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ABSTRACT

Mount Polley Tailings Storage Facility (MP-TSF) failed on its perimeter embankment on August
4, 2014. The failure released millions of m? of toxic tailings, supernatant water and construction
materials to downstream. After the failure incident, the Government of British Columbia
established an Independent Review Panel (IRP) to investigate the incident. The final report was
published on January 30, 2015. IRP concluded that a weak Glaciolacustrine (GLU) layer, which
was not detected at the time of site investigation, was the cause of the failure. The designers did
not consider this weak layer during the design phase. Consequently, the computed design Factor
of Safety was higher than it should have been (Morgenstern et al. 2015). The motivation of this
research was to verify the findings of IRP by conducting a numerical analysis using industry-
standard geotechnical finite element analysis software. The finite element models indeed
confirmed that the foundation of the perimeter embankment would have failed along the weak
GLU layer because of excessive shear deformation in the layer. Additionally, the finite element
models also highlighted the importance of choosing correct relative stiffness values for various
foundation layers for a realistic development of failure mechanisms for stability analyses done
using the Strength Reduction technique. This observation is novel and is of considerable
practical significance because designers pay little attention to obtaining stiffness parameters for
foundation soils and focus more on obtaining realistic shear-strength parameters. A numerical
parametric study conducted to investigate potential ways of preventing failure of the perimeter

embankment revealed downstream slope flattening to be the most effective solution.

Keywords: Mount Polley tailings dam failure, slope stability, foundation failure; finite element

modelling, Strength Reduction technique, shear strength, relative stiffness.
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1 INTRODUCTION

Since the advent of modern technology, the world has seen a rapid growth in mineral extraction
from mines all over the world. Only a small percentage of valuable minerals and materials,
however, can be extracted from the large volume of excavated rocks and soils. The large amount
of remaining by-products, termed as the ‘tailings’, are disposed into the impoundment facilities,
which generally consist of two components: tailings lagoons and tailings dams (Sarsby 2013;
Vick 1990). The demand for various precious metals and minerals has been increasing
exponentially; however, high quality metal ores have become sparse due to heavy exploitation.
The mines with these sub-par quality ores produce huge amount of tailings, which are required to

be safely stored within the impoundments.

Tailings dams are built to retain tailings within their embankments (Penman 2001; Vick 1990).
Although the basic principles of earth dam engineering are shared by tailings dams and water
retention dams, the differences in terms of some added considerations in tailings dams regarding
material sourcing, piping, filter, geochemistry, structural support and multi-staging in
construction may have contributed to the higher failure percentage of the tailings dams (McLeod
and Murray 2003; Mittal and Morgenstern 1975). The failure analyses of the tailings dams are
very common in literature. Each failure mode review gives valuable engineering insights, which

help to improve future engineering practices.

The present study focuses on the numerical review of Mount Polley Tailings Storage Facility

(MP-TSF) failure, which happened on August 4, 2014.



1.1 Overview of Mount Polley Tailings Storage Facility (MP-TSF)

MP-TSF is an open pit copper-gold (metal ore) mining facility with an underground component
located in the Cariboo region of the Southern Central zone of British Columbia, Canada (Figure
1). The total mining area is 18,794 ha which is owned by Imperial Metals and operated by its
subsidy: Mount Polley Mining Corporation (MPMC). The mining mills started operation in
1997. Since then, it has been running continuously, except for a 3-years hiatus in production
between 2002 and 2005, with a maximum tailings production capacity of 20,000 tonnes per day

(Imperial Metals 2015; Morgenstern et al. 2015).

D

Mount Polley

Figure 1: Location of Mount Polley on Canadian Map (Modified from Atlas Canada)



The subsurface soil layers of the mine site consist of Surficial Glacial Till, Glaciolucastrine
sediments, and Lower Tills over a weak bedrock layer (Knight Piésold Consulting 2005;
Morgenstern et al. 2015). The thicknesses and sedimentary compositions of these soil layers vary
over the mill site. The area is located on the low seismic zone in the Canadian Seismic Hazard
Map (version 2010; Source: EarthquakesCanada.nrcan.gc.ca). Based on historical data, the
maximum seismic magnitude of earthquake for the area has been set as 6.5. (Basham et al. 1982;

Cassidy et al. 2010).

Mean annual temperatures and precipitation are obtained from the nearest weather stations at
Likely and Barkerville (Data source: www.climate.weather.gc.ca). The mean annual temperature
is 4° C with the extreme maximum of 33.9° C and the extreme minimum of -37° C. The average
frost free days range from 199 to 244 (Knight Piésold Consultant 1997). The mean annual
precipitation in MP-TSF area is 740 mm. The annual evaporation is estimated as 423 mm
(Knight Piésold Consulting 2005). As per Thornthwaite Climate Classification (Thornthwaite

1948), the climate of the MP-TSF area is humid.

A 3D overview of the MP-TSF is shown in Figure 2. The main mining mill area, consisting of a
number of pits and stockpiles, is sandwiched between two lakes: Polley Lake and Boot Jack
Lake. The produced tailings materials are transported in ‘slurry’ form by means of pipelines to a
tailings facility located approximately 1.5 km to the south of the main mining area (end-to-end
distance). This tailings facility was originally designed to contain approximately 85 million tons

of tailings materials (Knight Piesold Consulting 2005).



3D View Looking Northeast

Figure 2: 3D overview of MP-TSF (Imperial Metals 2015)

The tailings facility is built with 3 embankments — main, perimeter and south — with a naturally
elevated ground covering the other side (Figure 3). The original design perceived nine stages of
an embankment construction up to an elevation of 965 m. The final average heights of the main,
perimeter and south embankments are about 55 m, 34 m and 25 m, respectively. The top
elevations of each stage of the dam were kept uniform. This allowed the true height of the dam to
be different in different locations to match the undulation of the natural ground of the site. The
Modified Centerline Method was adopted for the construction of all the stages (details on the
tailings dam construction methods are provided in Chapter 2: Literature review). The dam body,
however, had varying cross sections all over the embankments (Knight Piesold Consultant 2005;

Morgenstern et al. 2015).

The components of the drainage systems consisted of foundation drains, chimney drains,
longitudinal drains, outlet drains, and upstream toe drains (Knight Piésold Consultant 1997). The

seepage collection ponds were excavated in the immediate downstream of all the dams. These




seepage collection ponds collected water from the embankment drain systems and from local

runoff. The ponds were noted to be working properly until the failure event.
1.1.1 The Failure Event

The perimeter embankment of the MP-TSF failed after the completion of 9" stage construction,
between the survey stations 4+200 and 4+300 on August 4, 2014 (Figure 3). At the time of
failure, the 10" stage design documents, proposing an additional 6.5 m increase in embankment
height, were sent to the regulator for approval. The physical damage of the breach included
sudden erosion of the dam body and toxic tailings material, which flowed towards Polley Lake,
Hazeltine Creek, and Quesnel Lake. Two Google Earth images (Figure 4) clearly demonstrate
the pollution caused by the failure in the nearby lakes. It was estimated that the failure released
about 10.5 million cubic meter of supernatant water, 7.3 million m* of tailing solid, 6.5 million
m?3 of interstitial water and 0.6 million m® of construction materials towards downstream

(Imperial Metals 2015).

The monitoring data at the mine site did not note any excess precipitation prior to the failure. No
abnormal activity in the dam body in terms of horizontal translation, dipping of crest or
piezometric anomaly was found in the log book or witness’s details (Morgenstern et al. 2015).
The post failure aerial images, taken just after failure from upstream and downstream directions,

show the extent of horizontal movement of the tailings materials.
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Figure 3: Layout of MP-TSF (as per Morgenstern et al. 2015)

After the failure incident, the British Columbia government established an Independent Review
Panel (IRP) to investigate the matter (Morgenstern et al. 2015). The IRP reviewed available
design documents, reports and other relevant documents as well as conducted a separate
subsurface investigation to obtain soil properties. The final report was published on January 30,
2015. Using the Limit Equilibrium Method of stability analyses, they concluded that a weak
Glaciolacustrine (GLU) layer was the cause of the failure. The designers did not consider this
weak layer during the design phase as they failed to recognize the complexity of sub-glacial and
pre-glacial geological environment in the failed area. As a result, the obtained Factor of Safety
(FOS) was higher than it should have been. The omission of this GLU layer in design

subsequently caused the dam to fail (Morgenstern et al. 2015).
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(b) After failure on August 06, 2014

Figure 4: Google Earth images of MP-TSF before and after failure



(b) Looking towards downstream

Figure 5: Post-failure images of the MP-TSF (source: Morgenstern et al. 2015)



1.2 Objective and Scope of the Research

The general objective of this study is to achieve a better understanding of the factors that can

lead to the failure of tailings dams. The specific research objectives are as follows:

e To investigate the dam breach incident of MP-TSF with the viewpoint of verifying the
findings by Morgenstern et al. (2015).
e To conduct a parametric back study of Mount Polley tailings dam to test different ways in

which the failure could have been prevented.

The present study investigates the geo-structural stability of the failed dam; however, the
hydraulic stability analysis encompasses a few assumptions. The effects of unsaturated geo-
hydrology, such as capillary rise, have not been considered in the analyses. To simplify the
analyses, the deposition rate of the tailings into the impoundments and real time climatic
boundary conditions were not also considered. The stability is presented in terms of the Factor of
Safety (FOS), which is generally defined as the ratio of available shear strength in the soil to the
mobilized shear stress or the ratio of forces and/or moments resisting failure to forces and/or
moments causing failure. Stability is assessed using both the traditional limit-equilibrium-based
method (LEM) as well as using finite-element-based Strength Reduction Method (SRM).

Technical details of these two methods are presented in Chapter 2.

The accuracy of the study heavily relies on various published design, soil investigation and
review reports (e.g. AMEC Consultant 2013a,b; Morgenstern et al. 2015) because no lab
investigation has been performed to obtain the engineering parameters of the soil. The missing
data are assumed from the literature by using appropriate engineering judgements. Pre and post

failure observations are also considered when setting boundary conditions for simulations.



Morgenstern et al. (2015) noted from the existing monitoring logs that no earthquake or
excessive precipitation events had preceded the failure events. Morgenstern et al. (2015) also
noted that all the piezometers, inclinometers and seepage collections ponds were working
properly. Their post-failure site investigation revealed no signs of internal erosions and tension
cracks. So, the effects of these parameters were incorporated accordingly, and where possible

were omitted, in the current simulations.

A commercially available geotechnical FEM software suite, Geo-Studio 2012, was used in this
research. Two components of Geo-Studio 2012: SEEP/W and SIGMA/W were used for finite
element simulations. Strength Reduction Method (SRM) was used for stability analysis using the
finite element method. SLOPE/W was used to compare the results from the Limit Equilibrium
Method (LEM), where necessary. The FOS values were assessed in accordance with the
recommended FOS values of 1.3 in the operational stages and 1.5 after the closure provided by
the Canadian Dam Association (2012). The SRM results were improved by optimizing meshes as

well as spatial and temporal boundary conditions.

1.3 Thesis Structure

The thesis comprises 5 (five) chapters as follows:

Chapter 1 (this chapter) presents an introduction to the thesis. It provides the background of the
failed tailings dam at Mount Polley Tailing Storage Facility (MP-TSF), along with the failure
event and consequences of the failure. This introductory chapter also provides the objectives and

the scope of the present study.
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Chapter 2 constitutes relevant literature on tailings, construction methods and failure
mechanisms tailings dams followed by failure prevention techniques. A brief discussion on
analysis methods is provided in this chapter. Three past case studies of failed tailings dams

complement this chapter.

Chapter 3 provides a brief overview of numerical methods in geotechnical engineering
perspectives. Verification of the existing designs by numerical analysis is also present in this

chapter. The chapter ends with a summary of the results.

Chapter 4 provides results of the parametric study on the dam in which the failure could have
been prevented. The most suitable modification that could have prevented the failure is also

suggested.

Conclusions of research outcomes and recommendations are summarized in Chapter 5. This

chapter also has suggestions for further research.

A list of references completes this thesis.
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2 LITERATURE REVIEW

This chapter provides an in-depth literature review on tailings, tailings dams and their
construction methods. The potential failure modes in tailings dams along with the stability
improvement techniques are also discussed in this chapter. The chapter concludes with the brief
discussions on stability analysis methods: Limit Equilibrium Method (LEM) and Finite Element

Method (FEM).

2.1 Tailings

Tailings are the waste products of the mining industry. They consist of the ground-up rocks that
remain after the minerals have been removed from the ore (Vick 1990). Ore quality has
deteriorated through the years as the best sources have become exhausted, causing a
corresponding increase in the amount of tailings left after the extraction of each ton of metal
(Sarsby 2013). Generally, any waste materials produced by the mining activities are considered
as tailings; however, the definition of tailings could have been narrowed down to the wastes
which are only generated by the ore processing. Because, the wastes, which are produced by
other activities such as near-surface cut and fill or waste rocks, might require lesser attention

during disposal due to their relatively ‘tame’ chemical composition.

The process of tailings generation and disposal has a number of steps, which are shown in Figure
6. The selection of tailing disposal method is generally driven by topography, climatic,
operational, economic, geotechnical or geochemical considerations (Kujawa 2011). Tailings are
disposed mainly in two ways: (i) Underground disposal and (ii) On-surface disposal in the form

of mine dump, waste piles and impoundments (Priscu 1999; Vick 1990). Underground disposal

12



technique in terms of backfilling assists the miners by giving working floor, wall support and
maximize ore recovery. Underground disposal is not independent of mining planning or
operation because of the possible groundwater contamination, however. (Thomson et al. 1986;

Vick 1990).

Crushlng

Grlndlng

|

Leaching Concentration Heating

\)ewaterlng /

Tailings Slurry disposals

Figure 6: Procedures in tailings productions (after Vick 1990)

In surface disposal method, produced tailings are transported in slurry forms by conduits or
channels to the impoundments (Vick 1990). The impoundments are surrounded by tailings dams
and embankments. Tailings can be discharged into the impoundments either in sub-aqueous
(below water) or sub-aerial (above the water line, on the ground or on the beach) mode. Single
point discharge and spigots (multipoint) discharges are used to dispose the tailings into the
impoundments. Figure 7 provides a graphical presentation of both of the disposal methods. In
spigotting, trial and error procedure might be required to determine the ideal spacing between the
discharge points. In single point discharge method, the discharge point may need to move with

time to form a uniform beach along the embankments (US EPA 1994; Vick 1990).
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Figure 7: Tailings disposal methods. (a) Spigotting (b) Single point discharge (after Vick 1990)

2.2 Engineering Properties of Tailings

Tailings are usually angular, bulky, grained sand and silt size particles; except for the tailings
from the oil sands which are sub-round or round (Sarsby 2013). This angularity is a common
feature due to the crushing of ore materials (Bjelkevik and Knutsson 2005). However,
weathering and transportation processes of the tailings reduce the angularity in the particles
(Rodriguez et al. 2014). The chemical and particle composition of the tailings materials effect all
the mechanical properties of the tailings (Vick 1990). The grain size and the clay content control
void ratio which is typically ranges from 0.6 to 0.9 for tailings sands; and, from 0.7 to 1.3 for

slimes with low to moderate plasticity. Density of the tailings shows scattered values based on
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the source metal; generally between 45 and 113 Ib/ft3. Few slimes, however, have lower density

values than this range (Vick 1990).

2.2.1 Hydraulic Conductivity in Tailings

Hydraulic Conductivity in tailings can range widely due to the variability of the grain size
distribution, deposition method, plasticity (Vick 1990), chemical composition of the tailings
materials and stress history (Alsharedah 2015). Average tailings hydraulic conductivity
decreases with increasing fine contents as porosity decreases. The classic Hazen’s formula,
shown below, can be used to calculate the average tailings hydraulic conductivity (Mittal and

Morgenstern 1975).

k = Cdio? (Eq. 2.1)

Where, k = average hydraulic conductivity (cm/s); dio is the grain size in millimeter for which

10% particles pass by weight and C is the correlating constant.

Alsharedah (2015) and Zardari (2011) reported from Bjelkevik and Knutsson (2005) that any
empirical formula for predicting the hydraulic conductivity for tailings could be erroneous; the
calculated values mostly provide overestimation. Hydraulic conductivity in tailings shows great
variation with depth. For the sand deposits, a decrease of 5 orders of magnitude is typical at
greater depths (Sarsby 2013). Due to the layered manner of the tailings deposition, significant
variation in hydraulic conductivity between horizontal and vertical directions is observed.
Typically kn/ky values range 2-10 for reasonably beached sand deposits; and 100 or more for

clean sands and slimes (Sarsby 2013; Vick 1990). In the literature, the typical values of hydraulic
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Conductivities in tailings sands and slimes were found between 1x10° and 1x10® cm/s (Blight

2010; Mittal and Morgenstern 1975; Qiu and Sego 2001; Sarsby 2013; Vick 1990).

2.2.2 Compressibility

Both tailings sand and slimes are more compressible than most natural soils due to their
depositional stage, angularity and grading characteristics (Vick 1990). The effects of stress
history on compressibility is similar to that on natural clays (Lambe and Whitman 1969). One
dimensional compression (consolidation) test is commonly used to evaluate the compressibility
of the tailings (Qiu and Sego 2001; Vick 1990). Tailings do not often show ‘recompression’ and
‘virgin compression portion’ of the loading curve, however. The compression index, C. ranges

between 0.05 to 0.10 for sands and 0.20 to 0.30 for the slimes (Vick 1990).

2.2.3 Consolidation

Consolidation is the time dependant settlement of soil resulting from the expulsion of water from
the soil pores. The consolidation consists of primary consolidation and secondary consolidation
or creep. Primary consolidation is the volume change of the fine-grained soil caused by
expulsion of water from the voids and the transfer of loads from the water to soil particles.
Secondary compression is a result of particle orientation adjustment in the soil fabric after the
primary consolidation has ended (e.g.; Das 2010). However, a different hypothesis exists which
states that the primary and secondary consolidation start simultaneously after the application of
the load (e.g.; Degago et al. 2011). The technical debate between different hypotheses is out of

the scope of this study.
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Primary consolidation of tailings sands occurs so rapidly that it is difficult to measure in the
laboratory (Vick 1990). A few consolidation data are available which suggest that the coefficient
of consolidation, Cy varies from about 5E-01 to 102 cm/s for beach and sand deposits; and 10 to

10 cm/s from slimes (Sarsby 2013). Table 1 provides the values of C, from different sources.

Table 1: Typical values of Coefficient of Consolidation, Cv (after Sarsby 2013)

Source Sands (m?/year) | Slime (m?/year)
Vick (1990) - 0.3-30
Genevois and Tecca (1993) - 60

Volpe (1979 1200 -

Mittal and Morgenstern (1975) | - 3-300

Nelson et al. (1977) 320 000 -

Chandler and Tosatti (1995) - 95

Routh (1984) 39-142 11-43

Qiu (2001) 32-104 0.3-14

2.2.4 Shear Strength

Drained shear strength occurs when the pore water pressure dissipates (e.g.; Das 2010). Tailings
have high drained shear strength (effective stress) due to its high degree of particular angularity.
It is not uncommon to have an effective angle of internal friction, ®’ higher than that of natural
soils at same density and stress level (Vick 1990). For tailings, cohesion excerpts are generally

considered as zero (Vick 1990). Typical values for @’ are shown in Table 2.

Table 2: Typical values for drained shear strength (after Sarsby 2013)

Material P’ Effective stress | Source
range (KPa)
Copper sands | 34 0-816 Mittal and Morgenstern, 1975
Copper sands | 33-37 0-672 Volpe, 1975
Copper slimes | 33-37 0-672 Volpe, 1975
Gold slimes 20-40.5 960 Blight and Steffen, 1979
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Stress level plays an influential role for @’. Even at low effective stress levels, the point to point
contacts of the angular grains are very high which produce particle crushing (Alsharedah 2015;
Vick 1990). Hence, that results in curvature of the strength envelope. Figure 8 shows that @’
shows curvature of the envelope for loose sands, resulting the range from 41° to 29°. Figure 9
shows the variation of @’ with the increase of effective stress. At higher stresses, the particle

crushing and dilatancy emerge which reduces the @’ (Vick 1990).
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Undrained condition occurs when the pore water pressure cannot drain rapidly from the soil (e.g.
Das 2010). When the rate of dissipation is slower than the development of the pore water
pressure by the loading, the volume change will not occur. For fine-grained soil like clay, the
pore water pressure increase makes the soil to exhibit flow-like behaviour. This mechanism is
called Static Liquefaction (e.g., Konrad and Watts 1995). This is not applicable for coarse-

grained soil as hydraulic conductivity is very high within coarse grained soils. However, during
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dynamic shaking of soil, the excess pore water develops so quickly that even the coarse grained
soil can show liquefaction. This mechanism is called dynamic liquefaction. (e.g.; Fourie et al.
2001; Ishihara et al. 2015; Konrad and Watts 1995; Stark and Mesri 1992). Sarsby (2013) stated
that tailings with 50%-60% relative density do not liquefy under 0.1-g acceleration. It is also
noted by Sarsby (2013) that the liquefaction only occurs in saturated zone, i.e. below the phreatic
surface. It is not uncommon, however, to have tailings with relative density 30%-50%. Such

tailings are prone to dynamic liquefaction during earthquakes.

Undrained shear strength is dependent on effective vertical stress on the soil. Stark and Mesri
(1992) described the relation between the undrained shear strength and the vertical effective

stress by the following simple equation.

Su: m* O"p (Eq 22)

Where, Sy is the undrained shear strength of a soil, o’y is the vertical effective stress and m is the
multiplication factor. Stark and Mesri (1992) stated that the value of the factor, m is 0.22;
however, many researchers proposed different values for the factor of m, ranging from 0.15 to
0.30 (Sarsby 2013). The undrained shear strength is commonly determined by consolidated
undrained test in the laboratory (e.g.; Das 2010). For the most tailings deposits, the total angle of
friction, @ ranges from 14° to 24° which is roughly less than half of the effective angle of
friction, ®@’(Vick 1990). A list of total angle of friction and total cohesion excerpts are shown in

Table 3.
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Table 3: Typical total stress parameter for Copper tailings (after Vick 1990)

Material Initial void | Total angle of | Total cohesion | Source
ratio, eo friction, @ (degree) | excerpt, Ct(KPa)

Copper tailings | 0.6 13-18 0-96 Volpe, 1979

Copper beach | 0.7 19-20 34-43 Wahler, 1974

Copper slimes | 0.6 14 62 Wabhler, 1974

Copper slimes | 0.9-1.3 14-24 0-19 Wahler, 1974

2.3 Tailings Dams

Tailings materials are retained on the earth surface with the help of tailings dams or
embankments; however, the design and construction of a tailings dam is highly site specific. On-
site topography, type of the mines, foundation condition, disposal method are among the factors
that influence the design of a tailings dams (Berghe et al. 2011; Sarsby 2013; US EPA 1994;

Vick 1990). Generally, two different types of tailings impoundment structures exist: (i) Retention

type and (ii) Raised Embankment type.

Retention type of tailings dam (Figure 10) is similar to the water retention dam in terms of soil
properties, surface and ground water controls and stability considerations. This type of dam is
built to its full height before the tailings disposal. Rapid drawdown condition is not experienced

by this type of dam,which makes it feasible for any type of impoundment with large run-off. (US

EPA 1994)

Coarse Fill

Figure 10: Conceptual drawing for Retention Tailings dam (modified from US EPA 1994)
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All the raised embankment types of dams start with a starter dike, followed by subsequent
raisings (Vick 1990). In the upstream method, subsequent raisings are constructed in upstream
direction (Figure 11). Tailings disposed in the impoundment form a beach. This method takes the
advantages of self-consolidated beach materials. Subsequent dykes are placed on these
consolidated beach materials. This procedure saves material costing. Hence this is the most
popular construction method in the mining industry. Upstream method is not favorable in many
cases, since its long term stability condition is uncertain. The location of phreatic line is critical
element of embankment stability. The faster raisings can develop excess pore water pressure in
the foundation which creates static liquefaction (Martin 1999; Vick 1990). This method is not
also recommended for the areas with high seismicity due to the dynamic liquefaction potential
failure (e.g.; Villavicencio et al. 2014). This is why this method is not preferable from the design

point of view although it gained huge popularity among the miners due to its economy.

........... v L. L
D Raising # 2 \ Coarse
P fill
Raising# 1 \
L Starter Dam \

Figure 11: Conceptual drawing for Upstream Tailings dam (modified from Vick 1990)

The downstream method is illustrated in Figure 12. Tailings are disposed at the back of the
starter dike and subsequent raisings are constructed in downstream direction. Impervious cores
and drainages system provide better control of phreatic line in downstream method. There is
limited restriction of raising rates, because subsequent dikes not dependent on the tailings

materials. Thus, this method provides the most stable embankment condition. However, this
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method requires careful advance planning. Because, the toe of the dam progresses outward with
each raisings, sufficient space must be left during the starter dike. Another major disadvantage of
this method is the requirement of comparatively large fill volume, which makes the dam costly.

(Sarsby 2013; Vick 1990)

Starter Dam Raising# 1 Raising & 2

Figure 12: Conceptual drawing for Downstream Tailings dam (modified from Vick 1990)

In the centerline method (Figure 13) the dam is raised in both upstream and downstream sides
simultaneously, keeping the centerline same for all the raisings. As the internal drainage zones
can be provided in this method, control of phreatic line is not sensitive to tailing beach
development. Nevertheless, the dams constructed using centerline method cannot retain large of
water as downstream method does. Centreline method provides a well balance between upstream
and downstream construction method as less fill required than downstream method for the
construction and raising rate is less restrictive than the upstream method. Centerline method also
gives good seismic resistance. Even if the upstream portion sitting on the tailings liquefies, the
central and downstream sides may remain stable. This is, however, valid if the material is

properly compacted and good internal drainage is provided (Vick 1990).

Water management in tailings dams is an important issue. A well-managed supernatant pond is

one of the most important procedures in managing a tailings storage facility. Inadequate control
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in supernatant pond may result in overtopping, increased pore water pressure, reduction in
freeboard, high seepage rate and embankment settlement (Engels and Dixon-Hardy 2012).
Decant tower and reclaim ponds are used to control the elevation of the supernatant pond. The
phreatic surface is controlled in design phase by zoning of materials based on permeability in

tailings dams and different zoning facilities (Vick 1990).

Raising # 2

Raising # 1

Starter Dam

Figure 13: Conceptual drawing for Centreline Tailings dam (modified from Vick 1990)

2.4 Tailings dam in Mount Polley Tailings Storage Facility (MP-TSF)

At MP-TSF, all three tailings dams: Main, Perimeter and South were constructed in modified
centreline method (AMEC Consultant 2013b). In modified centreline method, the dam is
gradually constructed along the centreline with a small tilt towards either to upstream or
downstream direction (Haile and Brouwer 1994). For MP-TSF, the core of the dam, which was
made of compacted till, had slight upstream inclination. The construction of the starter dam
began in 2005. After the 9 stages of construction, the maximum dam elevation reached 965 m.
True height varied from 35 m to 50 m along the embankments (AMEC Consultant 2013b;
Morgenstern et al. 2015). Significant freeboard was maintained throughout the dam lifetime; a

freeboard of 2.3 m was recorded just before the failure. An upstream toe drain conveyed the
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water flows to the downstream seepage collection ponds, which had been reported to be working

fine till the failure (Morgenstern et al. 2015).

2.5 Failure Mechanism in Tailings Dams

“A failure or fault is the cessation of the ability of a component” (Santos et al. 2012). The failure
rate in tailings dams is significantly high: 1.2% whereas the failure rate in traditional water
retention dams is just 0.1% (Azam and Li 2010). Since the start of the past century, there have
been more than 225 tailings dam failures reported in the literature (Azam and Li 2010; Rico et al.
2008; WISE Uranium Project 2016). It is also perceived that the number of failures are under-
reported due to fears of bad publicity and legal ramifications (Davies 2002), particularly in China
and Russia (Kossoff et al. 2014). The increased rate of failure may be attributed to the rapid
constructions of the tailings dams along with the poor monitoring system. In general, three types

of failure mechanisms in tailing dams are found in literature. These are:

e Geotechnical instability
e Hydraulic instability

e Failure due to human interventions

Some of the major failure events in tailings dams are listed below:
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Table 4: List of some major tailings dam failure

Name of the failure Year Possible Cause of Failure

Mochikoshi # 1, Japan 1978 Dynamic liquefaction due to Earthquake

Stava dam, Italy 1985 Slope instability, excess seepage

Merriespruit, South Africa 1994 Precipitation induced overtopping, liquefaction
Omai, Guyana 1995 Filter inadequacy, internal erosion

Aznalcollar , Spain 1998 Weak foundation layer beneath embankment
Baia Mare, Romania 2000 Overtopping due to rain & snow melt
Samarco, Brazil 2015 Vandalism

The types of failures in tailings dams are described below in order.

2.5.1 Geotechnical Instability

Geotechnical stability includes the dam’s resistance to failure against slope instability (Vick
1990), pre-shearing bedding planes instability (Alonso and Gens 2006; Kossoff et al. 2014),
liquefaction in tailings (for upstream dams; Martin and McRoberts 1999) and foundation
(Cambridge 2014), excessive deformation in foundation layers (Pastor et al. 2002), etc. Other
important factors that have effects on geo-structural stability of the tailings dams are weathered
crack on the downstream slope (Gao et al. 2015; Vick 1990) and tension crack in curved
embankment (Ormann et al. 2013), high deposition rate of tailing which may cause excessive

horizontal translation or thrust towards the downstream (Priscu 1999) and chemical degradation/

erosion in the upstream side of the embankment (Blight and Amponsah-da Costa 1999).
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Slope failure in tailings dams can occur in either upstream or downstream direction. When the
movement of a soil mass due to gravity and applies stress surpass the strength of the soil, the
slope becomes unstable. Factors that increase the stresses (e.g. additional load) and factors that
decrease soil strength (e.g. pore water pressure development, strain softening) contribute to the
slope instability (Das 2010). The available approaches to stabilize a vulnerable slope include a
well- designed ‘milder’ slope (e.g.; Fell et al. 2014), a rockfill patch (riprap) added to the
downstream slope (Ormann et al. 2013), vegetation on the downstream slope (Vick 1990),
upstream stability improvement by adding chemical/ soil additives in tailings materials to
increase their strengths (Alsharedah 2015) or thickened tailings (Azam et al. 2009), and
reinforcing the soil with geotextile (List 1999; Yi-Shu et al. 2015). However, Federal Emergency
Management Agency (2008) recommends not using geotextile in structurally critical section of

the dam.

Davies and Martin (2002) reported that static liquefaction is the most common cause of tailings
dam failure. In static liquefaction, pore water pressure can develop due to fast construction
process (generally more than 5-10 m added height per year; Sarsby 2013), high phreatic level,
low hydraulic conductivities in tailings and foundation layers or excessive precipitation (Fourie
et al. 2001; Vick 1990; Zardari 2011). Thus, it decreases the effective strength of soil (Martin
1999; Vick 1990). Relative density, confining pressure, strain softening behaviour and initial
shear stress of the soil are the major factors controlling the static liquefaction (Davies and Martin
2002). Active tailings dams are more vulnerable to liquefaction than the inactive dams (Rico et
al. 2008). The reason behind this is the cementation in tailings and soils which increases

approximately 20% in 30 years. This cementation increases the liquefaction resistance (Kossoff
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et al. 2014). Merriespruit tailings dam in South Africa is an example of failure due to static

liquefaction (Strydom and Williams 1999).

Pore water pressure can also develop due to ground-shaking mainly in high seismic countries
like Chile and Japan (Ishihara et al. 2015; Villavicencio et al. 2014). This mechanism is an
example of dynamic liquefaction (Vick 1990). Psarropoulos and Tsompanakis (2008) reported
from (Vick 1990) that downstream construction method is more resistant against earthquakes.
Dams constructed using this method also showed smaller deformation compared to other
construction methods. In upstream method, dams resting on thickened tailings has greater

liquefaction potential at higher peak ground acceleration in earthquake (Poulos and Bunce 2008).

2.5.2 Hydraulic Instability

The soil always shows a love-hate relationship with water. Too much or too little water in the
soil affects the strength of the soil. This is why, hydraulic aspects of the soils, such as the
location of the phreatic surface in soil, are closely related to the geotechnical aspects. The
phreatic surface location partially controls the factor of safety of the dam. Low permeability of
foundation layers, excessive precipitation, flooding, inefficient drainage and seepage collection
system elevate the phreatic surface in the dam body (Vick 1990). Thus it decreases the soil’s
effective strength within the dam material. Zandarin et al. (2009) stated that the capillary rise of
water also further reduces the stability of the dam. Void ratio and moisture content of tailings
determine the degree of capillarity in the tailing materials (Carelsen 2013). The inefficiency of
filter material increases the phreatic level by clogging the particles to the downstream direction

(Reddi et al. 2000).
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Introduction of geotextile as a filter material can improve the filter capacity of the tailing dams
(List 1999). Choice of deposition method of tailings (Vick 1990), under-drains provided at the
bottom of tailings (McLeod and Murray 2003) or the decant pipes to take out water from the
ponding zone on the tailing surface (Breitenbach 2009) can also help to reduce phreatic level.
Inefficiency of filter material create internal erosion, termed as ‘piping’ in the embankment. The
piping, along with the cracking, reduces the stability of the dam (Foster et al. 2000; Hu et al.

2015; Vick 1990).

Excessive precipitation or external sources of water into impoundment due to flood-like events
in absence of an effective spillway drainage system can initiate an overtopping incident (Javadi
and Mahdi 2014; Sun et al. 2012). Stava tailing dam in Italy (Chandler et al. 1995) and
Merriespruit tailing dam in South Africa failed due to excess rainfall (Van Niekerk and Viljoen
2005). In both cases, rainfall in excess also caused static liquefaction by increasing pore water
pressure in the foundation (Fourie et al. 2001; Lucchi and Tosatti 2009; Strydom and Williams
1999). Change in atmospheric boundary conditions due to climate change also should be

considered while designing a new tailing dam or reviewing an existing one (Kwon 2015).

2.5.3 Human Interventions

Other than human errors during engineering design and construction, tailing dams also failed few
times due to human interventions. Vandalism in Samarco tailing dam in Brazil caused pollution
in Doce River for over 300 km downstream. The failure dam unleashed at least 40 million cubic
meters of tailings on the valley. At least 30 people were killed and 800 people lost their homes in
the incident (McCrae 2015). Negligence in Karamken Dam in Russia caused 1 death and the loss

of 11 houses (Robinson 2008).
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A good managerial practice in terms of better monitoring, maintenance, corporate culture and
establishing a dam safety review board would reduce the risk of human interventions

(Morgenstern et al. 2015).

2.6 Stability Analysis Methods

The stability analysis of a slope or a particular geologic and physical feature is performed to
assess the safety factors. Factors of safety (FOS) can be defined as the ratio of available shear

strength (S) of the slope to its equilibrium stress (t) (Duncan 1996).

FOS=3 (Eq. 2.3)

T

The slope stability can be performed for the following usages (Das 2010; Duncan 1996):

e To assess the safety of a slope structure

e To locate the critical failure surface

e To assess the movement of the slope

e To understand the sensivity of a slope to its geologic parameters and climatic conditions

e To assess the remedial measures and aid in the design
To perform a slope stability analysis, the geometry of the slope, external and internal loading,
soil engineering properties and the variation of ground water table must be well defined. For a
slope to be stable, the resisting forces in the slope must be significantly greater than the forces
causing the failure (Duncan 1996). Various codes, regulations and guidelines around world have

different recommended values for a slope to be stable. According to Canadian Dam Association

(2012), the factors of safety of any dam must conform to the following values:
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During Operating Stage

After Closure

Rapid Drawdown

2.6.1 Limit Equilibrium Method (LEM)

Several Limit Equilibrium Methods (LEM) have been developed for the slope stability analysis.
Fellenius (1936) introduced the first method, alternatively known as the Ordinary or the Swedish
method, for a circular slip surface. All LEM methods are solved using either of the two
approaches: (a) selecting the entire mass of soil and solve for a single free body and (b) dividing
the soil into a number of slices where each slice has to satisfy all the force equilibrium (Duncan
1996). Regardless of the approach taken for the analysis, all methods require certain
assumptions; and none of them considers stress-strain behavior of the soil. For slice-based

methods, the basic difference among the methods is how the interslice normal (E) and shear (S)

forces are determined. In addition, the shape and size of the slip surface can also differ

between the analysis methods. Table 5 compares different LEM methods based on the

1.3
1.5
1.2

shape of the slip circle and the force-moment equilibrium.

Table 5: Comparison among LEM

Methods Circular Non-circular | Y>M =0 YF=0
Ordinary Yes - Yes -
Bishop simplified | Yes Yes Yes Yes
Janbu simplified - Yes - Yes
Janbu GPS Yes Yes Yes Yes
Lowe-Karafiath - Yes Yes Yes
Corps of Engineers | - Yes Yes Yes
Sarma Yes Yes Yes Yes
Spencer Yes Yes Yes Yes
Morgenstern-Price | Yes Yes Yes Yes
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Figure 14 shows a simple slope and its slip circle. A detailed figure of a single slice is shown in

the right hand side of the figure. In this figure, W represents weight of the slice, E1 and E2 are

normal forces acting on the sides of the slice, and N’ is the normal force and S is the shear force

acting on the base of the slice. By using these forces, resisting and driving moments are

calculated and their ratio gives the factor of safety value. (Das 2010)

(a)

-

e

____

(b)

Figure 14: Sample slicing procedure in LEM

2.6.2 Finite Element Method (FEM)

Finite Element Method (FEM) is relatively a new method for slope stability analysis. It was first

used in geotechnical analysis in 1966 (Kondalamahanthy 2013). Unlike limit equilibrium

method, the finite element method considers linear and non-linear stress-strain behavior of the

soil (e.g.; Griffiths 2001). This is why the results obtained by FEM are considered more realistic

than that of LEM. Shear Strength Reduction (SSR) technique within FEM involves in reduction
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of the soil strength parameters (Mohr-Coulomb) using a factor in the following equation (e.g.;
Cheng and Lau 2008).

T N tand’ (Eq. 2.4)
SRF  SRF = SRF

Where, 1, C’, ® are Shear Strength, Cohesion intercept and Angle of internal friction

respectively in effective stress parameter. And, SRF is the Shear Strength Reduction factor.

The reduction of the strength parameters by trial SRF values continues until the slope materials
reach on the verge of failure i.e. the safety factor becomes 1. At this moment, SRF become the
factor of safety of the slope (Griffiths 2001). In finite element based software like SIGMA/W,
the failure is presented by the non-convergence in the system (Krahn 2004a). For the slopes that
already have factors of safety less than 1, the strength parameters are increased by a factor until

the analysis converges to a solution (Griffiths 2001).

FEM is advantageous over LEM in many aspects; such as FEM does not consider the soil
domain as a rigid body and the stress-strain field is established within it. Another major
advantage is that there is no need to assume imaginary slices, or the entry or exit surfaces for the
slip circle. The failure occurs automatically through the zones in which soil strength is unable to
resist the applied shear forces (Griffiths 2001). FEM take more time for analysis due to the
processes of discretization of domains and optimization of elements. That is why, for simple

stability problems LEM analysis is sufficient.
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3 NUMERICAL ANALYSIS ON FAILURE MECHANISM

This chapter presents the results of the numerical analysis of the failed perimeter embankment at
MP-TSF. The first three analyses using Limit Equilibrium Method (LEM) replicated the
engineering designs and post-failure reviews which already have been published. The fourth
analysis was done in multi-stages by using Finite Element Method (FEM) to verify the findings
by Morgenstern et al. (2015). The details of data, boundary conditions and results are provided in
each analysis separately. A summary of results of all analyses completes the chapter. All the
factors of safety (FOS) obtained by these analyses were compared against the recommended

FOS (1.3 for operational stage and 1.5 in post-closure) by Canadian Dam Association (2012).

The work flowchart for the analyses is shown below:

~
 Analysis 1: Preliminary Design Report by KP (2005)
Evaluation of I Analysis 2: 9t Stage Design Report by AMEC (2013)
SAL e © Analysis 3: Failure Review Report by IRP (2015)
Designs J
~
 Analysis 4: Stage by Stage Finite Element Analyses (Both ESA &
TSA methods)
Verification
J
)
« Suggestions for the Dam Stability Improvement (Provided in Chapter
Stability R
Improvement )
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3.1 Data Sources

For the current study, no lab testing for the materials was performed to obtain the soil
parameters. All the engineering data were taken from the published design, soil investigation,
annual review, and post failure review reports. The following sources provide most of the
material properties of soils. The missing data were assumed from the existing literature (e.g. Fell

et al. 2014; Sarsby 2013; Vick 1990).

e Preliminary design report by Knight Piésold Consulting (2005)
e 9™ Stage design report by AMEC (2013)

e Annual review reports of MP-TSF (2005-2014)

e Failure review report by Morgenstern et al. (2015)

e Soil investigation report by ConeTec Investigations Ltd (2014)

3.2 Numerical Tools for the Simulations

In this study, GeoStudio 2012 was used for the purpose of two dimensional stability and seepage
analysis. Out of eight components of GeoStudio 2012, only the following three were used:
SIGMA/W, SLOPE/W and SEEP/W. The pore water conditions obtained from the SEEP/W
analyses were imported into the analyses of SIGMA/W and SLOPE/W. Appropriate boundary

conditions in all the analyses were assumed to simulate the existing site conditions.

3.2.1 SIGMA/W

SIGMA/W is finite element based software, which is used to determine the stress-strain
conditions in earth structures. It can simulate multi-stage constructions, pore-water pressure

conditions, soil-structure interaction and consolidation analyses. Mesh generation is an automatic
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process in SIGMA/W; however, optimization of meshes in terms of size and shape is possible.
Included Soil constitutive models are Linear Elastic model, Anisotropic Elastic model, Elastic-
Plastic model, Cam-Clay model etc. Boundary conditions can be provided by restraining or

allowing horizontal or vertical translation and rotation (Krahn 2004a).

3.2.2 SLOPE/W

SLOPE/W is a powerful tool to analyze the stability of the slope. It works on LEM framework.
Many LEM analysis methods are included in SLOPE/W such as: Morgenstern-Price method,
Spencer’s method, Bishop’s simplified method, Janbu’s generalized method and Ordinary slices
method etc. Finite Element stress-strain based stability analysis can be done within it by using
SIGMA/W or QUAKE/W stresses. Soil Models included in SLOPE/W are Mohr-Coulomb
method, Undrained strength method, Anisotropic strength model, Bilinear models etc. SLOPE/W
can also analyze different types of reinforcement such as anchors, geo-fabrics, soil nails, piles,

sheet piles etc. (Krahn 2004b).

3.23 SEEP/W

SEEP/W analyzes the flow of water through both saturated and unsaturated soils for geotechnical
purposes. Both Steady-state and Transient seepage analyses can be performed by using various
boundary conditions in terms of pressure and total heads and fluxes. Mesh generation and staged
construction processes are similar to that of SIGMA/W. Material properties can be entered in
both Total and Effective Stress parameters. It can also simulate anisotropy in hydraulic

conductivities. (Krahn 2004c).
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3.3 Review of the Published Analyses

The first three analyses replicated already published design reports of MP-TSF. All of them were
done only for the final construction stage (stage 9) by using Morgenstern-Price type of LEM
analysis within SLOPE/W environment. Pore water conditions were obtained by setting arbitrary
‘high’ and ‘low’ phreatic surfaces in different analyses. The results of the stability are presented
in terms of the FOS. The following sections provide detailed description and the results of each

analysis.

3.3.1 Analysis 1: Preliminary Design Report by Knight Piésold Consulting (2005)

The first design report for the TSF was produced before the mining operation had started in
1997; however, it was revised in 2005. Stability analyses were performed for both static and
dynamic conditions. Only the static part, however, was reproduced for this study as any seismic
activity prior to the failure wasn’t recorded. A toe drain was added to all three dams: main,
perimeter and south. The dams to be built in nine (9) stages had an ultimate elevation of 965 m.

A schematic diagram of the dam is shown in Figure 15.

The material properties of the embankment materials are shown in Table 6. Most of the soil
properties are described by using Mohr-Coulomb model. Tailings materials are additionally
presented in terms of ‘Overburden function’ to assess the liquefaction effects. Hydraulic
conductivities are also presented in the material properties tables; however, it was missing for
Rockfill. A higher saturated hydraulic conductivity of 1E-05 m/s was assumed for the Rockfill in
all the following analyses. However, hydraulic conductivities were only used in filter design; not
in coupled stability analyses. Thin chimney drain, transition layer and clay liner were merged

into Rockfill and Till layers respectively for the simplicity of the simulation.
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Figure 15: Preliminary design section reproduced from Knight Piesold Consultant (2005)

Phreatic Level

Figure 16: Pore water pressure (in kPa) contour for the Preliminary design

Pore water conditions were obtained differently by setting two different arbitrary phreatic

surfaces: ‘High” and ‘Low’. The pore water pressure contour for high phreatic surface, being the
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critical of the two, has been shown in Figure 16. The analysis was done for both Pre-liquefied
and post-liquefied tailings as well as for drained condition using Mohr-Coulomb model. The
results are presented in terms of FOS are shown in Table 7. The undrained response in the
foundation was not considered in the Preliminary design. The results indicate that FOS, being

higher than the recommended FOS, did not change significantly between High and Low phreatic

surfaces.
Table 6: Material properties used in Preliminary design (2005)
Soil Layers Soil Model Material properties
Mechanical Hydraulic
Conductivity (m/s)
Bedrock - - -
Lower Till Mohr-Coulomb y=21kN/m?, 1.0 E-08
Upper Till ®=33°C=0
Glaciolacustrine | Mohr-Coulomb v =20 kN/m?, 1.0 E-06
(GLU) ®=33°C=0
Tailings Mohr-Coulomb y =18 kN/m?, Coarse:
®=30°C=0 7.0E-06
S= [Pre-liquefied]
F(Overburden) v =18 kN/m?, Dense:
/6 =10.3 1.0 E-08
[Post-liquefied]
y =18 kN/m?,
/6 =0.1
Core Mohr-Coulomb v =22 kN/m?, 1.0E-09
®=35°C=0
Rockfill Mohr-Coulomb v =22 KN/m?, 1E-05
®=40°C=0
Filter / Chimney - - -
drain
Transition - - -
Clay- liner - - -
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Table 7: Factors of Safety in Preliminary design (2005)

Tailings Type Phreatic Surface condition | Factor of Safety
Pre-liquefied (t/ov’ = 0.3) High 1.54
Pre-liquefied (t/cy’ = 0.3) Low 1.60
Post-liquefied (t/cv’ = 0.1) High 1.54
Post-liquefied (t/ov’ =0.1) Low 1.60

Mohr-Coulomb (® = 30°, C = 0) High 1.54
Mohr-Coulomb (® = 30°, C = 0) Low 1.60

3.3.2  Analysis 2: 9" Stage Dam Design by AMEC (2012)

Over time, the design of the tailings dams changed significantly; however, the reason for the
changes are unclear. The final height of the dam was modeled as 970 m which was greater than
proposed 965 m in the original design. The downstream slope, however, changed from 2H:1V to
1.3H:1V. The cross sectional geometry also became irregular. The design foundation layers
varied considerably from the previous analysis. A sandwiched till layer between two
Glacioluctrine layers was used, possibly to simulate the irregularity of soil layers beneath the
ground. The schematic diagram of the failed dam section is provided in Figure 17. The material
parameters of the embankment soils were kept similar, with minor modifications, to that of
Knight Piésold Consulting (2005). The angle of internal friction for GLU layer was reduced from
33°to 28°. The Rockfill was provided using an arbitrary shear-normal function described in Leps
(1970) instead of Mohr-Coulomb function. Like the previous analysis, thin chimney drain and

transition layers were merged into Rockfill. The clay liner wasn’t used in the simulation.

Table 8 provides the summary of the material properties for the simulation.
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Figure 17: Geometry for the 9" stage dam design by AMEC (2012)

Figure 18: Pore water pressure (in kPa) contour for the 9" stage dam design

40



Table 8: Material properties used by AMEC (2012) in 9" stage design

Soil Layers Soil Model Material properties
Mechanical Hydraulic
Conductivity (m/s)
Bedrock - - -
Upper Till Mohr-Coulomb v =21kN/m?, 1.0 E-08
Lowe Till ®=33°C=0
Glaciolacustrine Mohr-Coulomb v =20 kN/m?, 1.0 E-06
(GLU) ®=28°C=0
Tailing Mohr-Coulomb y =18 kN/m?, Coarse:
®=30°C=0 7.0E-06
S= y =18 kN/m?,
F(Overburden) 1/6=0.1 Dense:
1.0 E-08
Core Mohr-Coulomb | y=20.5 kN/m?, 1.0E-09
(Compacted Till) ®=35°C=0
Rockfill Shear-Normal v =22 kN/m?, 1.0E-05
[function defined
by (Leps 1970)]
Filter / Chimney - - -
drain
Transition - - -
Clay- liner - - -

The analysis was performed in SLOPE/W by using Morgenstern-Price type of LEM. Like the
previous analysis, hydraulic conductivities were used only for the filter design. Phreatic surface
was selected ‘high’ arbitrarily to provide the critical scenario. The entry and exit slip surfaces
were determined carefully; because if the entry and exit slip surface entered into rockfill, it
would create shallow slip circle and provided lower FOS apparently. Like the Preliminary design
(2005), liquefaction effects were only considered for tailings materials, not for foundation
materials. The calculated FOS are shown in Table 9. These FOS are not much different to each

other in different conditions. Nevertheless, they are significantly higher than the recommended

FOS. The Pore water pressure contour is also shown in Figure 18.
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Table 9: Factors of Safety 9" Stage Design by AMEC (2012)

Tailings Type Phreatic Surface condition | Factor of Safety
Pre-liquefied (t/ov’ = 0.3) High 1.68
Post-liquefied (t/oy’ = 0.1) High 1.72
Drained (® = 30°, C = 0) High 1.72

3.3.3 Analysis 3: Independ Review Report by Morgenstern et al. (2015)

Morgenstern et al. (2015) conducted a post failure analysis of the failed dam. The geometry of
the failed dam section roughly replicated the geometry of the 9™ stage design. The foundation
conditions, however, differed significantly from the previous analyses. The design soil layers
were determined based on two post-failure soil investigation reports conducted by Morgenstern
et al. (2015) and ConeTec Investigations Ltd (2014). The choice of appropriate material models
was also different. A newly introduced Upper Glaciolacustrine (GLU) layer was assigned in
Overburden (SHANSEP) model to replicate the undrained condition. The geometry of the failed
section is shown in Figure 19. The stability was analyzed incorporating Morgenstern-Price type
of LEM in SLOPE/W. The material properties are shown in Table 10 which differed in
mechanical properties from the previous analysis to some extents. Undrained shear strength ratio
of 0.22 and 0.27 were used for GLU layers to understand the undrained response in overall dam
stability. In a different simulation, this GLU layer was assigned using Mohr-Column model
(similar to AMEC 2012, C=0, ® = 30°) to test drained response of the dam. Lower till layer was
found very stiff in the latest soil investigation; and so it was assigned as a weak bedrock. Due to
unavailability of a defined shear-normal function in the report, the function used in Leps (1970)

was used for the rockfill material.
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Figure 19: Cross sectional geometry used in analysis by Morgenstern et al. (2015)
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Figure 20: Pore water Pressure (in kPa) contour for the analysis of Morgenstern et al. (2015)
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Table 10: Material properties used by Morgenstern et al. (2015)

Soil Layers Soil Model Material properties
Mechanical Hydraulic
Conductivity (m/s)
Bedrock Bedrock Impenetrable -
Lower Till Bedrock Impenetrable -
Upper Till Mohr-Coulomb v =21kN/m?, 1.0 E-08
®=35°,C=0
Glaciolucastrine S= v=21KkN/m?, 1.0 E-06
(GLU) F(Overburden) t/6°=0.27
y=21kN/m?, -
/6’ =0.21
Tailing Mohr-Coulomb v =18 kN/m?, 7.0E-06
®=30°,C=0
Core Mohr-Coulomb y=20.5 kN/m?, 1.0E-09
®=35°,C=0
Rockfill Shear-Normal y =22 kN/m? 1.0 E-05
[Assumed as Leps
1970]
Filter / Chimney Merged with - -
drain Rockfill
Transition Merged with - -
Rockfill
Clay- liner - - -

Like the previous analyses, this set of analyses was performed without considering the field
hydraulic boundary conditions. The locations of the phreatic surfaces were arbitrarily selected as
‘high’ and ‘low’. Thus, the effects of hydraulic conductivities of different layers of soil did not
come into effects. The pore water pressure contour for higher phreatic surface is shown in Figure
20. Table 11 shows that the FOS of both undrained responses (Undrained shear strength ratio of
0.22 and 0.27) for GLU were close to 1. The drained response of the layer, however, shows
much higher value of factor of safety. The sudden nature of the failure and these analyses results

convinced Morgenstern et al. (2015) that the failure happened in an undrained manner in the

‘weak’ GLU layer.
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Table 11: Factors of Safety obtained by Morgenstern et al. (2015)

GLU Layer Phreatic Surface condition | Factor of Safety
Undrained Shear Strength (t/6y" = 0.27) High 1.05
Undrained Shear Strength (t/cv’ = 0.27) Low 1.12
Undrained Shear Strength (t/6y’ = 0.22) High 0.94
Undrained Shear Strength (1/6v” = 0.22) Low 1.02
Mohr-Coulomb (C=0, ® = 30°) High 1.76
Mohr-Coulomb (C=0, ® = 30°) Low 1.94

3.3.4 Analysis 4: Finite Element Analysis (FEA)

Finite Element Analysis on the stability of the failed dam was performed using SIGMA/W. FEA
is advantageous over LEM, because it does not consider the slip mass as a rigid body and a strain
field is established within it (Alsharedah 2015). Pore water conditions from each stage of
SEEP/W analysis were imported into the respective SIGMA/W analysis. SLOPE/W was used
where it was necessary to compare the stability. The FEA on the stability in GeoStudio 2012 can

be performed in two different ways as follows. However, the second method, which has broader

acceptance, was used to determine the stability of the dam:

e By importing Stress data from SIGMA/W into SLOPE/W

e By using Strength Reduction Method in SIGMA/W

GeoStudio works well in auto meshing. A global auto-meshing for the element size of 1 m was
selected for the analysis. Nevertheless, the meshing was made finer in the interface of the
material regions. The shapes of the meshes were quads and triangles. Secondary nodes were

selected to get more accurate results in stress-strain conditions.
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Material properties and cross sectional geometry of the failed dam section were kept similar to
the design report provided by Morgenstern et al. (2015). The newly detected ‘weak’ GLU layer,
however, was assigned according to various material properties in terms of stiffness to see the
variation in simulation results. Both drained response in Effective Stress Analysis (ESA) and
undrained response in Total Stress Analysis (TSA) of the analyses have been presented in the

following sections.

3.3.4.1 Boundary Conditions in Multistage Construction

Unlike other published designs, the current FEA considers a stage-by-stage development in the
construction. Since 2005, the dam has been built in nine stages. The shape and the size of the
dam section changed over this time. A qualitative diagram of stage-by-stage dam development is
shown in Figure 21. To accommodate this temporal and spatial variation, appropriate boundary

conditions were assigned in each stage of the simulation.

Hydraulic boundary conditions were simulated by using SEEP/W. In the upstream side, the
ponded water in the tailings zone for each stage of the construction was simulated by setting
‘Total Head’ boundary up to the tailings beach, equal to the top elevation of the ponded surfaces
of each stage. The information on the tailings beach width was not found in the design and
annual reports. Thus, it had been assumed approximately 8 m to 10 m away from the top-left side
of the core material. This assumption was supported by Google map historical images dated
between 2005 and 2014. In the downstream side of the dam, the atmospheric pressure head (zero
pressure head) was applied along the ground surface to simulate the ground water table at the

ground surface.
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For the stability analysis in SIGMA/W, the vertical sides of the soil domain were kept fixed in
horizontal direction. The bottom boundary was kept as fixed in both vertical and horizontal
directions. Neither any displacement nor rotational boundary was present in the system. Each set
of analysis started from an ‘insitu’ condition. ‘Load/Deformation’ method was selected for the
development of each embankment stage. This method provides the changes in Stress-strain in the
domain when new load is applied or withdrawn. Each stage acted as ‘parent’ for the next stage.
Deformation and cumulative values from the previous analysis were excluded in each stage.
‘Stress Redistribution” method, however, was selected to find the FOS of each stage. The details

of these methods can be found in GeoStudio SIGMA/W manual (Chapter 7).

FOS of each stage using LEM are presented in Table 12. Drained responses of FOS are relatively
higher than the undrained responses. When the undrained shear strength of 0.22 was used, FOS
are significantly lower than the recommended FOS by Canadian Dam Association (2012). The
series of lower values in the undrained analysis suggests that the failure mechanism might be
different than the review made by Morgenstern et al. (2015). The detailed discussion of these

results is provided in the summary of results section at the end of this chapter.

Table 12: Factors of Safety of each stage obtained by using LEM (Morgenstern-Price)

Stage GLU in Mohr-Coulomb GLU in Undrained Shear
Model (C=0, ® = 30°) Strength of 0.22

One 1.20 1.23

Two 1.19 1.23
Three 1.74 1.19

Four 1.60 1.16

Five 1.64 1.00

Six 1.63 1.15
Seven 1.59 1.05

Eight 1.32 0.97

Nine 1.35 0.97
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Figure 21: Development of Construction stages at MP-TSF (continued to next page)
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Figure 21: Development of Construction stages at MP-TSF (Completed)
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3.3.4.2 Strength Reduction Method (SRM)

Strength Reduction Method (SRM) is a Finite Element technique, which determines a Stress
Reduction factor. This Stress Reduction Factor (SRF) brings the structure on the verge of the
failure by reducing the material strength properties. If the factor of safety is already less than 1,
then a different strength factor is used to increase the strength of the material until the analysis

converges to a solution (e.g., Duncan 1996).

Along with the stress parameters of the soil, stiffness is very important in finite element analysis
of stability. Table 13 refers 4 cases where the stiffness parameters of all the soil materials are

listed. Case 1 & 3 represent higher relative stiffness of GLU and Case 2 & 4 represent lower

relative stiffness. The relative stiffness is defined as the ratio of the stiffness of the concerned

soil layer to the average stiffness of the adjacent layers. The values of the stiffness were taken
from the soil test data and from various published literature. All the stiffness data are presented
in Effective Stress parameter except for GLU layer in Case 3 and 4. All four cases were

simulated using SIGMA/W and computed factors of safety are provided in Table 14.

Table 13: Stiffness Parameters of the materials

Material Effective Stiffness Parameters (kPa)
Case 1 Case 2 Case 3 Case 4
Tailings 15,000 15,000 15,000 15,000
Core 20,000 20,000 20,000 20,000
Rockfill 75,000 75,000 75,000 75,000
Upper Till 50,000 50,000 50,000 50,000
GLU 20,000 5,000 24,0001 8,000!
Lower Till 85,000 85,000 85,000 85,000

! The Stiffness parameter is taken in Total Stress parameter. Undrained strength is set as 107 KPa which matches
test results by ConeTec Investigations Ltd (2014)
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3.3.4.3 Effective Stress Analysis (ESA)

Effective Stress analysis provides a drained response of the soil domain. In ESA, the soil
parameters are presented in terms of effective parameters. For the current part of analysis, all the
layers, including the concerned GLU layer, were provided in effective stress parameter. The
strength properties of the materials are given in Table 10 and the stiffness parameters were taken

from Table 13.

Figure 22, 23, 26 and 27 show the maximum shear strain (emax) contours of 8" and 9" stages of
the construction in ESA for Case 1 and 2. These contour plots provide the extents and patterns of
the maximum shear strains (emax) When a new layer of embankment is constructed. Figure 24 and
Figure 25 provide super-imposed graphs of shear strength and maximum shear stains of the GLU
layer. These graphs provide clearer view of the maximum shear strain (emax) and stress in the

GLU layer.

It has been shown for Case 1 (higher relative stiffness) in Figure 24 that maximum shear stress
was mobilized in the section is close to 300 KPa. For this stress, the amount of shear strain was
as low as 0.8%. A new layer of construction in the 9" stage (Figure 25) increased the shear stress
in the system; however, it did not increase the shear strain of GLU layer. For Case 2 (lower
relative stiffness), the values of shear strain were not high (2% max) and the changes in shear

strain from 8™ to 9" stage were marginal (Figure 26 and Figure 27).
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Figure 24: Maximum Shear Strength and Strain plot for GLU in 8" stage (ESA: Case 1)
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Figure 25: Maximum Shear Strength and Strain plot for GLU in 9" stage (ESA:Case 1)
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Figure 28: Maximum Shear Strength and Strain plot for GLU in 8" stage (ESA: Case 2)
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Figure 29: Maximum Shear Strength and Strain plot for GLU in 9" stage (ESA: Case 2)
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3.3.4.4 Total Stress Analysis (TSA)

Total Stress Analysis provides undrained responses of the soil domain. This is the quicker
response from the soil when a load is applied or removed. For this part of current analysis, all the
layers, except the concerned GLU layer, had been assigned in effective stress parameters. GLU
had been assigned in total stress parameters as per Table 10. Stiffness parameter were assigned

as per Table 13.

Maximum shear strain (emax) contours for 8" and 9™ stages of construction for case 3 and 4 are
shown in Figure 30, 31, 34 and 35. The patterns of shear strain changes were similar to that of
ESA analyses; however, the values were different. Figure 32, 30, 33 and 34 provide super-
imposed graphs of maximum shear stress and maximum shear strain (emax) to understand the

shear strength mobilization within GLU layer.

For Case 3, where the relative stiffness of the GLU layer is not very low, the maximum shear
stains are 0.6% and 3% respectively for stage 8 and 9 (Figure 32 and Figure 33). These changes
in shear strain is relatively high; however, the values of maximum shear strain (emax) is within the
acceptable limit. For case 4 with lower relative stiffness of GLU layer, the maximum shear strain
(emax) increased from 0.8% in 8" stage to 8% in 9™ stage at mobilized shear stress around 160
KPa (Figure 36 and Figure 37). This shear strain is high enough to initiate a distortion in the

system and might act as the first step in a progressive failure.
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Figure 32: Maximum Shear Strength and Strain plot for GLU in 8" stage (TSA: Case 3)

un
S £, (peak) = 0.045 -8
-
- O -3
-— O
“a =
s
W m (o)
- O b O\
£ o s
©
b -
w
R |
® o e
~ (o]
2o
w
2 i
s -
o
() — <
o
o o

0

Distance (m)

Max Shear Stress (KPa)

Figure 33: Maximum Shear Strength and Strain plot for GLU in 9" stage (TSA: Case 3)
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Figure 36: Maximum Shear Strength and Strain plot for GLU in 8" stage (TSA: Case 4)
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Figure 37: Maximum Shear Strength and Strain plot for GLU in 9" stage (TSA: Case 4)
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Table 14: Factors of Safety FEA of each stage for all cases

Stages Factors of Safety
Casel Case 2 Case 3 Case 4
One 1.90 1.90 1.92 1.75
Two 1.80 1.82 1.80 1.67
Three 1.75 1.79 1.75 1.65
Four 1.42 1.43 1.62 1.53
Five 1.67 1.65 1.55 1.50
Six 1.50 1.52 1.27 1.26
Seven 1.45 1.46 1.18 1.13
Eight 1.40 1.41 1.10 1.09
Nine 1.35 1.32 1.03 1.01

3.4 Deformation Analysis

Deformation analysis provides overall deformation pattern of the structure. Deformation analysis
was performed using SIGMA/W. Both vertical and horizontal deformations for case 4 (as this is
the critical case with the lowest relative stiffness) are shown in Figure 38 and Figure 39
respectively. This low values of horizontal deformation indicates that the dam might have not
failed due to horizontal translation. Figure 40 and Figure 41 show the comparison of vertical and
horizontal deformation in 9" stage for all the cases. The comparison was done along the
Embankment Setting Out Line (S.O.L.). S.O.L is an arbitrary reference line, usually the
centreline of the dam core, from which horizontal measurements are determined (Vick 1990). In

this dam, S.O.L is drawn along ‘0’ (zero) m on X-axis (distance) in Figure 19.

The following four figures show that the maximum values of the deformation were not

concentrated near the concerned GLU layer. This was true for all the cases discussed here.
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Figure 39: Global horizontal deformation in meter after 9" stage (Case 4)

63



Vertical Deformation (m)

8 Y-Deformation
o | T-08 KPa
! | T-24 KPa
< E-05 KPa
o_ | E-20 KPa
o
1
©
o
o
1
[e0}
o
o
1
-—
o—
1
N Ground Surface
b
o \ \ \ \ \ \ \

900 910 920 930 940 950 960 970
Elevation (m)
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Figure 41: Comparison of global horizontal deformation along S.O.L
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3.5 Summary of Results

On-site engineering observations can eliminate some potential failure mechanism that could have
happened to the dam. Thus, it saves time and efforts in numerical analysis. It has been reported
by Morgenstern et al. (2015) that no excessive precipitation or seismic activities were recorded
before the failure. Internal erosion through the dam body was insignificant. Surface cracking
were also not clearly visible on the slope and core during their visit to the site. It was also noted
that the seepage collection ponds in the downstream sides of the dams were working properly
until the failure. This rules out the possibility of filter material incompetency. These observations

limit the failure mechanism to either the foundation or the geometry of the dam section.

It has been clear from the shown analyses that the design dam sections had changed from time to
time; it became more irregular. Significant changes were seen in assigning foundation layers
beneath the dam. Nevertheless, the material properties of each layer did not differ much. Factors
of safety obtained in preliminary design (Table 7 in Analysis 1) were much higher than the
recommended factors of safety by Canadian Dam Association (2012). The design engineers of
this phase of design were more concerned about the liquefaction possibility of the tailings
material. So, they ran different simulations by changing various undrained shear strength ratios
of tailings for different phreatic surfaces. A dam which is constructed using modified centreline
method does not rely on tailings much. So, it is not unusual to have similar values of FOS for
different simulations where the changes were made only in tailings material properties. However,
the engineers did not consider any possibility of undrained responses in the foundation. A
previous geological review spotted a highly consolidated and lowly permeable Glaciolucastrine

unit which was primarily comprised of silts and some clay (Knight Piesold Consultant 2005). It
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would be a more rational approach to check for the undrained response when a low permeable

layer was present in the system.

The simplistic shape of the dam body could not be maintained during construction stages. That is
why, more complex dam sections based on the site requirements evolved in later design phases.
The 9 stage stability analysis by AMEC (2012) was the latest design analysis with the updated
dam geometry. This analysis also provided FOS higher than recommended FOS in Analysis 2
although the downstream slope was steepened from 2H:1V to 1.3H:1V. The design engineers
continued to put reliance only on tailings materials to check undrained response. That’s why,
they also ran different simulations by varying the tailings properties. Calculated FOS were not
much different between the simulations, because the dam was constructed using the modified
centreline method. The foundation layer for this analysis differed significantly from the previous
analysis. Rather than having two simple soil layers in the foundation, it had five layers of
foundations in two different material properties (Figure 17). The design foundation layers were
provided in Mohr-Coulomb parameters for the stability analysis. They did not consider any

short-term stability for the dam, however.

Post-failure review analysis (Analysis 3) for 9" stage by Morgenstern et al. (2015) stated that a
previously undetected weak GLU layer was the major problem in this failure. This weak layer
was found in a detailed geomorphological investigation after the failure. The calculated FOS was
approximately 1 for different undrained shear strength ratios (0.22 and 0.27). They concluded
that the designers, being unware of this weak layer, did not consider the existence of the non-
pervasive weak GLU layer just beneath the failure zone. This layer was susceptible to the
undrained failure when it was subjected to the additional load in 9" stage. Additionally, they also

suggested that a steep downstream slope (1.3 H: 1V) triggered the failure. The analysis by
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Morgenstern et al. (2015) was replicated for the purpose of this study. Nevertheless, the analysis
was extended beyond the single analysis of 9" stage. The FOS for each stage were shown in
Table 12. A consistency in low FOS in most of the stages suggests that the failure might not have
happened due to sudden pore water pressure increase as a consequence of the added load in 9™

stage.

The current study based on the finite element analysis (Analysis 4) had taken the same geometry
and material strength properties for the failed section from Morgenstern et al. (2015); however, it
also considered the ‘weak’ GLU layer in stress-strain condition. For Case 1 and 2, where the
Effective Stress Analysis (ESA) was performed, adding a new layer of embankment in 9™ stage
did not change the maximum shear strain (emax) by a significant amount (Figure 24, 22, 25 & 26).
The mechanism was similar for case 3 of Total Stress Analysis (TSA), where the GLU layer was
assigned with a high stiffness parameter (Figure 32 & 30). Instead, case 4 of TSA had a lower
stiffness compared to the adjacent upper and lower ‘Till’ layers. This layer showed a significant

increase in maximum shear strain (emax) from 8! stage to 9" stage in this case (Figure 36 & 34).

FOS calculated by numerical analysis for all the cases in each stage were shown in Table 14.
Respective FOS were higher in ESA than in TSA. For both cases of ESA, FOS values were
similar to each other and they were higher than the recommended FOS. For both cases of TSA,
FOS were also similar to each other and they were lower than the recommended FOS in last
three stages. The similarities in FOS for different stiffness parameters in respective stages were
also observed, because the concept FOS was developed based on the strength parameters only.
That is why, many previous studies (e.g., Alsharedah 2015) stated that stiffness parameters of
soil are not as important as the strength parameters in FOS based stability analysis. However,

numerical simulations in case: 4 indicated that the stiffness of materials, especially the relative
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stiffness, was significant in the stability of the dam. A layer with a very low relative stiffness can
generate very high shear strain along the layer when a threshold load is applied in any particular
stage of the construction. This happened in the 9™ stage construction in MP-TSF. This
mechanism is comparable in a way that the weak materials of the GLU layer were channeling
through a conduit made of stiff clay soil. Thus, a localized weak zone of soil in the foundation
could initiate an excessive deformation. This large deformation decreased the insitu soil strength
to the residual strength. This might led to the instability of the dam in a progressive manner. For
higher relative stiffness of GLU layer, the shear strain was not very high to initiate an excessive

deformation, however.

The assessment of the long-term deformation of an earthen structure is also very important. The
allowable vertical and horizontal deformations of the dam body are not readily available in the
codes yet, however. This is probably due to the extents of the geometric irregularities in tailings
dam. The general practice is to establish an agreed allowable deformation based on the site
characteristics among the consulting engineers before the construction starts. In MP-TSF, the
maximum vertical and horizontal deformations were numerically found to be -0.12 m and +0.03
m respectively (Figure 38 and Figure 39). The differences in deformations along S.O.L for four
cases were not significant (Figure 40 and Figure 41). These low values of deformation indicate
that the dam might not have failed due to long-term deformation in the dam body. It also rules
out the horizontal thrust provided by tailings materials. The onsite inclinometers which had an
overall maximum displacement rate of 4 mm/year (BGC Engineering 2013) supports this

numerical deformation study.

Numerical results from this current study agree with the findings by Morgenstern et al. (2015)

that the failure did happen in undrained condition. However, the mechanism of failure is
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different than the findings by Morgenstern et al. (2015) as their findings relied only on the
strength parameters of soil. They concluded that the sudden increase of the pore water pressure
in the 9™ stage decreased the effective stress of the soil, causing a static liquefaction in the GLU
layer. Instead, this current study shows that an excessive increase in shear strain (causing large
deformations) in weak GLU layer during 9" stage construction reduced the soil strength to the
residual strength. This residual strength of the soil was not capable to stabilize the dam. Thus,
these research findings highlight the importance of the stiffness parameters in the staged

construction while analyzing the stability of a tailings dam.
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4 PARAMETRIC STUDY FOR PERFORMANCE

IMPROVEMENT

This chapter provides a numerical parametric study regarding the failed dam’s stability
improvement. Finite Element (FE) Method based SIGMA/W software is used for the stability
assessment. The effects of modification of dam geometry, material properties, and hydraulic
conditions have been studied extensively. Additionally, Limit Equilibrium Method based
SLOPE/W software is used to calculate the strength parameter sensitivity. The chapter ends with

a summary of parametric results.

4.1 Numerical Parametric Study

The material properties were kept as same as the properties in case # 4 as given in the ‘Chapter
3: Analysis’ (Table 5 and 8). Case # 4 is the critical condition as GLU stiffness was found as low
as 8,000 kPa in the total stress parameter. To simplify the simulation, most of the changes were
made in the final stage (91"). The FOS of the failed dam, in insitu condition, was found close to 1
(one). According to Canadian Dam Association (2012), the recommended factors of safety are
1.3 and 1.5 for operational stage and the long term respectively. The aim of this parametric study
is to increase the factor of safety up to 1.3 by modifying the dam design parameters, while

keeping the economic perspective in mind.

4.2 Study 1: Downstream Slope Flattening

The downstream slope in the original 9™ stage of the dam was steep; 1.3 H: 1V (Morgenstern et
al. 2015). For this simulation, the downstream slope of dam was changed to 2H:1V to see the

effects (Figure 42). A flattened slope helps to distribute the stresses over a larger area; and it also
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provides resistance against slips. The factor of safety was found to be 1.20. Although, this value
is less than the recommended value, it could have prevented the failure as it is considerably
greater than the unity of FOS. A long-term factor of safety was calculated as 1.6 which is also
greater than the recommended value. The additional calculated volume required in the dam body

was approximately 380 m3 per linear meter along the length of the perimeter dam.
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Figure 42: Perimeter dam with downstream slope of 2H:1V
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Figure 43: Maximum shear strain (emax) along GLU layer for 8" & 9™ stage (With flattened d/s
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Figure 43 shows that the maximum shear strain (emax) did not jump from 1.2% (8" stage) to 1.6%
(9" stage). This negligible increase in shear strain indicates that if the slope were mild, the
stability of the dam would improve. Further flattening of downstream slope would earn higher

factor of safety.

4.3 Study 2: Addition of Berms to Downstream Slope

Adding a berm to the downstream side of the dam increases the factors of safety. It gives lateral
supports to the downstream as well as it helps to distribute the stresses over the foundation
(Chowdhury et al. 2010). An advantage of the berm installation is that it may be used as the
‘access road’ to the dam. The berm size of 30 m x 14 m (Trapezoidal) provide increases the
factor of safety up to 1.2 (Figure 44). The additional volume required in the dam body was

approximately 420 m? per linear meter.
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Figure 44: New berm has been added to the downstream slope of perimeter dam
Figure 45 shows the maximum shear strain (emax) in stages 8 and 9 which are 1% and 1.6%
respectively. The data shows that the magnitude and change in maximum shear strain (emax) are

insignificant to initiate an instability in the dam system.
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Figure 45: Maximum shear strain (smax) along GLU layer for 8" and 9" stage (with a new d/s
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4.4 Study 3: Widening of Core

It was reported by Morgenstern et al. (2015) that the ‘core material’ crest width of the perimeter
dam was approximately 4 m. That might have affected the overall stability of the dam. An
increase in the crest width while keeping the core shape intact may have some effects on the dam
stability. Figure 46 shows a modified dam section with a new crest width of 8 m. The FE
analysis, however, shows that factors of safety obtained for the modified section did not increase.

It remained close to 1 (one).

Figure 47 indicates that maximum shear strain (emax) jumps from 1% in 8" stage to 8% in 9"
stage. This excessive shear strain in 9" stage is sufficient to allow distortion and deformation in
the foundation system. The failure mechanism in this case is similar to that of the original dam

section. Thus, the dam remains unstable even thickness of the core material increases.
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Figure 46: Perimeter dam with widened core of 10 m
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Figure 47: Maximum shear strain (emax) along GLU layer for 8" and 9" stage (With widened

core)

4.5 Study 4: Addition of Extra layer of Rockfill

Zardari (2011) described that an additional patch of the rockfill added to the downstream slope
can increase the stability of the dam. This additional rockfill supports the dam laterally and it
distributes the stress over a large area of the foundation. The following simulation shows an
increase of the FOS due to a new rockfill layer (Figure 48). The simulated rhomboidal size of
38m x 22m provides a factor of safety of 1.20. The additional volume required in the dam body

was 830 m? of crushed rock per linear meter.
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Figure 48: New rockfill patch added to the downstream of the perimeter dam
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Figure 49: Maximum shear strain (emax) along GLU layer for 8" and 9™ stage (new rockfill patch

in downstream)
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The differences in magnitudes of maximum shear strain (emax) in 8" and 9™ stages are negligible,
1.1% and 1.7% respectively (Figure 49). These shear strains are not sufficient to cause instability

in the system.

4.6 Study 5: Thickened Tailings

Thickened tailings by using of mechanical/ hydraulic thickening (e.g. Azam et al. 2009) or the
soil additives (e.g.; Alsharedah 2015) may provide better bearing in the upstream side of the
dam. The following simulation is performed with different tailings properties. The unit weight,
angle of internal friction and total stiffness were different among the simulations (Table 15). The
result shows that changing the tailings properties did not increase the stability of the dam.

Because, in the dams built with modified centreline method, the dam body does not rely on the

tailings.
Table 15: Factor of safety for different tailings properties
Case # Unit weight, | Angle of internal | Stiffness, Factor of
KN/m? friction, ® KPa safety
Base case 18 30 15,000 ~1.00
Case A 18 30 25,000 ~1.00
Case B 18 35 15,000 ~1.00
Case C 18 35 25,000 ~1.00

4.7 Sensitivity Study

A sensitivity analysis was conducted in SLOPE/W to assess the influence of the each parameter
on the slope stability. This analysis represents an approximate gradient in factor of safety for
each parameter. By this way, the most influential parameter can be established. In MP-TSF, a

sensitivity analysis was done by varying Unit Weights (UW) and shear strengths of the material.
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The result is shown in Figure 50. From the graph, it is understandable that some parameters, like
the angle of internal friction (®) of ‘core material’, UW of the Till (upper Till) and undrained

shear strength (SSR) are more sensitive to changes than other parameters.
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Figure 50: Sensitivity of the perimeter dam analysis (UW refers to Unit Weight)

4.8 Summary of Results

The parametric study was done by changing the geometry of the dams as well as material
properties of the tailings material. The parametric study shows that more than one approach
could be used to achieve higher factor of safety. ‘Flattening the downstream slope’, ‘Addition of
Extra layer of Rockfill’ and ‘Addition of Berms to Downstream Slope’ individually could

improve the stability of the dam. However, based on the economy in material requirements and
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the convenience in construction, the “Flattening the downstream slope” would be the best option

to stabilize the perimeter dam of MP-TSF.
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5 CONCLUSION

In this research, the failure of Mount Polley Tailings Dam Facility (MP-TSF) was studied with
the help of Finite Element Analysis within GeoStudio 2012. The perimeter dam of MP-TSF
suddenly failed, without any prior indication, on August 4, 2014. After the failure, the Provincial
Government of British Columbia established an Independent Review Panel (IRP) to investigate
the incident. The review report was published on January 30, 2015. The IRP stated that a weak
Glacioluctrine layer in the foundation failed in an undrained manner when a new stage of
construction ended. They extended in their review that a steep downstream slope may have

triggered the failure (Morgenstern et al. 2015).

This study verified the findings by IRP. A numerical parametric study was also conducted to
determine the ways in which the failure could have been prevented. The summary of results and

recommendations are summarized below.

5.1 Summary of Results

The current simulation agrees to findings of IRP that the dam failed in the weak Glacioluctrine
(GLU) layer of the foundation. IRP stated that the dam failed due to a sudden increase of pore
water pressure in the GLU layer as a result of new construction load in the 9" stage. The current
numerical study conducted within GeoStudio 2012 suite, however, finds that the dam failed due
to an excessive increase in shear strain in the concerned GLU layer. The shear strain in
undrained condition rose up to approximately 8% in the 9" stage of construction. This was a

significant jump in shear strain compared to just 2% in the 8™ stage. The distorted soils in the
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GLU layer acted like a flow of soil channeling through the weak layer. Thus, it created instability

in the overall dam system, and led the dam to fail suddenly.

This study highlights an often-neglected aspect of stability analysis: stiffness, especially the
relative stiffness of a layer. Analysis of slope stability often encompasses the strength parameters
only, neglecting the stiffness parameters (Alsharedah 2015). The absence of Stiffness in the
stability analysis may lead to erroneous result. A soil with low stiffness can compress and distort
due to applied external loading. This can create instability in two ways: by distorting the soil
domain itself or by increasing the pore water pressure within it if the hydraulic conductivity is
low. Thus, it is recommendable to check both strength and stiffness parameters of soil for
stability analysis, especially for the structures are constructed in multi-stages and have complex

geometry of different soil layers.

5.2 Recommendations That Could Have Prevented the Failure

Modifications in the dam system were made to check the ways in which the failure could have
been prevented. The Factor of Safety of the dam could be improved by either flattening the
downstream slope, adding a berm or adding a rockfill patch to the downstream side. As the dam
was constructed using modified construction method, any modification in the upstream side, like
strengthening of tailings by adding soil additive or by mechanically/ hydraulically thickening,

may not improve the overall stability of the dam.

Based on the achieved stability and economy in material sourcing, flattening the downstream

slope to 2H:1V or more would provide the best option of stability of the dam.

81



5.3 Future Research Possibilities

The results herein can be extended as follows:

1. A comprehensive 3D Finite Element Analysis by considering stress-strain and hydraulic
anisotropy would provide better insight into the stability of the dam.

2. How the shape, size and position of a localized soil zone with low stiffness in the dam
system would influence the overall stability of the dam.

3. A similar approach for stability checking described in this study could be extended to
other two dams of the Mount Polley Tailings Storage Facility: main and south dam. It is
also recommended for other tailings dam operators to conduct extensive soil investigation

to check for potential weak soil layers in the foundation.
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APPENDIX

This appendix provides the download link for GeoStudio files.

Download link [Expiry: 2019]: http://bit.ly/2jSAwSS

The owner of these GeoStudio files can be contacted directly via alarafat@yorku.ca
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