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Abstract 

 Skeletal muscle consists of multinucleated myofibers which generate contractile force 

and regulate glucose levels in the human body. Over time, skeletal muscle can become damaged 

and therefore requires a robust capacity to self-renew. One of the emerging areas of skeletal 

muscle research involves studying the post-transcriptional mechanisms of gene regulation which 

mediate this self-renewal pathway. Diseases processes such as sarcopenia and cachexia can 

impair the ability of skeletal muscle to regenerate and therefore pharmaceutical targets which can 

reverse this pathological process must be identified. One of the promising avenues of treatment 

for these disorders involves increasing the level of protein synthesis in skeletal muscle which has 

previously been shown to mediate both hypertrophy and regeneration of muscle fibers. 

 Our group has previously identified a novel post-transcriptional role of β-catenin in 

smooth muscle. It was found that β-catenin could interact with the RNA binding protein Fragile 

X Mental Retardation Protein (FMRP) in smooth muscle and mediate repression of protein 

synthesis. Due to the role of this complex on protein synthesis, we sought to study this 

interaction in skeletal muscle in order to determine whether it may serve as a druggable target in 

muscle wasting disorders. While β-catenin is a key transcriptional regulator and activator of 

myogenesis in skeletal muscle, it has never been identified as a post-transcriptional regulator. 

 In this study, we characterized the interaction between β-catenin and FMRP in skeletal 

muscle and explored the role of this complex on translational activity. We confirmed that β-

catenin and FMRP interacted through biochemical assays and overexpression of β-catenin and 

FMRP fluorescent fusion proteins. Next, we used the SUnSET methodology in order to quantify 

translational activity of skeletal muscle at different stages of differentiation. We found that 
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knockdown of β-catenin in C2C12 myoblasts undergoing the growth phase led to a significant 

increase in global translational activity. This finding suggested that β-catenin serves as a 

translational repressor in skeletal muscle precursors. We then sought to determine whether the β-

catenin-FMRP complex could be identified at the translational machinery which would further 

suggest a post-transcriptional role of this complex. Using polysome profiling, we identified the 

presence of β-catenin at the preinitiation complex along with FMRP. Furthermore, we validated 

the presence of the complex at the preinitiation complex by conducting an M7GTP 

immunoprecipitation assay which captures the translational machinery. Finally, we conducted an 

RNA immunoprecipitation assay (RIP) to capture RNAs that interact with FMRP in order to 

identify them by microarray analysis. We identified various classes of RNAs enriched in FMRP 

RIP samples including microRNAs which target regulators of myogenesis, Cajal Body RNAs, 

nucleolar RNAs, and ribosomal associated RNAs. 

 In conclusion, we have identified a novel post-transcriptional role of β-catenin in skeletal 

muscle and identified the presence of the FMRP-β-catenin in skeletal muscle. We postulate that 

pharmacological targets which interfere with the interaction of this complex may lead to an 

increase in global translational activity and reverse the pathology of muscle wasting disorders. 

Furthermore, we have identified RNA targets of FMRP in skeletal muscle which have deepened 

our understanding of the possible targets of the FMRP- β-catenin complex. These findings 

contribute to an emerging field of research regarding post-transcriptional control in skeletal 

muscle and represent a possible pharmacological target to reverse the pathology of muscle 

wasting disorders. 
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Literature Review: 

Overview of Skeletal Muscle 

Human skeletal muscle consists of bundles of multinucleated cells known as myofibers 

which are responsible for a wide range of processes including movement, breathing and 

metabolism [1]. These myofibers can contract through the hydrolysis of ATP which allows for 

the interaction of actin and myosin proteins within the fiber and the subsequent generation of 

mechanical force [2]. Skeletal muscle is also responsible for the uptake of free glucose in the 

bloodstream and its conversion into glycogen [3]. Due to its ability to generate mechanical force 

and regulate blood glucose levels, skeletal muscle plays an essential role within the human body 

[1]. As individuals get older, they suffer from sarcopenia or muscle wasting which can lead to 

pathological symptoms such as insulin resistance, negative alterations in fat distribution and 

other metabolic changes [4]. Clearly, skeletal muscle significantly influences quality of life by 

allowing people to carry out day-to-day activities normally taken for granted and regulating 

important metabolic processes [4]. The functionality of skeletal muscle can be impaired in 

people afflicted with genetic disorders, sarcopenia or skeletomuscular injuries [1]. The dramatic 

reduction in quality of life due to skeletal muscle impairment significantly increases in 

Canadians between the ages of 60-79 as well as those with genetic disorders such as Duchenne’s 

muscular dystrophy which impacts between 10.7 and 27.8 males per 100,000 individuals [5,6]. 

For these reasons, it is important to understand the molecular pathways that can mediate the 

repair of this indispensable organ system.  
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Physiology of Skeletal Muscle 

Skeletal muscle consists of multinucleated cells derived from progenitor cells known as 

myoblasts. The main components of the myofiber include the cell membrane or sarcolemma, the 

myofibril containing the contractile filaments actin light chain and myosin heavy chain, the 

sarcoplasmic reticulum which sequesters calcium, and the troponin-tropomyosin regulatory 

complex which modulates the interaction between actin and myosin ([7]; Figure 1A/B).  

Upon the release of acetylcholine by motor neurons at the neuromuscular junction, the 

sarcoplasm of a myofiber is depolarized leading to the propagation of an action potential [8]. 

This action potential activates dihydropyridine receptors on the sarcolemma which interact with 

ryanodine receptors on the membrane of the sarcoplasmic reticulum [7]. This interaction causes 

the sarcoplasmic reticulum to open and release calcium into the sarcoplasm which regulates the 

conformation of the troponin-tropomyosin complex ([9]; Figure 1C). This regulatory complex 

prevents actin from interacting with myosin under low calcium concentrations. In this state, 

tropomyosin wraps around myosin binding sites on actin while troponin regulates the 

conformational state of tropomyosin [9]. When calcium binds to troponin, the conformation of 

tropomyosin is altered and the interaction between actin and myosin can freely occur leading to 

the generation of mechanical force [9]. Unfortunately, this generation of mechanical force 

mediated by myofibrils can be impaired due to the expression of dysfunctional structural proteins 

required for the stability of the myofiber as well as a reduction in the quantity of force generating 

myofibers [10].  
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Figure 1: Schematic of a myofiber and the generation of mechanical force. A) Lateral view 
of a multinucleated myofiber containing the force-generating myofibrils. T-tubules (straight 
yellow lines) are invaginations in the sarcolemma of the myofiber that allow for the 
propagation of action potentials across the fiber. The sarcoplasmic reticulum spans across the 
inside of the myofiber just underneath the sarcolemma and releases calcium upon stimulation 
by an action potential. B) Cross sectional view of a myofiber showing the force generating 
myofibrils and the sarcolemma. C) Generation of mechanical force in skeletal muscle. 
Tropomyosin (red) wraps around the thin actin filament of the sarcomere and prevents its 
association with the thick myosin filament (left-side). A regulatory protein known as troponin 
(green) is binds to tropomyosin and alters its conformational state upon binding to calcium. 
When an action potential causes the release of calcium from the sarcoplasmic reticulum, 
troponin binds to calcium and alters the conformation of tropomyosin. This allows for the 
interaction of thick and thin filaments and the subsequent generation of mechanical force. 

A) 

B) 

C) 
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Prenatal Development of Skeletal Muscle 

 Fortunately, skeletal muscle has a remarkable capacity to regenerate in healthy 

individuals. In order to understand the mechanism of regeneration in adults, the developmental 

processes occurring during embryogenesis must first be explored. Skeletal muscle is derived 

from myogenic precursors known as somites [11]. Somites are derived from the paraxial 

mesoderm of the embryo and are bilaterally positioned along the anterior-posterior axis [12].  

The concentration gradients of key morphogens such as those involved in the Sonic Hedgehog, 

Wingless and Decapentaplegic pathways, previously identified in Drosophila, play a key role in 

the development of organs and appendages [13]. These morphogens are typically signaling 

molecules secreted from various types of tissue which induce a significant cellular response by 

regulating downstream signaling pathways [13]. It has been shown that an anterior to posterior 

gradient of retinoic acid is responsible for promoting the development of the next stage of the 

somite, the dermomyotome ([11]; Figure 2). The ventral part of the dermomyotome becomes the 

sclerotome which develops into cartilage and bone [14]. Muscle cells delaminate from the 

hypaxial dermomyotome and travel to the limb field where they will eventually form the dorsal 

and ventral muscle masses ([11]; Figure 2). 

 This developmental process is highly regulated by a key group of transcription factors 

and signaling molecules. An important family of regulators involved in myogenesis include the 

Paired box genes, transcription factors characterized by a paired DNA binding domain which 

play a role in lineage determination [15]. Delamination and migration of the hypaxial 

dermomyotome is regulated by the transcription factor Paired box domain protein 3 (Pax3) 

which activates the expression of c-Met, a tyrosine kinase receptor ([16]; Figure 2). Migration of 

skeletal muscle was absent in embryos of mice treated with antisense RNA against Pax3, 
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demonstrating its role in muscle progenitor migration [17]. Pax3 expression has also shown to be 

activated by ligands of the Wingless Integration Site (Wnt) signaling pathway [18]. Another 

Paired box gene that plays an important role in myogenesis is Paired box domain protein 7 

(Pax7) which will be discussed later in the context of postnatal muscle regeneration.  

 Once the somite develops into the dermomyotome, muscle progenitors begin to express a 

key group of transcription factors known as Myogenic Regulatory Factors (MRFs) to form the 

myotome (Figure 2). These transcription factors are characterized by a helix-loop-helix domain 

and serve as important regulators of myogenesis by activating the expression of muscle specific 

genes [19]. The MRFs bind to E-Box sequences (CANNTG) on DNA in order to activate the 

myogenic transcriptional program [20]. One of the first MRFs to be expressed in the 

dermomyotome is Myogenic Factor 5 (Myf5) followed by myogenin, Myogenic Regulatory 

Factor 4 (MRF4) and Myoblast Determination Factor 1 (MyoD), respectively [20]. The 

progenitors within the hypaxial dermomyotome initially express low levels of Myf5 before 

delamination occurs [14]. Once MyoD is expressed, the central part of the hypaxial 

dermomyotome disintegrates leading to the development of the myotome and the terminal 

specification of muscle lineage [14]. Together, the MRFs turn on the myogenic program during 

development and activate the expression of muscle specific genes [14]. Some of these genes 

include those involved in contraction such as myosin heavy chain and muscle creatine kinase or 

structural proteins such as desmin and titin [21].The regenerative stem cells in skeletal muscle 

known as satellite cells are derived from the central dermomyotome and will be discussed in the 

next section. These regenerative muscle progenitors are derived from muscle precursors which 

originated from the dermomyotome and migrated into the myotome ([22]; Figure 2). These 

satellite cells are marked by the expression of two Paired box domain proteins, Pax3 and Pax7 
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which maintain them in a stem-cell like state capable of repairing damaged muscle fibers ([20]; 

Figure 2).   

 

 

 

 

 

 

 

 

Post-Natal Regeneration of Skeletal Muscle 

Skeletal muscle has an ability to respond to injury in healthy individuals and regenerate 

through a pool of muscle progenitors known as satellite cells [23]. Satellite cells reside in a niche 

between the sarcolemma of muscle fibers and the basal lamina which encapsulates the myofiber 

[24]. Satellite cells remain in a state of quiescence where they reside in their niche until activated 

Figure 2: Schematic of prenatal muscle development. Skeletal muscle is derived from the 
paraxial mesoderm which eventually develops into the somite and then the dermomyotome 
(shown above). Muscle precursors located at the dermomyotome can delaminate once they 
express the myogenic marker Pax3. Delaminated muscle precursors from the hypaxial 
dermomyotome go on to form the muscle of the limbs while the precursors from the epaxial 
dermomyotome form the back musculature and other regions. Once myogenic precursors 
reach their final location they express myogenic regulatory factors and differentiate into 
muscle fibers. Some precursors continue to express the paired box transcription factors      
Pax 3/7 and go on to form the regenerative stem cells in skeletal muscle known as satellite 
cells. Adapted from Buckingham M, Bajard L, Chang T, et al. The formation of skeletal 
muscle: from somite to limb. J Anat. 2003;202(1):59-68. 
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by injury [25]. Another Paired box gene that is essential for the maintenance and proper 

functionality of satellite cell populations is Pax7 [26]. Activated satellite cells treated with 

siRNA against Pax7 prematurely differentiate into muscle fibers and show impaired proliferative 

capacity [26]. Induction of muscle damage using cardiotoxin in adult mice with a floxed Pax7 

gene, was found to impair the regenerative capacity of skeletal muscle [26]. Activated satellite 

cells can undergo a proliferative phase to regenerate the pool of progenitor cells [27]. 

Furthermore, satellite cells can become activated in order to differentiate and fuse with damaged 

myofibers through a complex process of transcriptional regulation by MRFs as well as various 

signaling pathways. 

 

Process of Skeletal Muscle Regeneration 

Satellite cells can be activated through a variety of manners including the disruption of 

the sarcolemma due to muscle injury, nitric oxide produced by damaged muscle fibers, secretion 

of chemokines or cytokines from immune cells, as well as the release of growth factors from the 

bloodstream such as Wnt ligands and fibroblast growth factor (FGF) ([24]; Figure 3). Activated 

satellite cells undergo asymmetric cell division which allows the original pool of satellite cells to 

be maintained while also providing myogenic progenitors for muscle repair [27]. Satellite cells 

can also undergo symmetric division in which one activated satellite cell divides into two 

quiescent satellite cells in order to increase the population of satellite cells [27]. The ultimate 

result of satellite cell activation is the expression of myogenic regulatory factors starting with 

Myf5, followed by MyoD and myogenin ([24]; Figure 3). Satellite cells that underwent mIR-33 

mediated knockdown of Myf 5 could not initiate the myogenic program and had decreased 

expression of skeletal muscle specific markers such as myogenin [28]. Similarly, MyoD 
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expression was found to be required for the formation of myotubes in the C2C12 cell line, a 

model system for skeletal muscle [29]. Finally, myogenin, a MRF expressed after Myf5, was 

indispensable for the proper development of hind leg muscles in vivo as shown by decreased 

fiber size in mice lacking myogenin expression [30]. The coordinated expression of these MRFs 

allows for the initiation of the myogenic program in satellite cells and the eventual fusion of 

these cells with damaged myofibers.  

Once satellite cells have been activated and the myogenic program has been initiated, 

they differentiate into a muscle precursor known as a myoblast. The final step in the repair of 

skeletal muscle is fusion of myoblasts with the damaged muscle fiber ([32]; Figure 3). This 

process involves the adhesion of an activated myoblast to a damaged myofiber, the invasion of 

the myoblast into the myofiber and eventual fusion pore formation which allows for the 

exchange of cytoplasmic contents [32]. A key protein recently discovered in the fusion process 

was coined the term Myomaker. Primary myoblasts from mice expressing a dysfunctional copy 

of this gene could express myogenic specific markers but could not fuse and form multinucleated 

myofibers [33]. Furthermore, the Myomaker gene appears to be regulated by MRFs due to the 

presence of many E-box sites located at its promoter [34]. It is clear that the process of muscle 

regeneration is a highly complex and coordinated process. Understanding the molecular 

mechanisms that mediating skeletal muscle regeneration will allow for the development of 

treatments that restore its remarkable ability of self-repair and restore quality of life to patients 

impacted by various disorders. 
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The Role of Signaling Pathways in Skeletal Muscle  

Various signaling pathways such as Notch, Transforming Growth Factor Beta (TGF-β) 

and Wnt converge upon skeletal muscle to regulate regenerative capacity by controlling the 

proliferation and differentiation of myogenic precursors [35,36]. Previous research established 

that Notch signaling is responsible for the proliferative expansion of myogenic precursors that 

mediate the regeneration of skeletal muscle [27]. Myostatin, a signaling molecule found to 

activate TGF-β signaling, acts as a negative regulator of muscle growth [36,37].  Finally, 

activation of Wnt signaling has been shown to play a key role in the differentiation of myoblast 

Figure 3: Process of satellite cell differentiation into a functional myofiber. Satellite cells can 
be activated through a variety of factors including muscle injury which leads to the expression 
of myogenic regulatory factors starting with Myf5 followed by MyoD and myogenin. These 
transcription factors activate the expression of muscle specific genes leading to the 
differentiation of a satellite cell into a myoblast which can fuse with damaged myofibers. 
Activation of a satellite cell can lead to asymmetric division which generates an activated 
satellite cell and a quiescent satellite cell. Satellite cells can also renew their population through 
symmetric division which generates 2 quiescent daughter cells. 
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precursors into myotubes [29].  It appears that in order to understand the mechanisms mediating 

the regeneration of skeletal muscle, we must understand how these signaling pathways facilitate 

their wide range of effects. 

 

Wnt Signaling in Skeletal Muscle 

Wnt signaling plays a crucial role in the regulation of gene expression in myogenic 

precursors of skeletal muscle. The major signaling receptors involved in this pathway include the 

Low Density Lipoprotein Receptor Related Protein 5/6 and Frizzled receptors which can bind to 

cysteine rich glycoproteins known as Wnt ligands [38]. These signaling receptors can activate a 

downstream cascade which regulates the activity of effector proteins in the Wnt pathway [38]. 

The main Wnt effector protein is β-catenin which has the ability to shuttle between the cytosol 

and the nucleus and ultimately regulate gene expression [38]. Whether β-catenin has the capacity 

to activate Wnt target genes depends on its subcellular localization. In the cytosol, β-catenin is 

degraded through interactions with a group of proteins that make up the “destruction complex” 

[39]. In the nucleus, β-catenin can interact with transcription factors such as those of the T-cell 

factor/lymphoid enhancer factor (TCF/LEF) and myogenic regulatory factors in order to activate 

the expression of Wnt target genes [29,36].  The regulation of Wnt signaling activity plays a key 

role in developmental processes, pathophysiological disorders such as cancer as well as the 

regeneration of skeletal muscle [38]. Therefore, it is essential to understand the process by which 

effector proteins involved in Wnt signaling such as β-catenin mediate the repair of skeletal 

muscle. 
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Mechanism of Canonical Wnt Signaling 

 The canonical Wnt pathway remains in an inactivated state without a Wnt ligand 

available to bind to the membrane-bound Frizzled receptor [39]. In order to understand the 

downstream processes occurring during Wnt inactivation, the role of the destruction complex 

must first be examined. The destruction complex contains the proteins glycogen synthase 3β 

(GSK3β), adenomatosis polyposis coli (APC) and Axin1 which interact with β-catenin in the 

cytosol [40]. During a state of Wnt inactivation, β-catenin is phosphorylated at serine and 

threonine residues on its N-terminus by casein kinase 1 and GSK3β, leading to its ubiquitination 

and proteasomal-mediated degradation ([40,41]; Figure 4). The destruction complex prevents the 

activation of Wnt target genes by β-Catenin through this proteasomal mediated process [40]. 

The Wnt pathway can be activated once a Wnt ligand binds to the Frizzled receptor [40]. 

This binding event recruits LRP5/6 and activates a downstream cascade which inhibits the 

phosphorylation of Beta-catenin by the destruction complex [40]. The main event leading to the 

inactivation of the destruction complex is the recruitment of Dishevelled, a 650 amino acid 

protein that can shuttle between the nucleus and cytoplasm [42]. When Dishevelled interacts 

with the Axin in the destruction complex, it removes GSK3β from the destruction complex, 

thereby suppressing the proteasomal mediated degradation of β-Catenin ([42]; Figure 4). The 

inhibition of the destruction complex allows β-Catenin accumulate in the cytosol and translocate 

into the nucleus where it interacts with TCF/LEF transcription factors as well as myogenic 

regulatory factors such as MyoD and Myocyte Enhancer Factor 2 (MEF2). ([29,43]; Figure 4). 

The interaction of β-catenin with transcription factors or myogenic regulatory factors activates 

the transcription of Wnt target genes and muscle specific genes [29]. Interestingly, different 

subtypes of Wnt ligands and Wnt receptors play a diverse role within different tissue types. 



 

12 
 

While the Wnt1/3a ligands are known to activate β-catenin in skeletal muscle, other Wnt ligands 

such as Wnt11 can play a role in the development of the dorsal axis [40,44]. For this reason, Wnt 

signalling has a multitude of effects on organ systems including regulation of development, 

pathological disorders of the brain and T-cell differentiation [45]. 

 

Regulation of Canonical Wnt Signaling 

There is also an intricate interplay between regulatory proteins that can modulate the activity of 

the Wnt signaling pathway. Post-translational modifications on the components of the 

destruction complex, effector proteins such as β-catenin and the Frizzled or LRP5/6 receptors 

can have a dramatic impact on Wnt activity [42]. As previously discussed, post-translational 

phosphorylation of β-catenin leads to its proteasomal targeted degradation by the destruction 

complex [42]. Furthermore, upon binding of a Wnt ligand to the Frizzled receptor, LRP5/6 is 

phosphorylated via an unknown mechanism which leads to the downstream signaling cascade 

that frees β-catenin from the destruction complex [42]. Phosphorylation of TCF/LEF 

transcription factors by kinases such as Traf2/Nck-interacting kinase (TNIK) has been found to 

increase their affinity to β-catenin and transform them from transcriptional repressors to 

transcriptional activators [46]. Opposite of this stimulating effect on TCF mediated transcription, 

other protein kinases such as Nemo (Nlk) have been found to phosphorylate TCFs such as TCF4 

which decreased the expression of its target genes [47]. The mechanism in which Nlk was found 

to reduce the expression of Wnt target genes was by decreasing the ability of the β-catenin/TCF 

complex to effectively bind to DNA targets [47]. 
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Multifunctional Role of β-Catenin  

β-catenin is a multifunctional protein that can bind to various classes of proteins such as 

transcription factors, muscle regulatory factors, chromatin remodeling proteins and structural 

proteins [29,48]. Interestingly, β-catenin plays a key structural role in cell-cell adhesion as well 

Figure 4: Process of Wnt signaling. When the Wnt pathway is inactive, β-catenin is 
sequestered in the destruction complex, phosphorylated by CK1 and GSK3β and targeted for 
proteasomal mediated degradation. When a Wnt ligand binds to the Frizzled receptor, Wnt 
signaling is activated which leads to the recruitment of LRP5/6 at the cell membrane and the 
phosphorylation of the Dishevelled protein. Dishevelled then deactivates the destruction 
complex allowing β-catenin to be freed and translocate into the nucleus. Adapted from 
Macdonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and 
diseases. Dev Cell. 2009;17(1):9-26. 
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as the activation of Wnt target genes and muscle specific proteins. β-catenin was originally found 

to function as a structural protein when it was discovered that it could interact with the adhesion 

protein E-cadherin and link adhesion junctions to the cytoskeleton through an allosteric 

interaction with α-catenin ([49,50]; Figure 5). 

It is also believed that this cell-cell adhesion role of β-catenin regulates its activity by 

sequestering the protein in the cytosol [51]. Sequestration of β-catenin at the adherens complex 

was shown to act as a site of residence until stimulation by Wnt ligands could allow for the 

subsequent release of β-catenin towards the nucleus [51]. As previously discussed, β-catenin also 

acts as a transcriptional regulator by interacting with TCF/LEF transcription factors and 

myogenic regulatory factors ([29]; Figure 5). Clearly, β-catenin plays a role in a multitude of 

cellular processes including both structural stability and transcriptional regulation by interacting 

with a diverse group of proteins which mediate its function. 

β-catenin contains 3 major domains including a 150 amino acid N-terminal region, 12 

Armadillo domain repeats (40 amino acids each) and a 100 amino acid C-terminal domain [52].  

The N-terminus of β-catenin contains a key regulatory regions rich in serine residues which are 

targeted by members of the destruction complex in order to regulate the stability and localization 

of β-catenin [52]. The N-terminus was also found to harbor the region where α-catenin, a key 

adherens junction protein, binds with β-catenin to allosterically regulate the connection between 

cytoskeletal components of the cell with adherens junction proteins such as E-cadherin ([50]; 

Figure 5). Deletion mutagenesis studies have shown that the Armadillo repeat region of β-catenin 

plays a key structural role by interacting with cadherin proteins at cell-cell junctions ([49]; 

Figure 5). This region is also responsible for binding to members of the destruction complex 

such as APC in order to regulate the stability of β-catenin ([49]; Figure 5). Transcription factors 
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belonging to the TCF/LEF and Forkhead transcription factor (FOXO) family have also been 

shown to bind to the Armadillo region ([48,53]; Figure 5). Finally, transcriptional co-activators 

such as the Mediator complex and chromatin remodeling proteins have been found to interact 

with the C-terminal domain of  β-catenin ([54]; Figure 5). It is not currently known whether β-

catenin plays other roles in skeletal muscle but its high degree of multifunctionality suggests that 

this may be a possibility. Interestingly, β-catenin contains no enzymatic domains, therefore 

exploring its binding partners may provide insight on how β-catenin plays such a multifunctional 

role and whether there are other possible avenues of regulation mediated by β-catenin in skeletal 

muscle.  

 

 

 

 

 

 

 

 

Figure 5: Schematic of β-catenin protein domains and major binding partners. The N-terminal 
domain is responsible for interacting with α-catenin in order to interact with structural 
proteins at the adherens junction. The Armadillo domains interact with other transcription 
factors and myogenic regulatory factors as well as APC, a member of the destruction 
complex. Finally the N-terminal domain interacts with components of the Mediator complex 
as well as histone modifying proteins. Adapted from Valenta T, Hausmann G, Basler K. The 
many faces and functions of β-catenin. EMBO J. 2012;31(12):2714-36. 
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Recent research has established that β-catenin can interact with key regulatory proteins 

including post-transcriptional regulators in smooth muscle [55]. It was found that β-catenin could 

interact with the Fragile X Mental Retardation Protein (FMRP), an important post-transcriptional 

regulator originally studied in neurons [55]. This β-catenin-FMRP complex adopted a 

localization at the translational machinery and repressed translational activity [55]. Interestingly, 

the β-catenin-FMRP mediated translational repression was abrogated by Wnt signalling 

activation due to the translocation of β-catenin into the nucleus and away from FMRP at the 

translational machinery [55]. This recent study has contributed to the theory of β-catenin as a 

multifunctional protein by establishing its novel role as a post-transcriptional regulator. 

 

Pathophysiological Role of Wnt Signaling and β-Catenin 

Aberrant activation of Wnt signaling is implicated in diseases such as cancer since this 

signaling pathway regulates the expression of cell growth genes such as C-Myc and Cyclin-D1 

and has such a significant effect on the composition of the transcriptome [56]. A commonly 

implicated mutation in cancers caused by the Wnt signaling pathway involves the serines 

residues located on the N-terminal domain of β-catenin [52]. Typically, these residues are 

phosphorylated by the destruction complex leading to the degradation of β-catenin [52]. 

Mutations at these residues prevent the phosphorylation of β-catenin at these sites thereby 

altering its stability and subcellular localization leading to excessive cell growth [52].  

β-catenin has also been identified as an interacting partner of FOXO transcription factors 

which have previously been found to cause skeletal muscle atrophy and alterations in muscle 

type when overexpressed in mouse models ([57,58]; Figure 5). Wnt activation was found to 
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promote the interaction between β-catenin and FOXO1 and shift the expression of fatigue-

resistant muscle fiber markers such as Myosin Heavy Chain 4 (MyH4) to that of fatigueable 

muscle fibers including MyH2/7 [58]. In addition to cancer and muscle atrophy, aberrant 

activation of Wnt signaling and β-catenin has been implicated in a wide range of other diseases 

including metabolic, developmental, cardiac and bone related disorders [59]. In conclusion, 

targeting of the Wnt signaling pathway and the activity of its downstream effector protein, β-

catenin, provides a promising avenue for the targeted treatment of a wide range of disorders 

including those related to skeletal muscle. 

 

The Role of Canonical Wnt Signaling and β-Catenin in Myogenesis 

Wnt signaling and β-catenin have been studied in a wide variety of contexts including 

developmental biology, cancer development and skeletal muscle. Wnt signaling is essential for 

the development of skeletal muscle through its role in dermomyotome/myotome formation as 

well as through regulation of Pax3/7 expression [11]. Interestingly, activation of the Wnt 

signaling pathway has been shown to maintain the somite in an undifferentiated, mesenchymal 

state [14]. Furthermore, β-catenin appears to play a key role in development as mice embryos 

lacking β-catenin expression do not survive past 8 days of development [60].   

Looking at the process of myogenesis in skeletal muscle, β-catenin has also been found to 

interact with key myogenic regulatory factors such as MyoD to drive the transformation of 

myoblasts into myotubes in C2C12 cells [29]. Similarly, Wnt signaling activation was found to 

be required to increase the myogenic potential of myoblasts in order to fuse into myofibers [61]. 

An adenovirus induced Cre-recombinase model of skeletal muscle in mice with a floxed β-
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catenin locus found that muscle fibers lacking β-catenin expression had significantly smaller 

cross-sectional area than wild type muscle fibers [62]. Wnt 4a stimulation of C2C12 cells was 

also found to inhibit myostatin, a negative regulator of skeletal muscle differentiation [63]. 

Finally, Wnt stimulation using Wnt1/3a/5a ligands induced a higher rate of proliferation in 

activated satellite cells [64].   

It has been suggested that there is an optimal level of β-catenin activity required to 

activate skeletal muscle differentiation in vivo [36]. Tibialis anteriosis (TA) muscles of mice with 

a constitutively active (CA) form of β-catenin or a conditional knockout (KO) of β-catenin were 

injected with cardiotoxin in order to measure the regenerative capacity of muscle after 30 days. It 

was found that in both of these models, TA muscles were found to have a higher degree of 

fibrotic and inflammatory markers in both CA and KO mice compared to control wild type mice 

[36]. This pro-fibrotic effect was believed to be mediated through increased transcription of 

TGF- β signaling components, such as TGF- β2/3, previously known to positively regulate 

fibrosis, in both constitutively active and knockout mice [36]. Based on this study, it appears that 

there is an optimal level of β-catenin activity that maintains the regenerative capacity of skeletal 

muscle. It is clear that Wnt signaling, mediating its effect through β-catenin, plays an 

indispensable role in multiple facets of myogenesis including development, repopulation of 

myogenic progenitors and differentiation of myogenic cells. 

 

Non-Canonical Wnt Signalling 

 Non-canonical Wnt signaling refers to an alternative mechanism of signaling which can 

be activated by certain Wnt ligands but does not use β-catenin as a downstream effector. The two 
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forms of non-canonical Wnt signaling include the planar cell polarity (PCP) pathway as well as 

the Wnt-Ca2+ pathway [65]. The PCP pathway activates downstream effectors such as GTPases 

from the Rac1/Ras family and c-Jun N-terminal kinase (JNK) which play a key role in 

developmental processes such as neurulation and cell migration [65,66]. Alternatively, the 

downstream effectors of the Wnt-Ca2+ pathway includes G-proteins which activate protein kinase 

C (PKC) and phospholipase C (PLC) [67]. The activation of PKC has a wide range effects on 

gene expression while the activation of PLC leads to increased intracellular calcium levels and 

activation of calmodulin dependent protein kinases [65,67]. Different Wnt ligands have the 

ability to activate either the canonical or non-canonical Wnt signaling pathway. For example, 

Wnt 1, 2, 3, 8a, 8b, 10a, and 10b ligands activate the canonical pathway while Wnt 4, 5a, 5b, 6, 

7a, 7b, and 11 activate the non-canonical pathway [68]. It is important to understand that the 

process of Wnt signaling requires a complex interplay between downstream effector proteins and 

their interacting partners which can have a host of downstream effects including transcriptional 

regulation, developmental processes, cell migration and changes in intracellular ion 

concentrations. 

 Non-canonical Wnt signaling has also been proposed to play a role in myogenesis. Non-

canonical Wnt7a ligand levels were found to be upregulated during regeneration after induction 

of muscle injury using cardiotoxin on the tibialis anterior muscle [69]. As previously mentioned, 

satellite cells can undergo asymmetric division to restore the pool of quiescent progenitor cells 

while also providing myogenic precursors that can regenerate damaged muscle fibers [27]. In 

contrast, symmetric division is the process by which one quiescent satellite cell divides into two 

quiescent satellite cells [69]. Stimulation with non-canonical Wnt7a was found to lead to an 

increase in the proportion of symmetric divisions occurring in satellite cells [69]. In conclusion, 
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non-canonical Wnt signalling plays a role in myogenesis by promoting the restoration of the 

quiescent satellite cell population in skeletal muscle [69]. 

 

Post-Transcriptional Regulation in Skeletal Muscle 

 Although signaling pathways such as Wnt signaling appear to play a major role in 

mediating the transcriptional regulation of muscle specific genes, another avenue of control in 

gene expression involves post-transcriptional regulation. Satellite cells activated by muscle 

injury were isolated and subjected to microarray analysis which uncovered an enrichment of 

genes involved in post-transcriptional control relative to inactivated satellite cells [70]. These 

genes included RNA processing proteins as well as splicing proteins which were found to have 

roles in the developmental formation of the limb bud, regulation of stem cell activity as well as 

regulation of muscle differentiation [70]. Post-transcriptional regulation in skeletal muscle has 

also been studied by exploring the role of Stauffen, an RNA binding protein which was 

previously found to regulate RNA localization [71]. It was found that Stauffen could bind to 

MyoD RNA and repress the translation of this MRF in order to preserve the stemness of skeletal 

muscle progenitors [72]. There is a large amount of post-transcriptional regulators expressed in 

skeletal muscle which have not yet been explored or have only been studied in other organ 

systems. One of these key post-transcriptional regulators was found to be the Fragile X Mental 

Retardation Protein (FMRP) which was initially studied in the context of neuronal gene 

expression [73]. 
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The Fragile X Mental Retardation Protein 

FMRP is an RNA binding protein, encoded by the FMR1 gene, which functions to 

regulate translation through interactions with the 5’ cap of mRNA [73]. There are multiple 

isoforms of FMRP that each possess their own unique expression patterns in the human body. 

FMRP has typically been studied in the brain but recent studies have shown that it is also 

expressed in skeletal muscle [73,74]. These isoforms are encoded by the FXR1 and FXR2 genes. 

While FXR1 was originally discovered in muscle, both FXR1 and FXR2 localize in the brain 

[75,76]. It is believed that these isoforms have similar functions since they all possess an 

identical RGG RNA binding domain but may be differentially regulated due to truncations in 

phosphorylation sites on exon 15 [77]. FMRP was originally studied in neurons located within 

the hippocampus of mice where it was found to repress the translation of Microtubule Associated 

Protein 1 or Map1b [78]. The role of FMRP as a translational repressor is essential for proper 

synapse development since individuals who possess a mutated version of this gene on the X 

chromosome suffer from Fragile X Mental Retardation Syndrome [78]. FMRP mutations are 

characterized by an increased number of CGG trinucleotide repeats on the FMRP promoter 

which leads to its hypermethylation and a loss of FMRP expression [79].  Individuals with 

Fragile X Mental Retardation Disorder suffer from mental disabilities, emotional difficulties and 

facial abnormalities [79].  Interestingly, it appears that isoforms of FMRP may have different 

regulatory roles since only FMRP and not the other related proteins were shown to rescue 

synapse development in a Drosophila model system originally lacking expression of this protein 

[80]. 
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Mechanism of FMRP Mediated Post-Transcriptional Regulation 

The manner in which FMRP binds mRNA is through a KH1/KH2 and RGG domain 

([81]; Figure 6). The consensus RNA binding sequences recognized by the KH2 region have 

previously been discovered and it was determined that these sequences can bind KH2 by 

associating with a “kissing complex” on RNA target sequences ([82]; Figure 6). The kissing 

complex consists of a duplex of stem loops in an RNA molecule that form intramolecular bonds 

with each other and stabilize tertiary structure [82]. Mutations in the KH2 domain have been 

found to prevent FMRP from associating with the ribosomal machinery [82].The RGG domain 

of FMRP also binds to RNA through the formation of a G-quartet or quadruplex structure 

(Figure 6). The G-quartet is formed by the binding of arginine and glycine rich regions of the 

RGG domain in FMRP to guanine rich RNA sequences [83].  

The mechanism by which FMRP regulates translational activity occurs during the 

initiation stage of translation. The eukaryotic ribosome consists of a large 60S subunit which 

carries out translation and a smaller 43S subunit that binds to RNA to recruit the 60S subunit 

[84]. Typically, the 40S subunit of the ribosome associates with various eukaryotic initiation 

factors that function to activate translation and becomes the 43S subunit [85]. This complex then 

binds to an mRNA and scans it until the start codon is found [85]. In order to mediate binding of 

the 43S subunit to the mRNA, eIF4E associates with the 5l cap and forms the eIF4F complex 

which recruits the 43S subunit [85]. FMRP has been found to repress translation by forming a 

complex with CYFIP and binding to eIF4E during the initiation of translation ([73]; Figure 7). It 

was proposed that FMRP helped mediate the binding of CYFIP to eIF4E and that this disrupted 

the formation of the eIF4F complex at the 5l cap, thereby stalling translation of FMRP bound 

transcripts ([73]; Figure 7).  
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Figure 6: Schematic of FMRP protein domains. The major mutation involved in Fragile X 
Mental Retardation disorder involves an increase in CGG trinucleotide repeats on the FMR1 
promoter which prevent the protein from being translated. FMRP can be shuttled through the 
nucleus by its nuclear localization signal and binds to RNA through its KH1/KH2 and RGG 
domain. Adapted from Valverde R, Pozdnyakova I, Kajander T, Venkatraman J, Regan L. 
Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X 
mental retardation protein. Structure. 2007;15(9):1090-8. 

Figure 7: Mechanism of FMRP mediated translational repression. A) Under normal 
conditions, an mRNA transcript is circularized through interactions between the Poly-A 
binding protein and members of the eukaryotic initiation factors. This allows the translational 
machinery to process the transcript and translate the proper protein. B) When FMRP 
associates with CYFIP1, this protein complex binds to the eukaryotic initiation factor protein 
4E at the 5 prime cap of the mRNA transcript. This prevents the full assembly of the 
eukaryotic initiation factors and subsequent recruitment of the translational machinery. 
Adapted from Napoli I, Mercaldo V, Boyl PP, et al. The fragile X syndrome protein represses 
activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008;134(6):1042-54. 
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Regulation of Skeletal Muscle by FMRP 

A recent area of research has focused on the role of FMRP in muscle. One of the 

isoforms of the FMR1 gene, FXR1, was found to play a key role in the development of skeletal 

muscle. FXR1 double knockout mice were found to die soon after birth while mice with a 

conditional knockout of FXR1 showed abnormalities in development of limb musculature and 

the number of nuclei present within each myofiber [86]. Further studies looked at the role of 

FXR1 in somite formation during development of Xenopus embryos. Morpholino treatment 

against FXR1 in Xenopus embryos lead to a reduction of MyoD expression in the developing 

somites at stage 25 of development [87]. By the time stage 30 of development was reached, it 

was found that a lack of FXR1 expression lead to reduced levels of skeletal muscle related 

proteins such as myosin light chain, Na/K ATPase γ subunit, myogenin and myosin binding 

subunit 85 [87]. It was found that FMRP post-transcriptionally regulated the expression of 

muscle specific genes such as the myogenic regulatory factor Myf5 [74]. FMRP expression was 

required for the expression of Myf5 and MyoD in activated satellite cells as well as the Paired 

box gene Pax7 [74]. Satellite cells in FMR1 knockdown mice showed an impaired capability to 

self-renew, evident by decreased Pax7 expression [74]. Although FMRP has typically been 

studied in the context of neuronal development, it is becoming clear that the post-transcriptional 

control mediated by this protein has implications in other tissue types including skeletal muscle. 
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Statement of Purpose: 

 Clearly, β-catenin plays a vital role in shaping the transcriptome of skeletal muscle by 

regulating the expression of muscle specific genes.  Since the function of β-catenin is mediated 

by its interacting partners, our group conducted mass spectrometry to uncover the interacting 

partners of β-catenin in smooth muscle to determine whether β-catenin may possess other 

important regulatory functions. Interestingly, β-catenin was found to interact with proteins 

involved in both mRNA processing and translation.  

 One of the proteins involved in translational regulation identified in the study was FMRP. 

It was previously mentioned that FMRP could interact with CYFIP to regulate translational 

activity by preventing the binding of eukaryotic initiation factors, such as eIF4E, to the 

translational machinery [73]. Our group identified a role for β-catenin in modulating translational 

activity through its interaction with FMRP, a post-transcriptional regulator in smooth muscle 

cells [55]. These studies demonstrate the function of β-catenin is highly dependent on its 

interacting partners.   

 In view of the fundamental role played by β-catenin in skeletal muscle reviewed above, 

we conjectured that the β-catenin-FMRP interaction may also be operative in translational 

control in skeletal muscle. This tissue type requires a high degree of translational control for 

development, growth, adaptation and regeneration [88]. Our purpose therefore was to determine 

whether the interaction between β-catenin and FMRP is functional in control of gene expression 

in skeletal muscle. Exploring the β-catenin-FMRP interaction could allow us to identify a novel 

function of β-catenin in skeletal muscle and further develop our understanding of regulatory 

mechanisms acting on the myogenic program. 
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Introduction: 

 Human skeletal muscle consists of bundles of multinucleated cells known as myofibers 

which confer our ability to move and breathe as well as regulate metabolic processes [1]. 

Exploring the molecular mechanisms occurring at the cellular level deepens our understanding of 

this complex organ system and can help uncover potential therapeutic targets for those suffering 

from muscle wasting disorders.  One of these potential targets involves the Wnt signaling 

pathway; implicated in mediating the regenerative capacity of skeletal muscle in adults by 

regulating the myogenic differentiation program of muscle precursors.  

 Wnt signaling plays an important role in activating the transition between muscle 

precursors known as myoblasts into fully functional myofibers in order to repair accumulated 

damage within skeletal muscle [61]. The key effector protein of the Wnt signaling pathway is β-

catenin, a 730 amino acid protein with a wide class of interacting partners including TCF/LEF 

transcription factors, muscle regulatory factors and structural proteins found at adherens 

junctions [29,48]. Interestingly, β-catenin does not possess an enzymatic domain, therefore its 

function is mediated by its interacting partners. β-catenin has been identified as a key player in 

myogenesis where it was found to interact with the muscle regulatory factor MyoD and activate 

transcription of the myogenic program [29]. 

 While β-catenin has been identified as a transcriptional regulator due to its interactions 

with transcription factors such as MyoD, an emerging field of research involves the role of post-

transcriptional regulators in skeletal muscle. Recently, a protein originally studied in neurons, 

FMRP, has been found to play an important post-transcriptional role in skeletal muscle. This 

protein contains the RNA binding domains KH1/KH2 and RGG which allow it to bind to 
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mRNAs and regulate the translation of these transcripts by blocking the recruitment of initiation 

factors to the preinitiation complex of the ribosome [73]. Recently, FMRP was found to bind to 

the mRNA of another key myogenic regulatory factor, Myf5, in skeletal muscle and regulate its 

expression [74]. This suggested that FMRP plays an important role in the post-transcriptional 

regulation of muscle specific genes part of the myogenic program. 

 Previously, our group has sought to identify the interacting partners of β-catenin in 

smooth muscle in order to uncover novel regulatory functions of β-catenin. Interestingly, after 

conducting mass spectrometry, it was found that β-catenin interacted with FMRP and other 

components of the translational pre-initiation complex in smooth muscle [55]. Biochemical 

analysis confirmed the interaction and established β-catenin at the translational machinery in 

association with FMRP [55]. Furthermore, activation of Wnt signalling and subsequent 

activation of β-catenin was found to increase the overall translational activity of smooth muscle 

[55]. This suggested that the role of β-catenin may not only be restricted to transcriptional 

regulation but that it could also act as a post-transcriptional regulator by interacting with the 

RNA binding protein FMRP. 

 In this study we sought to further characterize the β-catenin-FMRP interaction in the 

context of skeletal muscle in order to further develop our understanding of its function in 

translational control. . Here we report that β-catenin interacts with FMRP in skeletal muscle and 

characterize the subcellular co-localization of these proteins. Furthermore, we identify the 

presence of β-catenin and FMRP at the translational machinery and the important role of this 

interaction in the overall translational activity of skeletal muscle. Finally, we provide preliminary 

findings regarding the mRNA transcripts predicted to interact with FMRP in skeletal muscle. 
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Materials and Methods: 

 

C2C12 Myoblast Cell Culture - Growth Conditions (GM): 

In order to maintain a proliferative/undifferentiated state, C2C12 myoblasts were grown in 

DMEM high glucose media (4.00mM L-Glutamine, 4500mg/L Glucose) supplemented with 10% 

FBS and 1% penstrap. 

 

C2C12 Myoblast Cell Culture - Differentiation Conditions (DM): 

In order to induce differentiation of myoblasts into myotubes, C2C12 myoblasts were grown in 

high glucose DMEM media (4.00mM L-Glutamine, 4500mg/L Glucose) supplemented with 2% 

horse serum for a period of 24-96h. 

 

Primary Cell Culture: 

Primary myoblasts were harvested from the limbs of neonatal mice between 1-3 days old. 

Muscle tissue was digested with a high glucose DMEM media solution containing 1.5U/ml 

collagenase, 2.4U/ml dispase and 2.5mM CaCl2. Primary myoblasts were pre-plated 3 times to 

remove fibroblasts then grown in F10 media supplemented with 20% FBS, 2.5ng/mL fibroblast 

growth factor and 1% penstrap on 10% Matrigel coated plates. Differentiation was induced with 

high glucose DMEM media (4.00mM L-Glutamine, 4500mg/L Glucose) supplemented with 5% 

horse serum. 
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Fluorescence Confocal Microscopy of C2C12/ Primary Myoblasts 

C2C12/primary myoblasts were fixed using a 4% formaldehyde solution for 15 minutes. These 

myoblasts were then permealized by adding 500ul of 90% methanol for 5 minutes. The fixed 

C2C12/primary myoblasts were blocked using 5% goat serum for 1hr followed by an overnight 

incubation with primary antibodies including mouse β-catenin (Abcam-19381), rabbit FMRP 

(Cell Signaling-4317) at a 1:300 ratio. After a 3x wash with PBS, C2C12/primary myoblasts 

were incubated with mouse TRITC (Sigma-T5393) and rabbit FITC (Sigma-F9887) secondary 

antibodies at a 1:1000 ratio for 2hr. C2C12/ and primary myoblasts were incubated with DAPI 

(Sigma-D9542) at a 1:1000 ratio for 30 minutes followed by a 3x PBS wash. C2C12 and primary 

myoblasts were visualized using a Zeiss Observer Z.1 confocal microscope with TRITC 

visualized using a 532 laser line and FITC visualized using a 488 nanometer laser line. 

 

Single Fiber Isolation: 

Single myofibers were harvested from the Extensor Digitorum Longus (EDL) muscle in 6-8 

week old C57 mice (The Jackson Laboratory). EDL muscles were digested in 400U/mL 

collagenase solution for 2hr followed by 3 washes with PBS. Disassociated EDL muscle fibers 

were immediately fixed using a 4% formaldehyde solution for a period of 5 minutes followed by 

3 washes with PBS.  
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Fluorescence Confocal Microscopy of Single Myofibers 

Fixed single fibers were blocked using 5% goat serum for 1hr followed by an overnight 

incubation with primary antibodies including mouse Pax7 (Sigma), rabbit FMRP (Cell 

Signaling-4317) at a 1:50 and 1:300 ratio, respectively. After washing 3 times with PBS, single 

myofibers were incubated with anti-mouse TRITC (Sigma-T5393) and anti-rabbit FITC (Sigma-

F9887) secondary antibodies at a 1:500 ratio for 2hr. Single myofibers were incubated with 

DAPI (Sigma-D9542) at a 1:1000 ratio for 30 minutes followed by a 3x PBS wash. Single fibers 

were then placed into glass slides using Dako Fluorescent Mounting Medium. Single myofibers 

were visualized using a Zeiss Observer Z.1 confocal microscope with TRITC visualized using a 

532 laser line and FITC visualized using a 488 nanometer laser line. 

 

Co-Immunoprecipitation: 

Cell lysate was harvested from C2C12 cells maintained under growth conditions. 50ul of 

Immunocruz IP/WB Optima C beads were incubated with a 1:50 ratio of FMRP antibody 

(#4317- Cell Signalling).  Immunocruz IP/WB Optima C beads were washed 3 times with PBS 

and cell lysate containing 1000ug of protein was added to the beads followed by overnight 

incubation. Immunocruz beads were then washed 3 times with PBS followed by boiling at 95°C 

in 40ul of SDS loading buffer. 20ul of SDS loading buffer was added to a 10% SDS PAGE gel 

and probed for FMRP (#4317- Cell Signalling) and β-catenin (ab19381- Abcam). 
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Overexpression of β-catenin and FMRP 

C2C12 myoblasts (GM) grown in 35mm glass bottom dishes were transfected using 10ug of 

polyethylenimine added to 500ul of serum free DMEM media containing 1ug of mCherry-FMRP 

and 2ug of eYFP-β-catenin DNA plasmids. C2C12 myoblasts were incubated with this 

transfection medium for a period of 4hr. Afterwards, 1.5mL of GM media was added for a period 

of 24hr. A 1:1000 ratio of DAPI was then added for a period of 30min to visualize the nuclei of 

the myoblasts. Imaging was conducted immediately after DAPI incubation using a Zeiss 

Observer Z.1 confocal microscope with mCherry visualized using the 532 laser line and eYFP 

visualized using the 488 nanometer laser line. ImageJ RGB profile plot tool was used to visualize 

fluorescent intensities of each fusion protein. 

 

Puromycin Translational Activity Assay (SUnSET): 

C2C12 cells in GM, 24h DM, 48h DM, 72h DM and 96h DM growth stages were exposed to 

0.54ug/mL of puromycin for 5 minutes. After 5 minutes, C2C12 cells were washed 3 times with 

PBS and cell lysate was harvested with NP40 lysis buffer (see extended Material and Methods). 

20ug of cell lysate was loaded into an SDS PAGE gel and probed for either puromycin (DSHB - 

PMY-2A4), β-catenin (ab19381- Abcam), Myosin Heavy Chain (MF-20 - Dako Cytomation) or 

the loading control Erk (sc-93 Santa Cruz Biotechnology). The absolute incorporation of 

puromycin under each condition was determined via Western Blotting against puromycin 

(DSHB - PMY-2A4). The intensity of each puromycin blot was quantified using the ImageJ Gels 

tool and then compared relative to the intensity of the loading control Erk. 
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siRNA Mediated Knockdown of β-catenin 

In order to conduct the SUnSET assay under β-catenin knockdown conditions, C2C12 myoblasts 

(GM or 24h DM ) maintained in 35mm dishes were transfected with 5uL of Lipofectamine 2000 

and 1uL of 100uM siRNA targeting β-catenin (SASI_Rn01_00099923 [si23] or SASI_Rn01 

_00099924 [si24] – Sigma Aldrich). Furthermore, C2C12 myoblasts (GM or 24h DM) 

maintained in 35mm dishes were transfected with 5uL of Lipofectamine and 1uL of 100uM 

scrambled siRNA (SIC001 – Sigma Aldrich). 

 

Analysis of SUnSET Assay Data 

Relative puromycin incorporation was calculated in scrambled siRNA, siRNA 23 and siRNA 24 

conditions in both GM/ DM 24h conditions in C2C12 myoblasts (N=3). Puromycin 

incorporation was compared relative to scrambled siRNA condition in both GM and DM 24h 

conditions. A 2 tailed T-test was conducted using Graphpad between the scrambled siRNA 

condition and both siRNA 23/ siRNA 24 conditions to determine whether there was a significant 

effect of β-catenin knockdown on puromycin incorporation. 

 

Polysome Profiling Analysis: 

C2C12 cells were treated with 100ug/mL of cycloheximide for 10 minutes and washed with PBS 

containing 100ug/mL cycloheximide in order to halt translation. Cells were harvested and lysed 

in hypotonic buffer containing 5mM Tris-HCL, 2.5mM MgCl2, 1.5mM KCl, protease inhibitor, 
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10ug/mL cycloheximide, 0.5% Triton X-100 and 0.5% sodium deoxycholate. Cell lysate was 

loaded into a sucrose gradient containing a range of 20-50% sucrose and was spun in an 

ultracentrifuge at 21,000G for 2 hours at 4 °C. After separation of ribosomal machinery, 14 

fractions were collected from the sucrose gradient using a fraction collector. Western blotting 

against FMRP (#4317- Cell Signalling), β-catenin (ab19381- Abcam) and eIF4E (#9742 – Cell 

Signalling) was conducted using 25uL of each collected fraction. 300uL of RPL9 (ab182556 – 

Abcam) and PABP (ab21060 - Abcam) fractions were concentrated using TCA precipitation and 

then probed for using Western Blotting (see extended material and methods). 

 

M7-GTP Assay 

C2C12 cells grown in GM media were harvested and lysed using NP-40 lysis buffer (see 

Extended Material and Methods). 3000ug of lysate was incubated overnight with 50uL of 

immobilized M7-GTP beads (AC-155S) or negative control immobilized γ-Amino-octyl-GTP 

(AC-106S). Beads were washed twice with TBS followed by 2 times with 0.1% TBST. Beads 

were boiled at 95°C for 5 minutes in 50uL of SDS loading buffer. 5uL of loading buffer was 

added to a 10% SDS PAGE gel to probe for eIF4E (#9742 – Cell Signalling) while 20uL was 

used to probe for each of β-catenin (ab19381 – Abcam) and FMRP (#4317 – Cell Signalling). 

 

RNA Immunoprecipitation  

C2C12 cells grown under GM conditions were fixed with 1% formaldehyde for 10 minutes. 

Following fixation, 0.25M of glycine was used to quench the reaction for a period of 5 minutes. 

C2C12 lysate was washed with PBS 3 times and then harvested in 100uL RIPA Buffer (50 mM 
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Tris–Cl, pH 7.5, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.05% SDS, 1 mM EDTA, 150 

mM NaCl). Cells were then sonicated 5 times for a period of 5 seconds and then centrifuged at 

16,000g for 10 mins.  C2C12 lysate was then collected and incubated with Dynabeads Protein G 

magnetic beads containing 4ul of FMRP (#4317 – Cell Signalling) antibody for 4hr. Protein G 

magnetic beads were then washed 6 times with 500ul High Stringency RIPA Buffer (50 mM 

Tris–Cl, pH 7.5, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1 

mM EDTA, 1 M NaCl, 1–4 M urea, and 0.2 mM phenylmethylsulfonyl fluoride). Protein G 

magnetic beads were then heated to 70°C for 45 minutes in 50ul of Collection Buffer (50 mM 

Tris–Cl, pH 7.0, 5 mM EDTA, 10 mM dithiothreitol (DTT) and 1% SDS).  RNA from FMRP-IP 

elution was then isolated using 150ul of Trizol. Total RNA was also collected from C2C12 

myoblasts maintained in GM conditions using NP40 lysis buffer followed by Trizol extraction. 

 

Microarray Analysis  

Microarray analysis was conducted in cooperation with the Sick Kids Microarray Facility 

(TCAG). Total RNA and FMRP-IP associated RNA was quality checked with an Agilent 

Bioanalyzer and then incubated in an Affymetrix Mouse Gene 2.0 Microarray (ThermoFisher- 

902119). This microarray contained 27,358 probesets against RNAs within the mus musculus 

transcriptome.  Data was analyzed using the Transcriptome Analysis Console (ThermoFisher) by 

comparing the relative enrichment of FMRP-IP associated RNA to total RNA. A cutoff of 2 fold 

enrichment from FMRP-associated RNA compared to total RNA was applied to generate 

candidate RNAs that were proposed to interact with FMRP.  The 2090 RNAs with a 2 fold 

enrichment in FMRP-IP samples were then subjected to a GO Ontology analysis using the Gene 

Ontology Consortium GO Analysis Tool. 
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Antibodies:  

Poly-A Binding Protein (ab21060), Ribosomal Protein L9 (ab182556) and β-catenin (ab19381) 

antibodies were purchased from Abcam. Puromycin antibody (PMY-2A4) was purchased from 

Developmental Studies Hybridoma Bank. Myosin Heavy Chain antibody was purchased from 

Dako Cytomation. Eukaryotic Initiation Factor 4E (#9742) and Fragile X Mental Retardation 

Protein (#4317) antibodies were purchased from Cell Signaling. Myoblast Determination Protein 

1 (sc-304), Myogenic Factor 5 (sc-302), and Mitogen Activated Protein Kinase 3 (Erk 1, sc-93) 

antibodies were purchased from Santa Cruz Biotechnology.  
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Results: 

Characterization of FMRP and β-catenin Expression in Skeletal Muscle 

Initially, we assessed the abundance of β-catenin and FMRP through a time course 

experiment. C2C12 myoblasts were maintained in a proliferative state and then differentiated 

into myotubes over a 96h period through withdrawal of growth factors. It was found that both β-

catenin and FMRP were present in the proliferative stage as well as during each stage of 

differentiation into myotubes (Figure 8). β-catenin expression peaked at 72h while FMRP 

expression increased between GM to 48h DM and decreased between 48h DM and 96h DM 

(Figure 8). The levels of MRFs including Myf5 and MyoD and the muscle specific protein 

myosin heavy chain were analyzed to assess the stage of differentiation that was occurring 

(Figure 8). As expected, MyoD expression increased following the induction of differentiation at 

24h DM and maintained this expression level through the duration of the time course 

experiment. An early stage myogenic regulatory factor Myf5, which was previously mentioned 

to be expressed only upon the onset of differentiation, was abundant at GM where C2C12 cells 

possess the most myogenic potential, and then progressively decreased upon the induction of the 

myogenic program (Figure 8; [24]). These experiments indicated that our model of skeletal 

muscle expressed myogenic regulatory factors in a similar manner to human skeletal muscle and 

that the expression of both β-catenin and FMRP could be detected in this model. 

Next, we sought to characterize the localization pattern of β-catenin and FMRP using 

fluorescent confocal microscopy. We conducted the same time course experiment using C2C12 

and primary myoblasts and captured images of β-catenin and FMRP at each stage of 

differentiation. In C2C12 myoblasts, β-catenin was localized at the cell membrane between GM 
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and 24h DM as well as 72h DM to 96h DM (Figure 9). This localization was indicative of β-

catenin’s important role at the adherens junctions where it interacts with structural proteins at the 

cell membrane [48]. Interestingly, the localization of β-catenin shifted from the cell membrane to 

the cytosol and within the nucleus at the 48h DM time point (Figure 9). The localization of β-

catenin likely shifted to the nucleus due to its important role in activating the transcription of 

muscle specific proteins by interacting with myogenic transcription factors [29]. FMRP exhibited 

a characteristic cytoplasmic localization around the outside of the nucleus; indicative of its 

presence at the translational machinery which is highly concentrated in the rough endoplasmic 

reticulum (Figure 9; [73]). After immunostaining primary myoblasts grown in high serum 

conditions, β-catenin maintained a localization along the inside of the cell membrane (Figure 

10). After 24h serum withdrawal in primary myoblasts, β-catenin was expressed only in 

differentiated, multinucleated myofibers along the cell membrane and in the cytosol (Figure 10). 

Finally, FMRP was localized around the outside of the nucleus in primary myoblasts while also 

present in the cytoplasm of differentiated myofibers, albeit to a lesser degree (Figure 10). 

Finally, we isolated single muscle fibers in order to determine whether we could observe FMRP 

in the regenerative satellite cells that associate with muscle fibers [24]. Here we document the 

presence of FMRP in Pax7 positive cells, a key marker of satellite cells (Figure 11). In 

conclusion, we established that β-catenin and FMRP are expressed in the C2C12 model of 

skeletal muscle and in primary myoblasts. Furthermore, we document the expression of FMRP in 

Pax7 positive satellite cells. 
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Figure 8: Expression of β-catenin and FMRP in C2C12 myoblasts at different stages of 
differentiation. C2C12 myogenic cells were grown under growth conditions and serum was 
withdrawn for periods of 24h, 48h, 72h and 96h to induce differentiation. Western blotting 
was conducted to probe for the presence of FMRP and β-catenin at each stage of 
differentiation. Western blotting was conducted against Myf5, MyoD and myosin heavy 
chain to measure stage of muscle differentiation.  
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Figure 9: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts. 
C2C12 myogenic cells were grown under high serum growth conditions followed by serum 
withdrawal for periods of 24h, 48h, 72h and 96h to induce differentiation. The subcellular 
localization pattern of β-catenin and FMRP was observed by immunostaining against β-
catenin and FMRP followed by confocal fluorescence microscopy. Individual fluorescent 
channels for each image are depicted in Figure S1-S5.  
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 DM 24h 

Figure 10: Subcellular localization pattern of β-catenin and FMRP in primary myoblasts. 
Primary myoblasts cells were grown under high serum conditions followed by serum 
withdrawal for a period of 24h to induce differentiation. The subcellular localization pattern 
of β-catenin and FMRP was observed by immunostaining against β-catenin and FMRP 
followed by confocal fluorescence microscopy. Individual fluorescent channels for each 
image are depicted in Figure S6 and S7. 
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Figure 11: Expression of FMRP in satellite cells within single myofibers. Single myofibers 
were isolated from the Extensor Digitorum Longus muscle of 6-8 week year old mice and 
immunostained for the expression of Pax7 and FMRP. Pax7 was used as a marker to identify 
satellite cells.  
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Characterization of FMRP and β-catenin Interaction in Skeletal Muscle 

After establishing that both FMRP and β-catenin were expressed in skeletal muscle, we 

sought to test the interaction biochemically using immunoprecipitation. To answer this question, 

we conducted an experiment in which we isolated FMRP using antibody-coupled agarose beads 

and probed for the presence of β-catenin in the immunoprecipitate. After isolating FMRP from 

GM C2C12 cellular lysate (Figure 12B), we also detected the presence of β-catenin (Figure 

12A). In conclusion, this experiment indicated that FMRP and β-catenin interact biochemically. 

In order to confirm that this interaction was occurring in skeletal muscle, we utilized additional 

methodologies to assess this interaction. 

 Fluorescence microscopy has been used as a qualitative methodology that allows one to 

determine whether two proteins of interest colocalize with each other [89]. If colocalization 

between two proteins is observed then it can be inferred that they possibly interact and 

subsequently validated through other methodologies. We therefore used fluorescence confocal 

microscopy to analyze the interaction between β-catenin and FMRP. 

In order to visualize the interaction between β-catenin and FMRP in cultured cells we 

generated plasmids containing fluorescently tagged fusion proteins of our proposed interactors. 

We transfected eYFP-FMRP and mCherry-β-catenin constructs into C2C12 cells grown in high 

serum conditions to determine whether colocalization of these protein occurs in a cellular 

context. After recording images of C2C12 cells expressing these fluorescently tagged proteins, 

we observed that both eYFP-FMRP and mCherry-β-catenin co-localized around the perinuclear 

region (Figure 13A). To further document the colocalization, ImageJ was used to generate RGB 

profile plots of transverse slices in the acquired image (red lines Figure 13A; Figure 13B/C/D). 

In theory, if colocalization was occurring at a proposed subcellular localization then one should 
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observe similar increases or decreases of intensity for the fluorescent channels that corresponded 

to the eYFP-FMRP and mCherry-β-catenin fusion proteins. After observing the RGB profile 

plots that were generated, we observed a characteristic colocalization pattern between eYFP-

FMRP and mCherry-β-catenin (black arrows; Figure 13 B/C/D). Furthermore, we noticed that β-

catenin appeared to shift from its more typical localization (Figure 9, GM) at the cell membrane 

and adopted a localization similar to FMRP when they were expressed together (Figure 13A). 

This observation, combined with the observation that β-catenin and FMRP interact 

biochemically, indicate a robust interaction between β-catenin and FMRP. The observations that 

β-catenin and FMRP interact biochemically and the imaging data depicting their cellular co-

localization suggest a possible function in skeletal muscle. 
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Figure 12: Coimmunoprecipitation of β-catenin and FMRP in C2C12 myoblasts. A) FMRP 
was isolated using an anti-FMRP antibody and Western blotting was conducted in eluted 
fraction to detect the presence of FMRP. An IgG antibody was used as a negative control. B) 
Western blotting was also conducted against β-catenin from the same eluted IgG and FMRP-
IP fractions.   
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A) 

B) C) 

D) 

Figure 13: Colocalization of eYFP-FMRP and mCherry-β-catenin fusion proteins in C2C12 
myoblasts grown under high serum conditions.  Red-Green profile plots were acquired by 
using ImageJ software. A) Subcellular localization of eYFP-FMRP and mCherry-β-catenin in 
a C2C12 myoblasts. B-D) Red-Green profile plot of fluorescent channels from Figure XA 
(red lines in merged image). Black arrows represent areas in the image where similar changes 
in fluorescent intensity occurred indicating that colocalization occurred between each 
fluorescent fusion protein.  
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Role of FMRP and β-catenin Interaction in Skeletal Muscle on Translational Activity 

 The next step of our study was to determine whether the β-catenin-FMRP interaction 

played a role in the translational activity of skeletal muscle. In order to measure translational 

activity we employed the surface sensing of translation (SUnSET) technique (Figure 14; [90]). 

This methodology requires the use of puromycin, an analog of aminoacyl tRNAs, which 

incorporates into elongating polypeptide chains and stalls translation (Figure 14; [90]). The result 

of puromycin treatment is a buildup of stalled polypeptide chains containing puromycin (Figure 

14; [90]). These polypeptide chains can then be visualized using a puromycin antibody in 

conjunction with western blotting (Figure 14). Therefore, when global translational activity is 

elevated there will be a higher rate of puromycin incorporation and subsequently stronger 

intensity of polypeptide chains when visualized through western blotting. 

By exposing C2C12 myoblasts to puromycin we were able to acquire a readout of global 

translational activity at various stages of differentiation in a time course experiment (Figure 15). 

Interestingly, we found that the highest amount of puromycin incorporation occurred at 24h DM 

while the second highest rate of puromycin incorporation occurred at the GM phase (Figure 15). 

Previous studies characterizing the proteome of differentiating myoblasts have found that a wide 

range of muscle specific proteins such as transcription factors, signaling molecules and 

metabolic components must be translated in myoblasts as well as during their transition into a 

myotube [91].  β-catenin has also been proposed to play a key role in the onset of the myogenic 

program by activating the expression of muscle specific genes and regulating the fusion of 

myoblasts [29]. Furthermore, FMRP has recently been studied in skeletal muscle and found to 

post-transcriptionally regulate the expression of the MRF Myf5 which is required for the onset of 

myogenesis [74].  Clearly, there is a high degree of regulatory control occurring in the processes 
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that maintain a myoblast in a stem cell-like state as well as activate the process of differentiation 

from a myoblast to a myotube. For these reasons, we decided that studying the role of the β-

catenin in both the myoblast (GM) and onset of differentiation (24h DM) stages would provide 

valuable insight regarding the possible post-transcriptional role of these proteins. 

In order to study the role of the β-catenin in the post-transcriptional regulation of skeletal 

muscle we utilized the SUnSET assay in conjunction with siRNA treatment against β-catenin 

(Figure 16A). We were able to quantify global translational activity by measuring the intensity of 

puromycin incorporation and dividing it by the intensity of the loading control Erk using ImageJ 

software (Figure 16B/C). Interestingly, we found a 1.27 and 1.29 fold relative increase in 

translational activity in C2C12 myoblasts grown in GM conditions and treated with siRNAs 

against β-catenin (Figure 16B). After conducting a 2-tailed, equal variance T-test we found that 

our data was statistically significant with P values of 0.032 and 0.0039, respectively (Figure 

16B). This suggested that β-catenin played a significant role in global translational inhibition 

since knocking down its expression increased translational activity in C2C12 myoblasts. 

Furthermore, C2C12 myoblasts that were induced to differentiate over a 24h period were found 

to have 1.20 and 1.75 fold relative decrease in translational activity when treated with siRNAs 

against β-catenin (Figure 16C). After conducting the same 2-tailed, equal variance T-test we 

determined that these data were not statistically significant with P values of 0.57 and 0.13, 

respectively (Figure 16C). While this data suggested that β-catenin could modulate translational 

activity in proliferating myoblasts, we wanted to understand whether it played a role directly at 

the translational machinery.  

Based on a possible role in translational control we next determined whether β-catenin 

was present at the translational machinery using the polysome profiling technique. Polysome 
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profiling is a methodology that allows one to isolate various components of the translational 

machinery (Figure 17A). This includes the preinitiation complex which consists of the 40S 

ribosomal subunit, the ribosome which consists of the fully assembled 40S/60S subunits and the 

polysome which consists of multiple ribosomes translating an mRNA transcript [92]. By 

inhibiting protein translation using cycloheximide and loading cellular lysate containing the 

translational machinery into a sucrose gradient, one can collect fractions and isolate these 

translational components along with mRNAs and any regulatory proteins that associate with 

them (Figure 17A). As fractions are collected from the sucrose gradient, a spectrophotometer 

records the A254nm absorbance of each sample which generates a characteristic polysome 

profile (Figure 17B). From here, one can probe for specific ribosomal proteins and analyze the 

pattern of the polysome profile to determine which component of the translational machinery is 

present in each fraction.  

We collected cell lysate from C2C12 myoblasts growing under GM conditions in order to 

probe for the presence of β-catenin and FMRP in the translational machinery. In order to validate 

which components of the ribosome were present in each polysome fraction, we probed for other 

ribosomal proteins including eIF4E, large ribosomal subunit 9 (RPL9) and Poly-A Binding 

Protein (PABP). We determined that fraction 1-4 consisted of free RNA and the preinitiation 

complex due to an enrichment of eIF4E which was previously found to associate with the 40S 

subunit in the initiation of translation (Figure 17C; [85]). This was further validated by the 

presence of PABP which serves an important role in binding to the m7G cap during the process 

of translational initiation (Figure 17C; [93]). Finally, we probed for RPL9, a subunit of the 60S 

component of the ribosome that is recruited to the 40S component to create the complete 
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ribosomal complex [94]. From these data we found that fraction 6-14 contained the fully 

assembled ribosomes and polysomes due to an enrichment of RPL9 (Figure 17C).  

After probing for β-catenin, we found that it was highly abundant in fractions 1- 4 which 

suggested that it was enriched in fractions containing the preinitiation complex (Figure 17C). We 

also found an abundance of FMRP in fractions 1 and 2 (Figure 17C). This corresponded with its 

previous role in the inhibition of translation at the preinitiation complex by preventing the 

binding of eukaryotic initiation factors [73]. 

In order to confirm the presence of β-catenin and FMRP at the translational machinery 

we conducted an m7GTP assay which uses modified agarose beads coupled with m7GTP to 

capture the pre-initiation complex. We detected an enrichment of β-catenin and FMRP bound to 

m7GTP beads relative to the GTP negative control (Figure 18). We also found a relative 

enrichment of the ribosomal protein eIF4E bound to the m7GTP beads, confirming that we 

successfully pulled down the translational machinery in this assay (Figure 18). Collectively, 

these observations suggest that β-catenin and FMRP are present at the pre-initiation complex of 

the translational machinery. In conclusion, these data indicate that β-catenin can modulate 

translational activity and that it can be found along with FMRP at the preinitiation complex of 

the translational machinery. 
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Figure 14: Workflow of the SUnSET technique. C2C12 myoblasts were exposed to a 
puromycin concentration of 0.544ug/ml for a period of 15 minutes. Elongating polypeptide 
chains were terminated upon the incorporation of puromycin. Cell lysate was collected and 
polypeptide chains were visualized upon Western Blotting using a puromycin antibody. 
Translational activity was quantified by measuring the intensity of puromycin incorporation; 
with more translational activity producing a more intense puromycin signal.  
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Figure 15: Puromycin incorporation of skeletal muscle in growth and differentiation 
conditions. C2C12 myogenic cells were maintained under growth conditions and serum was 
withdrawn for periods of 24h, 48h, 72h and 96h to induce differentiation. Immediately after 
these time periods elapsed, C2C12 cells were exposed to 0.544ug/ml of puromycin for 5min. 
Western blotting was conducted against puromycin to measure translational activity. Western 
blotting was conducted against Erk as a loading control and myosin heavy chain as a marker 
of differentiation. 
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Figure 16: Puromycin incorporation (0.544ug/ml) of skeletal muscle in GM and DM 24h 
conditions. A) C2C12 myogenic cells were maintained under growth conditions and serum 
was withdrawn for a periods of 24h to initiate the differentiation program. C2C12s were 
treated with si-23 or si-24 to knock down expression of β-catenin (n=3). Scrambled (scr) 
siRNA was used as a control (n=3). Relative translational activity in both GM and DM 24h 
was quantified by dividing the intensity of puromycin incorporation by the intensity of the 
Erk loading control. B) Relative puromycin incorporation of C2C12s grown under GM and 
treated with either si-23, si-24 or scr siRNA (n=3). Intensity of puromycin incorporation was 
compared relative to scr DM 24h siRNA treatment.  C) Relative puromycin incorporation of 
C2C12s grown in DM 24h and treated with either si-23, si-24 or scr siRNA. Intensity of 
puromycin incorporation was compared relative to scr siRNA treatment. 

N=3 N=3 
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A) 

Figure 17: Polysome profile of β-catenin and FMRP in C2C12 myoblasts maintained under 
GM conditions. A) Basic workflow of polysome profiling methodology. B) Expected 254nm 
absorbance peaks within collected fractions. C) Western blot of β-catenin and FMRP in 
collected fractions. Eukaryotic Initiation Factor 4E (eIF4E) was used to detect the presence of 
the preinitiaion complex in the collected fractions. Ribosomal protein L9 was used to detect 
the presence of fully assembled ribosomes and polysomes in the collected fractions.  

B) 

C) 
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Figure 18: M7GTP assay of β-catenin and FMRP at in C2C12 myoblasts grown under GM 
conditions. M7-GTP coupled agarose beads were used to isolate the translational machinery 
and then probed for the presence of β-catenin and FMRP. eIF4E, a component of the 
preinitiation complex, was used to detect the presence of the translational machinery. GTP 
coupled agarose beads lacking an M7 tag were used as a negative control. 
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FMRP Associated RNA Transcripts in Skeletal Muscle 

 After establishing that the β-catenin-FMRP interaction exists at the pre-initiation complex 

in skeletal muscle and that β-catenin plays a potential role in modulating translational activity, 

we next wanted to test whether RNA transcripts that associate with FMRP are altered with 

manipulation of β-catenin. Since FMRP is an RNA binding protein, we postulated that 

identifying the FMRP associated RNAs in skeletal muscle could allow us to identify possible 

targets of the β-catenin-FMRP complex. Although the RNA binding partners of FMRP have 

previously been studied in neurons, no such study has thus far been carried out in skeletal 

muscle.  

We isolated FMRP-associated transcripts by conducting an RNA immunoprecipitation 

experiment where we incubated cellular lysate from GM C2C12 cells with anti-FMRP agarose 

beads in order to pull down FMRP along with its associated RNAs (Figure 19A). We then 

conducted a microarray analysis of FMRP-associated RNAs using an Affymetrix Mouse Gene 

2.0 Microarray This microarray contained 27,358 probesets corresponding to RNAs within the 

mus musculus transcriptome.  A cutoff of 2 fold enrichment from FMRP-associated RNA 

relative to a total RNA control was applied to generate candidate RNAs that were proposed to 

interact with FMRP. After applying a cutoff criteria of a 2 fold or greater enrichment relative to 

the total RNA control, we identified 2090 mRNA transcripts of interest that were found to 

associate with FMRP (Figure 19B). These enriched mRNA transcripts represented 6.06% of the 

entire transcriptome, demonstrating that FMRP binds to a significant amount of mRNA 

transcripts in skeletal muscle (Figure 19C). Interestingly, we were able to identify previously 

characterized FMRP mRNA targets such as MAP1B (2.13 fold enrichment; [78]) and Myf5 

(1.23 fold enrichment; [74]) which provided validation of our methodology.  
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 To begin to understand what types of mRNA transcripts might bind to FMRP in skeletal 

muscle, we conducted a GO biological function enrichment analysis. This analysis uncovered the 

FMRP-associated mRNAs with common biological function that were overrepresented in our 

samples relative to expected representation values (Figure 20A). In total, we found mRNAs 

associated with 13 different biological functions that were significantly overrepresented (p < 

0.05) in our FMRP bound samples relative to the expected representation values generated by 

our GO enrichment analysis tool (Figure 20A/B). Interestingly, we identified an 

overrepresentation of mRNA transcripts involved in processes such as gene expression, 

transcriptional regulation by RNA polymerase II and RNA metabolism (Figure 20A). These 

findings suggest that not only does FMRP associate with β-catenin at the translational 

machinery, but that the mRNAs it associates with have a significant impact on the overall 

makeup of the transcriptome through the overrepresented biological processes we identified.  

 We then identified the top 20 mRNAs that were found to associate with FMRP in our 

microarray analysis of skeletal muscle (Figure 21). The enriched mRNAs that were isolated via 

FMRP-IP were found to have a 9.12-88.94 fold increase in abundance relative to the total RNA 

control (Figure 21). We found mRNAs with distinct functions enriched in our FMRP-IP samples 

including microRNAs, Cajal Body RNAs, nucleolar RNAs, and ribosomal associated RNAs 

(Figure 21). This microarray study identified mRNAs that could associate with FMRP in skeletal 

muscle and possible targets of the β-catenin-FMRP complex. 

 In conclusion, our study began by characterizing the expression and subcellular 

localization of FMRP and β-catenin in a model of skeletal muscle. We were also able to detect 

the presence of these proteins in primary myoblasts and the presence of FMRP in the satellite 

cells of single myofibers. We then established that the interaction between β-catenin and FMRP 
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occurred in skeletal muscle through biochemical and confocal microscopy techniques. 

Furthermore, we established the role of β-catenin as a regulator of global translational activity 

and found the presence of the β-catenin-FMRP complex at the preinitiation complex. Finally, we 

conducted a microarray analysis of FMRP-associated transcripts in skeletal muscle to determine 

the makeup of RNAs that may be regulated by the β-catenin-FMRP complex. These results 

provide novel insight into the role of β-catenin as a potential post-transcriptional regulator and 

suggests that β-catenin can interact with post-transcriptional proteins such as FMRP to regulate 

gene expression in skeletal muscle. 
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B) 

A) 

Figure 19: Microarray analysis of FMRP associated RNA transcripts. A) Workflow of the 
RNA immunoprecipitation methodology. C2C12 myoblasts maintained under GM conditions 
were crosslinked with formaldehyde and cell lysate was collected. Cell lysate was incubated 
with anti-FMRP magnetic beads to isolate FMRP and its associated RNAs. Next, RNA was 
collected and processed in an Affymetrix Mouse Gene 2.0 microarray. B) Relative 
enrichment of RNA from FMRP-IP compared to total RNA. We found 2090 FMRP-IP 
enriched RNAs that had at least a 2 fold increase relative to total RNA samples. In contrast, 
there were 3067 RNAs with a 2 fold or greater enrichment in total RNA relative to FMRP-IP 
RNA. C) Percentage of FMRP enriched RNAs within the entire transcriptome. 6.06% of 
34,472 RNAs were enriched (2-fold increase) in FMRP-IP samples relative to total RNA 
while 8.9% of 34,472 RNAs were not enriched (2-fold decrease). 85.04% of 34,472 RNAs 
showed no significant change (less than 2-fold increase or decrease relative to total RNA). 
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Figure 20: GO ontology analysis of biological function in FMRP enriched RNAs.  A) The 
2090 RNAs with a 2 fold enrichment in FMRP-IP samples were subjected to a GO Ontology 
analysis using the Gene Ontology Consortium GO Analysis Tool. We found 12 biological 
functions that were significantly overrepresented in FMRP-IP RNA samples (P<0.05). B) P-
values associated with each biological function. Each term in figure XA is assigned a number 
from 1 to 12 which corresponds to the P-value associated with this biological function in 
Figure XB. 
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Figure 21: List of top 20 enriched RNAs in FMRP-IP sample relative to total RNA. The 
identity of RNAs with a 2 fold or greater increase in FMRP-IP samples relative to total RNA 
was determined using the Thermo Fisher Transcriptome Analysis Console. The RNAs with 
top 20 enrichment values (9.12-88.94 fold increase relative to total RNA) were recorded. 
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Discussion: 

In this study we have explored the post-transcriptional role of β-catenin, a component of 

the Wnt signaling pathway which has been shown to activate the expression of muscle specific 

genes by interacting with MRFs such as MyoD [29]. Previous studies conducted by our group 

found that in smooth muscle, β-catenin interacts with the post-transcriptional regulator FMRP to 

modulate translational activity [55]. In this study, we have expanded the current scope of 

research by exploring the proposed interaction between β-catenin and FMRP in skeletal muscle, 

investigating the role of β-catenin in the translational activity of skeletal muscle progenitors and 

exploring the presence of β-catenin at the translational machinery in skeletal muscle. Finally, we 

present a novel preliminary study regarding the identity of RNAs which bind to FMRP in 

skeletal muscle.  

As previously mentioned, β-catenin is a multifunctional protein with its role depending 

on both its localization and interacting partners [29,48]. While β-catenin does not have an 

enzymatic domain, it seems to confer functionality through its interacting partners, evident by its 

diverse functions such as regulating the expression of muscle specific proteins in myogenesis, 

maintaining the structural integrity of multiple cell types, regulating developmental processes, 

and controlling the process of cell division [40,95,96]. A mass spectrometry study was 

previously conducted in smooth muscle which identified potential interacting partners of β-

catenin such as the post-transcriptional regulator FMRP [55]. In this study, we used multiple 

approaches to determine that the β-catenin-FMRP interaction occurs in skeletal muscle. By 

characterizing this interaction in skeletal muscle, we have identified a potential new role of β-

catenin as a post-transcriptional regulator. This study expands on the current understanding of β-

catenin’s function in skeletal muscle as either a transcriptional regulator interacting with MyoD 
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or a structural protein which interacts with cadherin proteins at the adherens junction [29,97]. 

The discovery of the β-catenin-FMRP interaction in skeletal muscle uncovers a novel role of β-

catenin and emphasizes the multifunctionality of β-catenin which is mediated by the binding 

partners it associates with. 

 Since we found that β-catenin acts as a translational repressor in undifferentiated skeletal 

myoblasts, we propose that it may serve multiple roles depending on the conditions of the 

extracellular environment. Previous work has found the activation of Wnt signalling by 

extracellular Wnt ligands in smooth muscle can cause the disassociation of the β-catenin-FMRP 

complex at the translational machinery due to the migration of β-catenin into the nucleus [55]. 

Based on our finding that β-catenin acts as a translational repressor in undifferentiated muscle 

progenitors, we believe this indispensable protein may serve dual functions in skeletal muscle. It 

has previously been discussed that the activation of Wnt signalling leads to the migration of β-

catenin into the nucleus where it interacts with MyoD and is essential for differentiation of 

myogenic precursors into skeletal muscle [29,98]. Therefore, it is possible that β-catenin may act 

as a post-transcriptional regulator alongside FMRP in when Wnt signalling is inactive while 

acting as a transcriptional activator in differentiating myoblasts which have activated Wnt 

signalling.  

In conclusion, while β-catenin may act as a transcriptional activator by interacting with MyoD 

and other transcription factors, it also possesses a post-transcriptional role by interacting with 

RNA binding proteins such as FMRP.  During the initiation of translation, the recruitment of a 

multitude of proteins called eukaryotic initiation factors are required to form the preinitiation 

complex and begin the process of translation [99]. Complementary regulatory proteins such as 

FMRP can inhibit the formation of the preinitiation complex by preventing eukaryotic initiation 
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factors such as eIF4F from binding to their targets such as the 51 cap of mRNA or the 

translational machinery [73]. We propose a model in which β-catenin cooperates with FMRP at 

the translational machinery in order to mediate translational repression by preventing the 

assembly of eukaryotic initiation factors such as eIF4F in skeletal muscle (Figure 22).  

Although the mechanism of β-catenin mediated post-transcriptional regulation has not yet 

been fully elucidated, previous research has found that GSK3β inhibitors can reverse many of the 

symptoms of Fragile X Syndrome in FMR1 knockout mice [100]. As previously mentioned, 

GSK3β is a protein part of the destruction complex which mediates the degradation of β-catenin 

by the proteasome [48]. This study demonstrates a possible link between β-catenin and FMRP 

outside of skeletal muscle since GSK3β inhibition is known to lead the increased activation of β-

catenin and seems to correct some of the pathologies associated with a lack of FMRP expression 

[100,101]. We postulate that β-catenin may act at the translational machinery by recruiting post-

transcriptional regulators such as FMRP in order to control the rate of translation in skeletal 

muscle. 

These findings have crucial implications within skeletal muscle research since a major 

cause of muscle atrophy involves pathways which activate protein turnover [102]. Due to the 

constant damage that skeletal muscle undergoes throughout day-to-day life, there is a strong 

requirement for activation of protein synthesis through signaling pathways such as IGF1 

signaling [103]. In this study, we have identified an inhibitor of global translational activity 

within skeletal muscle. It may be possible to pharmacologically target the β-catenin-FMRP 

interaction and determine whether it could restore healthy levels of protein synthesis in people 

suffering from muscle atrophy. Furthermore, we identified the presence of FMRP in satellite 

cells which mediate the regeneration of skeletal muscle. It is possible that the β-catenin-FMRP 
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complex mediates post-transcriptional regulation in these progenitor cells and may play a role is 

skeletal muscle regeneration. Further understanding the role of post-transcriptional regulators 

such as β-catenin and FMRP in skeletal muscle represent a promising avenue of research that can 

identify pharmacological targets which that activate protein synthesis and improve both 

regenerative capacity and functionality of skeletal muscle.  

 

 

 

 

Figure 22: Proposed model of β-catenin mediated translational repression. Previous studies 
have found that FMRP associates with CYFIP at the translational machinery in order to 
inhibit the formation of the eIF4F complex and repress translation. In this study we show that 
β-catenin associates with the preinitiation complex along with FMRP. Although its 
mechanism of action is currently unknown, we propose that β-catenin associates with FMRP 
at the preinitiation complex in order to post-transcriptionally regulate gene expression and 
global translational activity. 
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            Since we proposed that the FMRP-β-catenin complex functions post-transcriptionally to 

regulate gene expression, we sought to identify the population of RNAs which associate with 

FMRP. Understanding the targets of FMRP may provide evidence related to skeletal muscle 

related RNAs that are post-transcriptionally regulated by the β-catenin-FMRP complex. We 

identified a list of the top 20 RNAs enriched with FMRP which coded for important biological 

molecules such as microRNAs, nucleolar/nuclear RNA, Cajal body-specific RNA, 

transcriptional regulators and components of the translational machinery (Figure 21).  

First, we identified 4 microRNAs enriched in FMRP RIP samples including Mir3473c, 

Mir148b, Mir140 and Mir365-2 (Figure 21). Of interest to our group was Mir148b (12.07 fold 

enrichment) which has been shown to regulate the expression of the Wnt1 ligand in neuronal 

cells, thereby modulating Wnt signaling activity (Figure 21;[104]). The expression of Mir148b 

has also been found to decrease the expression of β-catenin, a crucial mediator of myogenesis 

[104]. The fact that FMRP may post-transcriptionally regulate miRNAs associated with β-

catenin expression suggests the existence of a possible feedback mechanism. It is possible that 

FMRP regulates the expression of β-catenin through miRNAs such as Mir148b while FMRP 

activity is subsequently regulated at the preinitiation complex by β-catenin.   

Another candidate microRNA identified in our microarray screen was Mir140 (11.43 fold 

enrichment) which has been shown to regulate the expression of TGF-β1/3, key members of the 

TGF-β signaling pathway (Figure 21). TGF-β signaling activation has previously been found to 

promote fibrosis and inhibit myogenesis in skeletal muscle upon injury [105]. Mir140 has 

currently been studied in osteoblasts and lung fibroblasts and was found to inhibit the expression 

of TGF- β1 and 3, cytokines known to activate TGF-β signaling [106,107]. Due to the role of 

TGF-β in the inhibition of myogenesis, identifying regulators of miRNAs which inhibit the 
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expression of TGF-β signaling molecules provides potential pharmaceutical targets for those 

suffering from muscle wasting disorders.  

 Another group of RNAs found to associate with FMRP included Cajal body specific 

RNA 1, 9 and 10 (13.21 38.36 and 14.02 fold enrichment; Figure 21). Cajal bodies are 

complexes of RNA and proteins that are found near the nucleolus and play an important role in 

the production of spliceosomal small nuclear ribonucleoproteins or snRNPs [108]. Recent studies 

have found that certain isoforms of FMRP can associate with Cajal bodies and that snRNP 

formation may be regulated by RNA binding proteins such as FMRP [109]. Interestingly, we 

also found the association of FMRP with small nuclear RNA U1B1 and U1B2 (9.12 fold 

enrichment) which are precursors of snRNPs, further suggesting the importance of FMRP at 

Cajal bodies. Here we present evidence of three specific Cajal body RNAs and snRNP 

precursors that are proposed to associate with FMRP, suggesting that FMRP may play a role in 

regulating components of the spliceosomal machinery in skeletal muscle. These findings may 

have implications for understanding the alternative splicing patterns of muscle specific genes 

potentially regulated by the β-catenin-FMRP complex.  

 Finally, we identified various RNAs proposed to associate with FMRP that play a role in 

both transcription and translation. One of these RNAs included TATA box binding protein 

associated factor D (18.98 fold enrichment, Figure 21). This mRNA codes for a subclass of 

protein that regulates the activity of TATA binding protein in the initiation of transcription [110]. 

Another RNA with a proposed translational role which was enriched with FMRP was ribosomal 

protein L6 (RPL6). This rRNA codes for a component of the ribosomal machinery and plays a 

key role in translation. Furthermore, RPL6 has a role in the progression of the cell cycle by 

interacting with upstream regulators of P53, an important tumor suppressor which controls the 
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checkpoints of the cell cycle [111]. Mutations in RPL6 have been implicated in cancers such as 

gastric cancer due to upregulation in cell cycle proteins such as cyclin D1 and its previously 

mentioned role in regulating P53 activity [111,112].  

 In conclusion, we have identified β-catenin as a modulator of translational activity in 

skeletal muscle. We propose that β-catenin serves as a translational repressor in undifferentiated 

C2C12 myoblasts and that this form of regulation may be carried out through its interacting 

partner FMRP. The presence of β-catenin at the translational machinery along with its interacting 

partner FMRP further suggests that these proteins may cooperate in order to repress translational 

activity in undifferentiated myoblasts. Furthermore, we present preliminary work regarding the 

identity of RNAs that associate with FMRP in skeletal muscle. Our current model postulates that 

there is a sub fraction of β-catenin present at the translational machinery which serves to repress 

global translational activity in undifferentiated myoblasts and that this effect may be mediated 

through interactions with FMRP (Figure 22). We conclude that we have identified a novel post-

transcriptional regulator in skeletal muscle and that by further understanding this mechanism of 

regulation we can identify pharmacological targets in those suffering from muscle wasting 

disorders. 
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Future Direction and Implications: 

In this study we have identified FMRP as novel interacting partner of β-catenin, 

identified the presence of β-catenin in the translational machinery and found that β-catenin plays 

a role in modulating global translational activity in skeletal muscle. We have also identified 

potential mRNA targets of FMRP in skeletal muscle using microarray technology. Although 

these findings are significant, future work must focus on further understanding the role of this 

interaction in skeletal muscle. 

First, while we have discovered that β-catenin and FMRP interact with each other, we 

must begin to explore the regions of each protein that mediate this interaction. β-catenin has 

previously been identified as an essential transcriptional regulator while FMRP has been 

previously studied as a post-transcriptional regulator [36,73]. In order to understand whether the 

interaction between β-catenin and FMRP truly plays a role in post-transcriptional regulation, the 

interaction between these proteins should be interfered with while maintaining the 

supplementary functions of these proteins. By understanding which regions of β-catenin and 

FMRP interact with each other, it may be possible to generate cell lines expressing mutant 

proteins by using methodologies such as CRISPR to gain a deeper insight on the specific role of 

this interaction. Conducting such experiments would allow us to determine whether this 

interaction has an impact on myogenesis as well as global translational activity. 

Secondly, since we have found that β-catenin exerts a repressive effect on translational 

activity in myoblasts, we should seek to determine whether the β-catenin-FMRP complex is 

present at every stage of skeletal muscle differentiation. Previous work has found that Wnt 

stimulation in smooth muscle leads to the disruption of the  β-catenin-FMRP complex due to the 
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translocation of β-catenin into the nucleus. Understanding whether this complex exists during 

each stage of muscle differentiation can be carried out through co-immunoprecipitation and 

fluorescent fusion colocalization experiments. These experiments will provide information 

regarding the temporal pattern of the β-catenin-FMRP complex and provide further insight on 

whether this complex plays a role only at specific stages of muscle differentiation. 

Furthermore, our preliminary microarray study suggested that FMRP may associate with 

miRNAs that may play important roles within skeletal muscle. Future work should seek confirm 

the association of these candidate RNAs with FMRP using methodologies such as RT-PCR. 

Once it is established that FMRP binds to a candidate RNA, knockdown of FMRP in skeletal 

muscle should be conducted in order to determine the role of FMRP in the expression of that 

transcript. Specifically, we should seek to identify candidate mRNAs that are proposed to play a 

role in myogenesis such as Myf5 which has previously been identified as being regulated by 

FMRP [74]. Doing so will further develop our understanding of the post-transcriptional 

mechanisms mediating myogenesis and identify possible pharmacological targets for skeletal 

muscle related disorders.  

Additionally, the role of β-catenin in the β-catenin-FMRP interaction must be studied by 

understanding whether β-catenin can modulate the types of RNA transcripts that associate with 

FMRP. We plan to conduct an RNA immunoprecipitation assay in which transcripts bound to 

FMRP in skeletal muscle can be identified in both the presence of β-catenin and under 

knockdown conditions of β-catenin. By comparing the makeup of transcripts in the presence of 

β-catenin relative to knockdown conditions, we can understand whether β-catenin may regulate 

the makeup of RNAs associate with FMRP at the translational machinery. This experiment may 
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provide further evidence regarding the role of β-catenin as a post-transcriptional regulator and 

begin to provide a possible mechanistic explanation for its impact on translational activity. 

Our findings have contributed to the large body of skeletal muscle research by 

establishing a novel role of β-catenin which may serve as a druggable target in muscle wasting 

disorders induced by aging or cachexia. Skeletal muscle requires a constant turnover of 

sarcomeric proteins in order to maintain optimal function [102]. Previous work has found that 

activation of signalling pathways which turn on protein synthesis such as the PI3K-Akt pathway 

lead to hypertrophy of skeletal muscle [113]. While the over-activation of Akt is implicated in 

diseases such as cancer, it may be possible to target the β-catenin-FMRP complex in order to 

reverse the process of muscle wasting by activating protein synthesis [114]. Understanding the 

targets of this complex through microarray technology will allow us to determine whether 

targeting this complex may serve as a viable treatment for muscle wasting disorders without 

having pathological effects. In conclusion, the identification of the β-catenin-FMRP complex in 

skeletal muscle has further developed our understanding of post-transcriptional regulation in 

skeletal muscle and identified a possible pharmacological target for muscle wasting disorders. 

 

 

 

 

 

 

 

 



 

71 
 

References 

1.  Apponi LH, Corbett AH, Pavlath GK (2011) RNA-binding proteins and gene regulation in 

myogenesis. Trends Pharmacol Sci 32: 652–658. 

2.  Squire JM (2016) Muscle contraction: Sliding filament history, sarcomere dynamics and 

the two Huxleys. Glob Cardiol Sci Pract. 

3.  Jensen J, Rustad PI, Kolnes AJ, Lai YC (2011) The role of skeletal muscle glycogen 

breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2 DEC: 

4.  McLeod M, Breen L, Hamilton DL, Philp A (2016) Live strong and prosper: the 

importance of skeletal muscle strength for healthy ageing. Biogerontology 17: 497–510. 

5.  Wong SL (2016) Reduced muscular strength among Canadians aged 60 to 79: Canadian 

Health Measures Survey, 2007 to 2013. Heal Reports 27: 11–17. 

6.  Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N (2014) A systematic 

review and meta-analysis on the epidemiology of Duchenne and Becker muscular 

dystrophy. Neuromuscul Disord 24: 482–491. 

7.  Hopkins PM (2006) Skeletal muscle physiology. Contin Educ Anaesthesia, Crit Care 

Pain 6: 1–6. 

8.  Calderón JC, Bolaños P, Caputo C (2014) The excitation-contraction coupling mechanism 

in skeletal muscle. Biophys Rev 6: 133–160. 

9.  Smith DA, Geeves MA (2003) Cooperative regulation of myosin-actin interactions by a 

continuous flexible chain II: Actin-tropomyosin-troponin and regulation by calcium. 

Biophys J 84: 3168–3180. 



 

72 
 

10.  Goldstein JA, McNally EM (2010) Mechanisms of muscle weakness in muscular 

dystrophy: Figure 1. J Gen Physiol 136: 29–34. 

11.  Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, 

Rocancourt D, Relaix F (2003) The formation of skeletal muscle: From somite to limb. J 

Anat 202: 59–68. 

12.  Maroto M, Bone RA, Dale JK (2012) Somitogenesis. Development 139: 2453–2456. 

13.  Tabata T (2004) Morphogens, their identification and regulation. Development 131: 703–

712. 

14.  Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of 

myogenesis. Cold Spring Harb Perspect Biol 4:. 

15.  Blake JA, Ziman MR (2014) Pax genes: regulators of lineage specification and progenitor 

cell maintenance. Development 141: 737–751. 

16.  Epstein J a, Shapiro DN, Cheng J, Lam PY, Maas RL (1996) Pax3 modulates expression 

of the c-Met receptor during limb muscle development. Proc Natl Acad Sci 93: 4213–

4218. 

17.  Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic 

hierarchies controlling skeletal myogenesis: Pax- 3 and Myf-5 act upstream of MyoD. 

Cell 89: 127–138. 

18.  Fan CM, Lee CS, Tessier-Lavigne M (1997) A role for WNT proteins in induction of 

dermomyotome. Dev Biol 191: 160–165. 

19.  Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: The orchestrators 



 

73 
 

of myogenesis after 30 years of discovery. Exp Biol Med 243: 118–128. 

20.  Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA (2017) The 

myogenic regulatory factors, determinants of muscle development, cell identity and 

regeneration. Semin Cell Dev Biol 72: 10–18. 

21.  Nasri Marzuca-Nassr G, Kaio ;, Vitzel F, Mancilla-Solorza E, Luis Márquez J (2018) 

Sarcomere Structure: The Importance of Desmin Protein in Muscle Atrophy Estructura de 

Sarcómera: La Importancia de Proteína Desmina en Atrofia Muscular. 

22.  Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for 

embryonic muscle progenitors and satellite cells. Nature 435: 954–958. 

23.  Yin H, Price F, Rudnicki MA (2013) Satellite Cells and the Muscle Stem Cell Niche. 

Physiol Rev 93: 23–67. 

24.  Fu X, Wang H, Hu P (2015) Stem cell activation in skeletal muscle regeneration. Cell Mol 

Life Sci 72: 1663–1677. 

25.  Charville GW, Cheung TH, Yoo B, Santos PJ, Lee GK, Shrager JB, Rando TA (2015) Ex 

vivo expansion and in vivo self-renewal of human muscle stem cells. Stem Cell Reports 5: 

621–632. 

26.  von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal 

function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci 110: 16474–16479. 

27.  Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A Temporal Switch from 

Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis. 

Cell Stem Cell 2: 50–59. 



 

74 
 

28.  Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for 

myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by 

microRNA-31 in mRNP granules. Cell Stem Cell 11: 118–126. 

29.  Kim C-H, Neiswender H, Baik EJ, Xiong WC, Mei L (2008)  -Catenin Interacts with 

MyoD and Regulates Its Transcription Activity. Mol Cell Biol 28: 2941–2951. 

30.  Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic 

program in adult muscle stem cells. Dev Biol 322: 406–414. 

31.  Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. 

Curr Opin Cell Biol 19: 628–633. 

32.  Kim JH, Jin P, Duan R, Chen EH (2015) Mechanisms of myoblast fusion during muscle 

development. Curr Opin Genet Dev 32: 162–170. 

33.  Millay DP, O’Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM, Bassel-Duby R, 

Olson EN (2013) Myomaker is a membrane activator of myoblast fusion and muscle 

formation. Nature 499: 301–305. 

34.  Sampath SC, Sampath SC, Millay DP (2018) Myoblast fusion confusion: The resolution 

begins. Skelet Muscle 8:. 

35.  Lindskog C, Linné J, Fagerberg L, Hallström BM, Sundberg CJ, Lindholm M, Huss M, 

Kampf C, Choi H, Liem DA, et al. (2015) The human cardiac and skeletal muscle 

proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics 16:. 

36.  Rudolf A, Schirwis E, Giordani L, Parisi A, Lepper C, Taketo MM, Le Grand F (2016) β-

Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Rep 15: 



 

75 
 

1277–1290. 

37.  Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, 

Vrbova G, Partridge T, et al. (2007) Lack of myostatin results in excessive muscle growth 

but impaired force generation. Proc Natl Acad Sci 104: 1835–1840. 

38.  Girardi F, Le Grand F (2018) Wnt Signaling in Skeletal Muscle Development and 

Regeneration. In, Progress in Molecular Biology and Translational Science pp 157–179. 

39.  Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 

13: 767–779. 

40.  Huraskin D, Eiber N, Reichel M, Zidek LM, Kravic B, Bernkopf D, von Maltzahn J, 

Behrens J, Hashemolhosseini S (2016) Wnt/β-catenin signaling via Axin2 is required for 

myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers. 

Development 143: 3128–3142. 

41.  Agley CC, Lewis FC, Jaka O, Lazarus NR, Velloso C, Francis-West P, Ellison-Hughes 

GM, Harridge SDR (2017) Active GSK3β and an intact β-catenin TCF complex are 

essential for the differentiation of human myogenic progenitor cells. Sci Rep 7:. 

42.  Gao C, Xiao G, Hu J (2014) Regulation of Wnt/β-catenin signaling by posttranslational 

modifications. Cell Biosci 4:. 

43.  Ehyai S, Dionyssiou MG, Gordon JW, Williams D, Siu KWM, McDermott JC (2015) A 

p38 MAPK regulated MEF2:β-catenin interaction enhances canonical Wnt signalling. Mol 

Cell Biol 36: MCB.00832-15. 

44.  Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, 



 

76 
 

Heasman J (2005) Maternal Wnt11 activates the canonical Wnt signaling pathway 

required for axis formation in Xenopus embryos. Cell 120: 857–871. 

45.  Al-Harthi L (2012) Wnt/β-catenin and its diverse physiological cell signaling pathways in 

neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 7: 725–

730. 

46.  Mahmoudi T, Li VSW, Ng SS, Taouatas N, Vries RGJ, Mohammed S, Heck AJ, Clevers 

H (2009) The kinase TNIK is an essential activator of Wnt target genes. EMBO J 28: 

3329–3340. 

47.  Braid LR, Lee W, Uetrecht AC, Swarup S, Papaianni G, Heiler A, Verheyen EM (2010) 

Nemo phosphorylates Even-skipped and promotes Eve-mediated repression of odd-

skipped in even parasegments during Drosophila embryogenesis. Dev Biol 343: 178–189. 

48.  Valenta T, Hausmann G, Basler K (2012) The many faces and functions of Î 2-catenin. 

EMBO J 31: 2714–2736. 

49.  Hülsken J, Birchmeier W, Behrens J (1994) E-cadherin and APC compete for the 

interaction with β-catenin and the cytoskeleton. J Cell Biol 127: 2061–2069. 

50.  Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) α-catenin is a molecular 

switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123: 

903–915. 

51.  Kam Y, Quaranta V (2009) Cadherin-bound β-catenin feeds into the Wnt pathway upon 

adherens junctions dissociation: Evidence for an intersection between β-catenin pools. 

PLoS One 4:. 



 

77 
 

52.  Dar MS, Singh P, Mir RA, Dar MJ (2017) Βeta-catenin N-terminal domain: An enigmatic 

region prone to cancer causing mutations. Mutat Res - Rev Mutat Res 773: 122–133. 

53.  Essers MAG, De Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, 

Korswagen HC (2005) Functional interaction between β-catenin and FOXO in oxidative 

stress signaling. Science (80- ) 308: 1181–1184. 

54.  MacDonald BT, Tamai K, He X (2009) Wnt/β-Catenin Signaling: Components, 

Mechanisms, and Diseases. Dev Cell 17: 9–26. 

55.  Ehyai S, Miyake T, Williams D, Vinayak J, Bayfield MA, McDermott JC (2018) FMRP 

recruitment of β‐catenin to the translation pre‐ initiation complex  represses translation. 

EMBO Rep e45536. 

56.  Shang S, Hua F, Hu Z-W (2017) The regulation of &amp;#x3B2;-catenin activity and 

function in cancer: therapeutic opportunities. Oncotarget 8: 33972–33989. 

57.  Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, 

Matsuda J, Aburatani H, et al. (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice 

have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber 

genes, and impaired glycemic control. J Biol Chem 279: 41114–41123. 

58.  Okada K, Naito AT, Higo T, Nakagawa A, Shibamoto M, Sakai T, Hashimoto A, 

Kuramoto Y, Sumida T, Nomura S, et al. (2015) Wnt/β-catenin signaling contributes to 

skeletal myopathy in heart failure via direct interaction with forkhead box o. Circ Hear 

Fail 8: 799–808. 

59.  Johnson ML, Rajamannan N (2006) Diseases of Wnt signaling. Rev Endocr Metab Disord 



 

78 
 

7: 41–49. 

60.  Bradley RS, Cowin P, Brown AMC (1993) Expression of Wnt-1 in PC12 cells results in 

modulation of plakoglobin and E-cadherin and increased cellular adhesion. J Cell Biol 

123: 1857–1865. 

61.  Jones AE, Price FD, Le Grand F, Soleimani VD, Dick SA, Megeney LA, Rudnicki MA 

(2015) Wnt/β-catenin controls follistatin signalling to regulate satellite cell myogenic 

potential. Skelet Muscle 5:. 

62.  Armstrong DD, Esser K a (2005) Wnt/β-catenin signaling activates growth-control genes 

during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289: 

C853–C859. 

63.  Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F (2011) Wnt4 activates the 

canonical β-catenin pathway and regulates negatively myostatin: functional implication in 

myogenesis. Am J Physiol Physiol 300: C1122–C1138. 

64.  Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K 

(2008) Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal 

muscle regeneration. J Cell Sci 121: 2939–2950. 

65.  Gómez-Orte E, Sáenz-Narciso B, Moreno S, Cabello J (2013) Multiple functions of the 

noncanonical Wnt pathway. Trends Genet 29: 545–553. 

66.  Wada H, Okamoto H (2009) Roles of noncanonical Wnt/PCP pathway genes in neuronal 

migration and neurulation in zebrafish. Zebrafish 6: 3–8. 

67.  Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+pathway A new 



 

79 
 

vertebrate Wnt signaling pathway takes shape. Trends Genet 16: 279–283. 

68.  Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, Ng KH, Kawakami T 

(2012) Differential expression of canonical and non-canonical Wnt ligands in 

ameloblastoma. J Oral Pathol Med 41: 332–339. 

69.  Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA (2009) Wnt7a Activates the 

Planar Cell Polarity Pathway to Drive the Symmetric Expansion of Satellite Stem Cells. 

Cell Stem Cell 4: 535–547. 

70.  Farina NH, Hausburg M, Betta ND, Pulliam C, Srivastava D, Cornelison DDW, Olwin 

BB (2012) A role for RNA post-transcriptional regulation in satellite cell activation. Skelet 

Muscle 2:. 

71.  Micklem DR (2000) Distinct roles of two conserved Staufen domains in oskar mRNA 

localization and translation. EMBO J 19: 1366–1377. 

72.  de Morrée A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, Quarta M, 

Biressi S, Rando TA (2017) Staufen1 inhibits MyoD translation to actively maintain 

muscle stem cell quiescence. Proc Natl Acad Sci 201708725. 

73.  Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, 

Massimi M, Falconi M, et al. (2008) The Fragile X Syndrome Protein Represses Activity-

Dependent Translation through CYFIP1, a New 4E-BP. Cell 134: 1042–1054. 

74.  Fujita R, Zismanov V, Jacob JM, Jamet S, Asiev K, Crist C (2017) Fragile X mental 

retardation protein regulates skeletal muscle stem cell activity by regulating the stability of 

Myf5 mRNA. Skelet Muscle 7:. 



 

80 
 

75.  Dubé M, Huot ME, Khandjian EW (2000) Muscle specific fragile X related protein 1 

isoforms are sequestered in the nucleus of undifferentiated myoblast. BMC Genet 1:. 

76.  Tamanini F, Willemsen R, Van Unen L, Bontekoe C, Galjaard H, Oostra BA, Hoogeveen 

AT (1997) Differential expression of FMR1, FXR1 and FXR2 proteins in human brain 

and testis. Hum Mol Genet 6: 1315–1322. 

77.  Evans TL, Blice-Baum AC, Mihailescu MR (2012) Analysis of the Fragile X mental 

retardation protein isoforms 1, 2 and 3 interactions with the G-quadruplex forming 

semaphorin 3F mRNA. Mol Biosyst 8: 642–649. 

78.  Lu R, Wang H, Liang Z, Ku L, O’Donnell WT, Li W, Warren ST, Feng Y (2004) The 

fragile X protein controls microtubule-associated protein 1B translation and microtubule 

stability in brain neuron development. Proc Natl Acad Sci 101: 15201–15206. 

79.  Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S (2017) Fragile X 

syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 43:. 

80.  Coffee RL, Tessier CR, Woodruff EA, Broadie K (2010) Fragile X mental retardation 

protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P 

or FXR2P. Dis Model Mech 3: 471–485. 

81.  Chen E, Joseph S (2015) Fragile X mental retardation protein: A paradigm for 

translational control by RNA-binding proteins. Biochimie 114: 147–154. 

82.  Darnell JC, Mostovetsky O, Darnell RB (2005) FMRP RNA targets: Identification and 

validation. Genes, Brain Behav 4: 341–349. 

83.  Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia 



 

81 
 

A, Chen C, Clain D, et al. (2011) Structure-function studies of FMRP RGG peptide 

recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18: 796–804. 

84.  Wilson DN, Cate JHD (2012) The structure and function of the eukaryotic ribosome. Cold 

Spring Harb Perspect Biol 4: 5. 

85.  Jackson RJ, Hellen CUT, Pestova T V. (2010) The mechanism of eukaryotic translation 

initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127. 

86.  Meintjes EJ, Willemsen R, Kirkpatrick LL, Niuewenhuizen IM, Hoogeveen-Westerveld 

M, Verweij M, Reis S, Bardoni B, Hoogeveen AT, Oostra BA, et al. (2004) Fxr1 

knockout mice show a striated muscle phenotype: Implications for Fxr1p function in vivo. 

Hum Mol Genet 13: 1291–1302. 

87.  Huot M-E, Bisson N, Davidovic L, Mazroui R, Labelle Y, Moss T, Khandjian EW (2005) 

The RNA-binding Protein Fragile X-related 1 Regulates Somite Formation in Xenopus 

laevis. Mol Biol Cell 16: 4350–4361. 

88.  Bolster DR, Kimball SR, Jefferson LS (2003) Translational control mechanisms modulate 

skeletal muscle gene expression during hypertrophy. Exerc Sport Sci Rev 31: 111–116. 

89.  Moser B, Hochreiter B, Herbst R, Schmid JA (2017) Fluorescence colocalization 

microscopy analysis can be improved by combining object-recognition with pixel-

intensity-correlation. Biotechnol J 12:. 

90.  Schmidt EK, Clavarino G, Ceppi M, Pierre P (2009) SUnSET, a nonradioactive method to 

monitor protein synthesis. Nat Methods 6: 275–277. 

91.  Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A (2005) Proteome 



 

82 
 

Dynamics during C2C12 Myoblast Differentiation. Mol Cell Proteomics 4: 887–901. 

92.  Chassé H, Boulben S, Costache V, Cormier P, Morales J (2017) Analysis of translation 

using polysome profiling. Nucleic Acids Res 45: e15. 

93.  Kühn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim 

Biophys Acta - Gene Struct Expr 1678: 67–84. 

94.  Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee MG, Lee YH (2016) Knockdown of RPL9 

expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB 

signaling axis. Int J Oncol 49: 1953–1962. 

95.  Hartsock A, Nelson WJ (2008) Adherens and tight junctions: Structure, function and 

connections to the actin cytoskeleton. Biochim Biophys Acta - Biomembr 1778: 660–669. 

96.  Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: 

Update on effectors and inhibitors. Cancer Treat Rev 62: 50–60. 

97.  Nelson WJ, Nusse R (2004) Convergence of Wnt, β-Catenin, and Cadherin pathways. 

Science (80- ) 303: 1483–1487. 

98.  Abraham ST (2016) A role for the Wnt3a/β-catenin signaling pathway in the myogenic 

program of C2C12 cells. Vitr Cell Dev Biol - Anim 52: 935–941. 

99.  Sonenberg N, Hinnebusch AG (2009) Regulation of Translation Initiation in Eukaryotes: 

Mechanisms and Biological Targets. Cell 136: 731–745. 

100.  Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS (2010) Lithium 

ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of Fragile 

X syndrome. Biochem Pharmacol 79: 632–646. 



 

83 
 

101.  Chen EY, DeRan MT, Ignatius MS, Grandinetti KB, Clagg R, McCarthy KM, Lobbardi 

RM, Brockmann J, Keller C, Wu X, et al. (2014) Glycogen synthase kinase 3 inhibitors 

induce the canonical WNT/ -catenin pathway to suppress growth and self-renewal in 

embryonal rhabdomyosarcoma. Proc Natl Acad Sci 111: 5349–5354. 

102.  Mossman BT, Gilbert R, Doherty J, Shatos MA, Marsh J, Cutroneo K (1986) Cellular and 

molecular mechanisms of asbestosis. Chest 89: 160S–161S. 

103.  Sartorelli V, Fulco M (2004) Molecular and Cellular Determinants of Skeletal Muscle 

Atrophy and Hypertrophy. Sci Signal 2004: re11-re11. 

104.  Wang J, Chen T, Shan G (2017) miR-148b Regulates Proliferation and Differentiation of 

Neural Stem Cells via Wnt/β-Catenin Signaling in Rat Ischemic Stroke Model. Front Cell 

Neurosci 11: 329. 

105.  Kim J, Lee J (2017) Role of transforming growth factor-β in muscle damage and 

regeneration: focused on eccentric muscle contraction. J Exerc Rehabil 13: 621–626. 

106.  Fushimi S, Nohno T, Nagatsuka H, Katsuyama H (2018) Involvement of miR-140-3p in 

Wnt3a and TGFβ3 signaling pathways during osteoblast differentiation in MC3T3-E1 

cells. Genes to Cells 23: 517–527. 

107.  Duru N, Zhang Y, Gernapudi R, Wolfson B, Lo PK, Yao Y, Zhou Q (2016) Loss of miR-

140 is a key risk factor for radiation-induced lung fibrosis through reprogramming 

fibroblasts and macrophages. Sci Rep 6:. 

108.  Neugebauer KM (2017) Special focus on the Cajal Body. RNA Biol 14: 669–670. 

109.  Dury AY, El Fatimy R, Tremblay S, Rose TM, Côté J, De Koninck P, Khandjian EW 



 

84 
 

(2013) Nuclear Fragile X Mental Retardation Protein Is localized to Cajal Bodies. PLoS 

Genet 9:. 

110.  Pijnappel WWMP, Kolkman A, Baltissen MPA, Heck AJR, Timmers HTM (2009) 

Quantitative mass spectrometry of TATA binding protein-containing complexes and 

subunit phosphorylations during the cell cycle. Proteome Sci 7:. 

111.  Bai D, Zhang J, Xiao W, Zheng X (2014) Regulation of the HDM2-p53 pathway by 

ribosomal protein L6 in response to ribosomal stress. Nucleic Acids Res 42: 1799–1811. 

112.  Gou Y, Shi Y, Zhang Y, Nie Y, Wang J, Song J, Jin H, He L, Gao L, Qiao L, et al. (2010) 

Ribosomal protein L6 promotes growth and cell cycle progression through upregulating 

cyclin E in gastric cancer cells. Biochem Biophys Res Commun 393: 788–793. 

113.  Lai K-M V., Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, 

Economides AN, Yancopoulos GD, Glass DJ (2004) Conditional Activation of Akt in 

Adult Skeletal Muscle Induces Rapid Hypertrophy. Mol Cell Biol 24: 9295–9304. 

114.  Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human 

cancer. Oncogene 24: 7455–7464. 

 

 

 

 



 

85 
 

Supplementary Figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAPI FMRP-FITC 

β-Catenin-TRITC Merge 

Figure S1: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts 
corresponding to Figure 9. C2C12 myogenic cells were grown under high serum growth 
conditions The subcellular localization pattern of β-catenin and FMRP was observed by 
immunostaining against β-catenin and FMRP followed by confocal fluorescence microscopy.  
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DAPI FMRP-FITC 

Merge β-Catenin-TRITC 

Figure S2: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts 
corresponding to Figure 9. C2C12 myogenic cells were grown under high serum growth 
conditions followed by serum withdrawal for a period of 24h to induce differentiation. The 
subcellular localization pattern of β-catenin and FMRP was observed by immunostaining 
against β-catenin and FMRP followed by confocal fluorescence microscopy.  
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DAPI 
 

FMRP-FITC 

Merge β-Catenin-TRITC 

Figure S3: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts 
corresponding to Figure 9. C2C12 myogenic cells were grown under high serum growth 
conditions followed by serum withdrawal for a period of 48h to induce differentiation. The 
subcellular localization pattern of β-catenin and FMRP was observed by immunostaining 
against β-catenin and FMRP followed by confocal fluorescence microscopy.  
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DAPI FMRP-FITC 

Merge β-Catenin-TRITC 

Figure S4: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts 
corresponding to Figure 9. C2C12 myogenic cells were grown under high serum growth 
conditions followed by serum withdrawal for a period of 72h to induce differentiation. The 
subcellular localization pattern of β-catenin and FMRP was observed by immunostaining 
against β-catenin and FMRP followed by confocal fluorescence microscopy.  
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DAPI 
FMRP-FITC 

Merge β-Catenin-TRITC 

Figure S5: Subcellular localization pattern of β-catenin and FMRP in C2C12 myoblasts 
corresponding to Figure 9. C2C12 myogenic cells were grown under high serum growth 
conditions followed by serum withdrawal for a period of 96h to induce differentiation. The 
subcellular localization pattern of β-catenin and FMRP was observed by immunostaining 
against β-catenin and FMRP followed by confocal fluorescence microscopy.  
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Figure S6: Subcellular localization pattern of β-catenin and FMRP in primary myoblasts 
corresponding to Figure 10. Primary myoblasts cells were grown under high serum 
conditions (GM). The subcellular localization pattern of β-catenin and FMRP was observed 
by immunostaining against β-catenin and FMRP followed by confocal fluorescence 
microscopy. 
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Figure S7: Subcellular localization pattern of β-catenin and FMRP in primary myoblasts 
corresponding to Figure 10. Primary myoblasts cells were grown under high serum 
conditions followed by serum withdrawal for a period of 24h to induce differentiation. The 
subcellular localization pattern of β-catenin and FMRP was observed by immunostaining 
against β-catenin and FMRP followed by confocal fluorescence microscopy. 
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Extended Material and Methods 

 

NP-40 Lysis Buffer Recipe (25mL): 

 

1) 1.25ml of 1M Tris (PH=8) 

2) 0.75ml of 5M NaCl 

3)1.25ml of 10% NP-40 

4) 100ul of 0.5M EDTA 

5) 5ml of 0.5M NaF 

6) 2.5ml of 0.1M Sodium Pyrophosphate 

*Equlibriate volume to 25ml with ddH2O. 

*Per 1ml of NP-40 lysis buffer add 10ul 0.1M Na3VO4, 10ul 0.1M PMSF and protease 
inhibitor of choice. 
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Western Blotting Protocol: 

 

1) Add cell lysate to 3X  Laemmli buffer. Dilute as necessary with NP-40 lysis buffer to reach 
1X dilution. Boil at 95°C for 5 minutes to fully denature proteins. 

Per 8ml Laemmli Buffer: add 0.7ml 1M Tris-Hcl [PH=8], 2.4ml glycerol, 2.4ml of 10% 
SDS, 0.6ml of Beta-Mercaptoethanol, Bromo blue dye) 

 

2) Make an SDS PAGE gel according to the proper proportions of ddH2O, polyacrylamide, 
SDS, APS, Tris and TEMED required. SDS PAGE gel should contain a separating section and 
a stacking section for loading samples. 

 

3) Load gel into the apparatus containing the electrodes. Add 1X Laemelli buffer to the 
apparatus so that current can travel through the gel. Run between 120V-160V for 
approximately 1hr or until dye has almost migrated down the gel. 

10X Laemelli Buffer: 30.3g Tris-HCl, 144.2g Glycine, 10g SDS in 1L of ddH2O 

 

4) Take the gel out of the electrode apparatus and add an activated PVDF membrane (use 
methanol) on top of the gel. Load the gel and PVDF membrane into the transfer sandwich and 
place into the electrode apparatus. Add the appropriate amount of Transfer buffer to the 
apparatus for current to travel. Run at 100V for 1hr. Optional: Place on ice for optimal 
transfer of proteins. 

Transfer Buffer: 100ml of 10X Transfer Buffer (per 1L 10X Transfer Buffer, 30.3g Tris, 
144g Glycine), 100ml of methanol and 800ml of ddH2O. 

 

5) Block with 5% milk solution in PBS for 30min and then wash 3 times using PBS. Add 
primary antibody of interest overnight followed by a 3 washes with PBS. Add HRP 
conjugated secondary antibody for 2h followed by 3 washes with PBS. Visualize the film in a 
dark room. 
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TCA Precipitation Protocol 

 

1) Add a 100ul of a 100% TCA solution (dissolved in ddH2O) per 1ml of protein sample. 
Vortex the sample.  

 

2) Precipitate the protein for a period of 30 min on ice. 

 

3) Centrifuge samples at 10,000G for 15 min at 4°C. 

 

4) Aspirate the supernatant without disrupting the white pellet at the bottom of the tube. 

 

5) Let the pellet dry and then dissolve it in 2X SDS PAGE loading buffer. 
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