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Abstract. Principal component analysis provides a fast and 
robust method to reduce the data dimensionality of an aerosol 
size distribution data set. Here we describe a methodology 
for applying principal component analysis to aerosol size dis- 
tribution measurements. We illustrate the method by apply- 
ing it to data obtained during five field studies. Most varia- 
tions in the sub-micrometer aerosol size distribution over pe- 
riods of weeks can be described using 5 components. Using 6 
to 8 components preserves virtually all the information in the 
original data. A key aspect of our approach is the introduc- 
tion of a new method to weight the data; this preserves the or- 
thogonality of the components while taking the measurement 
uncertainties into account. We also describe a new method 
for identifying the approximate number of aerosol compo- 
nents needed to represent the measurement quantitatively. 
Applying Varimax rotation to the resultant components de- 
composes a distribution into independent monomodal dis- 
tributions. Normalizing the components provides physical 
meaning to the component scores. The method is relatively 
simple, computationally fast, and numerically robust. The 
resulting data simplification provides an efficient method of 
representing complex data sets and should greatly assist in 
the analysis of size distribution data. 

1 Introduction 

Atmospheric aerosol particles affect the global climate both 
directly, by scattering and absorbing solar radiation, and indi- 
rectly, by increasing cloud lifetime and the number of cloud 
droplets (Schwartz, 1996; Twomey, 1991). Aerosol parti- 
cles can also significantly degrade visibility (Cheng and Tsai, 
2000; Barthelmie and Pryor, 1998). In addition, acute expo- 
sure to the atmospheric particulate matter leads to increased 

Correspondence to: M. Mozurkewich 
(mozurkew@yorku. ca) 

respiratory diseases and mortality rates (Maynard and May- 
nard, 2002; Peters et al., 2000; Spurny, 2000; Schwela, 
1996). Owing to the importance of the atmospheric parti- 
cles in affecting atmospheric processes and human health, 
it is important to understand the processes that convert gas 
phase species to particulate matter and that modify particle 
size distributions. 

Measurements of time series of aerosol size distributions 
can help us to understand how atmospheric aerosol particles 
evolve under the influence of processes such as nucleation, 
coagulation, and condensational growth. However, aerosol 
size distribution data sets can be difficult to handle and in- 
terpret due to the large amounts of data involved. To analyse 
the size distributions efficiently, data simplification is usually 
required prior to data analysis. 

One classic method used to simplify aerosol size distribu- 
tions is that of Whitby (Whitby, 1978; Knutson and Whitby, 
1975) in which distributions are fit to three log-normal func- 
tions for the nucleation, accumulation, and coarse particle 
modes. More recent measurements have shown that there is 
often an additional Aitken particle mode; this is located be- 
tween the nucleation and the accumulation particle modes. 
Thus four log-normal functions, three of which are in the 
submicrometer range, are often required to fit the entire size 
distribution. 

One difficulty in fitting size distributions with log-normal 
functions is that it is usually necessary to specify pre-defined 
size ranges for the different particle modes; this is done to re- 
duce the computational time and increase the numerical sta- 
bility of the fitting program. In many cases, these ranges 
are determined based on the particle formation mechanisms. 
For example, Makela et al. (2000) fit one year of 3-500nm 
size distribution data from a forested site in southern Finland 
with three log-normal functions, to represent the nucleation, 
Aitken, and accumulation modes. They found that it was 
generally not possible to define fixed size ranges for these 
modes; this was due to particle growth from one mode to 



another. They also found that the decision to include the nu- 
cleation mode in the fit was often difficult due to the high 
level of noise. In  contrast, Monkkonen et al. (2005) applied 
a similar fitting procedure to two weeks of 3-800nm size 
distribution measurements obtained from New Delh, India. 
In this case, since the three distinct maxima could easily be 
identified throughout the entire study, the three mode log- 
normal fits worked very well. However, atmospheric aerosol 
size distributions may possess more than three modes. Bir- 
mili et al. (2001) fit 17 months of 3-800nm size dstribution 
data, and found that number of modes required varied from 
two to five, depending on the origin of the air mass. 

These examples illustrate the basic problem encountered 
in fitting atmospheric aerosol data to log-normal functions: 
the number of observed maxima in the distributiom is a vari- 
able. Varying the number of modes used in the fit greatly 
complicates both the fitting process and the interpretation of 
the results. Trying to fit more modes than there are max- 
ima leads to numerical instability, unless the parameters are 
tightly constrained. Forcing the modes into pre-defined size 
ranges becomes problematic when particle growth covers a 
wide range of sizes. Fitting atmospheric size distributions 
often requires more than three log-normal functions (Birmili 
et al., 2001); since each function requires three fitting pa- 
rameters, this can lead to an excessive number of parameters. 
Thus, a better method of simplifying size distribution data is 
desirable. 

Principal component analysis is an effective alternative for 
reducing the dimensionality of large data sets; that is, the 
number of components needed to describe most of the vari- 
ance in the original data is generally much smaller than the 
original number of variables. This method uses correlations 
between variables to dscover a smaller number of new vari- 
ables, called components, that contain maximum informa- 
tion about the data. In analysing particle size dstribution 
data, the measured input variables are the number concentra- 
tions measured in different size bins. The components ob- 
tained from the analysis will have the form of dstribution 
functiom. This occurs because the first component accounts 
for the maximum amount of data variance that can be rep- 
resented by a single variable. Each successive component 
accounts for the maximum amount of the remaining unex- 
plained variance in the data. An analysis that retains the first 
N components gives the best possible fit with N orthogonal 
variables. Since all components are orthogonal to each other, 
the regression fitting of the data to the components is simple 
and always numerically stable, no matter how many compo- 
nents are included in the analysis. 

In atmospheric chemistry, factor analysis methods such as 
principal component analysis (Thurston and Spengler, 1985) 
and positive matrix factorization (Paatero and Tapper, 1994) 
have been mainly used for source identification and appor- 
tionment. However, the objective here is only to produce a 
simplified representation of size distribution data sets in or- 
der to assist in data interpretation and analysis. In the follow- 

ing paper (Chan and Mozurkewich, 2007) we will show how 
these simplified representations can assist in source identifi- 
cation by using them in a conventional factor analysis. 

Since the objective here is to provide a convenient meam 
of simplifying data sets, we use principal component analysis 
rather than more complex techmques, such as positive matrix 
factorization (Paatero and Tapper, 1994). The former method 
is numerically much simpler to implement. The chief advan- 
tage of the latter method is that it guarantees non-negative re- 
sults. Since all of the quantities to be obtained in the present 
analysis should be non-negative, this might be seen as a ma- 
jor advantage. However, in practice t h s  does not seem to 
be the case, the results of our analysis gives components in 
which all loadings that are not near zero have the same sign; 
these can be chosen to be positive. Changing the sign of the 
loadngs also changes the sign of the corresponding scores; 
when the large magnitude loadngs are given a positive sign, 
the scores also tend to be positive. When this is done, the 
negative values of loadngs and scores that occur are in the 
nature of noise; that is, they are part of fluctuations about 
zero. 

Standard principal component analysis was developed 
largely for handling social science data. It begins by sub- 
tracting variable means from the data and then dviding by 
the variable standard deviations. T h s  scaling is appropriate 
for social science data, where all variables are assumed to be 
equally significant and the absolute values have no meaning, 
but, it is inappropriate for physical data. Modfications can 
be introduced to remove the scaling effects from the rotated 
components and obtain absolute results (e.g., Thurston and 
Spengler, 1985); however, it is simpler to skip the scaling 
step. This is sometimes referred to as applying the analysis 
to covariances (e.g., Jackson 1991). 

Aerosol size dstributions require significant addtional 
modifications to the procedure. One difficulty is that aerosol 
size distributions, whether number or volume, possess very 
large variations in concentration; if the data are not weighted, 
this tends to force all the components into a limited portion 
of the size range as the procedure tries to account for small 
relative changes at those sizes for whch the concentratiom 
are the highest. If the data are scaled so that eachvariable has 
equal variance, then size bins in which the signal variance is 
largely due to instnunental noise are given equal importance 
with ones that have much less noise. Examples of how these 
effects can degrade the interpretation of data are given by 
Keenan and Kotula (2004), who have introduced a weight- 
ing method suitable for mass spectral data with pure Poisson 
noise. Our approach is similar in intent, but we introduce a 
more general method of weighting the data. 

The absolute principal component analysis (APCA) used 
in this study produces a weighted least square fit to the data. 
The procedure described here follows the standard principal 
component analysis in selecting a subset of components to 
retain and then rotating the axes to obtain components that 
are more physically meaningful. We suggest a modification 



of the standard scree plot for identifying the appropriate 
number of aerosol components to retam We use the stan- 
dard Varlmax orthogonal rotation, the resultmg components 
are a set of monomodal distributions with dstmct peaks and 
noise about zero away from the peak Fittmg the measure- 
ments to the rotated components produces a time series of 
component scores, these represent the number concentration 
of each component present In this paper, we use size dstri- 
bution measurements obtained from five dfferent field stud- 
ies to illustrate the methodology. 

2 Size distribution data sources 

The size dstribution measurements used here were obtained 
from five field studies: Egbert 2003, Pacific 2001, Hamil- 
ton 2000, Simcoe 2000, and Hamilton 1999. All size dis- 
tributions were measured with a DMP-CPC system over 5- 
min intervals with 16 size bim per decade resolution. Am- 
bient particles were size selected with a TSI 3071 differen- 
tial mobility analyser @MA) operating in a fast scan mode 
(Wang and Flagan, 1990). Particles exiting the DMA were 
counted by either a TSI 3010 or a TSI 3025 condensation 
particle counter (CPC). Details are glven by Mozurkewich et 
al. (2004). 

The Egbert 2003 data set was taken at the Meteorological 
Service of Canada's Centre for Atmospheric Research Ex- 
periments at Egbert; a rural site located about 80 km north of 
Toronto. Data were available for 22 days. Air flow from 
the south is often heavily influenced by urban emissions, 
whereas air from the north is relatively clean. 

The Pacific 2001 data set was taken at Sumas Mountain 
(Eagle Ridge) in Abbotsford Vancouver, B C .  Data were 
available for 17 days. This site is elevated by about 251 m 
above the nearby urban area and farmland, and sits above the 
inversion layer at night. A full description of this study is 
glven by Li (2004). At this site, combination of biogenic and 
anthropogenic emissions are expected from various locations 
both at the site and away from the site. A detailed discussion 
of both the sampling site and the size dstributions observed 
in this study is glven by Mozurkewich et al. (2004). 

The other three data sets were taken as part of the SON- 
TAS study. The Hamilton 2000 and Hamilton 1999 data sets 
were taken at Kelly station, an urban air quality monitoring 
site of the Ontario Mnistry of the Environment, located in 
downtown Hamilton, Ontario. Air at this site is expected to 
be strongly impacted by local traffic and industrial emissions. 
Data were available for l l days in 1999 and for 25 days in 
2000. The Simcoe 2000 data were taken at a mral site about 
70km SW of Hamilton. This site is strongly impacted by 
trans-boundary transport from the United States. Data were 
available for 15 days. 

3 Methodology 

3.1 Applying weights to size distribution data 

All the size distribution dataused in this study were weighted 
using estimated uncertainties in order to ensure the produc- 
tion of more reliable results (Cochran and Home, 1977). 
When no weights were applied to the data, all the rotated 
component loadings tended to be located below 200nm; this 
is due to the hlghly varying number concentratiom of parti- 
cles below 200nm. Weighting the data produced more rea- 
sonable results, with components distributed over the full 
particle size range. One consequence of weighting the data 
is that conversion to a surface or volume dstribution should 
not alter the results; the scaling factors applied to make these 
conversions would also have to be applied to the weights and 
so would cancel out in the weigthed data. 

31 .1  Estimation of measurement uncertainties 

The size distribution data sets used in this study are m the 
form of a ( I  xj] matrx, with z scans and J size bms Each en- 
try contaim the number concentration m the form of a l d l n  
D, A reasonable estimated weight, W,, ,  (or the Inverse of 
the square root of the variance) for each data pomt can be 
expressed as 

2 -112 
W,,  = [ ( k l c J ) '  + + (kzAiJ)  ] (1) 

where C j  is the concentration, a d l n  D,, corresponding to 
one CPC count for size j ;  Aij  is the measured concentration 
for size j in scan i ;  kl and k2 are constants. 

The first term in Eq. (1) is the minimum counting incre- 
ment, and serves to prevent Wjj from approaching mfinity as 
the measured concentration approaches zero. In our DMA- 
CPC system, the TSI 3010 CPC appeared to count particles 
in multiples of 5 when the concentration is low, therefore 
kl was set to 5. For size distribution data measured by the 
TSI 3025 CPC, kl was set to unity. The second term rep- 
resents the uncertainty due to counting statistics. When the 
measured concentration is high, the counting statistics term 
produces unreasonably low estimates of the uncertainty. To 
improve the uncertainty estimates, we also include the frac- 
tional error term (the third term). The fractional error term 
accounts for the combined flow fluctuation errors in both 
the DMA and CPC, which we expect to be proportional to 
the measured concentration. This fractional error also in- 
cludes uncertainties associated with the fact that the DMA 
is a scanning sampler; the particle concentration recorded 
at a particular size may be dfferent from the average con- 
centration during the scan due to variatiom in the aerosol 
during the time required for the scan Unfortunately, we do 
not have an independent estimate of this proportionality con- 
stant. However, setting kz to too small a value gave large 
values of chi square (i.e., numerically poor fits) for distri- 
butions with visually excellent fits. We found that k2=0.05 



produced reasonable results in that large values of chi square 
were associated with visually poor fits 

3 1 2 Determination of the row and column weights 

To ensure that the orthogonal aerosol components obtained 
from principal component analysis are meaningful, the 
weights must be applied to the data prior to the analysis and 
must be removed from the aerosol components after the anal- 
ysis. It appears that the most general weighting scheme that 
allows a preservation of the component orthogonality is the 
row and column weighting scheme of Cochran and Horne 
(1977). This assumes that the applied weights, Vjj, can be 
expressed as a product of a row weight (Xi) and a column 
weight (Yj): 

Typically, the actual weights given in Eq. (1) can not be fac- 
tored in the form of Eq. (2). Therefore, we find the row and 
column weights that give the best possible estimate to the 
actual weights, Wij. The optimum row and column weights 
are determined by minimizing the sum of the squares of the 
percentage deviations between V,j and Wij. The derivation 
given in the Appendix shows that the best estimated row and 
column weights are given by 

where (Wij) is the geometric mean of all values in the weight 
matriy (Wjj)j is the geometric mean of all values in row i, 
and (Wij)i is the geometric mean of all values in column 
j .  Thls is similar to the ad hoc procedure, using arithmetic 
means, suggested by Keenan and Kotula (2004) for Poisson 
noise. 

Once the optimum row and column weights have been ob- 
tained, the unweighted data matrix, A, is converted into a 
weighted data matrix, Z, according to 

Z = XAY (5) 

where X and Y are diagonal matrices that contain the row 
weights, X,, on the main dagonal of X, and the column 
weights, YJ, on the main diagonal of Y 

3.2 Absolute principal component analysis 

Principal component analysis begins by determining the co- 
variances between all pairs of variables in the data set. The 
covariance matrix, R, can be expressed by 

where n and b are, respectively, the total number of scans 
(rows), and the total number of variables (columns) in Z 

To obtain the principal components, the covariance matrix 
R is diagonalized: 

where Q is an orthonormal square matrix that contains the 
eigenvectors as the columm, and A is a dagonal matrix with 
the corresponding eigenvalues along the main dagonal for 
the corresponding columns in Q. For a data set with b vari- 
ables, matrices R, Q, andA all have brows and b columns. 

The eigenvectors in Q are linear transformations of the 
original variables; we refer these as "components". The 
amount of variance explained by each component is given 
by the corresponding eigenvalue in A. Finally, we sort 
the eigenvalues in A in descendng order, and arrange the 
columns in Q according to the corresponding order of their 
eigenvalues. 

Components with small eigenvalues are referred to as 
"noise," and are meaningless in explaining the general trends 
in the original data. Hotelling (1933) proposed that all the 
noise components should have equal eigenvalues based on 
the assumption that these components all have equal random 
variations. For a finite data sef we expect some variations in 
the eigenvalues for the noise components. Therefore, sorting 
all eigenvalues yields a gradual decrease in the noise eigen- 
values. We use the term "signal components" to refer to 
aerosol components that contribute significantly to the total 
variance; therefore, these are worth retaining. Data dimen- 
sionality can be reduced by retaining only the most important 
signal components, and discarding all noise components. In 
Sect. 4.2, we describe how can we separate the signal com- 
ponents from the noise components; this allows one to retain 
the suitable numbers of aerosol components. 

3.3 Removing weights from scores and loadings 

Removing the weights is essential to making the components 
and scores physically meaningful (Keidng et al., 1988). To 
do this, consider an unweighted (n X b) data matrix, A, that 
can be representedby anunweighted (b xb)  component load- 
i n g ~  matrix, L, and an unweighted (n X b) scores matriy S, 
via 

Similarly, a weighted data matrix, Z, can be expressed by 
a weighted component loadings matrx, Q, and a weighted 
scores matrx, P, via 

Note that S, L, P, and Q are all orthonormal matrlces Sub- 
stituting Eq (5) mto (g), rearrangmg, and comparing with 
Eq (8) shows that the weighted and unweighted scores 
and component loadings are related to the row and column 
weights by 



S = X-'P = AYQ. (1 1) 

Since both X and Y are dagonal matrices, X-' and Y-' are 
also diagonal. In X-' and Y-', the dagonal entries are the 
reciprocals of the corresponding entries in X and Y. Equa- 
tions (10) and (11) show that the weights can be removed 
by dividmg each row in the scores and each column in the 
loadings by the corresponding row and column weights. The 
second equality in Eq. (1 1) is simpler to use since it avoids 
the intermediate step of computing P. 

Owing to the orthogonality of the component loadings, 
Eqs. (8) through (1 1) are valid for any subset of components. 
To obtain a subset of unweighted components, L, and scores, 
S, we first obtain the complete set of eigenvectors, Q, sort 
the columm accordmg to descendmg eigenvalue, and then 
eliminate the columns in Q and L that correspond to the un- 
desired components. The issue of how many components 
to retain is addressed in Sect. 3.4. Once the subset of Q is 
obtained, Eqs. (10) and (1 1) give the subset of unweighted 
components and scores. Using these subsets i n E q  (8) yields 
an approximation to the original data matrix, A. Since all 
the aerosol components are orthogonal, this approximation 
is identical to the weighted least squares fit to the data by the 
retained components. After eliminating undesired columns 
in Q and before removing the weights, a rotation is applied 
to the coordinate system; t h s  is described in Sect. 3.5. Since 
the rotation is an orthogonal tramformation, it does not alter 
the fit to the original data. As a result, QR, the representa- 
tion of Q in the new coordinate system, may be used instead 
of Q in Eqs. (10) and (1 1); this may be verified by substitu- 
tion. Physically, the weights apply to the measuredvariables, 
independent of the coordinate system used. 

3 4 Choosing the number of components to retain 

The dimensionality of a data set is reducedby retaining fewer 
components than the number of original variables. How- 
ever, there is no fixed method of deciding how many com- 
ponents should be retained. One classic method is to plot 
the eigenvalues in descendmg order against the component 
number; this is called a scree plot. The general mle is to 
look for a point at  whch there is a sharp change in the slope 
of the plot (Cattell, 1966), as suggested by the reasoning of 
Hotelling (1933) described in Sect. 3.2. When we applied 
this method to the aerosol size distribution measurements, 
we found that it always indicated fewer aerosol components 
than are needed to capture the visible features in the original 
measurements. 

As pointed out by Cochran and Home (1977), if we have 
an accurate estimate of the true measurement uncertainties, 
the eigenvalues for loadings that represent noise should be 
approximately llb, where b is the total number of size bins 
in the measurements. The eigenvalues obtained for our size 
distribution measurements are much larger than llb; thus, 

Eq. (1) does not represent all possible errors in the size dis- 
tributions. For example, the reported distribution data is im- 
plicitly treated as a true average over one measurement scan 
time For DMA-CPC data, this is not tme in a dynamic envi- 
ronment in which significant changes in the size distribution 
may occur within the time required for one scan. Addtional 
errors are introduced by the fact that the applied weights, Vjj, 
are approximations to the tme weights, W i j  These difficul- 
ties prevent us from using the criteria of Cochran and Home 
to select the number of components to retain. 

Nine different methods that are available in the literature 
for determining the number of components to retain have 
been tested by Ferre (1995). He concluded that there is no 
universal method which works for every application. The 
most suitable method for determining the appropriate num- 
ber of components to retain depends on both the nature of the 
data set and the objective of the user: whether the aim is to 
obtain a "good explanation" (good fit to the data), or to ob- 
tain a "good prediction" (agood estimation of the parameters 
of a model). 

Another approach to selecting the proper number of com- 
ponents to retain is to compare the original measurements 
with the fitted data generated using various numbers of re- 
tained components. The decision is somewhat subjective 
since it depends on what is deemed an adequate fit. For ex- 
ample, is it sufficient for the fit to capture the general trends 
in the measurements, or should it reproduce all significant 
features of the data? This procedure is also cumbersome 
to apply. In the following we use this method to judge the 
success of our procedure for selecting the number of compo- 
nents to retain. 

From analysing different aerosol size distribution mea- 
surements, we found that the most successful and effective 
method to determine the number of components to retain is 
based on X j ,  which we define as the square root of the sum 
of the unused eigenvalues: 

where Aj is the eigenvalue for eigenvector i, b is the total 
number of variables in the measurement, and j is the num- 
ber of retained components. Since the covariance matrix in 
Eq. (9 is standardized by the total number of data points in 
the data set (nb), all eigenvectors will have unit length and 
the eigenvalue of each component represents the scaled vari- 
ance contributed by the corresponding component (Jolliffe, 
1986). I n E q  (12), C A i ,  represents the total variance asso- 
ciated with the unused components. The square root of this 
quantity represents the deviation between the original data 
and the fitted data based on retaining j aerosol components. 

The procedure for using this is to make a plot of X j against 
the number of retained aerosol components; we call this the 
"modified scree plot," because of its similarity to the tradi- 
tional scree plot. Ideally, a sharp break in the plot would 



distinguish the signal components from the noise compo- 
nents. In practice, the break is gradual, so that there is a 
range of possible values for the number of components to be 
retained. The actual number retained depends on the extent 
to which an accurate fit to the data is desired. This will be 
discussed in detail in Sect. 4.2. 

3.5 Rotation and normalization of loadings and scores 

The component loadngs obtained directly from the abso- 
lute principal component analysis are mathematical func- 
tions that have no physical meaning. In order to provide a 
physical meaning to each component, rotation of the retained 
components is required Puharma et al., 1998). We adapt the 
widely used Varimax procedure (Comrey and Lee, 1992) to 
obtain the optimal rotation matrix, T. Some workers incor- 
rectly use the term rotation to refer to other types of linear 
transformations, we don't. This matrix relates the rotated 
components, Q R ,  to the original non-rotated components, Q, 
via 

Since both Q and T are orthonormal, QR is also orthonormal. 
Once Q R  is obtained, it can be used in place of Q inEqs. (10) 
and (I l )  to obtain the unweighted components and scores. 

For aerosol data, it is desirable for the component load- 
i n g ~  to be in the form of probability distributions, so that the 
corresponding score represents the absolute concentration of 
particles associated with the component. To do this, the load- 
i n g ~  for each component are normalized in the probability 
sense. The normalization factor for each component is ob- 
tained by integrating its loadings over the entire size range, 
taking into account the logarithmic spacing of the size bins. 
Then the loadngs are divided by the normalization factor, 
and the corresponding scores are multiplied by the same fac- 
tor. This normalization procedure causes the aerosol compo- 
nents to be no longer normalized in the vector algebra sense; 
therefore, this procedure is done after using Eq. (1 l )  to obtain 
the component scores. 

4 Results and discussion 

4 1 Nature of the rotated components 

Figure 1 shows the rotated component loadngs obtained for 
each field study. In each case, the results shown are those ob- 
tained when retaining the maximum number of components 
indicated by the method described in Sect. 3.4. Once the 
components have beenrotated andthe effects of weights have 
been removed, the dominant feature in each rotated compo- 
nent has a shape similar to a single mode size dstribution. 
In addtion, away from the peak there are oscillations about 
zero; this is a consequence of the orthogonality condition. 
We believe that these oscillations should be regarded as a 

kind of systematic noise. Note that the loadngs are dis- 
tributed over the entire measured size range. These basic 
features of the rotated components are preserved when fewer 
mixed components are retained. However, when too few or 
too many components are retained, the single mode stmc- 
tures are not obtained. 

In several of the data sets, the smallest dameter compo- 
nent is truncated and has a greater amplitude than the others. 
This is a comequence of requiring each component to have 
unit area in order to transform the component loadings to a 
probability function (see Sect. 3.5). The 9nm component is 
missing in the Hamilton 2000 data set, apparently as a con- 
sequence of the cloudy and rainy weather encountered dur- 
ing that study. As mentioned earlier, we can not assign the 
identified components directly to specific sources. However, 
when combined with other data, these components are useful 
in identifying sources; this will be addressed in the accom- 
panying paper (Chan and Mozurkewich, 2007). 

4.2 Number of components retained 

The modfied scree plots for the Egbert 2003, Pacific 2001, 
Hamilton 2000, Simcoe 2000, and Hamilton 1999 data sets 
are shown in Fig. 2. For a data set with b variables, there 
are (b-l) points in these plots. The point for retaining all 
b components is not included in the plot, since this always 
gives a perfect fit with zero deviation. The point for retaining 
zero components is also omitted because it has no practical 
use. 

The points on the modfied scree plot are fit to a four 
parameter function, which is defined as the greater of two 
straight lines. This divides the points into three categories: 
signal, noise, and mixed components. Components that fall 
on the first straight line segment are classified as signal com- 
ponents, while those that fall on the second straight line seg- 
ment are classfied as noise components. The rationale for 
this is the same as for the standard scree plot. The mixed 
components are the ones that contain signficant amount of 
both signal and noise. 

This interpretation is supported by tests with synthetic 
data. Those tests suggest that the signal components rep- 
resent critical features in the original data set and should 
always be retained while the noise components represent 
unimportant features and should always be dscarded. They 
also showed that the mixed components tend torepresent fea- 
tures that appear only in a portion of the data set. Therefore, 
the choice of how many mixed components should be re- 
tained depends on how important these small features are to 
the user. Specfically, retaining only the signal components 
seems to be sufficient to fit the general trends inthe data sef 
while some or all the mixed components are needed to be 
able to fit all significant visual features in the data set. 

From Fig. 2, we see that from 5 to 7 components should 
be retained for the Egbert 2003 data sef from 4 to 8 should 
be retained for Pacific 2001, from 4 to 5 for Hamilton 2000, 
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Fig. 1. The relative positions and shapes of the components after Vanmax rotation and probability normalization for the five field studies. 
Each component is labelled with its modal diameter, as determined by fitting the component loadmgs to log-normal distributions. 

from 6 to 10 for Simcoe 2000, and from 5 to 6 for Hamil- with four components, one of the rotated components shows 
ton 1999 For the Pacific 2001 data sef we conclude that a bimodal structure, while withfive components, all rotated 
the minimum number of components to retam should be in- components are monomodal 
creased to five due to the shape of the rotated components, 
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Fig. 2. Modified scree plots for various field studies. Open circles represent signal components, open triangles represent noise components, 
and solid squares represent mixed components. The solid llne indicates the best fit to a four parameter function defined as the greater of two 
straight lines. 

4.3 Quality of fits deciding whether to include the mixed components is some- 
what subiective. In all five data sets considered here. we 
found that when all the mlxed components are retained we 

noted above, the scree does not provide an obtain excellent fits to the original data throughout each data 
unambiguous result for the number of components to retain, 
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Fig. 3. Relative deviations between the measured and fitted data for one week of data from Pacific 2001. The components used were 
determined from the entire 17 day data set. The top panel is for the retention of 5 components and the bottom panel is for the retention of 8 
components. The darkness scale corresponds with the product of the absolute deviations with their approximate weights. 

set. In the case of the Simcoe 2000 data set, we found that 
only 8 components (instead of 10, indicated by the modified 
scree plot) are sufficient to capture virtually all features in 
the original measurements. When some or all of the mixed 
components are omitted, the fits are degraded slightly during 
most time periods and substantially during others. 

An example of these comparisons is shown in Fig. 3, for 
the retention of either 5 or 8 components in the Pacific 2001 
data. Although the figure shows just six days of data, the 
components used were derived from the entire study and the 
results in Fig. 3 are representative of the entire study. For the 
comparison, we multiply the absolute deviations (that is, the 
absolute values of the differences between the measured and 
fitted data) by the estimated weights (Kj, Eq. 2); these rel- 
ative deviations provide an indication of how large the devi- 
ations are in comparison with what would be expected from 
the measurement uncertainty. In Fig. 3, we see that during 
the second half of the time period (21 August to 24 August), 
both the 5 and 8 component fits reproduce the original data 
well, with no large systematic deviations. In contrast, during 
the first half of the period (17 August to 21 August), the 5 
component fit shows some large systematic deviations. This 
shows that although 5 components are adequate to fit most of 
the data set, more mixed components are needed in order to 
fit the entire data set quantitatively. When we apply principal 
component analysis separately to the periods from 17 August 
to 21 and 21 August to 24, the corresponding modified scree 
plots show that the former period requires 6 to 9 components, 
while the latter period requires 3 to 6 components. 

In Fig. 4, we show the comparison between the Pa- 
cific 2001 measurements and fits obtained by using either 5 
or 8 components. For clarity, only the period from 15 Au- 
gust to 21 August is shown, the results are representative of 
the entire 17 day study. At most times, both fits reproduce 
the measurements very well. However, the 5 component fit 
has some significant deviations during the two circled peri- 

ods. These results are typical of those obtained from all five 
data sets. 

As a result of the normalization procedure; the component 
scores represent the absolute concentrations of particles as- 
sociated with each component. Thus, the sum of all rotated 
component scores should be equal to the total number con- 
centration of the measured size distribution. We tested this 
for all field data sets; the corresponding r.m.s. deviations be- 
tween the sum of all scores and the integrated DMA total 
number concentration are summarized in Table 1. The com- 
parisons were carried out using both the minimum and max- 
imum numbers of retained components. In the former case, 
when including only the signal components, the r.m.s. devia- 
tion varies from 1 .O% to 2.5%. As expected, when the mixed 
components were included, the r.m.s. deviations are slightly 
smaller, ranging fi-om 0.75% to 1.9%. Note that since the 
components are orthogonal, the scores for individual non- 
rotated components do not depend on how many components 
are retained. Thus, the difference between the two sets of 
r.m.s. deviations in Table I is caused by the additional com- 
ponents that are retained in each data set. The small differ- 
ences of the two sets of r.m.s. deviations in Table 1 are indica- 
tive of the relatively small impact of the mixed components 
on fitting the data set as a whole. 

4.4 Interpretation 

We find that the number of mixed components in a modified 
scree plot appears to relate to the amount of atmospheric pro- 
cessing of the sampled aerosol. Among the five field studies 
considered, both Hamilton 1999 and 2000 data sets are the 
simplest, with the fewest number of mixed components (see 
Fig. 2). This may be because the measurement site is located 
within a source region, where the air is strongly affected by 
local vehicle and industrial emissions. As a result, we might 
expect that the individual components would be most nearly 
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Fig. 4. Comparison of measured and fitted data for a six day segment of the Pacific 2001 data set. The components used were determined 
from the entire 17 day data set. The top panel shows the measurements, the middle panel shows fitted data using 5 components, and the 
bottom panel shows fitted data using 8 components. Circled are two intervals during which the 5 component fits show significant deviations 
from the measurements. 

Table 1. Comparisons of the r.m.s. deviation between the sum of all that sampled during the Pacific 2001 study. The Egbert 2003 

component scores and the integrated DMA total number concentra- data were measured at a site that has a 

tions for ~naximum and minimum numbers of retained components. pollution Source from   or onto as well as being impacted by 
regional scale pollution; it has an intermediate number of 

Field study Components Deviation Components Deviation mixed components. 

Egbert 2003 
Pacific 200 1 
Hamilton 2000 
Simcoe 2000 
Hamilton 1999 

It does not appear that there is a direct connection between 
the individual components obtained by this method and any 
specific sources. However, we believe that this procedure 
will be extremely useful in simplifying the analysis of size 
distribution data since it enables a large number of size bins 
to be replaced with a much smaller number of components. 
At a minimum these components can be thought of as a way 

associated with specific sources at this site. In contrast, the of '.binning3' the data that preserves maximum information. 
Pacific 2001 sampling site was located at a considerable dis- We find it remarkable that only 4 or 5 such "bins" are needed 
tance from a number of sources; this leads to greater atmo- to reproduce most features of the size distributions and that 
spheric processing which may be the reason for the larger just 6 to 8 components can preserve virtually all details of the 
number of mixed components. In terms of the size distri- distributions. This is made possible by the fact that the data 
butions, this is seen as a greater variability in the locations themselves are used to determine the optimal "binning". In 
and shapes of the various fine particle modes. Compared to analysing data, the scores may be treated as being analogous 
the Pacific 2001 sampling site, the Siincoe 2000 data were to the numbers of particles in various size ranges (such as nu- 
obtaineded at a rural site that occasionally receives local pol- cleation. Aitken, and accumulation modes). However, using 
lution from Nanticoke but mostly experiences regional scale the principal components should be much preferred to us- 
pollution, largely transported from the United States. Thus, ing predefined size ranges since the components retain much 
air in Simcoe is also highly processed but not as variable as more of the information present in the size distribution data. 



For t h s  reason, we believe that this procedure has the poten- 
tial to greatly aid data analysis As example of this is given 
in the following paper (Chan and Monukewich, 2007) 

5 Conclusions 

We have described how to apply absolute principal compo- 
nent analysis to atmospheric aerosol number size dstribution 
measurements. This method provides a useful meam to re- 
duce the data dmensionality prior to analysis; DMA-CPC 
size distribution data with initially about 30 size bim can be 
accurately summarized using just a few components. One 
use of these components is as a way of "binning" the data 
that preserves maximum information. Only 4 or 5 compo- 
nents are needed to reproduce most features of the size dis- 
tributions and just 6 to 8 components can preserve virtually 
all details of the dstributions. As a result, this has the poten- 
tial to greatly simplify data analysis. 

In particular, we believe that t h s  produces a simplified 
representation of size distribution data that is very advanta- 
geous in comparison with fitting multiple log-normal modes. 
Numerically, principal component analysis is extremely sta- 
ble, so its application can be readly automated; t h s  is not 
usually the case with fitting multiple modes. The number 
of time varying parameters needed to fit the dstributions is 
typically fewer than for fitting multiple modes. Finally, the 
principal component results are fully continuous whereas the 
number of modes used in fits may vary with time. 

We find that there are a number of steps that must be taken 
in order to successfully apply absolute principal component 
analysis to aerosol size distribution data. First, the weight- 
ing scheme used for social science data is often not appro- 
priate for size distribution data. Therefore, the data mean 
should not be subtracted from the data prior to the analysis 
and the indvidual size bins should not be scaled according 
to their standard deviations. An appropriate data weighting 
is essential to produce realistic results. This can be accom- 
plished by adopting the row and column weighting scheme 
of Cochran and Home (1977). To make it possible to do 
this, we introduce a method of findng the row and column 
weights that give the best estimate to the actual indvidual 
data point weights derived from i n s m e n t a l  uncertainties. 
The weight for each row or column is the geometric mean of 
all weights in that row or column dvided by the square root 
of the geometric mean of all the weights. 

We have found that a modification of the widely used scree 
plot provides an effective method for determining the min- 
imum and maximum number of components to retain; the 
exact number of components to retain depends on the user 
objectives. Application of the Varimax rotation to the re- 
tained component loading~ and scores generates meaningful 
results. Each rotated component has a distinct maximum 
with low amplitude oscillations away from the peak. After 
removing the effect ofweights, normalizing the rotated com- 

ponents gives the correspondmg component scores physical 
umts of absolute concentrations We believe that principal 
component analysis will be a useful method to simplify the 
representation of aerosol size distribution data and aid in the 
analysis of these data sets. However, some experience will 
be required to determine the best applications of the results. 
A first application of this is described in the accompanying 
paper (Chan and Monukewick 2007). 

Appendix A 

Estimation of row and column weights 

We begin with a set of weights, Wij, for each individual data 
point, such as those calculated from Eq. (AI). To apply 
weights in principal component analysis, we need to factor 
the measureduncertainties into a set of row weights, Xi, and 
column weights, Y j  The products of these generate a set of 
approximate weights, x i ,  given by 

Since the row and column weights can not be determined di- 
rectly, we find the row and column weights that provide the 
best estimate of the actual measured weights, W i j  The op- 
timum row and column weights are obtained by minimizing 
the sum of squares of the deviations, S:, between the loga- 
rithms of xi and Wij; which is given by Eq. (A2) 

Our objective is to minimize Eq. (A2) so that the ratios of 
xi to Wij are as near as possible to unity. We choose to 
use percentage deviations over absolute deviations because 
Wij vary over a wide range and we see no reason why the 
larger weights should be more accurately estimated than the 
smaller ones. Minimizing Eq. (A2) makes the percentage 
deviations independent of the magnitudes of the Wi j  To get 
the optimum row weights, we set the derivative of S: with 
respect to any one Xi equal to zero, t h s  yields 

Solving Eq. (A3) for the optimum row weight, Xi, yields 

The first term on the right hand side of Eq. (A4) is the log- 
arithm of (Wij)i,  which we define as the geometric mean of 
the individual weights in row i .  The last term in Eq. (A4) is 
the logarithm of the geometric mean of the column weights. 



Equation (A4) indicates that the row weights should be pro- 
portional to (Wjj)j due to the fact that all rows in any partic- 
ular column have the same column weight. Also, since the 
!Jjj should have the same geometric mean as the Wjj, we ad- 
just the proportionality constant to (Wjj)'/' where ( W j )  is 
the geometric mean of all values in W j j  Then rearranging 
Eq. (A4) yields the optimum row weights: 

To obtam the optimum column weights, we differentiate 
Eq (A2) with respect to the column weights, and usmg the 
same logic, we find that the optimum column weights to be 

where ( W j j ) j  is the geometricmean ofthe individual weights 
in column j .  Equations (AS) and (A6) are the same as 
Eqs. (3) and (4). 

U U 
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