipid 

metabolism have not been specifically demonstrated in vivo. For this reason, we designed 

a rodent exercise model to examine the acute role of glucocorticoids in relation to lipid 

metabolism once activated by a stress response—in this case, exercise. The model was 

designed to assess molecular and in vivo markers of adipose tissue lipolysis, as well as 

glycemic markers following acute GC treatment with the objective of hopefully gaining a 

better understanding of lipid regulation with exercise.  

METHODS 

Ethics Statement 

The following study was been approved by the York University Animal Care 

Committee (Protocol # 2015-3) and was carried out in accordance with the regulations of 

the Canadian Council for Animal Care guidelines.  

Experimental Design 

Sixty male Wistar rats (Charles River Laboratory, approximately 225-250 grams 

upon arrival) were used in this study. Rats were acclimated to the York University vivaria 

for one week after arrival and were housed in a humidity and temperature controlled 
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room in a 12 hour : 12 hour light-dark cycle. All animals had access to a standard chow 

ad libitum diet. Following the one-week acclimation, rats were individually housed and 

randomly assigned to one of 4 treatment groups. A schematic of this protocol is 

represented in Fig. 1.1. Animals were either assigned to an exercising or sedentary 

protocol, and from here they were further separated to receive either Vehicle (25% 

DMSO in saline), or Corticosterone (25 mg/kg body weight in 25% DMSO in saline). All 

groups were acclimated to running treadmills for 3 days within a one-week period. 

Intensity and duration were increased in each acclimation session. On the first day of 

acclimation, rats ran for 10 minutes at a pace of 10 meters/minute with 0% incline. On 

the second day, the speed was increased to 20 meters/minute with a 0% incline for 10 

minutes. On the final acclimation day, they ran for 20 minutes at 20 meters/minute with 

0% incline.  

After the one-week acclimation, the experimental protocol commenced (Fig. 1.2). 

Approximately 4 animals underwent the experimental protocol each day with two 

overlapping at a time. Experiments were performed in the morning when basal 

corticosterone levels were lowest. For this protocol, each animal received a saphenous 

blood draw, which was collected as a pre-treatment measure (t = -25min) and at this time, 

blood glucose was also measured. Approximately 15 minutes following this, animals 

received an intraperitoneal (i.p.) injection of their treatment (t = -15 min), either the 

vehicle solution, or corticosterone. Immediately following the injection, animals were 

placed in Comprehensive Lab Animal Monitoring System (CLAMS) treadmills, which 

allowed the measurement of  the respiratory exchange ratio (RER) for each animal. A 

period of 15 minutes elapsed before turning on the treadmills in order to establish a stable 
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basal reading of ventilation and RER. Once this equilibration period was complete (t = 0 

min), the treadmills were turned on for the exercise groups to 20m/min, 0% incline, and 

remained on for 45 minutes. The sedentary animals remained in the CLAMS treadmills 

for this 45-minute period, but the running belt was turned off. For both groups, RER was 

measured throughout.  

Immediately after the 45-minute exercise (or 45 minute sedentary period), 

animals were removed from the treadmills and each received a tail prick in order to 

measure post-treatment blood glucose. Directly following this, animals were placed in an 

induction box filled with isoflourane and oxygen, which was used as an anaesthetic. Once 

fully unconscious, animals were euthanized and the renal vein was cut to allow for the 

collection of a post-treatment blood sample. Additionally, a fragment of the liver was 

dissected for additional blood collection from the trunk. Concurrently, tissues (peritoneal 

adipose depots) were collected and immediately placed in microtubes and put into liquid 

nitrogen. Tissues and plasma samples were then transferred to storage at -80oC to be 

preserved for future assays. 

Drug Preparation 

Our vehicle was prepared as a stock solution of 25% dimethyl sulfoxide (DMSO) 

in saline. Corticosterone (Sigma-Aldrich, Cat # C2505) was also prepared in a stock 

solution, where the corticosterone was dissolved into the vehicle (0.005 mg/ml) and 

sonicated immediately before use. Each animal in this group received 25mg/kg body 

weight, which was considered to be a moderately high yet safe dose that had been 

previously published in other studies [159,160].  
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Plasma Analyses 

Plasma was collected in potassium-coated EDTA microvette capillary tubes 

(Sarstedt, Cat #16.444.100). Blood was collected from the saphenous vein for the pre-

treatment blood draw and during euthanization from the renal vein for the post-treatment 

measures. Immediately after collection, 10µL of Trasylol was added as a proteinase 

inhibitor before samples were placed on ice. Samples were then centrifuged for 5 minutes 

at 15,000 rpm before plasma was pipetted out into polyethylene tubes. Samples were 

placed back on ice before being transferred to -80oC storage where it remained until used 

for later analysis. Plasma was used for various analyses including non-esterified fatty 

acid, glucagon and insulin concentrations, which were assessed using enzyme-linked 

immunosorbent assays (ELISAs) (Wako, Cat #999-34691; Mercodia, Cat #10-1281-01; 

Crystal Chem, Cat #90060) and corticosterone concentration was assessed using a 

radioimmunoassay (RIA) (MP Biomedicals, cat#07-120103).  

Western Blotting 

Radioimmunoprecipitation assay (RIPA) buffer (150mM NaCL, NP-40, sodium 

deoxycholate, SDS, 50mM Tris base) was supplemented with protease inhibitor cocktail 

(Sigma-Aldrich, Cat #P8340) and phosphatase inhibitor cocktail (Sigma-Aldrich, Cat 

#P0044). The solution was added to adipose tissue samples (approximately 50mg) at a 

concentration of 10mL/mg. Samples were homogenized using a D2400 Homogenizer 

(Diamed) for 6 cycles of 45 seconds. Samples were then placed on ice for 10 minutes and 

then centrifuged at -4oC for 10 minutes at 14,000 rpm. Supernatant was pipetted out and 

transferred to microtubes. Protein concentrations were determined using a commercially 
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available bicinchoninic acid assay (BCA) and samples were stored at -80oC until later 

use.  

Thirty micrograms of protein from the various fat depots was run on a 10% SDS-

page gel before being transferred to a polyvinylidene difluoride (PVDF) membrane (Bio-

Rad, Canada). Membranes were then blocked for 1 hour at room temperature in 5% skim 

milk dissolved in Tris-buffered saline with Tween 20 (TBST). Next, membranes were left 

to incubate in their primary antibody at a concentration of 1/1000 (pHSL, tHSL, 

Perilipin-A, PKA-substrate indicator) or 1/10,000 (beta-actin) overnight at 4oC. The next 

morning, the primary antibody was removed and membranes were washed in TBST for 3 

cycles of 10 minutes. Membranes were then incubated in their secondary antibody for 1 

hour at room temperature. The secondary antibodies used were goat-anti-mouse when 

beta-actin was the primary antibody (1:10,000, ab6789, Abcam, Cat #ab6789), or goat-

anti-rabbit for all other primary antibodies (1:10,000, Abcam Cat #ab6721). Secondary 

antibodies were diluted into in the 5% skim milk in TBST. Membranes were again 

washed in TBST for 3 cycles of ten minutes. All membranes were images using a Kodak 

In vivo FX Pro imager, with Carestream used as the molecular imaging software.  

 
Statistical Analyses 

 

All data was represented as mean ± standard deviation. Two-way ANOVA 

analyses were used to compare differences between groups and a cut off of p<0.05 was 

considered to be significant. For significant values, Tukey’s post-hoc test was used to 

determine differences between specific groups (treatments and activity).  
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Figure 1.1 – Animal treatment groups. Animals were randomly divided into one of 4 

groups. The first two groups were sedentary and received either vehicle (SV) (25% 

DMSO in saline) or corticosterone (SC) (25 mg/kg). The other animals were exercisers 

and were also subdivided to receive either vehicle (EV) (25% DMSO in saline) or 

corticosterone (EC) (25 mg/kg). 

 

Figure 1.2 – Acclimation protocol to treadmills. All animals (exercise and sedentary 

groups) were acclimated to the treadmills in the week leading up to the day of 

experiments in order for them to be able to adequately perform the exercise on the day of 

experiment. On day 1, animals exercised at a pace of 10 m/min for 10 minutes. They had 

a rest day and on day 3 were acclimated again, but the speed was increased to 20 m/min. 

This exercise lasted for 20 minutes. Animals had an additional rest day before performing 

their final acclimation training on day 5, where they exercised at 20 m/min for 30 

minutes. 
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Figure 1.3 – Experimental protocol. Animals underwent a saphenous blood draw at t = 

-25 min. At t = -15 min, animals received an i.p. injection of their treatment. Animals 

were immediately placed inside the metabolic treadmills. At t = 0 min, after a basal RER 

value was established, exercise commenced for EV and EC groups. At this time, SV and 

SC animals remained on the inactive treadmills with them turned off. At t = +45 min, 

animals were euthanized and tissues and post-treatment blood samples were collected. 
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RESULTS 
 
Plasma corticosterone is significantly increased one hour following corticosterone 

injection. (Fig. 2) In order to test our model and ensure that our corticosterone was 

sufficiently increased in our groups, a RIA kit was used to measure plasma corticosterone 

concentrations. Plasma corticosterone concentration was elevated in the groups that 

received an i.p. injection of corticosterone compared to vehicle controls. There was a 

main effect of corticosterone treatment to increase plasma corticosterone levels 

(p<0.0001), as well as an interaction between corticosterone treatment and activity 

(p<0.0001). Corticosterone trended towards being significantly greater than vehicle in a 

sedentary state (350.48 ± 63.56 ng/mL, to 600.01 ± 43.59 ng/mL, p = 0.052) and when 

exercising EC was significantly greater than the EV control (376.54 ± 43.51 ng/mL , 

748.01 ± 115.63 ng/mL , p = 0.0005).  

Corticosterone fluctuates in RER at rest, but does not have an effect with exercise. 

(Fig. 3) In the sedentary groups, there was a significant interaction between time and 

treatment (p = 0.0033) in RER values, but no main effect of treatment or time. While the 

sedentary group did not fluctuate much throughout the duration of the experiment, the 

corticosterone group had an initial rise in RER up until t = +10 min, before it proceeded 

to decline, indicating a shift towards favouring lipid oxidation, which continued until the 

end of the experiment (t = +45 min). There was no significant interaction between 

treatment and time in the exercising groups; however, there was a significant effect of 

time (p<0.0001). Both vehicle and corticosterone-treated animals had a comparable rise 

in RER after exercise commenced, then gradually declined for the remainder of the 

exercise.  
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Non-esterified fatty acid concentration is not significantly altered after 1 hour of 

corticosterone treatment. (Fig. 4) As a primary measure of lipolysis, an ELISA kit was 

used to measure NEFA concentration before animals received treatment (t = -25 

minutes), as measured from the saphenous vein, as well as at t = +45 minutes, with blood 

collected from the trunk during euthanization. Pre-treatment values were used to express 

a range of normal NEFA concentrations for healthy controls. There were no differences 

in NEFA concentrations between sedentary and exercising groups, additionally, there was 

no significant effect of corticosterone treatment.  

Peritoneal lipolytic enzyme activity in corticosterone treated animals is affected by 

activity. (Fig. 5) Western blot analyses were performed on the peritoneal fat depot to 

determine the activity of the major lipolytic enzymes in the fat pad. All measurements 

were analyzed using tissues collected one hour following corticosterone treatment (t = 

+45 minutes). Phosphorylated HSL was made relative to total HSL in order to get a 

measure of its activity and a phosphorylated PKA substrate-indicating antibody was 

made relative to total perilipin in order to assess perilipin activity. All samples are 

represented as a fold change from the control (SV) on the gel they were run on. Both 

HSL and perilipin activity were not significantly different from the sedentary control 

(SV). However, perilipin activity in the SC was significantly increased compared to the 

EC group (p = 0.0469).  

Blood glucose is not altered with 1 hour of corticosterone treatment, but rises with a 

45-minute exercise. In order to determine if corticosterone significantly alters blood 

glucose, blood was collected from the saphenous vein prior to injection at t = -25 minutes 

(pre-treatment values were used to express a range of normal glycemic concentrations for 
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healthy controls, indicated as grey shaded area, Fig. 6.1). Additionally, blood glucose was 

measured by a tail prick at t = +45 minutes. Corticosterone did not alter blood glucose 

relative to vehicle one hour following injection. It did, however, significantly rise with 

exercise for both treatment groups (SV; 6.82 ± 0.70, SC; 6.08 ± 0.69, EV; 10.3 ± 1.57, 

EC; 10.8 ± 1.27, p < 0.0001).  

Plasma insulin concentration is not significantly altered with corticosterone treatment 

or 45 minutes of exercise. (Fig. 6.2) GCs are consistently associated with the 

development of insulin resistance with chronic exposure, but their immediate interactions 

have not yet been examined. No significant different occurred between any of the groups. 

All insulin values were measured using plasma from trunk blood (t = +45 minutes). Pre-

treatment values were used to express a range of normal insulin concentrations for 

healthy controls, as indicated by the grey shaded area.   

Plasma glucagon increases with corticosterone treatment at rest, but no difference in 

exercising animals. (Fig. 6.3) The rapid effects of glucocorticoids on glucagon are 

unknown, so to examine this an ELISA kit was used to assess plasma glucagon 

measurements. There was a main effect of treatment (p = 0.0032), but not activity. In a 

sedentary state, plasma glucagon in corticosterone treated animals was approximately 3-

fold higher than sedentary controls (SV; 20.23 ± 3.81, SC; 53.45 ± 8.65 pmol/L, p 

<0.0226). There were no detectable changes between the corticosterone versus vehicle 

treatment in exercising animals.  
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DISCUSSION  

Glucocorticoids are consistently considered to be lipolytic due to their ability to 

increase the expression of lipolytic enzymes. Acute models of hypercortisolemia have 

shown that GCs induce lipolysis in isolated adipocytes, in rodents and in humans, yet 

taken together with the increased adiposity that occurs with hypercortisolemia or CS 

patients, makes the picture less clear. Additionally, it has also been found that CS patients 

have reduced NEFA turnover compared to controls[94]. Also, while some studies have 

found conflicting data, these were not found to be significant[95]. Currently, in vivo 

studies examining the rapid, non-genomic effects of GCs are lacking in vivo. Recent 

work in cell culture models indicate that it is possible that GCs initially induce anti-

lipolytic effects after as little as 30 minutes to one hour, as indicated by a reduction in 

glycerol release with corticosterone treated 3T3-L1 cells[12]. In another model, DEX 

treatment did not increase free fatty acid release in isolated adipocytes, while it did when 

examining the entire fat pad[91]. For this reason, we designed our model to determine if 

the same response would be seen in vivo. Our treatment successfully altered the amount 

of circulating corticosterone between groups (Fig. 2). When comparing our sedentary 

groups, there was more fluctuation with corticosterone treatment in RER response. GC 

treated animals had an initial rise in RER up until t = +10 min, before shifting towards a 

decrease in RER until the end of the experiment (Fig. 3A). This shift towards a decrease 

in RER indicates a favouring of lipid oxidation over CHO utilization[56]. This drop in 

RER did not reach significance when compared to the SV, but it would be beneficial to 

examine determine if this group would reach significance after increasing the number of 

subjects. When examining NEFA concentrations, however, there was no change 1 hour 
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following corticosterone injection (Fig. 4). Considering that this was a static 

measurement of assessing NEFA content, it is possible that the flux of NEFAs is altered 

with corticosterone, but is perhaps matched by increases in oxidation, maintaining the 

plasma NEFA content comparable to controls. Despite this, there was an increase in 

perilipin (but not HSL) activity in the SC compared to the EC group, appearing to have 

an increased phosphorylation in the peritonenal adipose tissue. It is important to note, 

however, that this trend did not reach significance when compared to the SV group. 

Previously, it has been reported that it requires 4-6 hours before seeing the effects of 

GCs, due to the delay required to see any receptor mediated genomic changes[11,42]. 

However, this trend would suggest a possible immediate non-genomic response to 

increased lipolysis by enhancing lipolytic enzyme phosphorylation. It is still unclear, 

however, if these changes were a direct response to increased GCs, or if they were an 

indirect effect of other hormones that may have altered regulation by GCs. 

Catecholamines, for example, is often associated with a rise in GCs as they are both 

released as part of the stress response [3]. Epinephrine and norepinephrine are known to 

have more immediate effects than GCs. Exercise studies comparing healthy controls to 

paraplegic individuals (impaired SNS activity) have demonstrated that catecholamine 

release may be the driving inducer of a lipolytic response with exercise[161]. This may 

not give the full picture though; treatment with propranerol, a β-AR blocker, only 

partially inhibits lipolysis during exercise[162]. Further investigation into the specific 

mechanisms involved in this increase in lipolytic action during exercise is still required.  

As exercise is marked by a sharp increase in metabolic demand, it places the body 

in a state of stress. A rise in fuel mobilization occurs in order to meet these demands. For 
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decades, it has generally been accepted that GCs induce a rise in FFAs during 

exercise[13,152], however, no study has objectively measured this and any increases in 

NEFAs or glucose may be due to the immediate actions of catecholamines with exercise. 

Our data indicates that there is no reason to believe that corticosterone is lipolytic in an 

acute state of exercise. No differences in RER were observed when comparing EV to EC 

during exercise (Fig. 3B). A trend towards an initially reduced RER with corticosterone 

treatment was observed. After further examination of all baseline RER points (Fig. S3.0), 

it was determined that there was an effect of both treatment and time, but there were no 

specific time points in which the groups different. Additionally, there were no significant 

differences between plasma NEFA concentrations of EV versus EC animals (Fig. 4). 

Although we expected a rise in NEFAs with exercise compared to the sedentary controls, 

our results indicated no change between the groups. This is potentially due to the fact that 

any increase in mobilization of NEFAs may have been matched by oxidized in the 

working muscles, thereby maintaining plasma levels at a normal volume. Looking at the 

lipolytic activity of the adipose tissue further confirms that enhanced lipolysis is not 

occurring with the moderate to high dosage of corticosterone treatment (20mg/kg) in this 

time frame. If anything, we observed that exercise is impairing any lipolytic activity that 

may have been induced by corticosterone treatment at rest, as indicated by significantly 

reduced PLIN phosphorylation in the EC versus SC group. This change was not observed 

when analyzing HSL activity. When compared to the control exercisers (EV), there were 

no differences in phosphorylation of either PLIN or HSL, indicating that any effects of 

corticosterone may be masked with exercise. As expected, there was an effect of exercise 

compared to the sedentary vehicle group to increase lipolytic enzyme activity.  
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Consistently GCs are associated with an increase in hyperglycaemia. Chronic 

models of hypercortisolemia result in increased fasting blood glucose and insulin 

resistance. It has previously been reported that a 3-day treatment of dexamethasone 

(2mg/day) in humans results in a dramatic increase (55-110%) in glucagon secretion[163] 

and rodent models have determined that these adaptations are likely due to changes in 

alpha cell mass[79]. Once again, less data is available on the immediate effects of GCs, 

specifically with exercise. Our data demonstrated that short-term treatment with GCs had 

no effect on blood glucose, although there was an increase with exercise (Fig. 6.1). 

Plasma insulin was unaffected by corticosterone treatment and surprisingly also 

unaffected by exercise (Fig. 6.2). Normally, in rodents and in humans, insulin levels drop 

with prolonged exercise while counter-regulatory hormone levels rise [164,165]. In the 

sedentary groups, EC increased glucagon compared to EV, but no differences were 

observed in glucagon between the exercise groups. This data indicates that it is plausible 

that GCs increase blood glucose concentrations through inducing a rise in glucagon at 

rest (Fig. 6.3), but it is possible that our protocol did not allow for glucagon to stimulate 

and increase in blood glucose, and perhaps we would seen this increase if we increased 

our protocol to measure up to t = +120 minutes. According to our RER data, the SC at the 

end of the experiment appeared to be relying more heavily on FFA oxidation, so it is not 

likely that enhanced oxidation of the CHOs are responsible for the lack of changes 

observed in BG at rest. 

Taken all together, it is likely that corticosterone may induce immediate lipolytic 

actions at rest. Our data determined that corticosterone treated animals had more 

variability in RER when sedentary, potentially mediated through altered lipolytic enzyme 
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activity. It may also increase glycaemia, but these changes may take longer to occur, 

considering that plasma glucagon, but not blood glucose concentrations were increased. 

In an acute exercise state, it appears that there are no differences in lipolytic actions with 

GC treatment, considering that no differences were observed in oxidation after exercise 

between EV and EC and there was reduced PLIN activity in EC compared to SC. Further 

examination at additional time points would be beneficial to further understand the 

immediate actions of GCs.  
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FIGURES  

 

Figure 2; Plasma corticosterone content. White box indicates vehicle treatment, shaded 

boxes indicate corticosterone. The light grey box denotes the range of the pre-treatment 

mean ± standard deviation. Pre-treatment plasma samples were collected via saphenous 

vein, post-treatment were collected from the trunk blood. A main effect of corticosterone 

treatment (P<0.0001) and an interaction between treatment and activity were observed 

(p<0.0001). * indicates p = 0.0005. SV, n = 7; SC, n = 13; EV, n = 10; EC, n= 10.  
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Figure 3.0; Respiratory exchange ratio; hashed box indicates exercise period. Corticosterone 

animals are indicated with black symbols, white symbols indicate vehicle. A) RER in sedentary 

animals. There was a significant interaction between treatment and time (p = 0.0033), but no 

main effect of treatment. B) RER with exercise. No effect of treatment or interaction between 

treatment and time occurred, but there was a significant effect of time (p<0.0001). SV, n = 6, SC, 

n = 4, EV, n = 10, EC, n = 10.  
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Figure 4.0. Plasma Non-esterified fatty acid content. White box indicates vehicle 

treatment, shaded boxes indicate corticosterone. The light grey box denotes the range of 

the pre-treatment average ± standard deviation. Pre-treatment plasma samples were 

collected via saphenous vein, post-treatment were collected from the trunk blood under 

isoflurane. There were no significant effects of treatment or activity. SV, n = 7; SC, n = 

13; EV, n = 10; EC, n =10. 
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Figure 5.1. Lipolytic enzyme measures; Hormone sensitive lipase (HSL) Activity. 

Lipolytic enzyme activities as measured by western blot. HSL activity was measured 

using a phosphorylated HSL antibody relative to total HSL in the peritoneal fat depot. 

White boxes indicate vehicle treatment, while shaded boxes indicate corticosterone. All 

samples are made relative to the sedentary control on the gel they were run on. There 

were no significant effects of treatment or activity. SV, n = 6; SC, n = 8; EV, n = 10; EC, 

n =10. 
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Figure 5.2. Lipolytic enzyme measures; Perilipin Activity. Lipolytic enzyme activities 

as measured by western blot. Perilipin activity was measured using a phosphorylated 

PKA substrate indicator relative to total Perilipin in the peritoneal fat depot. White boxes 

indicate vehicle treatment, while shaded boxes indicate corticosterone. All samples are 

made relative to the sedentary control on the gel they were run on. SC was significantly 

different from EC (p = 0.047). SV, n = 6; SC, n = 8; EV, n = 10; EC, n =10. 
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Figure 6.1; Measures of Glycaemia - blood glucose concentrations. White box 

indicates vehicle treatment, shaded boxes indicate corticosterone. The light grey box 

denotes a normal blood glucose range, derived of the pre-treatment average ± standard 

deviation. Pre-treatment blood samples were measured during a blood draw from the 

saphenous vein and post-treatment were measured via tail-prick. There was significant 

effect of exercise, but not treatment (p<0.0001). SV, n = 7; SC, n = 13; EV, n = 7; EC, n 

= 9.  
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Figure 6.2. Measures of Glycaemia - plasma insulin concentrations. White box 

indicates vehicle treatment, shaded boxes indicate corticosterone. The light grey box 

denotes the range of the pre-treatment average ± standard deviation. Pre-treatment 

plasma samples were collected via saphenous vein, post-treatment were collected from 

the trunk blood under isoflurane. There were no significant effects of treatment or 

activity. SV, n = 7; SC, n = 13; EV, n = 8; EC, n = 8.  

 

0

1

2

3

4

5

In
su

lin
 (n

g/
m

L) Vehicle

Corticosterone

Sedentary Exercise



	

	 56	

 

 

Figure 6.3. Measures of Glycaemia - plasma glucagon concentration. White box 

indicates vehicle treatment, shaded boxes indicate corticosterone. The light grey box 

denotes the range of the pre-treatment average ± standard deviation. Pre-treatment 

plasma samples were collected via saphenous vein, post-treatment were collected from 

the trunk blood under isoflurane. There was a significant effect of treatment (p = 0.0032), 

but not activity. SV was significantly lower than SC (p = 0.0226). SV, n = 7; SC, n = 13; 

EV, n = 8; EC, n = 8. .  
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5.0 SUMMARY, LIMITATIONS AND FUTURE DIRECTIONS  

Our findings indicate that it would be beneficial to take a closer examination at 

additional time points. For instance, tissue analysis was only taken one hour following 

treatment (t = +45 minutes), but further investigation is warranted at 25 minutes 

following injection to determine if there are any immediate anti-lipolytic actions 

occurring, as evidenced by the rise in RER, indicating a favouring of CHO oxidation. 

Additionally, it would be beneficial to carry out this study for another hour (total t = +120 

minutes), and see if the trends in RER would continue and any changes would occur in 

the phosphorylation of lipolytic enzymes or plasma NEFA levels.   

As well as this, no initial VO2Max test was conducted to determine the exact 

intensity for each rat. Instead, a running speed that had been previously used in other 

studies as a light to moderate intensity was chosen[166]. While moderate exercise does 

not usually alter blood glucose in healthy controls after just 45 minutes of light/moderate 

activity, intense exercise has been shown to increase glycaemia[167]. Considering that 

there was an effect of exercise to increase blood glucose in our data, it is possible that 

these animals were running at a higher intensity than anticipated. For this reason, a 

preliminary VO2Max test would be recommended if this model were to be repeated.  

When examining RER, there were some trends towards significant differences 

between the sedentary groups, such as at t = +10 minutes (p = 0.079). A possible reason 

we did not find significance is that the sedentary corticosterone group was underpowered 

(n=4) and the addition of more animals in this group would be beneficial. In Fig, S2.0, we 

examined the metabolic parameters of only the all animals that we had RER data. All of 

these graphs followed the same pattern as the graphs examining the full number of 
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subjects for these groups. However, with this smaller n, there was no main effect of 

corticosterone to influence plasma glucagon (Fig. S2.0C).   

While this was a successful model of examining the effects of a rapid increase in 

corticosterone in vivo, one of the most significant limitations of the study was that 

handling stress may have elicited a stress response in all animals, as indicated by a rise in 

corticosterone from the pre-treatment value (Fig. 2.0). These animals were not 

adrenalectomized and the i.p. injection of their treatment may have caused an increase in 

both corticosterone release, as well as epinephrine. Additionally, we could not prevent the 

rise in these hormones with exercise.  

One of the most primary markers of lipolysis is NEFA release. Although an 

ELISA kit examining plasma NEFA concentration was performed, this only indicates a 

static measurement in the plasma. In order to properly examine the dynamics of lipid 

metabolism, it would be ideal to measure the constant efflux of NEFAs. This may be does 

by utilizing stable isotopes labelled glycerol or NEFAs, or by measuring the aterio-

venous differences in NEFAs with a catheter[168]. Even with this method comes with 

some limitations; despite the accuracy of measuring flux, the aterio-venous difference can 

only be measured in subcutaneous tissue and could not provide information on omenal 

adipose lipolysis. In order to counter this, we used measures of oxidation (RER) and 

compared them with molecular measures of lipolysis (western blotting of lipolytic 

enzymes).  

Overall, our study suggests it is possible that 1 hour following corticosterone 

treatment may enhance lipolytic activity and NEFA oxidation. Contrary to many exercise 

physiology textbooks, it appears that further elevating GCs during exercise does not 
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appear to be mediating any effects on lipolysis. Further research at additional time points 

and various intensities would be beneficial to gain a better understanding of the 

immediate actions of GCs. 
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7.0 APPENDIX  

 

 

Figure S1.0; Body weight in grams on day of experiment. Vehicle animals are expressed as 

white box, corticosterone treated animals expressed as shaded box. There was a significant effect 

of treatment (p = 0.03). SC weighed significantly less than EC (p = 0.004). SV; n = 7, SC; n = 

13, EV; n = 10, EC; n = 10. 
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Figure S2.0; Metabolic Data for all animals in which RER data was collected. Vehicle 

animals are expressed as white box, corticosterone treated animals. Data is represented as mean 

± standard deviation.  The light grey box denotes the range of the pre-treatment mean ± standard 

deviation. A) Plasma corticosterone content. Main effect of treatment (p = 0.0003). B) Plasma 

non-esterified fatty acid content. C) Plasma glucagon content. D) Blood glucose content. Main 

effect of activity (p<0.0001). E) Plasma insulin content. SV; n = 7, SC; n = 4, EV; n = 10, EC; n 

= 10. 
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Figure S3.0; Respiratory exchange ratio for exercising animals at all time points; hashed 

box indicates exercise period. Corticosterone animals are indicated with black symbols, white 

symbols indicate vehicle. Data points represent mean RER over 3 minutes with standard 

deviation. There was an effect of treatment (p = 0.0098), and an effect of time (p<0.0001), but no 

interaction. EV, n = 10, EC, n = 10.  
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