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Abstract 

The fundamental repeating unit of eukaryotic chromatin is the nucleosome which is formed 

when 146bp of DNA is wrapped around a core histone octamer consisting of two histone 

H2A-H2B heterodimers and one H3/H4 tetramer. Histones are synthesized in the cytoplasm 

and are transported into the nucleus via function of many protein factors including histone 

chaperones. For example, NASP and Asf1 histone chaperones function in the transport of 

newly synthesized H3/H4 whereas Nap1 plays a role in shuttling of H2A/H2B. Inside the 

nucleus H3/H4 are deposited onto the DNA either in a replication dependent (RD) or 

independent (RI) manner by CAF1 and HIRA histone chaperones, respectively. To 

characterize histone transport machinery and chromatin assembly proteins in T. thermophila, 

I used affinity purification combined with mass spectrometry to identify protein-protein 

interactions of  core histone H2A, variants Hv1 and H3.3 as well as linker histone MLH1. I 

found that H2A co-purifies with putative Spt16
Tt

 and Pob3
Tt

 subunits of the T. thermophila 

FACT complex. Spt16
Tt

 reciprocally co-purified with several subunits of RNA polymerase 

II/III, consistent with a role of the FACT complex in transcription regulation. Proteomic 

analysis of Hv1 indicated that it co-purifies with an Importinβ3, suggesting a possible 

mechanism of targeting Hv1 specifically to the MAC and not to the MIC. My data also 

indicated that H2A, Hv1 and H3.3 co-purify with putative PARP1 and PARP2 proteins 

suggesting that ribosylation of histones might have a critical role in regulating chromatin 

dynamics in this model organism.  
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1- Introduction 
 

        Eukaryotes package their genomic DNA in the form of a nucleoprotein complex 

called chromatin. The primary repeating unit of chromatin is the nucleosome which is formed 

when 146bp of DNA is wrapped around a core histone octamer consisting of two histone 

H2A-H2B heterodimers and one H3/H4 tetramer (Luger et al. 1997) (Figure 1). The core 

histones interact with each other through a common structural motif called the histone fold 

(Alva et al. 2007). Structural studies have revealed that two H3/H4 dimers interact with each 

other to form a tetramer through a four-helix bundle mediated by the H3 histone folds (Luger 

et al. 1997). Subsequently, each half of the H3/H4 tetramer is joined by one H2A/H2B dimer 

through a four-helix bundle between H2B and H4 histone folds (Figure 1). 

 In addition to the nucleosomal core particle (NCP), eukaryotic chromatin also 

contains linker histone H1. The linker H1 functions primarily in the formation of higher 

order chromatin structure. H1 binds with the nucleosomal dyad and the linker DNA region at 

its entry and exit points to the NCP (Simpson 1978; Kepper et al. 2008; Harshman et al. 

2013). The binding of H1 is thought to facilitate nucleosomal stabilization and functions in 

the overall compaction of the chromatin structure (reviewed in Harshman et al. 2013).  
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Figure 1: Depiction of histone fold hetero dimers and nucleosomal particles consisting 

of DNA wrapped around a histone core particle octamer. A- Histone fold of core histones 

as well as dimers formed via histone folds are depicted. B- Structural conformation of 

histone octamer. C- Repeating units of nucleosomes wrapped by DNA. The histone N-

terminal tails that protrude outside of the nucleosme are also shown. Individual linker 

histones are shown in orange. D- Structure of nucleosome wrapped by DNA is shown 

(Images adopted: A and B from Fundamentals of Chromatin (ISBN: 978-1-4614-8623-7); 'C' 

designed after various reviews e.g. (Jiang and Pugh 2009; Czaja et al. 2012); 'D' from 

Molecular Cell Biology 6th edition (Lodish 2008). 

Chromatin structure not only provides a way to package the genome but it also 

influences all DNA-mediated cellular processes including gene transcription, replication, 

recombination as well as repair (reviewed in Mariño-Ramírez et al. 2005; Aalfs and Kingston 

2000). Chromatin remodeling is a general term used to describe direct changes in chromatin 

structure.  Previous studies have shown that chromatin structure can be remodeled via three 
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basic mechanisms including 1) post-translational modifications (PTMs) such as acetylation 

and phosphorylation at specific amino acid residues found within N- or C-terminal tails as 

well as in the globular regions of the histones, 2) physical disruption of the nucleosomes via 

ATP-dependent chromatin remodeling complexes such as the SWI/SNF complex (Vignali et 

al. 2000); and 3) replacement of canonical/major histones with their variants (detailed below) 

in a DNA replication independent manner (Fischle et al. 2003; reviewed in Biterge and 

Schneider 2014) 

1.1- Histones and their Variants 
 

The histones have remained highly conserved throughout eukaryotic evolution 

indicating their essential role in the organization of chromatin structure (Talbert et al. 2012). 

For example, histone H4 shares greater than 90% sequence identity between budding yeast 

and humans. Such high degree of conservation underscores the presence of strong functional 

constraints that might have been operating on these proteins throughout the course of 

evolution (Piontkivska et al. 2002). The core histones are expressed from multiple copies of 

genes often found in clusters throughout the eukaryotic organisms. For instance, two copies 

of each of the core histone genes are present in the budding yeast genome (Osley 1991), 

whereas in higher organisms this complexity rises to 10-20 copies of each gene; e.g. human 

H4  is encoded by at least 12 genes (Piontkivska et al. 2002). Similarly linker histones, which 

exhibit relatively less sequence conservation (Eirín-López et al. 2004), are also found in 

increasing complexity along the evolutionary ladder. For example, budding yeast has only 

one H1 encoding gene whereas in humans 11 distinct isoforms are present (Eirín-López et al. 

2004).  
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Despite the high degree of conservation, variants for all core histones except H4 and 

linker histone H1 have been described on the basis of differences in their primary amino acid 

sequences (Talbert et al. 2012; Weber and Henikoff 2014). The variants can be categorized 

as either replicative or replacement histones. The replicative histones (also called canonical 

histones) are expressed strictly during S-phase of the cell cycle and are deposited onto 

chromatin in a DNA replication dependent (RD) fashion (Kamakaka and Biggins 2005). The 

canonical histones which are encoded by multiple genes arranged in clusters are devoid of 

introns. Their mRNA transcripts are not polyadenylated but instead a 'stem loop binding 

protein (SLBP)', whose expression also peaks during S phase, stabilizes them (Marzluff and 

Duronio 2002). These features allow for a coordinated transcription of canonical histones 

during the S phase of cell cycle (Marzluff et al. 2008).  

The replacement variants, or non-canonical histones, are expressed throughout the 

cell cycle and are primarily deposited in a DNA replication independent (RI) manner 

(Kamakaka and Biggins 2005). They are present as a single gene copy, contain introns and 

their mRNAs are polyadenylated (Kamakaka and Biggins 2005). These features have been 

implicated to function in the post-transcriptional regulation of these genes (Old and 

Woodland 1984). The selective insertion of histone variants into chromatin can alter 

nucleosomal properties (reviewed in Weber and Henikoff 2014). For example, replacement 

histone variants contain distinct amino acids, not present in their canonical counterparts, that 

might be subject to various unique PTMs  which can alter the nucleosomal properties (see 

below for PTMs) (McKittrick et al. 2004; Kamakaka and Biggins 2005). In addition, the 

presence of histone variants can affect the nucleosomal stability resulting in an altered 

chromatin conformation (Biterge and Schneider 2014). For example, nucleosomes containing 

H3.3, a replacement variant of histone H3, are inherently less stable and have been associated 
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with an active chromatin state (Jin et al. 2009). These features can serve as an example for 

the functional significance of these quantitatively minor histone variants.  

1.1.1-Histone H3 variants 
 

In humans, eight histone H3 variants have been described including H3.1, H3.2, H3.3 

H3t, CENP-A, H3.X, H3.Y and H3.5. Among these variants, H3.1 and H3.2 are the 

canonical histones whose expression is restricted to S phase and are deposited via a RD 

chromatin assembly pathway (Hake and Allis 2006; Biterge and Schneider 2014).  The 

remaining variants including H3.3, H3t, CENP-A, H3.X, H3.Y and H3.5 are deposited via a 

RI pathway and can further be categorized based on their tissue specificities, i.e. H3.3, 

CENP-A, H3.X, and H3.Y are somatic histone variants whereas H3t and H3.5 are only 

expressed in testis (Hamiche and Shuaib 2013). Mammals have evolved two canonical H3s 

in the form of H3.1 and H3.2 which differ from each other only at one amino acid residue 

(residue 96 in humans) (see Figure 2). However lower organisms such as fruit flies contain 

only one canonical histone H3 which resembles mammalian H3.2 (Hake and Allis 2006). 

Budding and fission yeasts possess only one histone H3 which is similar to the metazoan 

H3.3 and can be deposited via both the RD and RI pathways  (Choi et al. 2005; Dion et al. 

2007; Jamai et al. 2007). 

One of the most extensively studied quantitatively minor H3 variant is H3.3. H3.3 has 

been shown to be evolutionarily conserved and is found throughout the major eukaryotic 

lineages (Talbert et al. 2012). Mammalian H3.3 differs from the major H3.1/H3.2 at only 

five/four amino acid positions respectively (see Figure 2). The small 'AAIG' motif found 

within the histone fold of H3.3 has been shown to be sufficient for its RI deposition (Ahmad 

and Henikoff 2002; Goldberg et al. 2010). In humans, epitope tagged H3.1 and H3.3 were 

found to co-purify with distinct histone chaperones suggesting that RD and RI chromatin 
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assembly of H3 is mediated by unique protein complexes (Tagami et al. 2004). The canonical 

H3.1 exclusively co-purified with a three subunit histone chaperone complex called 

“chromatin assembly factor 1” (CAF1) whereas H3.3 was found to interact with “histone 

regulator A” (HIRA), (Tagami et al. 2004). HIRA is an evolutionarily conserved H3/H4 

chaperone that has been shown to function primarily in the RI chromatin assembly pathway 

(Green et al. 2005; Balaji et al. 2009). Genome wide studies have shown that HIRA is 

necessary for the RI deposition of H3.3 in mammalian embryonic stem cell (ESC) lines, 

neuronal precursor as well as in HeLa cells (Goldberg et al. 2010; Ray-Gallet et al. 2011). 

Recently, HIRA has been found to be required for the de novo assembly of H3.3 in the male 

pro-nucleus of  fruit flies suggesting the functional conservation of this histone chaperone 

(Orsi et al. 2013). 

 
Figure 2: Comparison of H3 RD and RI variants. The critical residues required for RI 

deposition of H3.3 are indicated. Image adopted from (Elsaesser and Allis 2010).  

 

In differentiated, non-dividing cells, H3.3 constitutes over 25% of the total H3 in the 

chromatin (McKittrick et al. 2004). Several recent studies have shown that H3.3 is enriched 

in the euchromatic regions and is associated with transcriptionally active genes (Goldberg et 

al. 2010; Ray-Gallet et al. 2011; Kraushaar et al. 2013; Ha et al. 2014). For example, in ESC 

lines, H3.3 is enriched at transcription start sites (TSS), gene bodies as well as transcription 

end sites (TES) of actively transcribed genes (Goldberg et al. 2010). Genome wide studies 
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have also demonstrated high turnover rates for H3.3-containing nucleosomes at enhancers 

and promoters which are associated with active transcription marks such as H3 lysine 4 

methylation (H3K4me1), H3K4me3, H3K9 acetylation (ac) and H3K27ac (Kraushaar et al. 

2013). In Drosophila melanogaster, replacement of H3 with H3.3 has been observed to occur 

predominantly at the sites of RNA polymerase II and H3K4me PTM mark (Mito et al. 2005). 

Consistent with these findings, a recent report using chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) analyses revealed that in HeLa cells, H3.3 is enriched at 

the sites of elongating RNA PolII in a HIRA dependent manner (Ray-Gallet et al. 2011). 

Taken together these studies strongly suggest the association of H3.3 with active gene 

transcription. Furthermore, consistent with an accumulation in the euchromatic regions, H3.3 

is rich in PTMs generally associated with gene transcription (McKittrick et al. 2004; Hake et 

al. 2006). For example, H3.3 is enriched with H3K9ac, H3K14ac, and H3K4me3 PTMs, all 

of which have been associated with transcriptional activation (Loyola et al. 2006).  

Furthermore, in ESCs H3.3 deposition rates have been detected to be highest at sites 

associated with active histone marks including H3K4me3,  H3K9ac and H3K27ac (Ha et al. 

2014). In contrast to H3.3, the canonical histones H3.1/H3.2 are typically enriched with 

marks associated with gene silencing such as H3K27me3 and H3K9me3 (Hake et al. 2006). 

A recent study has implicated H3.3 in epigenetic inheritance (Ng and Gurdon 2008). 

It was shown that in non-muscle cell lineages of nuclear transplant embryos, incorporation of 

H3.3 at the MyoD promoter correlates with the epigenetic memory of gene expression (Ng 

and Gurdon 2008). Strikingly, authors found that K4 of H3.3 is essential for the observed 

epigenetic inheritance of the gene expression pattern. Substituting H3.3 K4 to E4 which 

cannot be methylated results in the loss of epigenetic memory (Ng and Gurdon 2008). This 

finding suggests that specific PTM marks on H3.3 have essential functions in the context of 
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gene expression regulation. Consistent with the essential functions of H3.3, its loss results in 

semi-lethality in mice (Bush et al. 2013). Loss of H3.3 in D. melanogaster results in 

widespread transcriptional defects. In fact null flies have severe phenotypes of male meiotic 

defects including chromosomal segregation impairment (Sakai et al. 2009). 

Recent evidence indicates that H3.3 is not strictly associated with euchromatic 

regions and can also be found within repressed and poised genes (Delbarre et al. 2010; 

Goldberg et al. 2010). Consistently, H3.3 has also been found to be associated with 

pericentric and telomeric chromatin regions (Wong et al. 2009; Drané et al. 2010; Lewis et 

al. 2010). Distinct histone chaperones including a complex comprised of the death-associated 

protein (DAXX) and the alpha-thalassemia/mental retardation X-linked syndrome protein 

(ATRX) is associated with H3.3 at these heterochromatic loci (Wong et al. 2009; Drané et al. 

2010; Goldberg et al. 2010; Lewis et al. 2010). In addition, a phosphorylated form of 

chromatin-bound protein DEK, which is another H3.3 chaperone, has been proposed to 

interact with D. melanogaster nuclear ecdysone receptor and potentially functions in 

directing H3.3 to regulatory elements to enhance transcription (reviewed in Campos and 

Reinberg 2010; Sawatsubashi et al. 2010). In fact recent evidence indicates that DEK is 

essential for proper loading of ATRX and H3.3 on telomeres (Ivanauskiene et al. 2014).  

Although H3.3 is primarily incorporated into chromatin via a RI pathway, it can also 

be deposited during DNA replication. For example in D. melanogaster, H3.3 utilizes both the 

RD and RI pathways to get deposited onto DNA (Ahmad and Henikoff 2002). Consistent 

with these findings, it was recently shown that in HeLa cells H3.3 is also deposited during S-

phase of the cell cycle in a HIRA dependent manner (Ray-Gallet et al. 2011). CENP-A is a 

centromere-specific H3 variant and is deposited during early G1 phase in a RI manner 

(Stellfox et al. 2013). Recent evidence indicates that H3.3 is deposited during S at 
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centromeres where it functions as a place-holder for CENP-A to be incorporated during G₁ 

phase (Dunleavy et al. 2011). Consistent with these observations, in Tetrahymena 

thermophila, a unicellular eukaryotic ciliate protozoan, H3.3 has been shown to be deposited 

via both RD and RI pathways, with the latter being the predominant mode of incorporation 

(Cui et al. 2006). In T. thermophila, canonical H3 has been found be non- essential for 

survival if cells are over-expressing H3.3. It was also found that vegetative T. thermophila 

cells lacking H3.3 are viable and do not exhibit any phenotype (Cui et al. 2006). 

Nevertheless, H3.3 is required to produce viable sexual progeny and plays a critical role in 

the germline micronuclei late in conjugation (Cui et al. 2006). Furthermore, consistent with 

the described association of metazoan H3.3 with gene expression, T. thermophila H3.3 was 

also found to predominantly localize in the transcriptionally active macronucleus (Cui et al. 

2006). Taken together these studies highlight the diverse and biologically significant 

functions of H3.3 including  roles during embryo development, chromatin organization, gene 

expression regulation and epigenetic inheritance (Szenker et al. 2011).  

1.1.2- H2A and its variants  
 

A unique feature of the histone H2A family is the presence of an extended C-terminal 

tail that is the target of some of the most bulky PTMs such as SUMOylation and 

ubiquitination (Vissers et al. 2008; Thambirajah et al. 2009; Wratting et al. 2012). In humans 

it has been shown that truncating the C-terminal tails of H2A results in an altered gene 

expression pattern suggesting their functional significance in maintaining the proper 

chromatin structure (Karaczyn et al. 2009). In addition to the canonical H2As, five major 

variants including H2A.Z, MacroH2A, H2A-Bbd, H2AvD, and H2A.X have thus far been 

detected (Kamakaka and Biggins 2005).  Some of the H2A variants are present in a lineage 

specific manner (Kamakaka and Biggins 2005). For example, H2A.Bbd (Barr Body 
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Deficient) is a mammalian-specific H2A variant which is not present in invertebrates (Eirín-

López et al. 2008).  H2A.Bbd is thought to facilitate both the transcription activation by 

destabilizing the nucleosomes and processing of initial mRNAs (Tolstorukov et al. 2012).  

Similarly, MacroH2A is restricted to vertebrates and primarily localizes to the inactive X-

chromosome where it is believed to function in the maintenance of transcriptionally silent 

chromatin (Costanzi and Pehrson 1998). Remarkably, Bdelloid rotifers lack canonical H2As 

and instead contain unusually massive variants (Van Doninck et al. 2009). The presence of 

these unusual H2A variants in Bdelloid rotifers is thought to be an adaptation to survive in 

the environmental conditions in which these organisms reside (Van Doninck et al. 2009).  

The variant H2A.X is typically characterized by the presence of a C-terminal SQ 

motif. Upon DNA damage the highly conserved serine residue present within the SQ motif is 

phosphorylated and the phosphorylated form is denoted as γH2A.X. γH2A.X has been shown 

to have a central role in the accumulation of DNA damage repair factors (Downs et al. 2000; 

Thambirajah et al. 2009). In budding and fission yeasts the major H2A proteins are more 

similar to the mammalian H2A.X variant rather than the canonical H2A subtypes (Downs et 

al. 2000; Kamakaka and Biggins 2005).  In contrast to yeasts where H2A.X is the only major 

H2A, in T. thermophila one of the two canonical H2As contains an SQ motif and functions 

similarly to the metazoan H2A.X upon DNA damage (discussed later) (Song et al. 2007). 

These observations highlight the fact that evolutionary pressures have ensured the presence 

of H2A.X possibly due to its essential roles in the DNA damage repair pathway.  

Among H2A variants, H2A.Z is the most conserved and is found throughout the 

eukaryotic lineage (Talbert et al. 2012). At the amino acid level, H2A.Z shares ~ 60% 

similarity with the core histone H2A within the same species (Thatcher and Gorovsky 1994; 

Talbert et al. 2012). Remarkably however, H2A.Z is more conserved to its counterparts 
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across various lineages (~80% similarity for most species) (Bönisch and Hake 2012) 

suggesting that H2A.Z is functionally distinct from the major H2As. H2A.Z variants are 

known as the yeast Htz1, T. thermophila hv1, D. melanogester H2Av and mammalian 

H2A.Z. H2A.Z was identified in the 1980s and studies have shown that it contributes to an 

estimated 5-10% of all nucleosomal H2A variants (Redon et al. 2002). The  structural studies 

have indicated that H2A.Z containing NCP is similar in overall topology to that of H2A-

containing nucleosomes (Suto et al. 2000). However, it was found that the presence of 

H2A.Z might confer unique structural properties distinct from those of canonical H2A (Suto 

et al. 2000). For example, the L1 loop which functions to mediate interaction between two 

H2A/H2B dimers is altered in H2A.Z NCPs in such a way that it favors the presence of a 

second H2A.Z/H2B dimer within the same nucleosome (Suto et al. 2000). Due to these 

differences it was hypothesized that presence of the canonical H2A and H2A.Z within the 

same NCP would have destabilizing effects (Suto et al. 2000).  Subsequent studies, however, 

have reported contrasting observations. For example, some studies indicated that H2A.Z 

containing nucleosomes are more stable than the canonical H2A NCPs (Thambirajah et al. 

2006). Park et al. (2004) have shown that H2A.Z containing mono-nucleosomes are more 

resistant to salt dissociation than the canonical H2A containing NCPs suggesting that H2A.Z 

results in nucleosomal stability (Park et al. 2004). In contrast, several other studies have 

concluded that H2A.Z confers instability when present within the NCPs (Zhang et al. 2005; 

Bönisch et al. 2012). Recent studies have demonstrated that H2A.Z/H3.3 double variant 

containing NCPs are highly unstable indicating a role of variants in gene transcription 

activation (Jin and Felsenfeld 2007). Consistent with these results, it was later found that in 

humans H2A.Z/H3.3 containing NCP are enriched within nucleosome-free regions of active 

promoters, enhancers and insulator regions (Jin et al. 2009). Taken together these studies 
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highlight the fact that the presence of histone variants has the potential to alter nucleosomal 

properties and chromatin structure.  

 Whether or not expression of H2A.Z is essential is species specific. For example, 

H2A.Z is essential in mouse (Faast et al. 2001), fly (van Daal and Elgin 1992) and frog 

(Iouzalen et al. 1996). Similar to the higher eukaryotes, in T. thermophila Hv1 is an essential 

gene and its loss causes lethality (Liu et al. 1996). Hv1 is found primarily in the 

transcriptionally active macronucleus throughout the life cycle of T. thermophila. However, 

Hv1 does localize to the transcriptionally silent micronucleus only during early stages of 

conjugation, the only time when it is transcriptionally active  (Allis et al. 1986; Stargell et al. 

1993). These observations indicate that this variant might be involved in the activation of 

gene expression. This notion was further supported by studies in yeast which indicated that 

Htz1 is required for the proper expression of ~200 genes (Kobor et al. 2004; Mizuguchi et al. 

2004). Htz1 is enriched at the promoter of several genes and is necessary for the recruitment 

of the transcriptional machinery (Guillemette et al. 2005; Bernstein et al. 2007; Zilberman et 

al. 2008). It has been suggested that H2A.Z might be involved in defining the boundaries of 

heterochromatin and euchromatin (Meneghini et al. 2003). It was demonstrated that Htz1 

localizes within the actively transcribed regions of the yeast genome, in particular those 

flanking heterochromatin that is associated with the Sir silencing complex (Meneghini et al. 

2003). Recent studies also suggest that H2A.Z mutant cells show a defect in DNA repair 

which in turn results in genomic instability (Xu et al. 2012). 

 H2A.Z has been found to play vital roles in both transcription activation as well as 

repression (Raisner et al. 2005; Marques et al. 2010; reviewed in Bönisch and Hake 2012). 

Recent evidence suggests that the presence of H2A.Z can affect the positioning and mobility 

of NCPs which in turn could differentially increase or decrease the availability of DNA for 
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the binding of activating and repressive regulatory factors (Guillemette et al. 2005; Marques 

et al. 2010). In addition, the presence of specific PTMs might have a role in the observed 

contrasting functions of H2A.Z. For example, acetylated H2A.Z is enriched within active 

regions and is thought to function as a positive regulator of gene transcription (Zlatanova and 

Thakar 2008). In contrast, ubiquitinated H2A.Z is thought to be a marker of transcription 

repression (Zlatanova and Thakar 2008). Consistent with the role of PTMs on H2A.Z, T. 

thermophila Hv1 is acetylated at GGK motif found within the N-terminal tail (Ren and 

Gorovsky 2001). The acetylation of Hv1 is believed to be critical for the proper functioning 

of Hv1 in gene transcription (Ren and Gorovsky 2001; Ren and Gorovsky 2003). Similarly, 

the N-terminal tail of budding yeast Htz1 is acetylated at K3, K8, K10 and K14 residues and 

mutants lacking the acetylable K14 exhibit defects in chromosome transmission, telomeric 

silencing and DNA repair (Keogh et al. 2006; Millar et al. 2006). 

 Several independent studies have revealed the involvement of a novel protein 

complex called the  Swr1-complex in the recruitment of H2A.Z (Krogan et al. 2003; Kobor 

et al. 2004; Mizuguchi et al. 2004). Swr1 functions as an ∼1 MDa complex containing 14 

different polypeptides (reviewed in Nguyen et al. 2013) including catalytic ‘Swr1’ (a 

member of the ATP-dependent SWI/SNF family of chromatin-remodeling factors). It 

replaces canonical H2A with H2A.Z in an ATP-dependent manner (Luk et al. 2010). In 

budding yeast, histone chaperones including Nucleosome assembly protein 1(Nap1) and 

chaperone for H2A.Z-H2B (Chz1) have been shown to provide Htz1/H2B to the Swr1 

complex for deposition (Straube et al. 2010). While Nap1 can function both as H2A/H2B and 

Htz1/H2B chaperones, Chz1 is a highly specific chaperone for Htz1/H2B (Luk et al. 2007; 

Straube et al. 2010). Taken together these studies have highlighted the essential roles of H2A 
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variants, particularly H2A.Z, in the regulation of gene expression, chromatin integrity and 

DNA repair. 

1.2- Histone Chaperones and their roles in chromatin dynamics 
 

The assembly of genomic DNA and histones into chromatin is a fundamental process 

that may affect a broad range of gene regulatory processes such as DNA repair, DNA 

replication and progression through the cell cycle (reviewed in Fischle et al. 2003). To 

regulate the process of chromatin assembly/disassembly, cells have evolved several protein 

factors known as histone chaperones (Keck and Pemberton 2012). Histone chaperones act as 

donors and acceptors during assembly and disassembly of nucleosomes and deposit histones 

onto DNA in an orderly manner without themselves being a part of the chromatin (De 

Koning et al. 2007). Histone chaperones have a variety of different functions including 

shielding of positive charges on histones to prevent any nonspecific interactions with DNA 

(Keck and Pemberton 2012). There are several histone chaperones identified to date and they 

appear to have specific preferences for binding to either H3-H4 or to H2A-H2B (De Koning 

et al. 2007; Hondele and Ladurner 2011; Keck and Pemberton 2012). Examples of histone 

chaperones include Nucleoplasmin (NPM) and Nucleosome assembly protein 1 (Nap1) both 

of which are H2A-H2B chaperones, as well as Histone regulator A (HIRA), Chromatin 

assembly factor -1 (CAF-1) complex, Anti silencing factor 1 (Asf1) and Nuclear auto 

antigenic sperm protein (NASP) all of which are H3-H4 chaperones. There are also 

chaperones that can function for both the H2A-H2B and H3-H4 histones, e.g. Facilitator of 

chromatin transcription (FACT) complex.  

Initiation of chromatin assembly begins in the cytoplasm where histones are 

synthesized during S phase and are then transported into the nucleus (reviewed in Roth and 
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Allis 1996). Several studies have shown that newly synthesized histones contain specific 

PTM marks. For example, newly synthesized histone H4 carries an evolutionarily conserved 

diacetylation mark at K5 and K12 residues (Jackson et al. 1976; Sobel et al. 1995; Li et al. 

2012). These PTMs are thought to be important for the proper transport and deposition of 

histones (De Koning et al. 2007; Hondele and Ladurner 2011; Keck and Pemberton 2012). 

The processes of transporting newly synthesized histones, assembling them onto DNA and 

disassembly of old histones during DNA replication and transcription are all mediated by 

several histone chaperones as well as karyopherin (importins/exportins-Kaps) proteins (De 

Koning et al. 2007).   

 The current view is that newly synthesized histones are transported to the nucleus in a 

stepwise manner in which distinct chaperones and Kaps have been shown to be involved (Li 

et al. 2012). The transport pathway of H2A/H2B is still largely unclear, however histone 

chaperone Nap1 along with a Kap114 have been shown to mediate this process in yeast 

(Mosammaparast et al. 2001; Mosammaparast et al. 2002). In contrast to the H2A/H2B, 

newly synthesized histones H3/H4 are transported via a pathway that has been well 

elucidated. For example, in humans, newly synthesized histones H3.1/H4 are transported to 

the nucleus by shuttling through at least four different cytosolic complexes (Campos et al. 

2010; Alvarez et al. 2011). The process is initiated by heat shock proteins HSP90 that bind 

with newly synthesized histones to possibly aid in their proper folding. Subsequently, NASP 

binds with these newly synthesized histones and facilitates in Hat1/Hat2 mediated deposition 

related H4 acetylation. Finally these histones are passed onto a chaperone Anti-silencing 

factor 1 (Asf1) which along with Importin4 transports these histones to the nucleus (Campos 

et al. 2010; Alvarez et al. 2011; for review Keck and Pemberton 2012). Inside the nucleus, 

yet another set of histone chaperones have been shown to play crucial roles in chromatin 
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assembly. As noted earlier, canonical histones are deposited via RD chromatin assembly 

(Campos et al. 2010; Alvarez et al. 2011) whereas histone variants are deposited via the RI 

chromatin assembly pathway (Ahmad and Henikoff 2002; Green et al. 2005). The three 

subunit protein complex CAF1 that physically interacts with Asf1, functions to deposit 

histones H3.1/H4 onto replicating DNA whereas RI assembly of H3.3 is mediated by HIRA 

(Tagami et al. 2004). Both CAF1 and HIRA interact with Asf1 in a mutually exclusive 

manner via conserved B-domain regions (Sherwood et al. 1993; Tang et al. 2006) (Figure 3). 

These studies underscore the importance of histone chaperones and their role in histone 

metabolism. Below, a brief overview of histone chaperones including NPM and NASP, as 

well as the FACT complex, is provided.  

 

 
Figure 3: Chromatin assembly pathway: A general view. Inside the nucleus Asf1 

functions to pass newly synthesized histones H3/H4 either to the HIRA complex (RI 

pathway) or to CAF-1 (RD pathway). The thick arrow denotes the replication fork (Image 

adopted from Fillingham and Greenblatt 2008) 
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1.2.1- Nucleoplasmin- the chaperone of H2A-H2B 
 

Originally isolated from African clawed frog (Xenopus laevis) egg extracts, Npm 

(also referred to in the literature as NP or Npm2) was described as an acidic chaperone 

protein capable of assembling nucleosomes binding specifically with H2A/H2B (Dingwall et 

al. 1987; Dingwall and Laskey 1990). X. laevis oocytes store a large amount of soluble 

histones that are required for DNA replication post-fertilization, and Npm2 have been 

suggested to function as a buffer for these soluble histones (Dingwall et al. 1987; Dingwall 

and Laskey 1990). In vertebrates three paralogous forms of Npm are found which have been 

categorized as Npm1, Npm2 and Npm3, whereas invertebrates contain only one Npm-like 

protein (Eirín-López et al. 2006). Vertebrate Npm1-3 proteins are transcribed from three 

different genes encoding three similar proteins that differ in their length and domain structure 

as depicted in Figure 4 (reviewed in Frehlick et al. 2007). The Npm1-3 proteins differ from 

each other in their expression and localization patterns, but one hallmark of nucleoplasmins 

is a well-conserved N terminus (core region) which usually contains a small acidic domain 

and a C-terminus which contains one acidic domain in the case of Npm3 and two or more 

acidic domains in the case of Npm1/2 as shown in Figure 4 (reviewed in Frehlick et al. 

2007). Furthermore, Npms can localize in the nucleus and hence contain a nuclear 

localization signal (NLS). For Npm1 (also known as B23, numatrin, and NO38), it 

additionally contains a nucleolar localization signal (NoLS) as well as a nuclear export signal 

(NES) and an RNA-binding domain (RBD).  Both the NoLS and RBD are thought to be 

required for Npm1 functions during ribosome biogenesis (Borer et al. 1989).   
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Figure 4: Comparison of different Npm family members. Acidic patches are shown in red 

whereas localization signals are shown in dark blue. The nucleic acid binding domain is 

shown in yellow for Npm1. The core N-terminal domains are shown in pink, blue green and 

purple for Npm1, 2, 3 and Npm-like proteins, respectively. Image adopted from (Frehlick et 

al. 2006). 

Npm1-3 family members may have some functional redundancy. For example, 

disruption of the Npm2 gene in mice, which is specifically expressed in growing oocytes, 

leads to noticeable defects in female fertility and  loss of heterochromatin and deacetylated 

histone H3 in early embryonic cells (Burns et al. 2003).  In Npm2-KO mice, Npm1 and 

Npm3 were found to have some compensatory roles (Burns et al. 2003) suggesting functional 

redundancy among Npm family members. As noted above Npm2 proteins have been shown 

to function in soluble H2A/H2B storage (Dingwall et al. 1987; Dingwall and Laskey 1990). 

In X. laevis, Npm2 functions both in the removal of protamines (Prieto et al. 2002) and the 

subsequent deposition of H2A/H2B dimers, signifying its important role in chromatin 

decondensation and proper nucleosome formation (Dingwall et al. 1987; Dingwall and 

Laskey 1990).  Similar to Npm2, Npm1 has also been demonstrated to be important for 
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several chromatin related processes. For example, inactivation of Npm1 in mice results in 

defects in centrosome duplication (Grisendi et al. 2005), DNA replication  (Takemura et al. 

1999), transcriptional regulation (Swaminathan et al. 2005), histone chaperone activity, and 

nucleic acid binding (Wang et al. 1994). In contrast to Npm1/2, the Npm3 is the least 

characterized family member (Finn et al. 2012). Npm3 is ubiquitously expressed across 

various tissues (Shackleford et al. 2001) and within mammalian oocytes it has been found to 

be crucial for chromatin de-condensation (McLay and Clarke 2003). 

1.2.2- Nuclear autoantigenic sperm protein (NASP) 
 

NASP originally discovered in X. laevis oocytes and named as N1/N2 was found to be 

highly specific for H3/H4 binding. Similar to Npm2, NASP was thought to provide a 

buffering mechanism for soluble H3/H4 required for DNA replication in the early embryo 

(Kleinschmidt et al. 1985; Dilworth et al. 1987). The mammalian homolog of N1/N2 was 

subsequently identified in rabbit testes and was found to be a highly autoantigenic protein 

and hence was named accordingly, i.e. NASP (Welch et al. 1990). Later studies showed that 

among mammals, NASP exists in alternatively spliced isoforms that are differently expressed 

either in testes or somatic cells (Richardson et al. 2000).  The full length NASP (tNASP) is 

primarily expressed in embryonic tissues and testes whereas the smaller version is found in 

all dividing cells (Richardson et al. 2000).  

Studies in mice revealed that knocking out its gene results in early embryonic lethality 

indicating NASP expression is essential  (Richardson et al. 2006). It has also been shown that 

NASP is a cell cycle regulated proteins and its over expression results in cell cycle delay 

from the G1/S border  (Richardson et al. 2000; Alekseev et al. 2003). In humans, NASP 

functions in an array of cellular processes. For example, it participates in di-acetylation of 

newly synthesized H3/H4 in a Hat1-complex dependent manner, functions as an H1 
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chaperone and fine tunes a soluble reservoir of histones H3/H4 in humans (Finn et al. 2008; 

Campos et al. 2010; Cook et al. 2011).  

NASP has recently been shown to be conserved throughout the eukaryotes with a motif 

architecture of four tetratricopeptide repeats (TPR) (Nabeel-Shah et al. 2014). Interestingly, it 

has been shown that different TPR motifs in NASP bind with differential affinity for H1 and 

H3/H4 (Wang et al. 2008). For example, TPR2 which has acidic residues interacts with H1 

whereas TPRs3/4 are responsible for H3/H4 binding (Wang et al. 2012). Recently, it was 

also shown that the NASP ortholog in Saccharomyces cerevisiae, Hif1 functions in 

nucleosome formation via an interaction with specific species of RNA (Knapp et al. 2014).  

In addition, deletion of Hif1 results in defects in telomeric silencing and DNA double strand 

break repair (Ai and Parthun 2004). Taken together these studies suggest that NASP has 

diverse functions within cells ranging from histone transport to nucleosome assembly.   

1.2.3- The FACT (facilitates chromatin transcription) Complex: 
 

In budding yeast, FACT consists of two proteins:  Spt16 (suppressor of Ty 16) (also 

called Cdc68) and Pob3 (Pol1 binding protein3) (Rowley et al. 1991; Evans et al. 1998). 

Yeast Spt16 protein was identified based on its roles in transcription and cell cycle controls 

(Rowley et al. 1991) whereas Pob3 was co-purified with DNA polymerase II (Wittmeyer and  

Formosa 1997). In budding yeast FACT is required for transcribing genes with highly 

positioned nucleosomes at the 5’ end of the transcribed region suggesting a role in 

transcription initiation (Jimeno-González et al. 2006). In addition to its role in transcription 

initiation, FACT has also been found to have important functions in transcription elongation 

in several organisms (Saunders et al. 2003).  FACT's role in transcription elongation was 

established in vivo through genetic interactions with known elongation factors TFIIS and 
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Spt4 (Orphanides et al. 1998). ChIP experiments showed that FACT associates with active 

genes in vivo and co-localizes with RNAPII (Mason and Struhl 2003).  

In humans, Spt16 (SUPT16H) is a 140 kDa subunit which is 36% identical to the S. 

cerevisiae  Spt16 whereas the Pob3 is an 80 kDa subunit (SSRP1 in human) (Orphanides et 

al. 1998). FACT interacts with nucleosomes and acts as a H2A-H2B dimer chaperone 

(Orphanides et al. 1999).  The chaperoning activity of FACT is required for two different 

processes, first, to facilitate the removal of histones in front of elongating Pol II and 

secondly, in the reassembly of the nucleosome  (Winkler and Luger 2011).  It has been 

shown that the absence of yeast FACT results in the improper deposition of histones during 

transcription elongation which results in the high levels of free histone, leading to a delay in 

cell cycle progression at G1 phase (Morillo-Huesca et al. 2010). It was shown that covalently 

cross linked histones within nucleosomes abrogate FACT dependent transcription indicating 

that histone octamers must be disassembled during transcription (Orphanides et al. 1999). 

Thus it was concluded that FACT is involved in nucleosome disassembly, a notion strongly 

supported by the physical interaction of Spt16 with H2A/H2B and Pob3 association with 

H3/H4 (Belotserkovskaya et al. 2003).  Moreover, FACT was also found to possess histone 

chaperone activity suggesting that FACT functions in the nucleosomal re-assembly during 

transcription (Belotserkovskaya et al. 2003).  

Besides its critical role in transcription, FACT complex has also been shown to be 

important for DNA replication and DNA repair (reviewed in Reinberg and Sims 2006). For 

example, FACT is important for replication in X. laevis egg extracts (Okuhara et al. 1999). In 

humans, FACT co-purifies with MCM helicase components where it has been shown to 

enhance the MCM helicase activity in vitro (Tan et al. 2006). Similarly, in budding yeast 

DNA polymerase-α, DNA replication factor RPA as well as the MCM helicase, all of which 

http://en.wikipedia.org/wiki/SUPT16H
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are required for initiation of replication from origins and for lagging strand synthesis, have 

been demonstrated to co-purify with FACT (Wittmeyer and Formosa 1997; Gambus et al. 

2006; VanDemark et al. 2006). Consistent with these observations, Pob3 mutants exhibit 

replication defects (Schlesinger and Formosa 2000). Furthermore, Spt16 has been 

demonstrated to localize to replication origins in G1 and early S phases (Han et al. 2010). 

Taken together, FACT has demonstrable functions in transcription initiation, elongation, as 

well as DNA replication. 

1.3- Histone post-translation modifications  
 

Histones can be post-translationally modified, particularly at their amino (N) terminal 

tails and these modifications have been shown to influence various aspects of chromatin 

dynamics including chromatin assembly, gene expression regulation, and formation of 

various chromatin states such as heterochromatin and euchromatin (reviewed in Keck and 

Pemberton 2012). Some of the histone PTMs include acetylation, phosphorylation, 

methylation (mono, di and trimethyl), SUMOylation, ubiquitylation and ribosylation marks 

(Fischle et al. 2003). These reversible covalent modifications have been linked with specific 

biological outcomes. For example, an enrichment of H3K9 me3, H3K27me3 and H3K20me3 

have been associated with transcriptionally inert heterochromatic regions whereas H3K4me3 

and H3K36me3 PTMs have been linked with transcriptionally active regions (reviewed in 

Rivera et al. 2014). In addition, H3K56ac, a PTM found within the histone globular region, 

has an important role in chromatin assembly during DNA replication and repair. H3K56ac 

has been implicated to function to loosen the interaction of histones with DNA, suggesting a 

role in chromatin assembly (Masumoto et al. 2005). In budding yeast, H3K56ac is mediated 

by a fungal specific  histone acetyltransferase Rtt109 (Driscoll et al. 2007; Han et al. 2007), 
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in conjunction with Asf1 (Recht et al. 2006). In humans, several HATs including CBP/p300 

(Das et al. 2009) and Gcn5 (Tjeertes et al. 2009) have been implicated in mediating 

H3K56ac.  H3K56ac is also highly abundant in the distantly related ciliate T. thermophila 

(Garcia et al. 2007) suggesting that this PTM is evolutionarily conserved, however the 

enzyme responsible for H3K56ac in  T. thermophila has not yet been identified (Garcia et al. 

2007). Furthermore, an abundant histone PTM, di-acetylation of  H4 at K5 and K12, 

mediated by histone acetyl transferase1 (Hat1) enzyme, has been shown to be important for 

chromatin assembly (Allis et al. 1985; Parthun 2007). This diacetylation of H4K5/12 is 

highly conserved across the eukaryotic lineage ranging from ciliates to humans (reviewed in 

Parthun 2012). These observations underscore the evolutionary conservation and biological 

relevance of histone PTMs in various chromatin related process. 

Another histone PTM is the addition of ADP-ribose subunits mediated by a large 

family of evolutionarily conserved enzymes called Poly (ADP-ribose) polymerases (PARPs) 

(Citarelli et al. 2010). This modification has been shown to be important for various 

chromatin related processes, particularly DNA double strand break repair, chromatin 

compaction as well as transcription regulation (De Vos et al. 2012). Interestingly, recent 

evidence indicated that in humans, newly synthesized H3/H4 are ribosylated in the 

cytoplasm, although the functional significance and enzymology behind this PTM  remains 

unknown (Alvarez et al. 2011). A brief overview of some well characterized PARP family 

enzymes and the biological significance of ADP-ribosylation is provided below. 

1.3.1- Poly (ADP-ribose) polymerases (PARPs) 
 

ADP-ribosylation mediated by PARPs is a PTM in which one ADP-ribose moiety 

from NAD
+
 is transferred to specific amino acid residues of the substrate proteins (reviewed 

in Hottiger 2011) (Figure 5-A). This protein-linked ADP-ribose in turn can act as an acceptor 
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of additional ADP-ribosylation and an elongation of this chain then results in poly ADP 

ribosylated proteins. Subsequently, branching in ADP-ribose chains can be introduced with  

(1’–2’) ribose–ribose linkages (Ko and Ren 2012) (Figure 5-A). In contrast to oligomeric or 

polymeric ADP-ribose (PAR) modifications, mono-ADP-ribosylation is found more 

commonly within cells (Wielckens et al. 1981). Also most of the poly-ADP-ribosylated 

proteins studied thus far have been found to be nuclear whereas mono-ADP-ribosylated 

proteins are predominantly cytoplasmic (reviewed in Messner and Hottiger 2011). In 

eukaryotic cells, known ADP-ribose acceptor residues include lysine, arginine, glutamate, 

aspartate, cysteine, phospho-serine and asparagine (reviewed in Messner and Hottiger 2011).  

In humans the PARP family includes 17 members with PARP1 being the first to be 

identified (for review Schreiber et al. 2006). PARP-1 contains two N-terminal zinc fingers 

(Zn1 and Zn2) (Figure 5-B), which mediate binding to DNA double strand breaks during 

repair processes  and can enhance PARP1 activity up to 500 fold (Eustermann et al. 2011; 

Langelier et al. 2011). An additional Zn3 domain functions in binding to DNA as well as 

transmits the DNA binding signal to the PARP catalytic (CAT) domain.  PARP1 also has an 

automodification domain (AD) which mediates self-PARylation. The AD contains a BRCT 

fold, which functions to mediate protein-protein interactions during DNA repair (Loeffler et 

al. 2011), and several residues that are targeted for PARP1 automodification. PARP1 also has 

a C-terminal Trp-Gly-Arg (WGR) domain which binds with DNA near the 5’ terminus and 

mediates domain–domain contacts essential for DNA-dependent activity (Langelier et al. 

2012). The catalytic activity is carried out by a CAT domain composed of two sub-domains 

(helical sub domain–HD, and ART) (Figure 5-B).  
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Figure 5: Process of ADP-ribosylation of histone and domain architecture of human 

PARP1. A: The ADP-ribosylation cycle is depicted starting from synthesis on a lysine 

acceptor residue, recognition by specific factors such PBZ domain proteins, and finally 

degradation by ARH3 or PARG has been depicted. Note '?' denotes that the specific enzyme 

responsible for lysine-ADP-ribosylation bond breakage is as yet unknown. The image was 

adopted from (Hottiger 2011). B: Domain architecture of human PARP1 is represented based 

on SMART domain analysis.  

 Based on structural organization and the presence or absence of intact  CAT domains, 

PARPs have been sub-divided into two classes; (i) bona fide PARPs (PARP1–6) which 

contain conserved glutamate residues in the CAT domain that are essential for the formation 

of PAR chains; (ii) PARP 7–17 which lack the conserved glutamate residues (reviewed in 

Messner and Hottiger 2011) . It should be noted that among PARPs only a sub-set have been 

predicted to be able to produce PARs (PARP-1 to PARP-5a and PARP-5b), while two are 

B 

A 
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inactive enzymes (PARP-9 and PARP-13) and the remaining PARPs are predicted to only 

produce a mono-ADP-ribose modification (Kleine et al. 2008).   

 Histone have been demonstrated to be a substrate of PARPs, however, thus far only 

PARP1/3/10 have been shown to ADP-ribosylate histones (Yu et al. 2005; Messner et al. 

2010; Rulten et al. 2011). In contrast to PARP1/3/10, PARP2 was not found to be able to 

ADP-ribosylate histone tails in vitro  (Messner et al. 2010). Experimentally ribosylation 

modification has proven to be difficult to detect on histones in vivo. This is because under 

physiological conditions only a small fraction of all histone proteins (less than 1%) are ADP-

ribosylated (Stone et al. 1977; Boulikas 1989). Earlier work has shown that purified core as 

well as linker histones from rat liver nuclei and from HeLa cells are ribosylated, although the 

specific PARP enzyme responsible for these modifications was not detected (Burzio et al. 

1979). Potentially, histones can be ADP ribosylated immediately after their synthesis in the 

cytoplasm and during transport to the nucleus, as well as after their incorporation into 

chromatin (reviewed in Messner and Hottiger 2011). A recent study has provided evidence 

that in humans, histones H3/H4 are poly-ADP-ribosylated in the cytoplasm (Alvarez et al. 

2011). It was reported that newly synthesized histones H3 and H4 are poly-ADP-ribosylated 

prior to their dimerization in the cytoplasm (Alvarez et al. 2011). Because poly-ADP-

ribosylation was one of the earliest PTM marks detected, it was suggested that it might have 

a function in the proper folding of the newly synthesized histones (Alvarez et al. 2011). 

Nevertheless the specific PARP responsible for this PTM mark was not reported. Another 

study isolated the H3.1 and H3.3 pre nucleosomal assembly complexes in humans and 

reported the co-purification of PARP1 and PARP2 (Drané et al. 2010).  These results raise 

the possibility that PARP1/2 might be the enzymes responsible for the poly-ADP-

ribosylation of newly synthesized H3/H4, although experimental verification awaits further 
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analyses. A recent study has shown that auto-ribosylation of PARP1 switches its role from a 

chromatin architectural protein to a histone chaperone capable of nucleosome formation 

activity (Muthurajan et al. 2014).   

In humans three members of the PARP family including PARP-1, PARP-2 and 

PARP-3 have been shown to be catalytically activated upon binding to DNA damage and 

function in repair of double strand breaks (Amé et al. 1999; D’Amours et al. 1999; De Vos et 

al. 2012).  PARP1 has also been shown to be a transcriptional regulator where it can bind 

with the promoter elements and regulate gene expression (Kraus and Lis 2003). For example, 

several studies have provided evidence that ribosylation of chromatin by PARP1 loosens 

chromatin and makes it accessible for the transcription machinery (Kraus 2008).    The 

functional significance of PARP1 can be estimated by the fact that it is up-regulated in 

several cancers (Jagtap and Szabó 2005). As well PARP1 null animals exhibit 

hypersensitivity to DNA damaging agents (Shall and de Murcia 2000).  These studies 

highlight the role of PARP family proteins in a wide range of chromatin related processes. 

Nevertheless, the full extent of diverse functions carried out by PARPs has only begun to be 

elucidated and a complete understanding is still far from complete.  

1.4- The model organism: Tetrahymena thermophila 

 

Tetrahymena thermophila is a unicellular eukaryotic model organism in the phylum 

Ciliophora and is commonly found in freshwater ponds and lakes (Orias et al. 2011). T. 

thermophila carries four (tetra) membrane-like (hymen) oral structures (Lynn and Doerder 

2012) and has been named accordingly. Furthermore, as evident from its name, T. 

thermophila is able to survive under high temperature conditions ranging from 12˚C to 42˚C. 

However, the optimal growth temperature is 30˚C. Ciliates are distantly related to mammals  
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and carry ~ 2,280 human orthologs as per the 2006 genome annotation (Eisen et al. 2006). In 

addition, several core processes including chromatin regulation as well as DNA replication 

have been found to be highly conserved, thus making T. thermophila an excellent model 

organism to understand several key biological processes (reviewed in Orias et al. 2011).   

1.4.1- T. thermophila exhibits nuclear dimorphism 
 

Similar to other ciliates, T. thermophila exhibits nuclear dualism with two spatially and 

structurally distinct nuclei present within the same cell. The bigger nucleus called the 

macronucleus (MAC) is polyploid and contains ~45 copies of most genes as well as  ~9000 

copies of rDNA (reviewed in Orias et al. 2011). The MAC genome has been sequenced 

(Eisen et al.,2006) and it contains ~104Mb of DNA with roughly 24,725 known or predicted 

protein coding genes (Xiong et al. 2012). During vegetative growth of T. thermophila, all 

gene expression occurs from the MAC which is not sexually inherited and is the somatic 

nucleus (reviewed in Orias et al. 2011). 

 In contrast to the MAC, the smaller nucleus called the micronucleus (MIC) is diploid 

and it remains mostly silent during vegetative growth and ensures faithful transmission of the 

genetic material to the progeny. The MIC genome is ~120Mb in size indicating that it has 

~15% greater DNA complexity than the MAC (reviewed in Orias et al. 2011). This 

discrepancy between two genomes is due to “internally eliminated sequences” (IESs) that are 

present in the MIC but are deleted from the MAC (Yao et al. 1984).  

1.4.2- Two life cycles of T. thermophila 
 

 The T. thermophila life cycle has two phases, vegetative growth and the sexual phase 

called conjugation. A brief description of each is provided below. 
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1.4.3- Vegetative growth 
 

Vegetative growth of T. thermophila features asexual reproduction through binary fission 

(reviewed in Orias et al. 2011). During vegetative growth the MIC divides by mitosis and is 

responsible for the equal distribution of the MIC DNA between two daughter cells. During 

vegetative growth, the MIC remains transcriptionally silent and hence is not subject to any 

selective pressures against loss of MIC chromosomes. In fact, frequently in nature, cells 

without a MIC are found. Thus cells can keep growing vegetatively without the presence of a 

MIC. 

In contrast to the MIC, the MAC divides by amitosis and does not have any mechanism 

of equal segregation of alleles. Consequently, the MAC genetic contents are randomly 

distributed to the daughter nuclei. This feature of T. thermophila biology allows  for 

phenotypic assortment. In phenotypic assortments a heterozygote can eventually become  

homozygous for a particular gene (reviewed in Orias et al. 2011). The process of phenotypic 

assortment can be accelerated in laboratory settings by selecting for a particular gene locus of 

interest (Figure 6).  
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Figure 6: Cartoon of accelerated phenotypic assortment in the MAC. In the beginning 

only one copy of a MAC chromosome or allele is replaced as a result of biolistic 

transformation of a gene targeting vector. The MAC divides by amitosis lacking any 

mechanism of equal allelic segregation. As the cell divides, selective drug concentration is 

increased gradually. This selects for only those cells that receive more and more replaced 

gene copies until MAC homozygosity is achieved.  Note: Image has been designed as a part 

of collaborative effort with Nabeel-Shah S and Fillingham JS. 
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1.4.4-    Conjugation 
 

Another feature of T. thermophila is that it has seven different mating types (I to VII). 

Cells from one type are capable of mating with any other mating type but not with the cells 

of same mating type (Martindale et al. 1982). Within laboratory settings mating or 

conjugation can be induced when cells of different mating types are starved and mixed in 

approximately equal numbers. 

During conjugation, cells of two different mating types fuse at their oral apparatuses and 

each embark on a journey of intricate events as outlined below (Figure 7). To begin with, the 

MIC starts elongating and adopts a typical shape termed “crescent” which marks the 

initiation of prophase. Following meiosis I and meiosis II reductional divisions four haploid 

nuclei are produced. One of these nuclei is then selected and remains in the anterior of the 

cell whereas the remaining three nuclei are degraded. The selected nucleus then divides once 

by mitosis and produces two identical nuclei referred to as pro-nuclei. One of the pro-nuclei 

is called the migratory nucleus whereas the other one is called the stationary nucleus.  The 

paired cells exchange their migratory nuclei which are then fused to the stationary nuclei 

present within each mating partner. This results in the generation of a zygotic nucleus with 

restored diploid genetic content within each mating partner. The zygotic nucleus undergoes 

two rounds of mitosis which results in 4 genetically identical diploid nuclei. Two of these 

resulting nuclei found in the anterior of the cells differentiate into macronuclei whereas the 

remaining two posterior nuclei remain as diploid micronuclei.  Within these differentiating 

MACs, site-specific DNA rearrangements and mating type determination occurs.  The 

developing MACs termed anlagen start swelling whereas the parental old MAC moves 

toward the posterior end of the cell and initiates degradation in a processes that resembles 

lysosomal autophagy (Akematsu and Endoh 2010). At this stage, the gene expression 
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switches to the developing MACs. The parental MAC continues getting degraded until after 

the mating pairs are separated (ex-conjugants). In addition, one of the two new MICs is also 

destroyed in the ex-conjugants. Upon introducing the food source, in each ex-conjugant the 

MIC divides by mitosis and cells undergo their first post-zygotic cell division resulting in 4 

karyonide cells (Martindale et al. 1982) (Figure 7 A-K).  

During conjugation, the emergence of the new MAC requires extensive programmed 

DNA rearrangements, resulting in the removal of ~15% of DNA from the anlagen. The 

remainder of the anlagen genome is then endo-replicated ~ 50 times (Yao et al. 1984). Two 

types of genome rearrangements have been reported. The first one involves the removal of 

MIC specific sequences from the anlagen. These sequences are called internally eliminated 

sequences (IES) and are ~6000 in number with varying length (0.5 to 20 Kb) (Yao et al. 

1984).  The elimination of IES has been demonstrated to occur through an RNAi-like 

pathway and a scan RNA model has been suggested (Mochizuki et al. 2002). The second 

type of DNA rearrangement is chromosome breakage which occurs at conserved sites of a 

15bp sequence (BES for breakage eliminated sequence) (Fan and Yao 2000).  The breakage 

of five germline-derived chromosomes results in generation of nearly 250 unique somatic 

chromosomes (Yao et al. 1990). The enzymology behind BES is currently unclear. 
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Figure 7: T. thermophila conjugation events.  Top: Vegetative cell with distinct MIC and 

MAC is shown. Cilia are also depicted. Bottom: A-J: Different stages of conjugation are 

depicted (see text for details). Image designed an adaptation of (Martindale et al. 1982).  
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1.4.5-    Utility of T. thermophila as a model system 
    

T. thermophila has been long used as an experimental tool and its unique biology offers 

an excellent opportunity to study various cellular as well as developmental processes. It has a 

short generation time (~2 ½ hours) and cells can be grown to large volumes in axenic 

medium.  To facilitate molecular genetic analyses, the fully sequenced MAC genome  (Eisen 

et al. 2006) is freely available through Tetrahymena genome database (TGD: 

http://ciliate.org/index.php/home/welcome). Furthermore, micro-array based gene expression 

profiles for all of the predicted as well as experimentally verified open reading frames are 

available throughout growth, starvation and conjugation phases of the T. thermophila life 

cycle   (Miao et al. 2009) (http://tfgd.ihb.ac.cn/). A gene network analysis based on the 

available expression profiles has also been constructed providing useful insights into gene 

function (Xiong et al., 2011). Recently, expression profiles based on RNA-seq analysis have 

also been reported which significantly enhanced existing genome annotation and provided a 

comprehensive view of global transcriptome of T. thermophila (Xiong et al. 2012). ~5.2% of 

T. thermophila genes undergo alternative splicing, a number that has not been observed in 

any other unicellular eukaryote (Xiong et al. 2012). These features make T. thermophila a 

suitable unicellular eukaryote to study alternative splicing.  

In addition, several molecular and biochemical tools have been developed to investigate 

in vivo gene function. For example, exact gene replacement via homologous recombination  

(HR) is possible facilitating the creation of epitope tagged cell lines as well as knock out 

(KO) strains (Hai et al. 2000). Cells can be transformed by a variety of methods including  

electroporation, microinjection, as well as biolistic transformation (Bruns and Cassidy-

Hanley 2000; Turkewitz et al. 2002).  

http://ciliate.org/index.php/home/welcome
http://tfgd.ihb.ac.cn/
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The polyploid MAC provides a rich source of chromatin. This feature makes T. 

thermophila particularly suitable for studying chromatin dynamics. Furthermore, the spatial 

distinction of transcriptionally active and silent chromatin states in the form of MAC and 

MIC, respectively, offers a compelling opportunity to study the assembly pathways as well as 

functional aspects of different chromatin states. T. thermophila utility as a model organism 

can be appreciated by the fact that it has led to several key discoveries in basic science 

including those of catalytic RNA and telomerase, both of which led to Nobel prizes  (Kruger 

et al. 1982; Greider and Blackburn 1985). 

1.5- Thesis rationale 

 

Chromatin exists in a variety of forms that regulate most aspects of DNA mediated 

transactions such as gene expression as well as formation of distinct functional domains of 

chromatin (reviewed in Mariño-Ramírez et al. 2005; Aalfs and Kingston 2000).  PTMs of the 

canonical core histones are used as marks to define distinct chromatin regions. For example, 

an enrichment of H3K27me3 marks signify tightly condensed heterochromatin (reviewed in 

Rivera et al. 2014) whereas acetylation of H3K4me2 relaxes the chromatin and facilitates 

transcription (Bernstein et al. 2005). How these histone PTMs are targeted to certain 

chromatin regions and how these epigenetic marks are maintained during DNA replication is 

not fully understood.  

Histone variants are expressed throughout the cell cycle and their incorporation onto 

chromatin can alter its biophysical properties. To deposit histone onto chromatin, cells can 

adopt two pathways, DNA replication dependent (RD) and replication independent (RI) 

chromatin assembly (Smith and Stillman 1991; Green et al. 2005). During RD chromatin 

assembly, newly synthesized canonical histones are deposited onto replicating DNA whereas 



36 
 

histone variants are assembled via the RI pathway. RD and RI chromatin assembly pathways 

are mediated by distinct protein complexes. For example, H3.1/H4 RD assembly is mediated 

by the CAF1 complex whereas HIRA has been shown to be responsible for H3.3 deposition 

in the RI pathway (Smith and Stillman 1991; Tagami et al. 2004; Green et al. 2005) .  

Similarly, the H2A variant H2A.z is deposited in the RI pathway via the SWRI complex 

(Kobor et al. 2004). The discovery of these protein complexes and their roles in mediating 

distinct assembly pathways has elucidated several aspects of chromatin dynamics. However 

how histone variants are targeted to certain genomic regions remains poorly understood. 

An accumulating body of evidence has correlated defects in chromatin assembly 

pathways with disease formation in humans (Burgess and Zhang 2013; Ronan et al. 2013). 

For example, in humans RI chromatin assembly chaperone HIRA is located in a small region 

on chromosome 22 which often is deleted in DiGeorge syndrome (Lorain et al. 1996).  

Numerous studies have shown that defective histone PTMs such as acetylation can lead to 

the formation of several disorders including leukemia, epithelial cancers, fragile X syndrome, 

and Rubinstein-Taybi syndrome (Timmermann et al. 2001; Ronan et al. 2013). In addition, 

histone acetylation has been found to be significantly reduced in Alzheimer’s disease (Zhang 

et al. 2012). Studying how histone dynamics are regulated within cells and what chaperones 

or protein factors might function in their deposition as well as modification should help 

provide a better understanding of chromatin mediated processes.  

The spatial distinction of two structurally and functionally distinct nuclei in T. 

thermophila, i.e., transcriptionally active MAC and transcriptionally silent MIC, offers a 

unique opportunity to study chromatin-related processes. The T. thermophila genome 

encodes four H3 genes including HHT2 (major H3), HHT3 (H3.3), HHT4 (H3.4) and a 

centromeric histone CNA1 whereas HTA1, HTA2 and HTA3 respectively encode two H2A 
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proteins and their variant Hv1. Furthermore, T. thermophila also contains specialized linker 

histones for each nucleus, i.e. MAC specific H1 and MIC specific MLH1 (Micro-linker 

histone 1). Previous studies have shown that similar to higher eukaryotes T. thermophila 

major H3s are deposited via RD chromatin assembly whereas H3.3 is predominantly 

deposited through the RI pathway (Cui et al. 2006). Cui et al. (2006) found that while H3.3 

mainly localizes to the MAC consistent with its role in gene transcription, small amounts of 

H3.3 were also found in the MIC. The observed MIC localization was suggested to be a 

consequence of inefficient entry of H3.3 into the RD pathway (Cui et al. 2006). However, 

which histone chaperones might be involved in these processes is not known. In contrast to 

H3.3—a non- essential gene in T. thermophila, H2A variant Hv1 was found to be essential 

for cell viability (Liu et al. 1996). In addition, consistent with its functions in gene 

transcription, Hv1 was found to be exclusively in the MAC during vegetative growth 

(Stargell et al. 1993). However, how Hv1 is specifically targeted to the MAC is currently 

unknown.  

To gain functional insights into histone dynamics I initiated a proteomic analysis of 

major histones H3 and H2A as well as replacement histones H3.3 and Hv1 in T. thermophila. 

Specifically, I was interested to identify and investigate the role of interacting proteins that 

might be involved in chromatin assembly, histone PTMs as well as targeting the histone 

variants to specific nuclei. Using affinity purification combined with mass spectrometry (AP-

MS), I expected to identify and gain insights into functions of histone interacting proteins 

and their role in chromatin-related processes.  
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1.6- Summary 
 

To study the protein-protein interactions of histones, I engineered T. thermophila cell 

lines expressing C-terminal FZZ (3×FLAG-Tev-ZZ) epitope tagged HHT3 (H3.3), HTA1 

(H2A), HTA3 (Hv1) and MLH1 from their native chromosomal loci. Specifically, my 

objective was to provide a comprehensive view of the histone interactome in T. thermophila 

and derive functional insights. The FZZ epitope tag permitted me to carry out affinity 

purification for each protein of interest. The co-purifying proteins were analyzed by mass 

spectrometry (MS) to identify binding partners. My results indicated that the major histone 

H2A-FZZ co-purified with H2B, putative Spt16 (Spt16
Tt

) and Pob3 (Pob3
Tt

) subunits of the 

T. thermophila FACT complex, as well as a putative Npm1-like
Tt

 histone chaperone. These 

results suggest that Npm is an ancient chaperone of H2A/H2B that was present well before 

the emergence of modern metazoans. Interestingly, H2A also co-purified with putative 

PARP2
Tt

 and PARP6
Tt

 proteins suggesting that soluble histones in T. thermophila might be 

subject to ADP-ribosylation activity. To confirm these interactions, I engineered Spt16
Tt

 and 

PARP6
Tt

 T. thermophila cell lines expressing C-terminal FZZ epitope tags from native 

chromosomal loci and performed AP-MS. My data indicated that Spt16
Tt 

co-purified with 

Pob3
Tt

 further reinforcing the idea that the composition of the two subunit FACT complex is 

evolutionarily conserved. 

MS data also indicated that Hv1 interacts with Importinβ3 protein which has 

previously been shown to predominantly localize in the MAC (Malone et al. 2008). The Hv1-

Importinβ3 interaction suggests a possible mechanism of targeting Hv1 specifically to the 

MAC and not to the MIC. In addition, my data also established that H3.3-FZZ co-purifies 

with a histone chaperone NASP-related protein 1 (Nrp1) as well as PARP6. Nrp1 has 

previously been identified as an Asf1
Tt 

interacting protein (Garg et al. 2013) and belongs to 
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an evolutionarily conserved family of H3/H4 chaperones (Finn et al. 2008).  These results 

have revealed a complex interplay among histones, histone chaperones and several other 

protein factors including putative histone modifying enzymes that might function in 

regulating histone dynamics such as their flow to distinct nuclei in T. thermophila.  
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Chapter 2: Materials and Methods 

2.1- Equipment 
 

An Eppendorf 5424 centrifuge was used to carry out all room temperature centrifugations 

in 1.5ml Eppendorf tubes. For all 4°C centrifugations, a Sorvall Legend Micro 21R 

refrigerated microcentrifuge (Thermo Scientific) was employed. Similarly, for 5/50ml Falcon 

tubes, centrifugations at room temperature and at 4°C, Centra CL32 (IEC) and Sorvall 

Legend RT centrifuges were used, respectively. To centrifuge large cultures (500ml) of T. 

thermophila, an Avanti J-30I (Beckman Coulter) was employed. GeneAmp PCR System 

9700 (Applied Biosystems) was used for polymerase chain reactions (PCR). All bacterial 

cultures were grown using Innova 2300 platform shaker (New Bruswick scientific). T. 

thermophila cells were grown using G10 Gyrotory shaker (New Bruswick scientific). 

2.2- Cell Strains 
 

T. thermophila cell strains of inbreeding line B, CU428 [Mpr/Mpr (VII, mp-s)] and 

B2086 [Mpr+/Mpr+ (II, mp-s)], were obtained from the Tetrahymena stock center Cornell 

University, Ithaca N.Y (https://tetrahymena.vet.cornell.edu/).  1×SPP axenic media (see 

Appendix 1) was used to grow T. thermophila. 

2.3- Sequence Data Retrieval 
 

In order to acquire gene sequences of HHT2, HHT3, HTA1, HTA3, and MLH1 which 

respectively encode histones H3, H3.3, H2A, Hv1 and MLH1, the T. thermophila genome 

database (http://ciliate.org) was used. These genes were identified in the database based on 

available annotations emerging from previous work. In addition, multiple sequence 

alignments were built using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and 

ClustalX color coding (Appendix 2 ) was used to represent the resulting alignments. 

http://ciliate.org/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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Furthermore, the network diagram of physically interacting proteins was constructed using 

cytoscape version 3.02 (Shannon et al. 2003). 

2.4- Media, buffers, solutions   
 

 Recipes for all media, buffers, and solutions used in this study are provided in 

Appendix 1.  

2.5- Growth conditions 

2.5.1- E.coli cell growth: 

 

 Genetically engineered vector pBKS-FZZ was transformed into E. coli cells, which 

were grown on LB+ ampicillin (100μg/ml; LB+amp) plates overnight at 37°C. Subsequently 

plates were stored at 4°C. To isolate plasmid DNA, 1.5 mL E.coli culture was grown 

overnight in LB+amp liquid medium with continuous shaking at 250 rpm at 37°C.   

For long term storage of E. coli cells, glycerol stocks were prepared such that 0.8mL of 

overnight liquid E. coli culture was mixed with 0.8ml of sterile 50% glycerol in a 1.8ml 

CryoPure cryovial (Sarstedt), mixed well and stored at -80°C. 

2.5.2  T. thermophila growth: 

 

T. thermophila were grown vegetatively in sterile flasks in sequestrin proteose peptone 

(SPP) medium supplemented with penicillin-streptomycin-fungizone (PSF) at 30°C with 

shaking at 90 rpm. No more than 1/10 volume of culture to the volume capacity of the flask 

was used to allow for efficient aeration of the cells. 

Phenotypic assortment and cell selection was carried out by growing the vegetative cells 

in 96-well microtiter plates (Sarstedt) in SPP medium. The medium was inoculated with the 

appropriate concentration of the drug paromomycin. To starve the T. thermophila cells, they 
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were harvested by centrifuging at 3000rpm for 5min and re-suspended in 10mM Tris-HCl, 

pH 7.4. Starvation was carried out without shaking the cells for 18 hours. 

 To freeze the T. thermophila cells, they were grown overnight as described above and 

were harvested by centrifuging at 3000rpm for 5min. Cells were re-suspended in 10mM Tris-

HCl, pH 7.4 and again were harvested by centrifuging at 3000rpm for 5min. Finally cells 

were re-suspended in 10mM Tris-HCl, pH 7.4 for starvation which continued for two days at 

30°C without shaking in a 500ml Erlenmeyer flask. After two days, cells were aspirated to 

250μl and 10% DMSO (Sigma) in 10mM Tris pH 7.4 was immediately added (final DMSO 

concentration=8%) to re-suspend the cells. CryoPure cryovials (Sarstedt) were used to store 

0.5ml of DMSO treated cells which were then stored in liquid nitrogen. 

2.6- T. thermophila genomic DNA extraction 
 

 Genomic DNA extraction of T. thermophila wild type strains B2086 or CU428 was 

performed following the method of (Gaertig et al. 1994). 1ml cells growing in log phase were 

collected in 1.5ml Eppendorf tubes and were harvested at room temperature by centrifugation 

at 3,000 rpm for 2 minutes. The supernatant was discarded and the pellet was re-suspended in 

500μl of T. thermophila lysis solution. Lipids and protein were removed from the cell lysate 

using phenol:chloroform (1:1) extraction. This step was performed twice as follows: To the 

500μL cell suspension (100μl cell lysate + 400μl lysis solution) 250μl phenol and 250μl 

chloroform was added. The solution was mixed to homogeneity until it turned opaque. The 

solution was centrifuged at 11,000rpm-13,000rpm for 1min at room temperature. The top 

layer (~500μl) was transferred to a new 1.5ml Eppendorf tube. Subsequently, an equal 

volume of chloroform was added and homogeneity was achieved by mixing the solution. 

Once again the sample was centrifuged at the same speed for 1min at room temperature and 

the top layer (~500μl) was transferred to a new 1.5ml Eppendorf tube. Then 200μl of 5M 



43 
 

NaCl and 800μl of isopropanol were added to the sample to precipitate the DNA. The sample 

was centrifuged at 13,000 rpm for 2 minutes at room temperature and the supernatant was 

discarded. The DNA pellet was washed with 200μl of 70% ethanol, and this step was 

repeated to ensure the removal of residual isopropanol. The pellet was dessicated in a 

vacuum dessicator for 30 minutes to remove any ethanol residue from the sample. Finally the 

pellet was resuspended in 100μl ddH2O and 1μl of RNase (10mg/ml) was added. The sample 

was incubated at 37°C for 1 hour and stored overnight at 4°C and subsequently at -20°C. 

2.7- E. coli plasmid DNA isolation 
 

Extraction of plasmid DNA from E. coli was done as follows: 1.5mL of culture was 

grown overnight and then according to the method outlined in High-Speed Plasmid Mini Kit 

from GeneAid, plasmids were extracted. The sample (plasmid) was analyzed by 

electrophoresis through an 0.8% agarose gel (made with 1X TBE and stained with 0.1% v/v 

of 10mg/ml ethidium bromide for UV visualization.  

2.8- Polymerase chain reaction (PCR) 
 

In order to perform PCR, a 20μl reaction was set up in a 0.2mL thin-walled PCR tube as 

follows: 1μl Forward Primer (30pmol/μl), 1μl Reverse Primer (30pmol/μl), 7μl ddH2O, 1μl 

genomic T. thermophila DNA and 10μl 2x Prime STAR Max DNA Polymerase (TaKaRa). 

Reactions were carried out using the following conditions (Table 1) and recovery of the PCR 

product was assessed via agarose gel electrophoresis (see Appendix 3 for primers):  
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Table 1: Table summarizes the PCR conditions used to amplify T. thermophila gene loci 

PCR step Temperature Time 

Initial denaturation 98°C 5 min 

The following cycle was repeated 35 times 

Denaturation 98°C 10 seconds 

Annealing 55°C 15 seconds 

Elongation 72°C 1 min  

 

Final elongation 72°C 10 min  

2.9- DNA restriction digestions and gel extraction 
 

Using appropriate enzymes (see below) with manufacturer (New England BioLabs) 

specifications for digestion conditions, both the plasmid and the PCR products were digested. 

PCR and enzymatic cleanup of the products were carried out using an EZ-10 Spin Column 

PCR Products Purification Kit (Bio Basic). Gel extractions were carried out with an EZ-10 

Spin Column DNA Gel Extraction Kit (Bio Basic). All procedures were carried out using 

manufacturers’ specifications.  

2.10- DNA ligation and transformation into competent E. coli 
 

Ligation reactions were setup using the following conditions: linear plasmid DNA 

digested with appropriate restriction enzymes 20-100 ng (~1 µl) was used, PCR insert 5µl 

(depending on PCR to plasmid concentration), 2 µl of 10×T4 DNA ligase buffer, T4DNA 

ligase enzyme 1U and  if needed ddH2O (final volume 20 µl). The mixture was left at room 

temperature for 1hour. After this, 25μl high-efficiency competent E. coli cells (NEB DH5-

alpha, New England BioLabs) were added and transformation was carried out using the 

"High Efficiency Transformation Protocol" for "C2987" provided by New England BioLabs. 

Briefly, DNA 1-10ng was mixed with cells and left on ice for 30 minutes. Subsequently, cells 

were heat shocked at 42˚C for 20 seconds and were placed on ice for 5 min, after which 

950µl SOC media was added. Cells were grown at 37˚C for 1hour with shaking at 250 rpm. 

Finally, cells were spread on LB+Amp agar plates and were grown overnight at 37˚C. 
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2.11- DNA sequencing 
 

To conform that genes of interest and DNA was successfully ligated into the desired gene 

targeting vector,  DNA sequencing was carried out at The Centre for Applied Genomics (The 

Hospital for Sick Children), or at the Core DNA Sequencing Facility, York University).  The 

sequencing primers are listed in Appendix 3.  

2.12- Construction of 3xFLAG-TEV-ZZ (FZZ) gene targeting vectors 
 

Genetically engineered plasmid pBKS-FZZ was provided by Dr. Kathleen Collins, 

(University of California, Berkely, CA) and was used to target T. thermophila gene loci of 

interest. The plasmid was designed to target the genes to the correct endogenous locus for 

creating C-terminal epitope tagged proteins. The plasmid contained a triple FLAG tag fused 

to a tobacco etch virus cleavage site followed by two repeats of the Z domain of the 

Staphylococcus aureus protein A (3xFLAG-TEV-ZZ, or FZZ). For selective drug marker, a 

NEO2 cassette which confers paromomycin antibiotic resistance has also been integrated in 

the plasmid. Notably, NEO2 does not have homology to any T. thermophila endogenous 

locus and thus risk of false integration via homologous recombination has been eliminated.   

To engineer FZZ epitope tagging vectors, the following method was employed: The PCR 

primers were designed 1 kb upstream and downstream of the predicted stop codons for each 

of the selected genes. The PCR reaction was set up to amplify DNA using primers with built-

in restriction sites. Upstream forward and reverse primers had KpnI and Xho1 sites, 

respectively, whereas downstream forward and reverse primers carried NotI and SacI sites, 

respectively (See Appendix3 for primer sequences). The PCR products were further digested 

with appropriate restriction enzymes, i.e. KpnI, Xho1 (upstream) and NotI, SacI, 

(downstream) respectively to create sticky ends. Cloning (ligation) of the PCR product into 
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the FZZ epitope tagging vector was set up as described above. The molecular cloning was a 

2-step sequential ligation process in which the upstream region was cloned as the first step 

and once confirmed with sequencing, then the downstream region was cloned and sequenced. 

Once both regions were cloned, the plasmid was digested with KpnI and SacI restriction 

enzymes to make the vector linear before transforming into T. thermophila.   

2.13- Transformation of T. thermophila 
 

Biolistic transformation (Bruns and Cassidy-Hanley 2000) with a PDS-1000/He Biolistic 

particle delivery system (Bio-Rad) was used to transform T.thermophila for macronuclear 

gene replacement. 

50ml of B2086 or CU428 wild type T. thermophila cells were grown to log phase (2×10
5 

cells/ml) in SPP+PSF medium with gentle shaking overnight. The next day, cells were 

pelleted followed by washing (twice) with 10mM Tris-HCl pH 7.4. Subsequently, cells were 

re-suspended in 50ml 10mM Tris-HCl pH 7.4 in a flask and were starved (~18 hours) at 30ºC 

without shaking.  

Linearized DNA (1μg/μl) was coated on 1.0μm gold particles (Bio-Rad) for each 

transformation. Briefly, 3-4μl of DNA to 25μl of gold beads (per transformation), 25μl of ice 

cold 2.5M calcium chloride , and 10μl of cold 0.1M spermidine (Sigma) were vortexed at 

4°C for 15mins. The DNA coated gold was washed with 200μl of 70% ice cold ethanol 

followed by another wash with 200μl of 100% ice cold ethanol. Finally, 20μl of 100% ice 

cold ethanol was used to re-suspend the DNA coated gold pellets.  

In order to wash and sterilize the apparatus, the gene gun parts were washed with ddH2O 

and 70% ethanol. Flying disks washed with 70% ethanol and dried were used to coat the gold 

coated DNA. Starved T. thermophila cells were centrifuged at 3000 rpm at room temperature 
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and re-suspended in 1ml of 10mM Tris-HCl pH 7.4.  The ‘gene gun’ was assembled, and 

1mL of starved cells was concentrated on a pre-wet (10mM Tris-HCl pH 7.4) 9cm filter 

paper. A 900psi rupture disc (Bio-Rad) was dipped into isopropanol and fitted into the holder 

and tightened. The concentrated cells were placed in the second slot from the bottom in the 

gene gun. Cells were bombarded with DNA coated gold particles at ~900psi at a pressure of 

25-26psi. The cells along with the filter paper were transferred to pre-warmed 50mL SPP 

medium and incubated at 30°C for 4 hours with gentle shaking to recover.  

Cells were transferred to a 96-well microtiter plate, 200μl per well, after adding 

100mg/ml of paromomycin to a final concentration of 100μg/ml. Cells were incubated at 

30°C for 4 days. Following the incubation period, cells were observed under the microscope 

for robust growth which was followed by the transfer of growing cells to higher drug 

concentration. By increasing the drug concentration in a stepwise fashion, phenotypic 

assortment was achieved such that all endogenous copies of the gene were replaced with the 

FZZ-tagged versions. This is generally achieved when cells are able to grow at 1mg/ml of 

paromomycin. 

2.14- Western blot analysis 
 

Western blot analysis was performed to examine the expression of the tagged proteins. A 

trichloroacetic acid (TCA) approach, as previously described (Bright et al. 2010), was used to 

prepare T. thermophila cell extracts. Briefly, cells growing in log phase were harvested in 

Eppendorf tubes by centrifugation at 13,000rpm at room temperature for 2 minutes. After 

washing the resulting pellets with 10mM Tris-HCl pH 7.4, cells were re-suspended in 100µl 

of 10mM Tris-HCl pH 7.4. 10% TCA was added and cells were left on ice for 20 min. Cells 

were centrifuged at room temperature and the supernatant was discarded. The resulting pellet 

was resuspended in 100μl of 2× SDS buffer and 1μl of 1N NaOH was added to neutralize the 
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solution. After boiling the samples for 5min, extracts were either frozen at -80°C for later use 

or were immediately loaded onto gels. 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate the proteins based on size. To prepare the gels, a 5% stacking gel was layered on top 

of a 10% running gel. Then 2×10
5
 cell equivalents per sample were resolved alongside 5μl of 

PiNK Plus Prestained Protein Ladder (Appendix4). In 1× SDS-running buffer the gel was 

electrophoresed at a constant voltage of 100V for 1-2 hours. The separated proteins were 

transferred on PVDF membrane (Bio-Rad) activated in 100% methanol using 1x Western 

transfer buffer at 10V overnight or 75V for 2 hours. Subsequently, the membrane was 

blocked in 5% Blotto for 1 hour at room temperature followed by three 5 minutes washes in 

1x PBS to get rid of  excessive milk proteins.  

Western blots were incubated with monoclonal mouse α-FLAG (Sigma-Aldrich) primary 

antibody diluted 1:3000 in 5% BLOTTO. To control for equal loadings, monoclonal mouse 

α-actin (GenScript) primary antibody diluted 1:1000 in 5% BLOTTO was used. Both 

incubations were carried out for 1 hour at room temperature. Blots were washed three times 

(5 minute each) using 1x PBS and incubated with horseradish peroxidase-conjugated 

polyclonal goat α –mouse (Cedarlane) secondary antibody diluted 1:3000 in 1% BLOTTO 

for one hour at room temperature. Finally, to remove any excessive antibody, blots were 

washed three times as above and were visualized using Denville Scientific’s HyGLO 

Chemiluminescent HRP AntiBody detection Kit (E2500) according to manufacturer 

specifications 
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2.15- Tandem affinity purification (TAP) 
 

To isolate the native protein complexes of epitope tagged proteins, Tandem Affinity 

Purification  (TAP) was performed. TAP is a two step purification procedure (see details 

below) which ensures the stringent removal of any contaminating non-specific proteins. 

However, such harsh conditions can also potentially result in loosing real but transient 

interactions. Therefore, to improve the probability of capturing any transient interactions, I 

also performed a one step affinity purification procedure for each protein of interest (details 

on TAP modifications are provided below). 

T. thermophila were grown in 500ml of 1×SPP to a final concentration of 3×10
5
 cells/ml 

and were pelleted. The resulting pellets were used as a starting material for the TAP.  25ml of 

2×Lysis buffer as well as 50ml of 1×Lysis buffer was prepared and 500µl of protease 

inhibitor (sigma) + 200µl 100mM PMSF prepared in isopropanol was added to each of these 

buffers prior to lysing the cells. Cells were resuspended in an equal volume of ice-cold 2x 

lysis buffer (protease inhibitors added) and the total volume of the solution was adjusted to 

15ml with 1x lysis buffer+protease inhibitors. 300μl of 10% NP-40 (final 0.2% v/v) and 5μl 

of benzonase nuclease (Sigma) was added. Tubes were incubated for 1 hour at 4°C with end-

to-end rotation in order for benzonase to digest released genomic DNA.  

In order to clarify the whole cell extracts (WCE), cells were divided into 1.5ml 

Eppendorf tubes and centrifuged at 14,000rpm for 30 minutes at 4°C.  The clarified 

supernatants were pooled in a 50ml falcon tube (Note: 100μl of WCE was saved as input 

material for WB analysis) and IgG-Sepharose (chromatography resin for the first step of 

affinity purification) was prepared (see below) and added to the pooled supernatants.  
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The IgG-Sepharose was washed and equilibrated in the lysis buffer prior to use. Each 

affinity purification requires 250µl (200µl will also work) of packed bead volume (PBV) of 

the IgG-sepharose.  Beads were washed and equilibrated into 1x lysis buffer i.e. 1:1 of beads: 

buffer. The resulting slurry was added to each sample which was then set on end-to end 

rotations for 4 hours.  

Upon completion of the IgG incubation period, samples were centrifuged at 4,000rpm for 

5 minutes at 4°C. 20ml of 300mM NaCl wash buffer (IPP300) was used to wash the beads 

once, followed by two washes with 15ml of 1×Tev buffer.  The beads were then transferred 

to separate 1.5ml Eppendorf tubes along with 750μl of 1x TEV buffer. To this 8μl of TEV 

Protease enzyme (2mg/ml) (kind gift from Dr. Jack Greenblatt, University of Toronto) was 

added for an overnight end to end rotation at 4°C.  This releases IgG bound proteins by 

cleaving at the TEV site. On the following day, the samples were centrifuged at 2,000rpm for 

2 minutes at 4°C, and the supernatant (TEV eluate) was collected into individual ice-cold 

1.5ml Eppendorf tubes. To ensure that all of the eluted proteins have been collected, the 

remaining beads were re-suspended in 600µl of IPP100 buffer and were again centrifuged at 

2,000rpm for 2 minutes at 4°C. The supernatant was transferred to the previous supernatants 

in the ice-cold 1.5ml Eppendorf tubes.     

In the second step of TAP, agarose beads conjugated with anti-FLAG antibody (M2 

agarose beads- Sigma) were used. 30μl of M2-agarose was used for each sample. The beads 

were first washed with IPP100 buffer by rotating them for 3 minutes at 4°C and centrifuging 

at 3,000rpm for 2 minutes at 4°C.  Beads were re-suspended in an equal volume of IPP100 

buffer. The resulting slurry was divided into pre-chilled Eppendorf tubes and the TEV eluate 

from each sample was added. The tubes were rotated end-to-end for three hours at 4°C. 
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After three hours of incubation, beads were washed once with IPP100 buffer followed by 

two washes with IPP100 made without NP40. The pellet was re-suspended in 750μl of 2mM 

CaCl2/20mM Tris and centrifuged at 5,000 rpm for 1 minute at room temperature. After 

removing the supernatant, 500μl of freshly prepared 0.5M NH4OH was added and the tubes 

were rotated for 20minutes at room temperature. The eluted proteins were collected by 

centrifugation at 5,000 rpm for 2 minutes at room temperature. The resulting samples 

containing proteins were transferred to pre-chilled Eppendorf tubes and stored at -80°C for 

MS and Western blot analyses.  

The one step affinity purification procedure does not involve IgG-Sepharose binding and 

TEV cleavage steps. In this case, the clarified WCEs were directly transferred to 50μl of M2-

agarose beads. The remaining steps are the same as outlined above.  

In order to visualize the affinity purified proteins silver staining was carried out. The 

affinity purified material was electrophoresed on a 4-10% gradient SDS-gel. The staining 

was performed using 'ProteoSilver' silver stain kit (Sigma), and manufacturer guidelines were 

followed. Image was taken using chemi-doc system (Bio-rad). 

2.16-Mass spectrometry and SAINT analysis 
 

The MS analysis was carried out by Dr. J.P. Lambert at the collaborating laboratory of 

Dr. Ann-Claude Gingras in the Lunenfield-Tanenbaum Research Institute at Mount Sinai 

Hospital, Toronto. TAP purified proteins eluted in 0.5M NH4OH  were dried using a speed-

vac at 4°C and were re-suspended in concentrated HCl . To cleave the peptides in solution, 

trypsin digestion was carried out. A capillary column (75μm id) packed in-house with 10cm 

Reprosil-Pur 120 C18-AQ, 3uM (Dr-Maisch GmbH; Germany), pre-equilibrated with 2% 

acetonitrile (ACN) and 0.1% formic acid was used to manually bomb load the trypsin 
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digested peptides. This reversed-phase high-performance liquid chromatography column and 

a linear trap quadrupole (LTQ) mass spectrometer were placed in line via an electrospray 

ionization delivery system. The ionized species were analysed by tandem mass spectrometry 

(MS/MS). Data dependent acquisition parameters on the mass spectrometer were: 1 centroid 

MS (mass range 400-2000) followed by MS/MS on the 5 most abundant ions. The resulting 

data files were analysed by a statistical evaluation program Mascot version 2.3 against the T. 

thermophila RefSeq protein database (NCBI). The fragment mass tolerance was 0.6Da 

(monoisotopic mass) and the mass window for the precursor was +/- 3Da average mass. The 

ion score cut off was 35 and a protein hit must have two “bold red peptides” to be 

considered, where red indicated that peptide was the top scoring match, and bold indicated 

that the protein was the highest scoring match in which the peptide was found (Lambert, 

personal communication). 

In order to provide statistical significance to individual protein-protein interactions data 

were subjected to SAINTexpress (Significance Analysis of INTeractome) analysis (Teo et al. 

2014). Briefly, for assigning a value to individual protein-protein interactions SAINT takes 

quantitative spectral counts into consideration. Based on quantitative data, the SAINT 

algorithm assumes that a prey protein captured with bait is either its true interactor or a non-

specific binder. The prey must be present in significantly higher abundance relative to its 

abundance in the negative controls for qualifying as a true interactor (Choi et al. 2012; Teo et 

al. 2014). Thus a probability value to an interaction is assigned by comparing data from 

negative control and experimental AP-MS. A rigorous discrimination between true and false 

interactions is achieved by taking data from biological replicas into consideration.  In many 

experiments, some prey proteins are expected to co-purify with a given bait (for example, 

subunits of a protein complex). However, often the quantitative evidence is not sufficient for 



53 
 

these preys and are therefore assigned low scores by the SAINT. To overcome such 

limitation, SAINTexpress incorporates prior information regarding prey-to-prey relationship 

into the scoring by the Markov Random Field (MRF), which can adjust the posterior 

probabilities for the prey pairs that are known to be related (Teo et al. 2014). SAINTexpress 

reports the Bayesian false discovery rate (BFDR) estimated at all probability thresholds (Teo 

et al. 2014). Throughout the present study a BFDR< 1% was employed as a threshold to 

qualify as a true interactor.   

2.17- Indirect Immunofluorescence 
 

Cells were grown to mid log phase, washed in 10mM Tris-HCl, pH 7.7 and fixed in 4% 

paraformaldehyde. Fixed cells were membrane-permeabilized with cold acetone for 20 min. 

Incubation with primary mouse anti-FLAG antibody (Sigma) was at a 1:500 dilution at 4°C 

overnight in 1×PBST. Cells were washed three times in 1×PBS. Incubation in secondary 

antibody fluorescein isothiocyanate-conjugated goat anti-mouse (Pierce) was for 1 h at room 

temperature. For nuclear counterstaining 4,6-diamidino-2-phenylindole dihydrochloride 

(DAPI) was employed. For immunofluorescence analysis a rReichert-Jung polyvar 

microscope was used. Images were acquired in JPEG format. Final image preparation was 

carried out using ImageJ software.  
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Chapter 3: Results 

The goal of my thesis work is to identify protein-protein interactions of  histones, a first 

step to the longer term analysis of their functional significance using the Tetrahymena 

thermophile model. I began by engineering T. thermophila cell lines to stably express C-

terminal FZZ epitope tagged core histone HTA1, histone variants HTA3 and HTT3 and MIC 

linker histone MLH1 from their native chromosomal loci. To achieve this, I first constructed  

targeting vectors for each gene by PCR amplifying two separate 1kb DNA fragments from 

upstream (UP) and downstream (DOWN) of the respective predicted start and stop codons 

(Figure 8A) (also appendix5 for the restriction maps of the loci and PCR products). The 

primers I designed to amplify UP and DOWN DNA sequences contained at their 5' ends 

restriction enzyme recognition sites appropriate to clone them in the gene targeting vectors 

in-frame with DNA sequence encoding an FZZ (3xFLAG-TEV-ZZ) epitope tag (See Figure 

8B). When completed, each engineered gene targeting vector was then introduced into 

growing T. thermophila using the biolistic method (Gaertig and Gorovsky 1992). Because the 

gene targeting vectors bear homology to the 3` region of the MAC locus of interest, the FZZ 

tag is inserted via homologous recombination so that when the corresponding mRNA is 

translated the C-terminus of the target protein is in-frame with the FZZ epitope tag (Figure 

8C). The position of the insert was verified using a PCR based strategy (see Appendix5 for 

the PCR products and primer positions used). 

As previously described, the polyploid MAC divides by amitosis and does not possess a 

mechanism for equal allelic segregation.  Thus eventual homozygosity in the MAC is 

achieved for the targeted locus via phenotypic assortment.  This process  can be accelerated 

by a gradual increase of the drug used to select for presence of the tagging cassette resulting 

in those cells receiving an increasing number of the mutant allele after each round of cell 
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division (see Introduction; Figure 6).  Thus MAC homozygous strains for the targeted gene 

can be achieved as long as the epitope tag itself does not have any functional consequence.  

 

 

 
Figure 8: Schematic representation of gene tagging vector construction strategy. A- The 

relative position of the primers along with built-in restriction sites is shown . B- The map of 

the gene targeting vector is shown where different regions are shown in various colors. The 

stop codon TGA is also indicated. C- The process of homologous recombination used to 

insert the FZZ tag into the MAC gene locus is presented. 
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3.1- Characterization of Histone H2A 
 

 The T. thermophila  genome encodes two major histone H2A proteins (gene names 

HTA1 and HTA2) which at the protein level are nearly identical to each other with only three 

amino acid differences in the central core region (Liu et al. 1996).  Nevertheless, the C-

terminus of the two proteins differ significantly from each other where H2A.1 (encoded by 

HTA1) has an additional five residues (Liu et al. 1996). These additional five residues include 

an SQ motif which is conserved across species and provides a target site for phosphorylation 

by a specific protein kinase family (Song et al. 2007). The SQ motif phosphorylation has 

been shown to function in double strand break (DSB) repair during mitosis, meiosis, and 

amitosis in T. thermophila (Song et al. 2007). Thus T. thermophila H2A.1 can be considered 

H2A.X albeit it differs from mammals where H2A.X is a quantitatively minor component 

(Rogakou et al. 1998) (see Figure 9A).  

 It was also found that neither HTA1 nor HTA2 alone are essential for T. thermophila 

vegetative growth suggesting that the function of the encoded proteins is redundant (Liu et al. 

1996).  In order to learn about the protein apparatus involved in deposition of H2A, I 

generated stable T. thermophila cell lines expressing HTA1 with a C-terminal FZZ epitope 

tag from their MAC locus. The FZZ epitope tag carries one 3xFLAG (F) and 2 protein A 

moieties (Z) separated by a TEV cleavage site,  permitting a two step tandem affinity 

purification procedure of the fusion proteins (Puig et al. 2001). The purified fusion protein 

are analyzed by mass spectrometry to identify any co-purifying and thus potentially 

interacting proteins. In order to assess the successful expression of the fusion protein H2A.1-

FZZ (H2A-FZZ hereafter), I performed a Western blot analysis on whole cell- extracts 

prepared from both H2A-FZZ as well as wild type lines. As apparent from figure 9B, a 

strong signal of ~33kD was detected in the H2A-FZZ lanes when blots were probed with 
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anti-FLAG antibody. In contrast, no signal was present in the wild type lanes. These results 

indicate that FZZ tagged H2A proteins are successfully expressed in T. thermophila. 

 

 

 

 

 
Figure 9: Sequence alignment and Western blot analysis indicating the successful 

expression of H2A-FZZ. A- Multiple sequence alignment of H2AX C-terminal SQ motif. 

B- The top panel shows the expression of H2A-FZZ when probed with anti-FLAG antibody 

whereas the bottom panel is a loading control probed with anti-actin antibody. Note the H2A-

FZZ signal was observed at ~33kDa which is the expected size of the fusion protein (H2A 

size 14.77kDa+FZZ size 18kDa). Cu428 and B2086 are strains of Mating Type II and VII, 

respectively.  

 Previous studies have shown that T. thermophila histone H2A localizes to both the 

MIC and MAC during vegetative growth (Song et al. 2007), as expected for a core histone.  

To examine the localization pattern of H2A-FZZ an indirect immunofluorescence (IF) 

analysis was carried out. In accordance with previous observations (Song et al. 2007), H2A-

FZZ localized in both the MIC and MAC during vegetative growth (see Figure 10). These 

observations indicate that the presence of the FZZ tag on H2A does not interfere with its 

Human (H2A.X)  K A T Q A S Q E Y 
  

S. cerevisiae (H2A) K A T K A S Q E L 
  

T. thermophila (H2A.1)   S R G Q A S Q D L 
  

A 

B 
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correct localization and is consistent with the fusion protein being functional at least for its 

transport. Further experiments are required to fully establish whether the tagged H2A also 

gets incorporated onto chromatin as efficiently as the wild type (see discussion). 

Subsequently, I performed tandem affinity purification (TAP) using whole cell extracts 

prepared from vegetative H2A-FZZ and wild type strains. The recovery of the purified H2A-

FZZ was assessed by Western blot analysis. As shown in figure 11, a signal corresponding to 

the expected size was detected in the H2A-FZZ input as well as TAP lanes whereas no signal 

was present in the wild type lanes. The size difference between H2A-FZZ input and TAP 

lanes (see figure 11) is due to the TEV cleavage which indicates successful removal of the 

protein A component of the FZZ tag (~8kD).  

 

 

Figure 10: Indirect immunofluorescence of H2A-FZZ and untagged wild type cells using 

anti-FLAG antibody. Cells were stained with DNA-specific dye DAPI to observe the 

positions of the nuclei. H2A localizes to both the MAC and MIC whereas no signal was 

detected in the wild type cells. Arrows represent MAC whereas arrow heads denote MICs. 

Note: Bottom panels indicate dividing cells during vegetative growth where MIC has already 

divided whereas MAC is about to undergo amitosis. 

MIC 

MAC 
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Figure 11: Western blot indicating the recovery of purified H2A-FZZ. The top panel 

which was probed with anti-FLAG antibody shows the recovery of H2A-FZZ. No signal was 

detected in the wild type lanes. The bottom panel was probed with anti-actin antibody used as 

loading control. The red crosses indicate possible mono or ploy ubiquinated H2A isoforms 

which were enriched during the TAP purification protocol. The size of the major H2A-FZZ 

band after TAP is lower than the 33kDa band which was detected in the input lane. This is 

due to the TEV cleavage of the ZZ peptide.  

 In order to identify the set of H2A-FZZ co-purifying proteins, MS analysis was 

performed on the TAP material. It is important to note that the AP-MS procedure was 

repeated at least twice in order to provide experimental replicas for the SAINT analysis (see 

methods). SAINT analysis of the AP-MS data established 16 interacting partners of H2A-

FZZ with a Bayesian false discovery rate (BFDR) < 1%. In order to provide for the visual 

representation of the MS identified co-purifying proteins, H2A affinity purified material was 

SDS gel electrophoresed and was silver stained (Figure 12-A). The recovery of H2B suggests 

that H2A-FZZ is functional to form hetero dimmer with H2B and the presence of the FZZ tag 

does not abolish this interaction. The MS data from the two independent rounds of H2A-FZZ 

affinity purifications are summarized in Table 2 . The “Gene ID” denotes the T. thermophila 

accession numbers and spectral counts indicate the total number of spectra summed from at 
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least two independent biological replicas. SAINT analysis revealed that H2A-FZZ co-

purifies with T. thermophila putative FACT complex subunits including homologs of yeast 

Spt16 (TTHERM_00283330) and POB3 (TTHERM_00049080) (Spt16
Tt

 and POB3
Tt

 

hereafter).  These results suggest that the FACT complex has a conserved interaction with 

histone H2A/H2B. Furthermore, the identification of both Spt16
Tt

 and POB3
Tt

 points out that 

the composition of the FACT complex itself is evolutionarily conserved, in turn suggesting 

functional conservation (see below). In addition to the FACT complex, SAINT analysis also 

identified TTHERM_00429890 as an H2A interacting partner. BLAST searches against the 

NCBI non-redundant database using the predicted protein sequence of TTHERM_00429890 

showed that it shares similarity with the NPM-family of proteins (cut off score for inclusion 

e
-5

).  This observation was further supported by SMART domain analysis which indicated 

that the identified putative NPM-like protein contains a conserved N-terminal 

"Nucleoplasmin (PF03066)" domain.  Interestingly, the C-terminus of the putative NPM-like 

protein contains a nucleolar localization signal as predicted by the 'NOD' web server 

(http://www.compbio.dundee.ac.uk/www-nod/index.jsp) (see Figure 12-B). This suggests 

that similar to what has been found in other organisms such as mammals, the putative NPM-

like protein might have a role in ribosome biogenesis (Finn et al. 2012). In addition MSA 

analysis indicated that similar to the other NPM-family members (see introduction), the 

putative NPM-like protein contains at least three acidic stretches giving it an overall negative 

charge (theoretical Pi 4.62). Based on homology and domain architecture (also see Figure 

12), and in accordance with T. thermophila nomenclature guidelines, I have named this 

protein as Cnpl1 (Conserved NPM-like 1).  

 SAINT analysis also revealed three putative PARP proteins as H2A interacting 

partners. The identified PARPs include TTHERM_00726470, TTHERM_00823980 and 

http://www.compbio.dundee.ac.uk/www-nod/index.jsp
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TTHERM_00502600 which are annotated as T. thermophila PARP2, PARP4 and PARP6, 

respectively. While the exact role of H2A co-purifying PARPs in T. thermophila is unknown, 

a plausible hypothesis would be that ribosylation of histones H2A after their synthesis might 

be required for their assembly onto chromatin (see discussion). Another notable co-purifying 

protein identified by the SAINT is TTHERM_00150000 which has been annotated as MutS 

domain III family protein involved in DNA mismatch repair (see ciliate.org). BLAST 

analysis indicated that TTHERM_00150000 shares homology (e
-64

) to the budding yeast 

MSH6 which has been shown to be required for mismatch repair during mitosis and meiosis 

(Drotschmann et al. 2002). The functional significance of this interaction in T. thermophila 

requires further investigation.  
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Figure 12: Silver stained SDS-gel of H2A affinity purification and domain architecture 

of various NPMs across different species. A- The bands were labelled based on predicted 

molecular weights of MS identified proteins. B- The image was designed based on SMART 

domain analysis as well as PFAM analysis. The predicted NoLS sequence of T. thermophila 

putative NPM-like protein is shown in red. 

 

A 

B 
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Table 2: AP-MS data from two independent biological replicas filtered using SAINT 

analysis (BFDR < 1%
*
) 

Bait  Prey  Gene ID  Spectral 

Counts Sum 
H2A - TTHERM_00790790/ 

TTHERM_00316500** 

493 

H2A Spt16 TTHERM_00283330 379 

H2A POB3 TTHERM_00049080 74 

H2A NPM-like 

(CNPL1) 

TTHERM_00429890 77 

H2A PARP2 TTHERM_00726470 58 

H2A PARP4 TTHERM_00823980 39 

H2A PARP6 TTHERM_00502600 125 

H2A H2B  TTHERM_00283180 403 
H2A H2B TTHERM_00633360 409 

H2A Hv1 TTHERM_00143660 199 

H2A H4 TTHERM_00189170 619 

H2A H3 TTHERM_00189180 61 

H2A Novel? TTHERM_00242240 25 

H2A HSP70 TTHERM_00105110 20 

H2A Alpha Kinase 

family protein 

TTHERM_00865100 20 

H2A AT hook TTHERM_01123890 9 

H2A MutS family 

protein 

TTHERM_00150000 7 

H2A Novel?? TTHERM_00648920 5 

* Filtered against 9 vegetative cell control;** Due to high degree of similarity between two 

H2A proteins gene IDs are written for both.  
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3.2- Analysis of T. thermophila FACT complex 
 

 FACT is an abundant and highly conserved protein complex that consists of Spt16 

and HMG domain containing protein SSRP1(Bruhn et al. 1992). In fungi, Spt16 forms a 

complex with a truncated SSRP1 homolog POB3 which lacks an HMG domain (Formosa et 

al. 2001). The HMG domain lies within another protein called Nhp6 which associates with 

the FACT complex in a stoichiometric manner (Stillman 2010). The FACT complex has been 

shown to be involved in several processes ranging from transcription initiation, facilitating 

RNAPII transcription elongation by acting as a histone chaperone via destabilizing, as well 

as reassembling the nucleosomes (Belotserkovskaya et al. 2003; Stuwe et al. 2008). The co-

purification of the T. thermophila putative FACT complex along with H2A/H2B suggests an 

evolutionarily conserved composition of this complex. To begin functional characterization 

of the T. thermophila putative FACT complex, I  investigated the structural and sequence 

features of the identified FACT subunits, i.e. Spt16
Tt

 and Pob3
Tt

.  BLAST searches against 

the NCBI non-redundant database using Spt16
Tt

 and Pob3
Tt

 protein sequences as queries 

indicated that both proteins share similarity to human as well as to S. cerevisiae FACT 

subunits (sequence identity to S. cerevisiae Spt16 and POB3 across the length of the protein 

is 36% and 30%, respectively) (score e
-142

 and 2e
-52

 , respectively).  These observations 

suggest that the putative Spt16
Tt

 and Pob3
Tt

 are bona fide FACT subunits in T. thermophila.  

 To further assess their structural features, I performed SMART domain analysis. As 

shown in figure 13 both Spt16
Tt

 and Pob3
Tt

 have highly conserved domain architectures. For 

example, Pob3
Tt

, similar to S. cerevisiae and humans, contains a PFAM structure-specific 

recognition domain (SSrecog; PF03531) as well as an Rtt106 domain. The Rtt106 domain 

belongs to a family of histone chaperones which function in nucleosome formation and 

heterochromatin-mediated silencing (Huang et al. 2005). In contrast to humans, Pob3
Tt

  does 
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not contain any HMG domain. This suggests that structurally Pob3
T 

might be more similar to 

the budding yeast POB3. T. thermophila genome encodes several HMG proteins. BLAST 

searches using S. cerevisiae Nhp6 against T. thermophila genome identified 

TTHERM_00216040 as the closest match (e
-11

). Thus it is possible that T. thermophila 

FACT complex might contain additional subunit to compensate for the lack of HMG domain 

in POB3
Tt

.  

  Similarly, my analysis suggests that the Spt16
Tt

 domain organisation is highly 

conserved from yeast to human. Similar to S. cerevisiae and human proteins, Spt16
Tt

 contains 

an N-terminal lobe domain (Nlob),  a Pfam Peptidase_M24 (PF00557) domain, a central 

Spt16 signature domain and a C-terminal Rtt106 domain (see Figure 13). The highly 

conserved domain architecture of the FACT subunits suggests that purifying selection might 

have been significantly strong over the course of evolution in order to preserve essential 

structural features required for the proper functioning of these proteins.  
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Figure 13: Domain comparison of various POB3 and SPT16 homologs. The image was 

designed based on SMART domain analysis as well as Pfam analysis. The position of each 

domain is indicated with respective to amino acid that comprise the domain. 
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3.2.1- Characterization of Spt16Tt 

 

 To begin characterizing the putative FACT complex, I initiated my analysis by 

engineering a stable T. thermophila cell line expressing Spt16
Tt

 with a C-terminal FZZ 

epitope tag from the MAC locus. I assessed the successful expression of the tagged proteins 

by Western blots using whole cell extracts generated from both Spt16
Tt

-FZZ and wild type 

strains. As shown in figure 14, no signal was detected in the wild type lane when probed with 

anti-FLAG antibody whereas a signal corresponding to the predicted size of the fusion 

protein was apparent in the lanes loaded with Spt16
Tt

-FZZ cell extracts.  

 
Figure 14: Western blot analysis indicating the successful expression of SPT16-FZZ. 

The top panel shows the expression of SPT16-FZZ when probed with anti-FLAG antibody. 

The bottom panel is a loading control probed with anti-actin antibody. Note the SPT16-FZZ 

signal was observed at ~132kDa which is the expected size of the fusion protein (SPT16 size 

116kDa+FZZ size 18kDa). 

 Subsequently, I performed one-step affinity purification to isolate the native 

complexes of Spt16
Tt

-FZZ. It is important to note that one step AP was employed in order to 

increase the likelihood of capturing weak and/or transient interactions which can be lost due 

in the more stringent two step purification procedure (Fillingham, Lambert and Pearlman 

unpublished observations).  To assess the recovery of the affinity purified proteins, Western 

blotting was performed and a strong signal was observed in the Spt16
Tt

-FZZ lanes when 
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probed with anti-FLAG antibody. In contrast no signal was detected in the wild type lanes 

(Figure 15). As apparent from figure 15, the size of Spt16
Tt

-FZZ in the input lanes is equal to 

that detected in the affinity purified lanes. This is due to the TEV-cleavage step being 

eliminated in the one step AP procedure resulting is no reduction of size in the purified 

fusion proteins.  

 
Figure 15: Western blot indicating the recovery of purified Spt16-FZZ. The blot was 

probed with anti-FLAG antibody and shows the recovery of Spt16-FZZ whereas no signal 

was detected in the wild type lanes. Note there is no difference of size (132kDa) between 

input and affinity purified lanes because the TEV cleavage step was omitted in the one step 

affinity purification procedure. Red crosses indicate proteolysis of the affinity purified 

protein.  

 The purified material was then analyzed by gel-free LC-MS/MS to detect any co-

purifying proteins. Both histones H2A/H2B were detected in the MS data although they did 

not pass the SAINT validation. It is important to note that histones are highly abundant 

proteins and often are detected as  contaminating “frequent flyers” in MS analysis (Choi et al. 

2012). They are generally considered as common background contaminants in a typical AP-

MS pipeline and thus do not pass the SAINT validation threshold (Choi et al. 2012). SAINT 

analysis revealed that Spt16
Tt

-FZZ co-purifies with Pob3
Tt

 (see table 3). In addition to 

reciprocally verifying the H2A-Spt16 interaction, these results indicate that Spt16
Tt

-Pob3
Tt

 

form a stable FACT complex in T. thermophila and likely have conserved functions similar 

to those described in other eukaryotes such as budding yeast (see above). In addition, 
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consistent with a role in transcription regulation, several subunits of RNA polymerase I, II 

and III (RNAP) including RPA1, RPA2, RPC5 and RBP81 were identified by SAINT 

analysis (Note: RNA polymerase subunit nomenclature was adopted from the existing 

annotations available on ciliate.org). Furthermore, several novel proteins that do not share 

homology to any known proteins in the NCBI database were also detected. The functional 

significance of these novel proteins remain unknown and requires further investigation. 

Curiously, none of HMG proteins co-purified with Spt16
Tt. It is possible that T. thermophila 

FACT complex transiently interacts with yet to be identified HMG protein and this 

interaction might have been lost during purification procedure. 

Table 3: AP-MS data from two independent biological replicas filtered using SAINT 

analysis (BFDR < 1%
*
) 

Bait  Prey  Gene ID  Spectral 

counts sum  
SPT16 - TTHERM_00283330 1109 

SPT16  POB3
Tt

  TTHERM_00049080 587 

SPT16 RPA1 TTHERM_00047550 104 

SPT16 RPA2 TTHERM_01075780 47 

SPT16 RPC5 TTHERM_00094210 31 

SPT16 RPB81 TTHERM_00549610 21 

SPT16 Novel? TTHERM_00382370 46 

SPT16 Novel? TTHERM_00249630 21 

SPT16 HSP70 TTHERM_01014750 21 

SPT16 HSP60 TTHERM_00196370 20 

SPT16 PLU-1-like  TTHERM_01046850 18 

SPT16 CHC1 Clathrin 

heavy chain 

TTHERM_00275740 19 

SPT16  H2A TTHERM_00316500/ 23 

SPT16  H2B TTHERM_00633360 127 

* validated against 9 vegetative cell control  
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3.2.2- Spt16Tt localizes to MAC and MIC 
  

 In order to gain further insights into functional aspects of Spt16
Tt

, I carried out an 

indirect IF using anti-FLAG primary antibody in vegetatively growing cells (Figure 16). The 

signal was observed both in the MAC and MIC of vegetatively growing cells. This pattern of 

localization overlaps with that of H2A-FZZ (Fig. 10) suggesting that histones H2A/H2B and 

FACT are functionally linked. One key function of the FACT complex is to regulate 

transcription initiation as well as elongation (Belotserkovskaya et al. 2003; Stuwe et al. 

2008).  In accordance with previous findings, the localization of Spt16
Tt

 in the 

transcriptionally active MAC suggests a role for the T. thermophila FACT complex in 

transcription regulation.  

 The localization in the transcriptionally inert MIC suggests additional roles for 

Spt16
Tt

 distinct from those of transcription regulation. For example, FACT might be involved 

in regulating DNA replication or heterochromatin maintenance as shown previously (Lejeune 

et al. 2007) (see Discussion). Taken together, these results establish an evolutionarily 

conserved composition of the FACT complex and suggest roles in transcription regulation as 

well as DNA replication in T. thermophila.  
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Figure 16: Indirect immunofluorescence analysis of Spt16-FZZ and untagged wild type 

cells using anti-FLAG antibody. To observe the nuclei positions, cells were stained with 

the DNA-specific dye DAPI. Spt16 localizes to both the MAC and the MIC whereas no 

signal was detected in the wild type cells. Arrows represent MAC whereas arrow heads 

denote MICs 
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3.3- Characterization of PARP6Tt 

 

 The T. thermophila genome encodes at least 10 PARP
Tt

 proteins (assessed by BLAST 

searches as well as available gene annotations at www.ciliate.org; also Citarelli et al. 2010). 

Among H2A co-purifying proteins, three of the PARP family members including PARP2
Tt

, 

PARP4
Tt

 and PARP6
Tt

 (as annotated on TGD www.ciliate.org) were detected. To assess the 

structural features as well as categorize them into known PARP subfamilies, I performed 

BLAST searches as well carrying out SMART domain analysis. Among PARP family 

members, PARP2 and PARP3 are known to have PARP-catalytic domains, a regulatory 

domain (PARP-reg), as well as a WGR domain whereas PARP4 lacks WGR and contains 

additional BRCT, VWA and VIT domains (Daugherty et al. 2014). Interestingly, BLAST as 

well as domain analysis of PARP2
Tt

 and PARP4
Tt

 indicate that PARP4
Tt 

does not share 

similarity with any known PARP4 proteins and in fact belongs to the PARP2 subfamily as 

delineated by (Citarelli et al. 2010) (score 2e
-111

) (also see Figure17 for domain analysis). To 

further ascertain the correct assignment of T. thermophila PARP sub-family members and 

exclude the possibility that PARP4
Tt

 might be a PARP3
Tt

, I assessed the T. thermophila 

genome and observed the presence of a distinct putative PARP3
Tt

 protein (accession 

TTHERM_00030430). These observations helped to correctly assign TTHERM_00823980 

as a PARP2 sub-family member (PARP2-A hereafter) rather than a PARP4 (Figure17). 

 Similarly, domain analysis of PARP6
Tt

 revealed that this protein contains 25 tandem 

ankyrin repeats (ANK) as well as two DNA binding AT-hook domains. In addition, PARP6
Tt

 

has PARP-catalytic as well as regulatory (PARP-reg) domains. This domain organisation is 

unique to Amoebozoa (Dictyostelium), Opisthokonta (fungi) and Chromalveolates (ciliates) 

and has been found to belong to the PARP1 sub-family (Citarelli et al. 2010). Interestingly, 

human PARP5a, b (known as tankyrase 1 and 2, respectively), also contain tandem ANK 

file:///C:/Users/Jeff/Downloads/www.ciliate.org
file:///C:/Users/Jeff/Downloads/www.ciliate.org
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repeats as well as a PARP-catalytic domain but lack PARP-reg (Daugherty et al. 2014). 

Tankyrase 1 and 2 have been shown to be functionally redundant and involved in 

maintenance of telomeres (Chiang et al. 2008). Thus the presence of tandem ANK repeats as 

well as WGR, PARP-catalytic and PARP-reg domains suggest that these PARP1 subfamily 

members might be responsible for diverse functions including genome integrity, telomere 

maintenance and ribosylation of target molecules. Nevertheless, it is important to note that 

true Tankyrases are confined to animals (Citarelli et al. 2010). Bases on domain architecture 

as well as previous evolutionary studies (Citarelli et al. 2010), I assigned  PARP6
Tt

 as 

PARP1A
Tt

 (see Figure17). 

 
Figure 17: Domain comparison of various PARP proteins across different species. The 

image was designed based on SMART domain analysis as well as PFAM analysis. The 

position of each domain in PARP2 proteins is indicated with respect to the amino acids that 

comprise the domain. Comparison of two PARP1 subfamily members containing tandem 

ANK repeats is also presented.  
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3.3.1- Functional analysis of PARP1-ATt (formerly PARP6Tt) 
 

 In order to address questions about the functional aspects of PARPs co-purifying with 

H2A, I initiated my analysis by characterizing PARP1A
Tt

 protein-protein interactions. I 

generated a stable T. thermophila cell line expressing PARP1A
Tt

 with a C-terminal FZZ 

epitope tag from the MAC locus. The successful expression of the tagged protein was 

examined by Western blotting using vegetative whole cell extracts of both PARP1A
Tt

-FZZ 

and wild type strains (Figure 18). Subsequently, one step AP was performed and recovery of 

the purified protein was assessed by Western blotting probed with anti-FLAG antibody 

(Figure 19).  

 

 
Figure 18: Western blot analysis indicates the successful expression of PARP1A-FZZ. 

The top panel shows the expression of PARP1A-FZZ when probed with anti-FLAG antibody 

whereas the bottom panel is loading control probed with anti-actin antibody. Note the 

PARP1A-FZZ signal was observed at ~318kDa which is the expected size of the fusion 

protein (PARP1A-FZZ size 300kDa+FZZ size 18kDa). 
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Figure 19:Western blot indicating the recovery of purified PARP1A-FZZ. The blot was 

probed with anti-FLAG antibody and shows the recovery of PARP1A-FZZ whereas no signal 

is detected in the wild type lanes. The red crosses indicate the proteolytic products.  

 SAINT analysis of MS data revealed the recovery of bait PARP1A
Tt

-FZZ as well as 

co-purifying histones (Table 4). The total spectral counts for two independent biological 

replicas were 841 for PARP1A-FZZ which was not detected in any of the control 

purifications. In addition, for H2A, H2B, H3 and H4 total spectral counts of 34, 22, 3 and 52, 

respectively, were also detected, although they did not pass the SAINT validation. Consistent 

with the role of PARP1 as a regulator of transcription (Aguilar-Quesada et al. 2007), SAINT 

analysis also validated interactions with several subunits of T. thermophila RNAP (I, II,III). 

These results suggest that PARP1A
Tt

 might be involved in various aspects of chromatin 

dynamics ranging from structural organisation to transcription regulation.  
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Table 4: AP-MS data from two independent biological replicas filtered using SAINT 

analysis (BFDR < 1%
*
) 

Bait  Prey  Gene ID  Spectral 

counts sum  
PARP1A - TTHERM_00502600 1268 

PARP1A RPA1  TTHERM_00047550 76 

PARP1A RPA2 TTHERM_01075780 55 

PARP1A RBP81 TTHERM_00549610 24 

PARP1A TTN1 TTHERM_00052160 30 

PARP1A Cytochrome b5-

like 

TTHERM_00066830 22 

PARP1A Novel?? TTHERM_00773780 10 

PARP1A SFR13 TTHERM_00522830 8 

PARP1A PRS1 (Prolyl-

tRNA synthetase1) 

TTHERM_00487020 6 

                                     * validated against 9 vegetative cell control 

 In order to examine the function of PARP1A
Tt

, I performed an indirect IF using anti-

FLAG primary antibody in vegetatively growing cells (Figure 20). Interestingly, similar to 

Spt16
Tt

, PARP1A
Tt

 was also found to localize to both the MAC and MIC consistent with 

functional linkage with H2A. These localization patterns suggest that consistent with 

previous studies (D’Amours et al. 1999; Kraus 2008; Ko and Ren 2012), PARP1A
Tt

 might be 

involved in a broad range of processes including general maintenance of chromatin structure, 

nucleosome assembly and regulation of gene expression through its enzymatic activities.  
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Figure 20: Indirect immunofluorescence analysis of PARP1A-FZZ and untagged wild 

type cells using anti-FLAG antibody. Nuclei were stained with DNA-specific dye DAPI. 

Spt16 localizes to both the MAC and MIC whereas no signal was detected in the wild type 

cells. Arrows represent MAC whereas arrow heads denote MICs 
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3.4- Proteomic analysis of H2A variant Hv1  
  

 Histone H2A variant Hv1 (H2A.Z in mammals) is an essential gene in T. thermophila 

(Liu et al. 1996). Previous studies have also established that Hv1 exclusively localizes to the 

transcriptionally active MAC during vegetative growth and thus links this histone variant 

with active chromatin (Stargell et al. 1993). Intriguingly, mechanistic details of how Hv1 is 

specifically targeted to the MAC remain unknown. To gain insight into Hv1 functions in 

transcription and possible mechanism of its transport to the MAC, I initiated my analysis by 

engineering stable T. thermophila cell lines expressing C-terminal FZZ epitope tagged Hv1 

from its native MAC locus. The successful expression of Hv1-FZZ fusion protein was 

assessed by Western blots of whole cell extracts. As apparent from figure 21A, a strong 

signal was detected in the Hv1-FZZ lanes when probed with anti-FLAG antibody whereas no 

signal was present in the wild type lanes. To examine the correct MAC localization of FZZ 

epitope tagged Hv1, I carried out an indirect IF analysis using vegetatively growing cells. In 

accordance with previous studies (Stargell et al. 1993), Hv1-FZZ was found to localize 

exclusively to the MAC suggesting that the presence of the epitope tag does not alter the 

protein's localization pattern figure 21-B and is consistent with its proper function. 
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Figure 21: Western blot and IF analysis of Hv1-FZZ. A- The top panel shows the 

expression of Hv1-FZZ when probed with anti-FLAG antibody whereas the bottom panel is 

the loading control probed with anti-Actin antibody. Note the Hv1-FZZ signal was observed 

at ~33kDa which is the expected size of the fusion protein (Hv1 size 15 kDa+FZZ size 

18kDa). Cu428 and B2086 are strains of Mating Type II and VII, respectively. B- Indirect 

immunofluorescence analysis of Hv1-FZZ and untagged wild type cells using anti-FLAG 

antibody. To capture the orientation of nuclei, DNA specific dye DAPI was used. IF 

indicates that Hv1 localizes exclusively to the MAC whereas no signal was detected in the 

MIC. In the control cells no signal was observed.  

MIC MAC 

MIC 

MIC 

MAC 
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 Subsequently, I performed TAP as well as a one step AP procedure using vegetatively 

growing Hv1-FZZ as well as wild type strains. The recovery of the bait protein Hv1-FZZ, 

was monitored by Western blotting probed with anti-FLAG antibody (Figure 22). In order to 

identify any co-purifying proteins, MS analysis was carried out which was followed by 

SAINT to provide for statistical significance (BFDR< 1%). As expected, SAINT analysis 

revealed that the bait Hv1 along with H2B were successfully recovered.  In addition, SAINT 

also revealed TTHERM_00550700 as an Hv1 co-purifying partner (Table 5). Previous 

studies have shown that TTHERM_00550700 belongs to a large family of karyopherin 

proteins and the T. thermophila genome encodes 13 putative importin (imp) α- and 11 imp β-

like proteins (Malone et al. 2008). Importantly, TTHERM_00550700 which has been 

annotated as Impβ3 is one of only two impβ proteins that exclusively localize to the MAC 

(Malone et al. 2008). The fact that Hv1-Impβ3 physically interact with each other suggests 

that Impβ3 might be responsible for Hv1 MAC specific targeting. Taken together, these 

results provide initial evidence for the possible mechanism through which this transcription-

related essential histone variant might be targeted to the MAC.  

  Among other Hv1 co-purifying proteins, BLAST searches indicated that 

TTHERM_00582070 shares homology to the budding yeast Cse1 protein (Chromosome 

SEgregation) (33% full length sequence identity). Cse1p has been shown to be involved in 

the export of imp-alpha from the nucleus (Solsbacher et al. 1998). Thus it is possible that T. 

thermophila putative Cse1-like protein might also be responsible for the re-cycling of 

importins. Nevertheless, further examination will be required to fully assess this hypothesis. 

Similar to H2A (see above Table 2), Hv1 also co-purified with PARP1-A and PARP2, 

further emphasizing the role of PARPs in histone dynamics.  
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 Interestingly, several subunits of T. thermophila putative proteosome complex were 

identified as high confidence hits (BFDR<1%). The exact role and functional aspects are 

unclear however it is possible that Hv1 levels might be tightly monitored via proteosome 

mediated degradation.  

Table 5: AP-MS data from two independent biological replicas filtered using SAINT 

analysis (BFDR < 1%
*
) 

Bait  Prey  Gene ID  Spectral 

counts sum  
Hv1 - TTHERM_00143660 177 

Hv1 BTU1 TTHERM_00348510 557 

Hv1 ATU1 TTHERM_00558620 268 

Hv1 HSP82 TTHERM_00158520 313 

Hv1 HSP90 TTHERM_00444670 42 

Hv1 H4 TTHERM_00189170 212 

Hv1 H2B TTHERM_00633360 195 

Hv1 VMA1 (Vacuolar 

Membrane Atpase) 

TTHERM_00339640 30 

Hv1 Lap2 (Leucyl 

aminopeptidase) 

TTHERM_00579060 19 

Hv1 Impβ3  TTHERM_00550700 15 

Hv1 Cse1p TTHERM_00582070 21 

Hv1 PARP1-A TTHERM_00502600 14 

Hv1 PARP2 TTHERM_00726470 6 

Hv1 NRS1 (asparaginyl-

tRNA synthetase 1) 

TTHERM_00691890 14 

Hv1 TRS1 (Threonyl-

tRNA synthetase 1) 

TTHERM_00194650 9 

Hv1 ARS2 (alanyl-tRNA 

synthetase 2) 

TTHERM_00221140 8 

Hv1 PRS1 (Prolyl-tRNA 

synthetase 1) 

TTHERM_00487020 8 

Hv1 Novel?? TTHERM_00382330 13 

Hv1 CCT8 TTHERM_00037060 11 

Hv1 CCT4 TTHERM_00037050 5 

Hv1 Novel?? TTHERM_00079270 10 
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Hv1 RPT5 (26S 

proteasome regulatory 

subunit T5) 

TTHERM_00136360 9 

Hv1 RPT2 (26S 

proteasome regulatory 

subunit T2) 

TTHERM_01014660 7 

Hv1 RPT4 (26S 

proteasome regulatory 

subunit T4) 

TTHERM_00469100 6 

Hv1 RPN8 (26S 

proteasome regulatory 

subunit N8) 

TTHERM_00267990 7 

Hv1 RPN12 (26S 

proteasome regulatory 

subunit N12) 

TTHERM_00649110 6 

Hv1 Cdc48 TTHERM_00365340 8 

Hv1 URA7 TTHERM_00459390 9 

Hv1 Alcohol 

dehydrogenase I 

TTHERM_00145230 7 

Hv1 Glycosyl transferase TTHERM_00069210 5 

Hv1 NOG1 TTHERM_00242500 7 

Hv1 Gcn1 TTHERM_00444500 7 

Hv1 Sec27 TTHERM_00476510 7 

Hv1 Sec61 TTHERM_00035580 6 

Hv1 Novel?? TTHERM_00313610 5 

Hv1 RVB2 (RuVB-like) TTHERM_00046920 4 

* Validated against 9 vegetative cell control; Note: Standard protein names as available 

through ciliate.org are listed unless specified in text. 
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Figure 22: Western blot indicating the recovery of tandem affinity purified Hv1-FZZ. 

The top panel which was probed with anti-FLAG antibody shows the recovery of Hv1-FZZ. 

No signal was observed in the wild type lanes. The bottom panel used as loading control was 

probed with anti-Actin. The size of the major Hv1-FZZ band after TAP is lower than the 

33kDa band which was detected in the input lane. This is due to the TEV cleavage of the ZZ 

peptide. 

3.5- Proteomic characterization of H3 variant H3.3 
 

 T. thermophila H3.3 has been shown to be non-essential for vegetative growth (Cui et 

al. 2006). It was found to predominantly localize to the transcriptionally active MAC (Cui et 

al. 2006), consistent with H3.3 association with an active chromatin state (McKittrick et al. 

2004; Hake and Allis 2006). As a replacement histone variant, T. thermophila H3.3 is 

primarily deposited via the replication independent (RI) chromatin assembly pathway (Cui et 

al. 2006). Interestingly, it was also observed that H3.3 faintly localizes to the MIC via an 

inefficient entry into the replication dependent (RD) chromatin assembly pathway (Cui et al. 

2006). To understand the molecular basis of chromatin assembly pathways and to identify 

specific protein factors involved in these processes, I generated stable T. thermophila cell 

lines expressing C-terminally FZZ epitope tagged H3.3 from its native MAC locus. After the 



84 
 

completion of phenotypic assortment, the expression of H3.3-FZZ was assessed by Western 

blots using WCE and probed with an antibody against the ZZ portion of the epitope tag (anti-

IgG). As shown in figure 23, a strong band of expected size (~33kDa) was observed in the 

H3.3-FZZ lanes whereas no signal was detected in the wild type lanes indicating successful 

expression of the fusion protein. To confirm that the presence of a C-terminal FZZ tag does 

not interfere in protein localization, I performed IFs on vegetative cell H3.3-FZZ as well as 

wild type strains using anti-IgG antibody. This specific antibody was used because recent 

experiments by others in our laboratory have shown that particularly in conjugating cells, it 

reduces non-specific background (Pearlman et al. un-published observations).  Consistent 

with previous findings (Cui et al. 2006), H3.3-FZZ was found to predominantly localize to 

the MAC and faintly to the MIC (Figure 24) suggesting that the tagged protein is likely 

functional as it is found in the expected cellular compartments.  

 
Figure 23: Western blot analysis of H3.3-FZZ. The top panel probed with anti-IgG 

antibody indicates the successful expression of H3.3-FZZ where no signal was detected in 

the wild type lanes. The bottom panel is loading control probed with anti-Actin antibody. 

Note the H3.3-FZZ signal was observed at ~33kDa which is the expected size of the fusion 

protein (H3.3 size 15.4 kDa+FZZ size 18kDa). 
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Figure 24: Indirect immunofluorescence analysis of H3.3-FZZ and untagged wild type 

cells using anti-IgG antibody. Nuclei were stained with DNA-specific dye DAPI. H3.3 

predominantly localizes to the MAC and only faintly to the MIC. In contrast no signal was 

detected in the wild type cells. Arrows represent MAC whereas arrow heads denote MICs 

 

 
Figure 25: Western blot indicating the recovery of purified H3.3-FZZ. The blot was 

probed with anti-FLAG antibody which shows signal in H3.3-FZZ lanes. No signal was 

observed in the wild type lanes. 

 

 

MIC 

MAC 

MIC 

MAC 
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 Subsequently, one step AP was performed on vegetatively growing cells and the 

recovery of H3.3-FZZ was assessed by Western blotting. As indicated in figure 25, bands 

were detected only in H3.3-FZZ input as well as AP lanes whereas no signal was present in 

the wild type lanes when the blot was probed with anti-FLAG antibody. MS analysis 

revealed the recovery of the bait protein H3.3 along with histone H4 (BFDR < 1%) 

suggesting that both proteins form stable complexes and the presence of the tag does not 

abolish this interaction. In addition, the SAINT analysis also identified PARP1-A
Tt

, the 

NASP homolog in T. thermophila Nrp1 (TTHERM_01014770), and a heat shock protein 70 

(HSP70) (TTHERM_00105110) as H3.3 co-purifying proteins (Table 6). In addition, Asf1
Tt 

(TTHERM_00442300) was also detected in one of the H3.3-FZZ MS analysis. However it 

requires biological replicas to be considered for the SAINT analysis and thus further AP-MS 

experimentation is needed. Previously our laboratory has shown that Nrp1 physically 

interacts with Asf1
Tt

 and likely functions in the transport of  newly synthesized histones 

H3/H4 (Garg et al. 2013), which is consistent with what has been proposed in humans 

(Campos et al. 2010). Further characterization of Nrp1 suggests that it also co-purifies with 

HSP70 and localizes to both the MIC and MAC (Nabeel-Shah and Fillingham un-published). 

In humans, heat shock proteins have been suggested to assist the proper folding of newly 

synthesized histones that function upstream of the NASP chaperone in the histone transport 

chain (Campos et al. 2010). The co-purification of Nrp1, and Asf1
Tt 

 with H3.3-FZZ 

reinforces the previous findings suggesting that Nrp1 and Asf1
Tt

 are bona fide H3/H4 

chaperones in T. thermophila (Garg et al. 2013).  

 As noted earlier, PARP1A belongs to a large family of enzymes that function in the 

ribosylation of target proteins. The co-purification of PARP1A
Tt

 with histones H2A as well 
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as H3.3 suggests that it is one of the major functional PARPs in T. thermophila and likely 

regulates several aspects of histone metabolism.  

 Several novel proteins with no known homologs in organisms other than ciliates (as 

assessed by BLAST) were detected by the SAINT analysis (Table 6). The functional 

significance of these interactions is currently unclear and begs further investigation. Taken 

together, I have presented evidence for T. thermophila histone H3.3 PPI network which 

includes evolutionary conserved as well as novel interactions that likely regulate chromatin 

dynamics in this divergent model organism.  

Table 6: AP-MS data from three independent biological replicas filtered using SAINT 

analysis (BFDR < 1%
*
) 

Bait  Prey  Gene ID  Spectral 

counts sum  
H3.3 - TTHERM_00016170 49 

H3.3 Nrp1 TTHERM_01014770 158 

H3.3 PARP1-A  THERM_00502600 263 

H3.3 PARP2-A TTHERM_00823980 11 

H3.3 HSP70 TTHERM_00105110  55 

H3.3 DnaK TTHERM_01014750 23 

H3.3 H4 TTHERM_00189170 595 

H3.3 H2B TTHERM_00633360 465 

H3.3 H2B TTHERM_00283180 366 

H3.3 H2A TTHERM_00316500 242 

H3.3 Hv1 TTHERM_00143660 145 

H3.3 RPA1 TTHERM_00047550 192 

H3.3 RPA2 TTHERM_01075780 57 

H3.3 RPB1 TTHERM_00538940 18 

H3.3 RPB TTHERM_00077230 16 

H3.3 RPB5 TTHERM_00941450 11 

H3.3 RPC5 TTHERM_00094210 31 
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H3.3 ATU1 TTHERM_00558620 178 

H3.3 Glucosamine-6-

phosphate isomerase 

TTHERM_00243730 49 

H3.3 Cytochrome b5-like TTHERM_00066830 98 

H3.3 CEN1 (CENtrin ) TTHERM_00384910 84 

H3.3 TTNB (Tetrin B) TTHERM_00052160 41 

H3.3 NDC80 (Kinetochore-

associated Ndc80 

complex)
*** 

TTHERM_00249630 37 

H3.3 SMC domain 

protein
*** 

TTHERM_00382370 35 

H3.3 Novel?? TTHERM_00266649 31 

H3.3 HSP60 TTHERM_00196370 26 

H3.3 Novel?? TTHERM_00456860 21 

H3.3 Novel?? TTHERM_00487090 12 

H3.3 Novel?? TTHERM_00989450 10 

H3.3 ADH3 TTHERM_00151670 9 

H3.3 Mitochondrial carrier 

protein 

TTHERM_00363210 9 

H3.3 SRF13 TTHERM_00522830 9 

H3.3 LAP2 TTHERM_00579060 9 

H3.3 RVB2 (RuVB-like) TTHERM_00046920 7 

H3.3 Novel?? TTHERM_00969640 7 

H3.3 CCT2 TTHERM_00149340 6 

H3.3 RPN12 TTHERM_00649110 5 

H3.3 Novel?? TTHERM_00426260 4 

H3.3 Novel?? TTHERM_00522940 4 

H3.3 Novel?? TTHERM_00979780 4 

H3.3 Asf1  TTHERM_00442300  13
** 

* Validated against 9 vegetative cell control; ** Needs experimental replica for SAINT 

validation, only detected in one purification. Note: Standard protein names as available 

through ciliate.org are listed unless marked by 
***

 in which case BLAST searches were used 

to detect the homologs.  
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3.6- Proteomic analysis of MLH1 
  

 The T. thermophila genome encodes two distinct linker histone proteins which have 

been shown to have nucleus-specific roles (Allis et al. 1984; Shen et al. 1995). MLH1 is 

specific to the MIC whereas HHO1 encoded H1 is specific to the transcriptionally active 

MAC.  Neither of these proteins are required for the vegetative growth (Shen et al. 1995). 

Previous studies have shown that MLH1 is a 71kDa protein which is proteolytically 

processed into four distinct fragments (Allis et al. 1984; Wu et al. 1994).  Initially, through a 

cleavage of the full length MLH1, two fragments called as alpha (46kDa) and beta (25kDa) 

are produced such that beta corresponds to the C-terminus of the full length protein. 

Subsequently, alpha is further processed to give rise to gamma and delta (Wu et al. 1994).  

These fragments exclusively localize to the MIC and are phosphorylated (Sweet and Allis 

1993; Sweet et al. 1997). 

  In order to examine the PPI of this linker histone, I generated stable cell lines 

expressing C-terminally FZZ epitope tagged MLH1 from its native chromosomal loci.  The 

expression of the tagged protein was detected on Western blots using whole cell extracts 

prepared from MLH1-FZZ and wild type cells. The blot was probed with an anti-FLAG 

antibody. As indicated in Figure 26, a strong signal was detected in the MLH1-FZZ lanes 

whereas no signal was observed in the wild type suggesting a successful expression of the 

fusion proteins. Previous studies have indicated that the full length MLH1 is hardly 

detectable in growing cells because it is immediately processed into alpha and beta fragments 

(Wu et al. 1994).  Therefore the size of MLH1-FZZ on Western blots was expected to be that 

of the beta fragment fused with the FZZ tag i.e. 43kDa. However, contrary to expectation the 

band appeared at ~65kDa (Figure 26). As noted earlier, the MLH1 fragments are highly 

phosphorylated (Sweet and Allis 1993; Sweet et al. 1997), indicating a likely possibility that 
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phosphorylation of the fusion protein might have retarded its mobility on SDS-PAGE (see 

discussion). 

 
Figure 26: Western blot analysis of MLH1-FZZ. The top panel probed with anti-FLAG 

antibody indicates the successful expression of MLH1-FZZ. No signal was present in the 

wild type lanes. Note the discrepancy between expected size of the beta fragment fused to 

FZZ and the observed location of the major species (see text for details).The bottom panel is  

a loading control probed with anti-Actin antibody.  

 To assess the functionality of tagged proteins, I performed IF analysis and observed a 

signal exclusively in the MIC of growing cells (Figure 27). This result is in agreement with 

the previous reports (Allis et al. 1984; Wu et al. 1994) and suggests that the tagged protein is 

likely functional at least for its correct localization. Subsequently, I performed TAP in two 

biological replicas on vegetatively growing cells. The MS analysis indicated the successful 

recovery of the bait (Table 7) however no other interacting proteins were detected as assessed 

by SAINT. To increase the likelihood of capturing transient interactions I took two 

approaches. First, instead of two step TAP, I performed one step affinity purification, 

however again no additional interacting partners were detected. Second I used less harsh 
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conditions during the purification procedure, i.e. 150mM NaCl concentration rather than 

300mM NaCl. I was however still unable to recover any additional co-purifying proteins that 

could be validated by the SAINT analysis. Taken together, these studies suggest that I have 

successfully generated the MLH1 tagged cell line which most likely expressed the beta-FZZ 

fragment, and exhibits the correct localization pattern as reported in the literature. Further 

studies will be required to explore the functional aspects of this protein.  

 

Figure 27: Indirect immunofluorescence analysis of MLH1-FZZ and untagged wild 

type cells using anti-FLAG antibody. Nuclei were stained with the DNA-specific dye 

DAPI. MLH1 exclusively localizes to the MIC and no signal was detected in the MAC. 

Control cells indicated no signal in any of the nuclei. Arrows represent MAC whereas arrow 

heads denote MICs  
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Table 7: AP-MS data filtered using SAINT analysis. Various experimental conditions used 

are also noted. 

NAME TTHERM # Spectral Counts (Sum)  

MLH1 (Bait) 

(Using two step TAP 

@300mM NaCl 

concentration); 2 

Biological replicas 

TTHERM_00471820 (Bait) 

Note: No prey was detected after 

data validation using SAINT 

(BFDR < 1%) 

233  None detected in 9 WT 

control purifications 

One step affinity purification using low salt conditions of 150mM NaCl [ ]  

MLH1 (Bait) TTHERM_00471820  62  / 0 in WT  

One step affinity purification using 300mM NaCl [ ]  

MLH1 (Bait) 

Two Biological replicas 

TTHERM_00471820  

Note: No prey was detected after 

data validation using SAINT(BFDR 

< 1%) 

65 for MLH1 

None detected in 9 

independent WT controls 
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Chapter 4- Discussion  
 

 In eukaryotes the establishment of distinct chromatin states is essential for the proper 

functioning of various cellular processes including gene expression regulation as well as 

genome integrity (Avvakumov et al. 2011). Increasingly, links have been discovered between 

aberrant chromatin states and disease formation in humans (Burgess and Zhang 2013). 

Chromatin assembly is a highly ordered process which is believed to begin in the cytoplasm 

where newly synthesized histones are shuttled through a network of several protein factors 

(reviewed in Gurard-Levin et al. 2014). Numerous studies have revealed the involvement of 

several histone chaperones as well as histone modifying enzymes in this tightly regulated 

process (Bannister and Kouzarides 2011; Keck and Pemberton 2012). For example, in 

humans newly synthesized H3.1/H4 are transported from the cytoplasm to the nucleus via a 

stepwise process in which NASP and Asf1 histone chaperones as well as HAT1-complex and 

Impβ4 have been shown to have key roles (Campos et al. 2010; Alvarez et al. 2011). Inside 

the nucleus histone chaperones such as CAF1 and HIRA mediate the distinct RD and RI 

chromatin assembly pathways for depositing H3 and H3.3, respectively, onto DNA (Hoek 

and Stillman 2003; Tang et al. 2006). In budding yeast, histone chaperone Nap1 along with a 

Kap114 has been shown to function in H2A/H2B transport (Mosammaparast et al. 2001; 

Keck and Pemberton 2012) whereas SWR1 is the key chromatin remodelling complex 

responsible for the deposition of  H2A.Z (Kobor et al. 2004; Mizuguchi et al. 2004).  Despite 

the identification of these complexes, questions remain with respect to underlying 

mechanistic details as well as how specific histone variants are targeted to distinct chromatin 

regions. Clearly, the picture of histone transport as well as their subsequent deposition onto 

chromatin is far from complete.  
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 T. thermophila features the spatial distinction of two chromatin states in the form of 

transcriptionally active MAC and silent MIC. This feature provides an excellent opportunity 

to investigate various chromatin related processes including the histone transport pathway 

and function of histone chaperones as well as histone modifying enzymes. Here I have 

presented the proteomic analysis of core as well as variant histones in T. thermophila which 

permitted me to derive useful insights with respect to the functions of various chromatin 

related proteins and their roles in the assembly pathways.  

4.2- Histone H2A and its interacting partners 
 

 It has previously been established that the T. thermophila  genome encodes two major 

histone H2A proteins, H2A.1 and  H2A.2, neither of which are essential for the vegetative 

growth (Liu et al. 1996).  To learn about the protein-protein interactions and gain insight into 

H2A transport and deposition complexes, I performed AP-MS using cell lines stably 

expressing FZZ epitope from the native chromosomal locus of histone H2A.1 (H2A 

hereafter).  The IF analysis indicated that consistent with a previous report (Liu et al. 1996), 

H2A-FZZ localizes to both  the MAC and the MIC.  While a rigorous analysis is lacking, the 

expected nuclear localization pattern of H2A-FZZ suggests that the protein is functional for 

at least its transport to the nuclei and is probably incorporated into chromatin as efficiently as 

the wild type. Further experiments such as triton extraction of the chromosomes (as 

previously employed by  Cui et al. 2006)  followed by assessing the retention of H2A-FZZ 

within chromatin will be helpful to fully establish that FZZ tagged histones are functional 

and are incorporated as efficiently as their wild type counterparts. Additionally, Southern 

blotting can be used to establish a complete replacement of the endogenous H2A locus with 

H2A-FZZ, which can be followed by ChIP experiments to demonstrate the functionality of 

the tagged proteins.  
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 SAINT analysis of APMS data revealed that H2A-FZZ co-purifies with T. 

thermophila putative PARP2
Tt

, PARP2A
Tt

 and PARP1A
Tt

 proteins as well as an NPM-like 

histone chaperone which I have named Cnpl-1. As noted earlier, vertebrates have three NPM 

[1-3] proteins that likely arose via gene duplication whereas invertebrates such as fruit flies 

have only one NPM-like protein (Eirín-López et al. 2006). Domain analysis of Cnpl-1 

suggests that it contains a predicted N-terminal NPM-core domain, three acidic regions, a 

nucleic acid binding domain as well as a putative NoLS. This domain organisation is similar 

to that of the vertebrate NPM1 consistent with the previous reports indicating a closer 

phylogenetic relationship between vertebrate NPM1 and invertebrate NPM-like proteins 

(Eirín-López et al. 2006).  NPM1 functions as a histone chaperone (Okuwaki et al. 2001) and 

has been shown to be involved in a variety of processes including nucleosome assembly 

(Dutta et al. 2001) , ribosome biogenesis, centrosome duplication, cell proliferation, genomic 

stability and regulation of tumor suppressors p53/TP53 and ARF (Okuda et al. 2000; Pang et 

al. 2003; reviewed in Finn et al. 2012) . In  X. laevis oocytes and eggs, NPM is thought to 

provide a buffering mechanism for the soluble reservoirs of H2A/H2B that are required for 

DNA replication after fertilization (Dingwall et al. 1987; Dingwall and Laskey 1990).  

 The NPM proteins have previously been predominantly studied in eukaryotes such as 

fruit flies and vertebrates (Frehlick et al. 2007; reviewed in Finn et al. 2012), and their 

functional significance in unicellular organisms remain unknown. The fact that T. 

thermophila H2A co-purified with a putative Cnpl-1 protein suggests that the evolutionarily 

conserved function of NPM-like proteins is to chaperone H2A/H2B. Histone chaperones are 

often negatively charged and contain acidic stretches necessary for their interaction with 

positively charged histones. For example, the NASP family of  histone chaperones contain a 

large acidic stretch which has been shown to be essential for their interaction with H3/H4 
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(Dunleavy et al. 2007; Wang et al. 2008).  The presence of acidic domains within Cnpl-1 

further reinforces the idea that it is a bona fide histone chaperone.  Considering the polyploid 

MAC which requires huge amounts of histones, it is tempting to speculate that Cnpl-l might 

function as a histone storage buffer. Further studies will be required to elucidate the exact 

functions of Cnpl-1. It will be useful to study the localization patterns as well as generation 

of KO strains in order to understand the functional significance of this putative histone 

chaperone. 

 Previous studies have shown that H2A/H2B are transported by Nap1 histone 

chaperone and Kap114 (Mosammaparast et al. 2001; Mosammaparast et al. 2002). The T. 

thermophila genome encodes a putative Nap1
Tt

 (TTHERM_00786930) protein which did not 

co-purify with H2A-FZZ. It is possible that Nap1
Tt

 transiently interacts with H2A/H2B 

heterodimer and this interaction was lost due to stringent experimental conditions e.g. high 

salt concentration (300mM) or due to the presence of an epitope tag. Studying protein-protein 

interactions as well as KO analysis of Nap1
Tt

 will provide insights into its functional 

significance. The T. thermophila genome encodes 24 karyopherins (Malone et al. 2008), 

however I did not recover any of those in H2A-FZZ tandem affinity purifications. Currently, 

more sensitive one-step affinity purifications are underway and it will be interesting to see 

whether any H2A/H2B specific importins do exist in  T. thermophila.  

It has been shown that ribosylation of histones have several important functions. For 

example, upon DNA DSB, histones are heavily ribosylated by PARP1 which functions in the 

repair pathway (Kreimeyer et al. 1984; Boulikas 1989).  Furthermore, ribosylation of  

chromatin functions to loosen it thus making it more accessible for the transcription 

machinery (Ko and Ren 2012). It has recently been shown that PARP1 can switch its roles 

from a chromatin architectural protein to a histone chaperone (Muthurajan et al. 2014).  
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Furthermore, newly synthesized histones H3/H4 are transiently ribosylated in humans, 

although the functional significance and specific PARP enzyme responsible for this PTM is 

currently unknown (Alvarez et al. 2011). It has been suggested that the ribosylation of new 

histones might be required for their proper folding (Alvarez et al. 2011). The T. thermophila 

genome encodes at least 10 putative PARP proteins, out of which three were co-purified with 

H2A-FZZ. Based on domain architecture and sequence similarity, I have classified the co-

purified proteins as PARP2
Tt

, PARP2A
Tt

 and PARP1A
Tt

. Previous evolutionary studies as 

well as biochemical analysis of PARPs in humans have categorized PARP1/2/4/6 as 

catalytically active and capable of ribosylation of substrate proteins (Citarelli et al. 2010; 

Vyas et al. 2013). The co-purification of T. thermophila putative PARP2
Tt

 and PARP2A
Tt

 

with H2A and PARP1A
Tt

 with both H2A and H3.3 suggests that similar to other eukaryotes, 

histones might be ribosylated in this model organism. While a functional analysis of T. 

thermophila PARP proteins is lacking, initial evidence from the IF studies of PARP1A
Tt

 

suggest that similar to H2A it also localizes to both the MAC and MIC, consistent with their 

functional linkage.  A plausible hypothesis would be that PARP1A
Tt 

carries out histone 

ribosylation which might be important for chromatin assembly process. To assess this 

hypothesis an in vitro ribosylation assay using purified native PARP1A
Tt

 and histones should 

be carried out. This will experimentally establish the catalytic activity of T. thermophila 

PARP1A. In vitro nucleosome assembly assays might also be helpful to gain insights 

whether PARP1-A
Tt

  is capable of chromatin assembly.  Furthermore, a KO analysis may 

yield insights into in vivo functions of PARP1A
Tt

 including any defects in chromatin 

assembly and/or developmental phenotypes. For example, isolation of the MACs from both 

the KO and WT strains followed by MNase digestion may yield insights into any global 

alterations in the bulk chromatin structure. Considering the role of γH2A.X as well as PARP1 
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in DNA DSBs, it will be interesting to induce the DNA damage (using damaging agents such 

as methyl methanesulfonate (MMS) in growing T. thermophila cells followed by AP-MS to 

identify any DNA repair related PPIs.   

 4.2.1-    FACT complex is evolutionarily conserved  

  

 Proteomic characterization of the putative T. thermophila FACT complex indicates 

that similar to the other eukaryotes (Formosa et al. 2001; Biswas et al. 2005) it consists of 

two proteins Spt16
Tt

 and Pob3
Tt

. These observations suggest that the composition of the 

FACT complex is evolutionarily conserved. The conserved domain architecture of each of 

Spt16
Tt

 and Pob3
Tt

 supports the idea that the T. thermophila putative FACT complex is 

functionally conserved as well. FACT is an abundant protein complex that has been shown to 

have critical roles in transcription elongation (Orphanides et al. 1998). In vivo studies have 

linked replication and transcription defects with the lack of a functional FACT complex 

(Biswas et al. 2005). While much of the research has highlighted its roles in transcription 

regulation (Biswas et al. 2005; Reinberg and Sims 2006), several studies have revealed 

expanded functions of  FACT in various other chromatin related processes. For example, 

FACT has been shown to be involved in DNA replication as well as in DNA damage repair 

(Li et al. 2005; Dinant et al. 2008).  FACT has been shown to co-purify in a complex with 

H2A.X, DNA-PK and PARP1 (Heo et al. 2008). The phosphorylation of H2A.X increases 

the exchange of H2A.X-H2B whereas PARP1-mediated ribosylation of FACT inhibits this 

exchange during DNA damage repair (Heo et al. 2008). These experiments suggested a 

possible mechanism through which FACT function  might be regulated during DNA repair. 

 Consistent with the known functions of FACT in transcription regulation (Voth et al. 

2014), IF analysis of Spt16
Tt

 showed that it predominantly localizes to the transcriptionally 

active MAC. In addition to the MAC, Spt16
Tt

 was also found to localize in the MIC during T. 
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thermophila vegetative growth.  It is possible that Spt16
Tt

 functions in the overall 

maintenance of the MIC genome or have roles during MIC mitosis consistent with the 

demonstrated involvement of the FACT complex during DNA replication and damage repair 

(Li et al. 2005; Dinant et al. 2008). A recent structural study indicated that a 'U-turn' motif 

scaffolded onto a Rtt106-like module of Chaetomium thermophilum Spt16 is responsible for 

a direct interaction with H2B (Hondele et al. 2013). As noted above, both the Spt16
Tt

 and 

Pob3
Tt

 contain Rtt106 like domains which have been shown to function as histone 

chaperones as well as in heterochromatin-mediated silencing (Huang et al. 2005). FACT has 

also been shown to be required for centromeric-heterochromatin integrity and accurate 

chromosome segregation (Lejeune et al. 2007). Thus it is possible that the T. thermophila 

FACT complex might have a role in the maintenance of silent MIC chromatin, although 

conclusive evidence requires further investigation. It will be interesting to study Pob3
Tt

 

function and its localization patterns to further gain insights into function of the FACT 

complex. A KO analysis of SPT16
Tt

 followed by RNA-seq will be instructive to assess the 

global defects in gene transcription due to the lack of a functional FACT. Furthermore, 

elucidating any possible developmental roles of FACT during T. thermophila conjugation 

will be of interest.  

4.3- Histone variant Hv1 physically interacts with an Impβ3 
  

 Histone H2A variant Hv1 (also known as H2A.Z in S. cerevisiae) is an evolutionarily 

conserved variant which has been linked to transcriptionally active chromatin (Jackson and 

Gorovsky 2000; Krogan et al. 2003; Meneghini et al. 2003; Thakar et al. 2009; Biterge and 

Schneider 2014). H2A.Z has been found to be enriched at gene promoters in  S. cerevisiae 

(Guillemette et al. 2005; Zhang et al. 2005), mammals (Bernstein et al. 2007) and plants 

(Zilberman et al. 2008) indicating its essential roles in the gene transcription. Evolutionarily 
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conserved ATP-dependent chromatin remodelling complex SWR-1 has been shown to be 

important for the incorporation of H2A.Z in S. cerevisiae (Krogan et al. 2003; Kobor et al. 

2004; Mizuguchi et al. 2004).  The SWR-1 complex exchanges H2A-H2B dimmers for free 

H2A.Z-H2B and selectively targets them to euchromatic regions (Luk et al. 2010). In T. 

thermophila Hv1 has been shown to exclusively localize to the MAC indicating that it is a 

transcription related histone variant (Stargell et al. 1993). This observation was further 

supported by the fact that Hv1 is an essential gene in T. thermophila and cells lacking this 

gene are not viable (Liu et al. 1996). This observation indicates that Hv1 has functions 

distinct from those of the major H2A genes.   

 H2A. Z also carries PTMs including acetylation, sumoylation and ubiquitination with 

various functional consequences (Thambirajah et al. 2009). For example, H2A.Z sumoylation 

in S. cerevisiae has been linked with DNA repair (Kalocsay et al. 2009) whereas acetylation 

of N-terminal lysine residues results in nucleosomal destabilization (Thambirajah et al. 

2006). In budding yeast acetylation of lysin 14 has been shown to be enriched at 

transcriptionally active promoters (Millar et al. 2006). In T. thermophila lysine residues have 

been shown to be essential for viability suggesting that the aceytlation of hv1 has crucial 

roles (Ren and Gorovsky 2001). Interestingly, H2A.Z has also been found to be present in the 

heterochromatin where it can function in the formation of pericentric and centric chromatin 

(Rangasamy et al. 2003; Greaves et al. 2007). Consistent with a role in heterochromatin 

formation, monoubiquitylation of  H2A.Z has been linked with gene silencing (Sarcinella et 

al. 2007).  

 As noted earlier T. thermophila features two distinct nuclei in the form of the MAC 

and MIC. This raises an additional challenge of how functionally specialized proteins such as 

Hv1 are targeted to a particular nucleus. To provide insights into Hv1 transport machinery in 
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T. thermophila, I began to characterize the PPI network of this essential histone variant. IF 

analysis indicated that in accordance with previous studies (Stargell et al. 1993), Hv1-FZZ 

localizes to transcriptionally active MAC indicating that the tagged protein is functional at 

least for its correct nuclear localization.  Proteomic analysis of Hv1-FZZ indicated that it 

physically interacts with an Impβ3 protein. Impβ3 is one of the 24 karyopherins (13 encoded 

by imp α-like genes and 11 encoded by imp β-like genes) which have previously been shown 

to be encoded by the  T. thermophila genome (Malone et al. 2008). Karyopherins are a large 

group of evolutionarily conserved nucleo-cytoplasmic transport factors that shuttle NLS-

containing cargo via nuclear pore complexes (NPCs) (O’Reilly et al. 2011). The Impβ3 is a 

homolog of S. cerevisiae Kap121 which has previously been shown to function in histone 

transport pathways (Mosammaparast et al. 2001).  Interestingly, Impβ3 is one of the only two 

Impβ proteins (Impβ4 being the other) which have previously been shown to predominantly 

localize to the MAC whereas all remaining Impβs have been found to localize to  both nuclei 

(Malone et al. 2008). These observations along with the proteomic analysis presented here 

suggest a possible mechanism of targeting Hv1 specifically to the MAC. I propose that Hv1 

forms a stable complex with Impβ3 in the cytoplasm which ensures the specific targeting of 

this essential histone variant to the MAC and not to the MIC. It should be noted however that 

because Hv1 is an essential gene in T. thermophila, it is likely that multiple pathways exist to 

ensure its sufficient supply to the MAC. A KO analysis of Impβ3, providing it is not essential 

for  the cell viability, followed by an analysis of Hv1 localization using anti-hv1 antibody 

(available from Stargell et al. 1993) will help further elucidating the mechanistic details of 

the Hv1 transport pathway. 

 It is also worthwhile to note that in budding yeast Kap114 and Nap1 have been shown 

to be involved in Htz1 transport from the cytoplasm to the nucleus (Straube et al. 2010). In 
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addition Kap123 appears to have a redundant role with Kap114 to transport Htz1 (Straube et 

al. 2010). As noted earlier, Kap114 and Nap1 also form a major pathway for H2A/H2B 

transport in budding yeast (Mosammaparast et al. 2001) indicating that core histone H2A and 

its variant Htz1 utilize the same karyopherin. In contrast to the situation in budding yeast, it 

is unlikely that H2A and Hv1 in T. thermophila share the same major pathway. It is because 

Impβ3 predominantly localizes to the MAC (Malone et al. 2008) whereas core histone H2A 

is present in both nuclei. Nevertheless, it will be interesting to investigate the potential role of 

Nap1 in Hv1 transport and metabolism because it has been shown to function as a buffer to 

maintain soluble pools of H2A.Z in yeast (Straube et al. 2010).  

 I did not recover any subunits of the putative T. thermophila SWR-1 complex.  As 

assessed by genome annotations, T. thermophila encodes putative homologs of SWR-1 

subunits including Yaf9 (TTHERM_00248210), nucleosome-binding component of the Swr1 

complex Vps71 (TTHERM_01298590), Swc4 (TTHERM_00357110) and Swi2/Snf2-related 

ATPase Swr1 (TTHERM_01546860). One possible reason for this could be the experimental 

conditions including using 300mM NaCl which was used during Hv1-FZZ  purifications (see 

Materials and Methods). Such high salt concentrations potentially could disrupt any transient 

interactions. In addition, the possibility of the FZZ tag destabilizing the interaction cannot be 

excluded. Further studies will be required to establish a more comprehensive view of how 

Hv1 is deposited onto chromatin in T. thermophila and what other protein factors are 

involved in handing over Hv1 to the Swr-1 complex once it finds its way inside the nucleus. 

4.4- Histone H3.3 interacts with Nrp1 and Asf1Tt 

 

 Canonical histones H3.1 and H3.2 are exclusively expressed during S-phase of the 

cell cycle and in humans are deposited onto chromatin in a RD assembly pathway mediated 

by Caf1 complex (Tagami et al. 2004). In contrast, the replacement histone variant H3.3 is 
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expressed throughout the cell cycle and is mainly deposited by the RI pathway mediated by 

the HIRA complex (Wu et al. 1982; Ahmad and Henikoff 2002; Tagami et al. 2004). A 

notable exception to this general trend is Drosophila H3.3 which can be deposited via both 

the RD and RI pathways (Ahmad and Henikoff 2002). H3.3 containing nucleosomes are 

thought to be less structured and associated with a more transcriptionally active chromatin 

state (McKittrick et al. 2004). Consistent with this, H3.3 deposition into nucleosomes has 

been associated with transcriptional activity and this histone variant has been found to be 

highly enriched within actively transcribed genes (Mito et al. 2005; Jin et al. 2009).  In T. 

thermophila, two RI histone H3 variants namely H3.3 and H3.4 are known to exist (Cui et al. 

2006). Previous studies have revealed that cells harbouring both the single or the double KOs 

of H3.3 and H3.4 are viable, indicating that the expression of the quantitatively minor H3 

variants is not required for vegetative growth (Cui et al. 2006). Immunofluorescence studies 

of GFP tagged H3.3 have indicated that it predominantly localizes to the MAC (Cui et al. 

2006), consistent with the known association of this variant with actively transcribed genes 

(Mito et al. 2005; Jin et al. 2009).  A faint signal of the GFP tagged H3.3 was also observed 

in the transcriptionally silent MIC which persisted throughout vegetative growth and 

disappeared in starved condition when DNA replication is halted (Cui et al. 2006). Based on 

these observations, it was suggested that similar to Drosophila,  T. thermophila H3.3 can also 

be deposited via both RD and RI pathways (Cui et al. 2006). In accordance with these 

observations, my IF analysis of H3.3-FZZ indicated that it predominantly localizes to the 

MAC whereas it is found only faintly in the MIC. Unpublished evidence from our laboratory 

indicates that the H3.3 putative chaperone HIRA
Tt

 also localizes to the MIC during 

vegetative growth and its signal vanishes from the MIC during prolonged starvation (Nabeel-

Shah, Fillingham, et al. unpublished observations). This observation raises the possibility that 
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the observed H3.3 signal in the MIC might be due to the function of RI chaperone HIRA and 

not due to RD histone chaperone Caf1. This hypothesis is supported by several lines of recent 

evidence. For example, it has recently been shown that the HIRA complex deposits H3.3 in 

the nuclesomal gaps to maintain genome integrity (Ray-Gallet et al. 2011). It has been 

proposed that while Caf1 mediates deposition of the major histone H3.1 during DNA 

replication, the HIRA complex fills the nucleosomal gaps in a post-replication manner 

resulting in a broad distribution of H3.3 throughout the genome (Ray-Gallet et al. 2011). The 

selective enrichment of H3.3 at actively transcribed chromatic regions has been explained in 

terms of HIRA association with RNA Pol II (Ray-Gallet et al. 2011). In the same study (Ray-

Gallet et al. 2011), it was also shown that depletion of the Caf1 complex impairs H3.1 

deposition and enables H3.3 to be deposited onto replication sites via HIRA. Depletion of 

HIRA resulted in an impairment of H3.3 deposition but without any significant increase in 

the distribution of H3.1 (Ray-Gallet et al. 2011). This is consistent with the fact that in T. 

thermophila an over expression of H3.3 can support vegetative growth even in the absence of 

canonical histone H3s (Cui et al. 2006). In contrast, lack of H3.3 does not increase the 

expression of the canonical H3s (Cui et al. 2006). Taken together these studies along with the 

observed HIRA
Tt

 localization patterns suggest that H3.3 presence in the MIC might represent 

a scenario which is similar to what has been proposed in humans where HIRA mediates a 

nucleosomal gap-filling H3.3 incorporation in a post-replication manner to ensure overall 

genomic integrity. Furthermore, similar to humans, HIRA
Tt

 and H3.3 presence in the MIC 

may also represent an alternative mechanism of chromatin assembly which becomes 

functional if RD chaperone CAF1 is impaired. Additional support for these hypotheses 

comes from our laboratory's un-published observations which suggest that HIRA
Tt

 is an 
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essential gene in T. thermophila whereas the p60 subunit of the putative CAF1
Tt 

is not 

required for vegetative growth (Jeyapala and Fillingham et al. unpublished observations). 

 Recent evidence indicates that H3.3 is not exclusively associated with euchromatic 

regions and can also be found within repressed and poised genes (Delbarre et al. 2010; 

Goldberg et al. 2010). Consistent with this, H3.3 has also been found to be associated with 

pericentric and telomeric chromatin regions (Wong et al. 2009; Drané et al. 2010; Lewis et 

al. 2010). Thus it is formally possible that H3.3 presence in the MIC might be due to its 

additional roles in overall genome integrity. For example, H3.3 is deposited at centromeres as 

a place holder for newly assembled centromere-specific histone H3 variant CENP-A 

(Dunleavy et al. 2011). In T. thermophila, only MIC chromosomes have centromeres and 

CENP-A exclusively localizes to the MIC (Cervantes et al. 2006; Cui and Gorovsky 2006).   

 To further elucidate the functions of H3.3 and its deposition pathway in T. 

thermophila, I carried out AP-MS analyses and investigated its PPI network. My data 

indicate that H3.3 co-purifies with two evolutionarily conserved H3/H4 chaperones, Asf1 

and Nrp1. Recently, our laboratory has shown that Asf1
Tt

 physically interacts with Nrp1, 

Impβ6 and histones H3/4 (Garg et al. 2013). It has been proposed that Asf1
Tt

 and Nrp1 along 

with Impβ6 function in the transport of newly synthesized histones H3/H4 (Garg et al. 2013). 

Nrp1 belongs to a family of H3(H3.3)/H4 chaperones which we have recently shown to be 

conserved throughout the major eukaryotic lineages (Nabeel-Shah et al. 2014). Taken 

together, my data confirm previously reported Nrp1 and Asf1 interaction with histones 

H3(H3.3)/H4 (Garg et al. 2013) and further establishes them as bonafide histone chaperones 

in T. thermophila I did not co-purify putative HIRA
Tt

 with H3.3. Several possible reasons 

could account for this possibly unexpected observation. For example, HIRA has been shown 

to directly bind with DNA (Ray-Gallet et al. 2011) and its interaction with H3.3 might be in 
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the context of chromatin structure. Because my experimental setup only recovers the soluble 

pool of PPIs, it is possible that the HIRA
Tt 

-H3.3 interaction was not detected. An additional 

hypothesis for the absence of HIRA
Tt

-H3.3 interaction could be related to the presence of an 

epitope tag on H3.3 which could have destabilized the interaction. Further studies will be 

required to fully understand the H3.3 deposition pathway and to unravel the reasons for not 

detecting a HIRA
Tt

 interaction. To this end, assessing the localization patterns of H3.3 in a 

HIRA
Tt

 KO will be informative.   

4.5- T. thermophila MLH1 exclusively is found in the MIC 
  

 The T. thermophila genome encodes two linker histones which have been shown to 

have nucleus-specific localization patterns and neither are essential for vegetative growth 

(Shen et al. 1995). MIC-specific linker histone Mlh1 is a 71kDa protein which has previously 

been shown to be processed to produce four distinct polypeptides, namely alpha, beta, and 

gamma, delta both of which are derived from further cleavage of alpha (Wu et al. 1994). 

Each of these peptides contain phosphorylation sites for cyclic-AMP dependent protein 

kinase and have been shown to be highly phosphorylated in mitotically dividing nuclei 

(Sweet and Allis 1993; Sweet et al. 1997). Furthermore, the phosphorylation of the delta 

peptide occurs in early conjugation, a period when the MIC becomes transcriptionally active, 

and has therefore been associated with transcription activation (Sweet et al. 1996). These 

studies have highlighted the functional significance of Mlh1 however the identity of the 

protease involved in the processing remains obscure.   

 In an effort to learn about the PPI and to uncover the potential protease that processes 

the Mlh1 into four peptides, I generated a C-terminal epitope tagged cell line expressing 

Mlh1-FZZ from its native chromosomal locus. The IF analysis revealed that in accordance 

with previous reports (Sweet and Allis 1993; Wu et al. 1994; Sweet et al. 1997), tagged Mlh1 
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localized exclusively to the MIC. This suggests that the protein is functional and likely is 

incorporated into chromatin. AP-MS analysis revealed the recovery of the bait. However no 

enrichment of any co-purifying proteins was detected as assessed by statistical SAINT 

analysis. Previously it has been shown that the full length Mlh1 (71kDa) can hardly be 

detected in  growing cells and it is immediately processed into alpha and beta fragments of 

46 and 25 kDa respectively (Wu et al. 1994). Because I used a C-terminal FZZ epitope tag, it 

is likely that the full length Mlh1 was excluded from my analysis. The beta fragment 

comprises the C-terminus of the full length Mlh1 (Wu et al. 1994) and therefore might have 

been the only fragment recognized in my analysis. The Western blot detected a strong signal 

at ~65kDa which was higher than the expected size of the beta fusion protein (25kDa + 

18kDa FZZ). As noted earlier, all four Mlh1 fragments are highly phosphorylated (Sweet and 

Allis 1993; Sweet et al. 1997), and phospho proteins have the tendency to move slower on 

SDS-PAGE (e.g. Wegener and Jones 1984; Delom and Chevet 2006). It is therefore possible 

that the discrepancy in the expected size of beta-FZZ observed on the Western blot might be 

due to the hyper-phosphorylation of this fragment. To further resolve these discrepancies, it 

will be informative to analyse the unique peptides detected in the MS analysis as well as any 

PTMs present on them. 
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4.6- Conclusions and future directions 
 

 I have characterized the initial PPI network of core histone H2A, its variant Hv1as 

well as the histone H3 variant H3.3 in T. thermophila (See Figure 28). This network will 

definitely grow as more histone co-purifying proteins will be characterized in future studies. 

Several important conclusions can be drawn as described below. 

 
Figure 28: Network representation of PPIs of T. thermophila H2A, Hv1, H3.3, Spt16 

and Parp1-A based on work presented here. This is an undirected network where nodes 

denote the proteins and edges indicate the interaction. Baits are indicated in yellow color. 

Note this subjective network is simplified to include only those SAINT validated PPIs which 

were recovered in multiple biological replicas. Image was generated using software 

cytoscape version 3.02 (Shannon et al. 2003) 
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1-  H2A AP-MS data indicate evolutionarily conserved interactions with putative Cnpl-1 and 

the FACT complex which have previously been studied only in eukaryotes such as humans 

and frog (Dingwall and Laskey 1990; Orphanides et al. 1998) . My data suggest that in T. 

thermophila the composition of the FACT complex is conserved and is homologous to its  

budding yeast or human counterparts (Formosa et al. 2001; Biswas et al. 2005). It is 

comprised of two putative subunits namely Spt16
Tt

 and Pob3-like proteins. The IF analysis of 

Spt16
Tt

 in turn suggests that it might have roles in determining genome integrity as well as in 

DNA replication due to its presence in the transcriptionally silent MIC. Furthermore, 

consistent with the known roles of the FACT complex in transcription regulation 

(Orphanides et al. 1998), my IF data reveal that Spt16
Tt

 predominantly localizes to the 

transcriptionally active MAC. This indicates that in addition to the conserved proteomic 

composition, the FACT complex is functionally conserved as well. To gain further insights 

into T. thermophila FACT complex composition, it will be helpful to study the PPI of Pob3-

like
Tt

. This analysis will help identifying any HMG protein that might be a component of the 

putative FACT complex.  Furthermore, KO analysis of Spt16
Tt

 followed by RNA-seq to 

assess any global defects in gene transcription will be useful to assess the functional 

significance of the FACT complex. The co-purification of Cnpl-1
 
and its conserved domain 

architecture implicates this protein as a bona fide histone H2A/H2B chaperone in T. 

thermophila that might have functional roles in chromatin assembly or histone transport 

pathways. Studying PPI as well as localization patterns of Cnpl-1 will be informative to 

decipher its functional significance. To this end, I have generated an epitope tagged cell line 

expressing Cnpl1-FZZ from its native chromosomal locus. Currently, cells have finished 

phenotypic assortment and will be subjected to AP-MS in future.  
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 2- The co-purification of the putative PARP2
Tt

, PARP2A
Tt

 and PARP1A
Tt

 proteins with 

H2A and PARP1A
Tt

 with H3.3 suggest that ribosylation of histones might be one of the 

major histone PTMs in this model organism. While functional analysis is presently lacking, it 

is tempting to speculate that histone ribosylation might be involved in the chromatin 

assembly pathway. Preliminary IF analysis of PARP1A
Tt

 indicates that it localizes to both the 

MAC and MIC suggesting a functional link with histone H2A as well as H3.3 proteins. It 

will be helpful to assess the PTMs on these histones via MS analysis. Furthermore, in vitro 

ribosylation assay using native PARP1A
Tt

 will help establishing that the protein is 

catalytically active. Moreover, KO analysis of PARP1A
Tt

 followed by assessing defects in 

chromatin assembly due to loss of histone ribosylation might be helpful to comprehensively 

characterize the functional significance of this PTM. Moreover, it will be interesting to study 

the role of T. thermophila PARPs in DNA DSB repair. To this end, inducing DNA damage 

by MMS followed by AP-MS using PARP1-FZZ (as well as H2A.X) will be helpful to 

derive initial clues.  

3-  Proteomic analysis of Hv1 indicates that it physically interacts with an Impβ3 which has 

previously been shown to localize predominantly to the MAC (Malone et al. 2008). This 

interaction suggests a possible mechanism of targeting Hv1 specifically to the 

transcriptionally active MAC and not to the MIC. I propose that Hv1 and Impβ3 form a 

stable complex in the cytoplasm from where they are shuttled to the MAC (Figure 29). In 

order to learn more about this transport pathway, it will be helpful to engineer the Impβ3 KO 

cell lines followed by Hv1 localization analysis using anti-Hv1 antibody. It is important to 

note however that Hv1 is essential for cell viability, and thus the existence of redundant 

pathways cannot be excluded. Furthermore, it will be interesting to investigate whether Nap1 
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has a role in this pathway similar to what has been demonstrated in budding yeast  (Straube 

et al. 2010).  

 In order to characterize the putative T. thermophila SWR-1 complex and its role in 

Hv1 deposition, it will be important to study the PPI of the SWR-1 complex by generating 

epitope tagged cell lines of its putative subunits. To this end, in collaboration with a previous 

laboratory colleague we have engineered the gene targeting constructs of putative Yaf9
Tt

 

(Nabeel-Shah and Fillingham et al unpublished).  

 

Figure 29: Proposed model for the transport of histone Hv1 in T. thermophila. Hv1 

forms a physical interaction with Impβ3 which transports it to the MAC. 

4- IF analysis of H3.3 confirms its previously reported (Cui et al. 2006) localization patterns 

where a strong signal was detected in the transcriptionally active MAC and only a faint 

localization signal was present in the MIC.  Along with un-published observations from our 

laboratory, my data implicate HIRA as the major chaperone that might be responsible for the 

H3.3 deposition into the MIC. Furthermore, SAINT supported proteomic analysis reveals 
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that H3.3 co-purifies with highly conserved Nrp1 histone chaperone. These data provide 

support to a previous report (Garg et al. 2013) which has implicated Asf1
Tt

 and Nrp1 as 

major histone chaperones involved in the H3/H4 transport pathway. Future studies should 

focus on analysing the role of HIRA
Tt

 in H3.3 deposition. Furthermore, studying the PPI of 

core H3 and H4 will be useful to fully delineate the RD as well as RI pathways. To this end, I 

have engineered the gene targeting vector for H4 whereas H3 is in progress. T. thermophila 

cells carrying H4-FZZ have been subjected to the Western blotting in order to detect the 

successful expression of the fusion protein. As apparent from the figure 30, strong signals 

were detected in the H4-FZZ lanes whereas no signal was observed in the wild type lanes 

when blot was probed with anti-FLAG antibody. In future IF as well as AP-MS analyses 

should be carried out using H4-FZZ cell lines in order to gain functional insights.   

 
Figure 30: Western blot analysis of H4-FZZ. The blot was probed with anti-FLAG 

antibody Note the H4-FZZ signal was observed at 29kDa which is the expected size of the 

fusion protein (H4 size 11 kDa+FZZ size 18kDa) 
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Appendices  

Appendix 1- Buffer recipes  

Item  Composition 

1% Agarose Gel (w/v) (50ml) 0.5g agarose 

50ml 1xTBE 

5μl ethidium bromide (EtBr) 

(10mg/ml) 

0.5M Ammonium Hydroxide (NH4OH) 1ml 14.5M NH4OH 

28ml ddH2O 

10% APS (Ammonium persulfate) (w/v) 0.1g ammonium persulfate 

1ml ddH2O 

AP Lysis Buffer 10ml AP wash buffer 

1 tube complete protease inhibitor 

(Roche) 50μl phenylmethylsulfonyl fluoride 

(PMSF) 

AP Wash Buffer 0.5ml 1M Tris pH 8.0 

1.5ml 5M NaCl 

0.5ml 10% NP40 

47.5ml ddH2O 

1M CaCl2 (1L) Any of the following 

hydrated forms is available: 

CaCl2 = 110.99g/mol 

CaCl2. 2H2O (Dihydrate) = 

147.02g/mol 

CaCl2.4H2O (Tetrahydrate) = 

183.04g/mol 

CaCl2.6H2O (Hexahydrate) = 

219.08g/mol 

To 1 mole of CaCl2 add ddH20 to 1L 

2mM CaCl2/20mM Tris 100μl 1M CaCl2 

1ml 1M Tris pH 8.0 

48.9ml ddH2O 

0.5M EDTA, Iron (III) Sodium Salt pH 

8.0 (500ml) 

91.78g Na2EDTA (367.1g/mol) 

ddH2O to 500ml, pH to 8.0 with 

NaOH (1N) 

2x Lysis Buffer (50ml) 

 

 

2ml 1M Tris pH 8.0 

50μl 1M MgCl2 

42ml ddH2O; 6ml 5M NaCl 

1M MgCl2 (M.W.=203.3g/mol) (100ml) 20.33g MgCl2; ddH2O to 100ml 

1% Milk Solution (50ml) 10ml 5% milk solution 

40ml 1x PBS 

5% Milk Solution (BLOTTO) (w/v) 

(100ml) 

5g skim milk powder 

100ml PBS 

100mM NaCl Wash Buffer (IPP100) 500μl 1M Tris pH 8.0 

1ml 5M NaCl 



135 
 

500μl 10% NP-40 

48ml ddH2O 

300mM NaCl Wash Buffer (IPP300) 500μl 1M Tris pH 8.0 

3ml 5M NaCl 

500μl 10% NP-40 

46ml ddH2O 

5M NaCl (500ml) 146.1g NaCl 

ddH20 to 500ml 

10% NP-40 (v/v) 2.5ml NP-40 

22.5ml ddH2O 

10x PBS pH 7.3 (1L) 82g NaCl 

2.64g NaH2PO4 

16g Na2HPO4 

ddH20 to 1L, pH 7.3 

1x PBST (500ml) 500ml 1x PBS 

250μl Tween 20 

100mM PMSF (10ml) 0.1742g PMSF 

10ml isopropanol 

Ponceau (0.1% w/v) (1L) 1g Ponceau S 

50ml acetic acid 

ddH20 to 1L 

2x SDS Laemmli Sample Buffer 3g SDS 

5ml beta-mercaptoethanol 

10ml 100% glycerol 

6ml 2M Tris-HCL pH 6.8 

50mg bromophenol blue 

ddH20 to 100ml 

SPP (1L) 60mg sequestrin (Sigma) 

2g bacto yeast extract 

20g proteose peptone 

4g glucose 

ddH20 to 1L 

5% Stacking Gel (5ml) 3.5ml ddH2O 

0.625ml 1M Tris pH 6.8 

0.95ml acrylamide 29:1 

0.05ml 10% SDS 

3.75μl TEMED 

31.25μl 10% APS 

Tetrahymena Lysis Solution (500ml) 210g urea 

35ml 5M NaCl 

5ml 1M Tris pH 7.4 

10ml 0.5M EDTA 

50ml 10% SDS 

ddH2O to 500ml 

1x TEV Cleavage Buffer 500μl 1M Tris pH 8.0 

1ml 5M NaCl 

500μl 10% NP-40 

50μl 0.5M EDTA 



136 
 

48ml ddH2O 

10mM Tris pH 7.4 (1L) 1.21g Tris 

ddH2O to 1L, pH to 7.4 

YT Media (1L) 10g bacto-tryptone 

5g yeast extract 

5g NaCl 

15g agar for plates 

1L ddH20 

 

Appendix 2- ClustalX color legends 

Residue at 

position 

Applied 

Colour 
{ Threshhold, Residue group } 

A,I,L,M,F,W,V BLUE {+60%, WLVIMAFCHP} 

 R,K RED {+60%,KR},{+80%, K,R,Q} 

N GREEN {+50%, N}, {+85%, N,Y} 

C BLUE {+60%, WLVIMAFCHP} 

C PINK {100%, C} 

Q GREEN {+60%,KR},{+50%,QE},{+85%,Q,E,K,R} 

E MAGENTA {+60%,KR},{+50%,QE},{+85%,E,Q,D} 

D MAGENTA {+60%,KR}, {+85%, K,R,Q}, {+50%,ED} 

G ORANGE {+0%, G} 

H,Y CYAN 
{+60%, WLVIMAFCHP}, {+85%, 

W,Y,A,C,P,Q,F,H,I,L,M,V} 

P YELLOW {+0%, P} 

S,T GREEN {+60%, WLVIMAFCHP}, {+50%, TS}, {+85%,S,T} 
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Appendix 3- Primers  
3.1- Sequencing primer Sequence 

M13R 5'-CAGGAAACAGCTATGAC-3' 

HN111 5'-TATCATCATCATCTTTGTAATCAATATC-3' 

M13F 5'-TGTAAAACGACGGCCAGT-3' 

3.2 – PCR primers to amplify gene sequences for molecular cloning (restriction sites 

underlines) 

SPT16 

DOWNSTREAM SPT16 FORWARD 

5’ CCCCGCGGCCGCAAAATAATATATATAATTATTAAACTCTAG 3’ 

DOWNSTREAM SPT16  REVERSE 

5’CCCGAGCTCTTCAATTAAATATTCTCCTCAGTAAAATAG 3' 

UPSTREAM FORWARD: 

5’ CCCGGTACCGAAGAAGAGGTCATGACTACGATGAAATAG 3' 

 

PARP1 

FORWARD UP: 

CCCGGTACCAGTTTA TTA GAA ATG TTT TCGCTGTTGAGA 

REVERSE UP: 

CCCCTCGAGATCTCTTATTTCAATTAAATATCTTATTCT  

DOWNSTREAM PRIMERS: 

FORWARD DOWN: 

CCCCGCGGCCGCAATAAT TTA ATA AAT TTT TAT AGA TTG TAT  

REVERSE DOWN: 

CCC GAG CTC CAT TAG AAG GTT TCA ACC GTT CAT GAA TAT 

 

H2A CORE 

FORWARD  

5’CCC GGT ACC TTA AAT CAT CAT GGT GTG TTT TTA ATT AAT 3’ 

REVERSE  

5’ CCC CTCGAG   AAG GTC TTG AGA AGC TTG ACC TCT AGA TTC 3’ 

DOWNSTREAM FORWARD 

 : 5’ CCCGCGGCCGC GGA ATT AAA AAT CCA AAA TCT ATC TATTCT3’ 

DOWNSTREAM REVERSE 

 5’CCCGAGCTC TTG GAA TTT GTG GCG CCA TTC AGA AAA TTC3’ 

 

Hv1 

FORWARD UP; 

5’ CCC GGTA CC   ATT AAA TAG ATA GAT  AGT  TAG TTA GTT ATG 3’ 

REVERSE UP: 

5’ CCC CTC GAG  ACG AGG TTC AGC AGT CTT AGC ACT AGA TCT 3’ 
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DOWNSTREAM FORWARD:  

5’CCCGCGGCCGCGTAGTAATGTACATGATTTAAAAAAAAATT3’            

DOWNSTREAM REVERSE:   

5’CCCGAGCTCCCGCCTGCTTGCTATCGTTCACGCACAATC3’ 

 

H3 CORE: 

FORWARD UP: 

5’ CCC GGT ACC TAG CAG TGA CGG TCT TTC TTC TGG CGT GTT 3’ 

REVERSE UP: 

5’ CCC CTC GAG GAA TCT TTCACC TCT AAT TCT TCT AGC GAG 3’ 

DOWNSTREAM FORWARD: 

CCC GCG GCC GC GCA TAA TAT AAC AAC TAG TCT CTA AAT AAT  

DOWNSTREAM REVERSE 

CCCGAGCTC ACA AGT TTA AAA CAA TGA TAA AGA TAT TAG 

 

H3.3  

FORWARD UP: 

5’ CCC GGTACC GAT ATG GTG GGG GTG GGG AGA AAC AAA TAT 3’ 

REVERSE UP: 

5’ CCC CTC GAG GAA TCT TTC TCC TCT AAT TCT TCT AGC AAG 3’ 

DOWNSTREAM FORWARD: 

CCC GCG GCC GC GAG CTC TCT CTA ATA ATT AAC TTA ATA TAT 

DOWNSTREAM REVERSE 

CCCGAGCTC AGG TTG AGA TTG AGA TGC AGG AGA GCT AAT 

 

MLH1  

UPSTREAM FORWARD: 

CCC GGTACCAGC TTC ATC TTC TAA GAA CAG AAA ATC ATC  

UPSTREAM REVERSE: 

CCC CTCGAG TTA TTT TTT ATT TGC CTT CTT GCC ATA AGC  

DOWNSTREAM FORWARD: 

CCC GCGGCCGC GTT TGA AAT GTT AAG TAT CAA CTT TAA ACC  

DOWNSTREAM REVERSE 

CCCGAGCTC GGA ATT TCT GAA AAT ATA ATT TAA GCA GTT 

 

HISTONE H4  

UPSTREAM FORWARD: 

5’ CCCCGGTACC GTG TAT TAT GAT TTA GAT ATA TTT AAT AAA 3’ 

UPSTREAM REVERSE: 

5’ CCCCTCGAG ACC ACC GAA ACC ATA GAG AGT TCT GCC TTG 3’ 

 DOWNSTREAM FORWARD: 

5’ CCCC GCGGCCGC ACA AAA TAT TTA TCT TAA AAA ATT AAA AAG 3’ 

DOWNSTREAM REVERSE: 

5’ CCCCGAGCTC GGG AAT ATC ATC TCC TTT TAT GCA TCT AAG 3 
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Appendix 4- Protein ladder 
 

PiNK plus prestained protein ladder scale (Frogga Bio) 
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Appendix 5- 
Appendix 5A: Restriction maps of Hv1, H2A, H3 and H3.3 genes 

 

 

 

 

 

 

 

B 

A 

C 

Note the Kpn1   

Note the Sac1 site 
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Appendix 5B:  Cloning plasmid and PCR products  

 

 
 
 
 
 
 
 
 
 
 

D 

Note the Kpn1 site 

A 
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A: Cloning plasmid preparation. The plasmid was double digested with appropriate 

restriction enzymes and was gel purified. B: 0.8% Agarose gel. Lanes 1-5 & lane 7-11 

represent double digested upstream and downstream PCR products for Hv1, H2A and H3 and 

H3.3, H4 respectively. Note the products were digested with appropriate restriction enzymes 

as detailed in the main text. M1 represent 1kb DNA ladder. 

Appendix 5C:  Confirmation PCR schematic 

 

B 

A 
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A: Confirmation PCR strategy. The position of cloning primers for upstream fragment and 

primer position of confirmation PCR is shown. B: 0.8% Agarose gel. Lanes 1-11 represent 

conformation PCR products for various genes studied here. Note the size of each product is 

approximately 1Kb in accordance with the distance between forward and reverse primers. 

M1 denotes 1Kb DNA ladder.  
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